交集与并集精品PPT课件
合集下载
《高一数学交集并集》课件
交、并集运算的结合律和交换律
结合律
交集和并集都满足结合律 ,即(A∩B)∩C=A∩(B∩C) ,(A∪B)∪C=A∪(B∪C) 。
交换律
交集满足交换律,即 A∩B=B∩A,但并集不满 足交换律,即A∪B不一定 等于B∪A。
应用
结合律和交换律是数学中 非常重要的基本定律,它 们在证明定理、化简公式 等方面有广泛应用。
举例
若A表示直线x+y=1上的点,B表 示直线x-y=2上的点,则A∩B表 示同时满足两个条件的点的集合 ,即两条直线的交点。
02
并集的定义与性质
并集的定义
并集的定义
由两个集合中所有元素组成的集合称为这两个集合的并集。
并集的符号表示
记作A∪B,读作A并B。
并集的元素
属于A或属于B的所有元素。
并集的性质
平面上的点
若集合A和集合B分别表示一个平面区 域内的红色点和蓝色点,则集合A和集 合B的并集表示这个平面区域内所有的 点(包括红色和蓝色)。
03
交集与并集的运算
交集运算
定义
两个集合A和B的交集是由同时属 于A和B的所有元素组成的集合,
记作A∩B。
举例
假设A={1,2,3,4},B={3,4,5,6}, 则A∩B={3,4}。
应用
在解决实际问题时,交集运算可以 帮助我们找到两个条件同时满足的 解。
并集运算
01
02
03
定义
两个集合A和B的并集是由 属于A或属于B的所有元素 组成的集合,记作A∪B。
举例
假设A={1,2,3,4}, B={3,4,5,6},则 A∪B={1,2,3,4,5,6}。
应用
在解决实际问题时,并集 运算可以帮助我们找到满 足一个或多个条件的解。
交集、并集 , 课件(37张)
(2){1,2,3,4}∪{0,2,3}={1,2,3,4,0,2,3}.( (3)若 A∪B=A,则 A⊆B.( )
【解析】
(1)×.当两个集合没有公共元素时,两个集合的并集中元素的个
数等于这两个集合中元素个数之和. (2)×.求两个集合的并集时,这两个集合的公共元素在并集中只能出现一次, 需要满足集合中元素的互异性. (3)×.若 A∪B=A,则应有 B⊆A.
)
(2)设集合 A={x|1≤x≤5},Z 为整数集,则集合 A∩Z 中元素的个数是( B.5 D.3
)
【精彩点拨】 (1)欲求 A∩B,只需将 A,B 用数轴表示出来,找出它们的公 共元素,即得 A∩B. (2)用列举法表示{x∈Z|1≤x≤5}即可.
【自主解答】 (1)A={x|2<x<4},B={x|x<3 或 x>5}, 如图 A∩B={x|2<x<3}.
)
【精彩点拨】 (1)集合 M 和集合 N 都是含有三个元素的集合,把两个集合的 所有元素找出写在花括号内即可,注意不要违背集合中元素的互异性. (2)欲求 P∪Q,只需将 P,Q 用数轴表示出来,取它们所有元素构成的集合, 即得 P∪Q.
【自主解答】 (1)因为 M={-1,0,1},N={0,1,2}, 所以 M∪N={-1,0,1}∪{0,1,2}={-1,0,1,2}. (2)P={x|x<3},Q={x|-1≤x≤4},如图,P∪Q={x|x≤4}.
【答案】
{-1}
[探究共研型]
探究 1 设 A、B 是两个集合,若已知 A∩B=A,A∪B=B,由此可分别得 到集合 A 与 B 具有什么关系?
【提示】 A∩B=A⇔A∪B=B⇔A⊆B,即 A∩B=A,A∪B=B,A⊆B 三者 为等价关系.
《交集与并集一》课件
数据库操作
在关系型数据库中,集合的概念被广泛应用于表与表之间的关系上。例如,在执行连接(Join )操作时,需要使用到集合的交集运算;而在进行表的并(Union)操作时,则需要使用到集 合的并集运算。
集合运算在日常生活中的应用
统计学
在统计学中,集合的交、并运算被广泛应用于数据的分类、汇总和分析中。例 如,在市场调查中,可以将不同年龄段的人看作不同的集合,通过交、并运算 来分析不同年龄段的人对某产品的喜好情况。
并集的定义
两个集合A和B的并集是指属于A或属 于B的所有元素组成的集合,记作 A∪B。
本节课的难点解析
理解交集与并集的几何意义
交集表示两个集合重叠的部分,并集表示两个集 合覆盖的范围。通过几何图形可以直观地理解交 集与并集的概念。
掌握交集与并集的运算方法
在实际问题中,需要根据具体情境选择合适的集 合进行交集或并集的运算,以解决实际问题。
对交集与并集的进一步思考
交集与并集在实际生活中的应用
交集和并集的概念在现实生活中有着广泛的应用,如统计学中的数据合并、数据 库中的数据检索等。通过深入思考交集与并集的应用场景,可以更好地理解和掌 握相关概念。
探索交集与并集的其他性质
除了基本的定义和运算性质外,还可以进一步探索交集与并集的其他性质,如空 集与任意集合的交集和并集、有限集合与无限集合的交集和并集等,以加深对交 集与并集的理解。
举例2
在数字信号处理中,两个信号的 交集表示同时属于两个信号的所 有样本点,而并集表示属于两个 信号中任意一个的所有样本点。
举例3
在社交网络中,两个用户的共同 好友构成这两个用户的交集,而 这两个用户的好友列表中的所有
用户构成这两个用户的并集。
04
在关系型数据库中,集合的概念被广泛应用于表与表之间的关系上。例如,在执行连接(Join )操作时,需要使用到集合的交集运算;而在进行表的并(Union)操作时,则需要使用到集 合的并集运算。
集合运算在日常生活中的应用
统计学
在统计学中,集合的交、并运算被广泛应用于数据的分类、汇总和分析中。例 如,在市场调查中,可以将不同年龄段的人看作不同的集合,通过交、并运算 来分析不同年龄段的人对某产品的喜好情况。
并集的定义
两个集合A和B的并集是指属于A或属 于B的所有元素组成的集合,记作 A∪B。
本节课的难点解析
理解交集与并集的几何意义
交集表示两个集合重叠的部分,并集表示两个集 合覆盖的范围。通过几何图形可以直观地理解交 集与并集的概念。
掌握交集与并集的运算方法
在实际问题中,需要根据具体情境选择合适的集 合进行交集或并集的运算,以解决实际问题。
对交集与并集的进一步思考
交集与并集在实际生活中的应用
交集和并集的概念在现实生活中有着广泛的应用,如统计学中的数据合并、数据 库中的数据检索等。通过深入思考交集与并集的应用场景,可以更好地理解和掌 握相关概念。
探索交集与并集的其他性质
除了基本的定义和运算性质外,还可以进一步探索交集与并集的其他性质,如空 集与任意集合的交集和并集、有限集合与无限集合的交集和并集等,以加深对交 集与并集的理解。
举例2
在数字信号处理中,两个信号的 交集表示同时属于两个信号的所 有样本点,而并集表示属于两个 信号中任意一个的所有样本点。
举例3
在社交网络中,两个用户的共同 好友构成这两个用户的交集,而 这两个用户的好友列表中的所有
用户构成这两个用户的并集。
04
交集与并集(课件)
解:A∪B= {x∣-1<x<2}∪ {x∣1<x< 3}
-2
-1
0
1
2
3
4
5
A∪B
A
= {x∣-1<x< 3}
B
例题
变式1:设A={3,5,6,8},B={4,5,7,8}, 求A∪B。
类比
(1) A={2,4,6,8,10}, B={3,5,8,12}, C={8}.
(2)A={x|x是高一年级的女同学}, B={x|x是高一(4)班的同学}, C={x|x是高一(4)班的女同学}.
观察下列集合,你能说出集合C与集合A,B之间的关系吗?
定义
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union set).
记作:A∪B(读作:“A并B”)
一、并集:
符号语言: A∪B ={x| x ∈ A ,或x ∈ B}
A
B
C=A∪B
B
C
Venn图表示:
性质
A
=
Φ
B
例题
例2 设集合A={x∣-1<x<2},集合B={x∣1<x<3}
例1 设A={4,5,6,8}, B={3,5,7,8},求A∪B.
解: A∪B={4,5,6,8} ∪ {3,5,7,8} ={3,4,5,6,7,8}
求A∪B
。 -1
。 1
。 2
。 3
0
练习
2、设A={x|x是等腰三角形},B={x\x是直角三角形},则A∩B=( )
3、(2014·广东高考)已知集合M={2,3,4}, N={0,2,3,5},则M∩N=( )
-2
-1
0
1
2
3
4
5
A∪B
A
= {x∣-1<x< 3}
B
例题
变式1:设A={3,5,6,8},B={4,5,7,8}, 求A∪B。
类比
(1) A={2,4,6,8,10}, B={3,5,8,12}, C={8}.
(2)A={x|x是高一年级的女同学}, B={x|x是高一(4)班的同学}, C={x|x是高一(4)班的女同学}.
观察下列集合,你能说出集合C与集合A,B之间的关系吗?
定义
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union set).
记作:A∪B(读作:“A并B”)
一、并集:
符号语言: A∪B ={x| x ∈ A ,或x ∈ B}
A
B
C=A∪B
B
C
Venn图表示:
性质
A
=
Φ
B
例题
例2 设集合A={x∣-1<x<2},集合B={x∣1<x<3}
例1 设A={4,5,6,8}, B={3,5,7,8},求A∪B.
解: A∪B={4,5,6,8} ∪ {3,5,7,8} ={3,4,5,6,7,8}
求A∪B
。 -1
。 1
。 2
。 3
0
练习
2、设A={x|x是等腰三角形},B={x\x是直角三角形},则A∩B=( )
3、(2014·广东高考)已知集合M={2,3,4}, N={0,2,3,5},则M∩N=( )
1.3.1并集与交集课件共30张PPT
3.并集、交集的运算性质
并集的运算性质 交集的运算性质
A∪B=B∪A
A∩B=B∩A
A∪A= A
A∩A= A
A∪∅= A
A∩∅= ∅
1.已知下列集合: A={x|x2-1=0},B={x∈N|1≤x≤4},C={-1,1,2,3,4}. (1)集合 A 与集合 B 各有几个元素? (2)若将集合 A 与集合 B 的元素放在一起,构成一个新的集合 是什么? (3)集合 C 中的元素与集合 A,B 有什么关系?
课堂归纳小结 1.对并集、交集概念的理解 (1)对于并集,要注意其中“或”的意义,“或”与通常所说 的“非此即彼”有原则性的区别,它们是“可兼”的.“x∈A, 或 x∈B”这一条件,包括下列三种情况:x∈A 但 x∉B;x∈B 但 x∉A;x∈A 且 x∈B.因此,A∪B 是由两个集合 A,B 的所有元素 组成的集合. (2)A∩B 中的元素是“所有”属于集合 A 且属于集合 B 的元 素,而不是部分,特别地,当集合 A 和集合 B 没有公共元素时, 不能说 A 与 B 没有交集,而是 A∩B=∅.
6.设集合 A={x|x2-3x+2=0},集合 B={x|x2-4x+a=0, a 为常数},若 A∪B=A,求实数 a 的取值范围.
[解] 由已知得 A={1,2},∵A∪B=A,∴B⊆A, ∴集合 B 有两种情况:B=∅或 B≠∅. ①当 B=∅时,方程 x2-4x+a=0 无实根.∴Δ=16-4a<0, ∴a>4. ②当 B≠∅时,若 Δ=0,则有 a=4,此时 B={2}⊆A 满足条 件;若 Δ>0,则 1,2 是方程 x2-4x+a=0 的两根,但由根与系数 的关系知矛盾,∴Δ>0 不成立,∴当 B≠∅时,a=4. 综上可知,a 的取值范围是{a|a≥4}.
交集与并集(课件)
点是如何聚集在一起的。
在概率论中的应用
概率空间的定义
在概率论中,交集和并集被用来定义概率空间,它们是概率空间 的基本元素。
事件的运算
事件的交和并是概率论中的基本运算,它们可以帮助我们理解事件 的组合和事件的概率。
随机变量的定义
在定义随机变量时,交集和并集也被广泛应用,它们可以帮助我们 理解随机变量的取值范围和概率分布。
感谢您的观看
THANKS
05
交集与并集的应用
在集合论中的应用
集合的运算
交集和并集是集合的基本运算之 一,它们在集合论中有着广泛的 应用,如集合的分解、集合的表
示等。
集合的性质
通过交集和并集的运算,可以研 究集合的性质,如集合的连通性、
集合的紧致性等。
集合的拓扑结构
在研究集合的拓扑结构时,交集 和并集的运算也是非常重要的, 它们可以帮助我们理解空间中的
两个或两个以上的集合中 所有的元素组成的集合称 为并集。
教学目标
理解交集与并集的概 念。
能够运用交集与并集 的概念解决实际问题。
掌握交集与并集的运 算方法。
02
交集的概念与性质
交集的定义
交集的定义
交集的描述性表示
两个集合A和B的交集是指同时属于A 和B的所有元素的集合,记作A∩B。
描述性表示方法通常用"A和B的公共 部分"或"A和B共有的元素"来描述。
03
并集的概念与性质
并集的定义
并集的定义
对于任意两个集合A和B,它们的并集A∪B是由所有属于A或属于B的元素组成 的集合。
并集的数学符号表示
记作A∪B,读作A并B。
并集的表示方法
列举法
在概率论中的应用
概率空间的定义
在概率论中,交集和并集被用来定义概率空间,它们是概率空间 的基本元素。
事件的运算
事件的交和并是概率论中的基本运算,它们可以帮助我们理解事件 的组合和事件的概率。
随机变量的定义
在定义随机变量时,交集和并集也被广泛应用,它们可以帮助我们 理解随机变量的取值范围和概率分布。
感谢您的观看
THANKS
05
交集与并集的应用
在集合论中的应用
集合的运算
交集和并集是集合的基本运算之 一,它们在集合论中有着广泛的 应用,如集合的分解、集合的表
示等。
集合的性质
通过交集和并集的运算,可以研 究集合的性质,如集合的连通性、
集合的紧致性等。
集合的拓扑结构
在研究集合的拓扑结构时,交集 和并集的运算也是非常重要的, 它们可以帮助我们理解空间中的
两个或两个以上的集合中 所有的元素组成的集合称 为并集。
教学目标
理解交集与并集的概 念。
能够运用交集与并集 的概念解决实际问题。
掌握交集与并集的运 算方法。
02
交集的概念与性质
交集的定义
交集的定义
交集的描述性表示
两个集合A和B的交集是指同时属于A 和B的所有元素的集合,记作A∩B。
描述性表示方法通常用"A和B的公共 部分"或"A和B共有的元素"来描述。
03
并集的概念与性质
并集的定义
并集的定义
对于任意两个集合A和B,它们的并集A∪B是由所有属于A或属于B的元素组成 的集合。
并集的数学符号表示
记作A∪B,读作A并B。
并集的表示方法
列举法
1 第1课时 并集与交集(共41张PPT)
A.{x|-1<x<1}
B.{x|-2<x<1}
C.{x|-2<x<2}
D.{x|0<x<1}
()
解析:选 D.如图,
因为 A={x|-2<x<1}, B={x|0<x<2}, 所以 A∩B={x|0<x<1}.
2.(多选)已知全集 U=R,集合 M={x|-2≤x-1≤2}和 N={x|x=2k-1,k ∈N*}关系的 Venn 图如图所示,则阴影部分表示的集合中的元素有 ( )
1.(多选)满足{1,3}∪A={1,3,5}的集合 A 可能是
()
A.{5}
B.{1,5}
C.{3}
D.{1,3}
解析:选 AB.由{1,3}∪A={1,3,5}知,A⊆{1,3,5},且 A 中至少有 1
个元素 5,故选 AB.
2.若集合 M={x|-3<x≤5},N={x|x<-5 或 x>5},则 M∪N=________. 解析:将-3<x≤5,x<-5 或 x>5 在数轴上表示出来.
()
A.{x|2<x<5}
B.{x|x<4 或 x>5}
C.{x|2<x<3}
D.{x|x<2 或 x>5}
【解析】 (1)易知 M={-2,-1,0,1},N={-1,0,1,2,3},据交集 定义可知 M∩N={-1,0,1},故选 B. (2)将集合 A、B 画在数轴上,如图.
由图可知 A∩B={x|2<x<3},故选 C. 【答案】 (1)B (2)C
及运算 图表示交集,并会求简单集合的交集
并集与交集
掌握并集与交集的
逻辑推理、数学运算、
的性质
集合的基本运算(交集、并集)ppt课件
7
反馈演练
1.已知A = {x|x2 - px - 2 = 0},B = {x|x2 + qx + r = 0} 且A∪B = {-2,1,5}, A∩B = {-2},求p,q,r的值.
2.设A = {-4,2a -1,a2 },B = {a -5,1- a,9},已知A∩B = {9},求a的值,并求出A∪B.
2.求满足{1,2}∪B={1,2,3}的集合B的个数.
2.交集
一般地,由属于集合A且属于集合B的所有 元素组成的集合,称为A与B的交集,记作 A∩B,(读作“A交B”),即
A∩B={x|x∈A,且x∈B}.
4
例:(1) A={1,4,5},B={2,4,6,8}求A∩B (2) 设A={x|x是锐角三角形},
6
ห้องสมุดไป่ตู้
[例3] 已知集合A={x|-3<x≤4},集合B={x|k+1≤x≤2k-1}, 且A∪B=A,试求k的取值范围.
练习: 1、已知集合A { x | 2 x 4}, B { x | x a},
若A I B ,求实数a的取值范围. 若A B ,a的取值范围又是多少?
2、已知A = {x|x2 - 3x + 2 = 0}, B = {x|x2 - ax + a -1= 0} 若A∪B = A,求实数a的值.
用适当的符号填空
(1)3.14 __x | 7 x 1
(2) __ x | x2 2x 3 0
(3)若A={1,3,5}, B={2,4,6} ,C={1,2,3,4,5,6}
A__C ,B__C
(4)A x | x 2n, n Z, B y | y 2m 1, m Z
C a | a为整数则A __ C, B __ C
反馈演练
1.已知A = {x|x2 - px - 2 = 0},B = {x|x2 + qx + r = 0} 且A∪B = {-2,1,5}, A∩B = {-2},求p,q,r的值.
2.设A = {-4,2a -1,a2 },B = {a -5,1- a,9},已知A∩B = {9},求a的值,并求出A∪B.
2.求满足{1,2}∪B={1,2,3}的集合B的个数.
2.交集
一般地,由属于集合A且属于集合B的所有 元素组成的集合,称为A与B的交集,记作 A∩B,(读作“A交B”),即
A∩B={x|x∈A,且x∈B}.
4
例:(1) A={1,4,5},B={2,4,6,8}求A∩B (2) 设A={x|x是锐角三角形},
6
ห้องสมุดไป่ตู้
[例3] 已知集合A={x|-3<x≤4},集合B={x|k+1≤x≤2k-1}, 且A∪B=A,试求k的取值范围.
练习: 1、已知集合A { x | 2 x 4}, B { x | x a},
若A I B ,求实数a的取值范围. 若A B ,a的取值范围又是多少?
2、已知A = {x|x2 - 3x + 2 = 0}, B = {x|x2 - ax + a -1= 0} 若A∪B = A,求实数a的值.
用适当的符号填空
(1)3.14 __x | 7 x 1
(2) __ x | x2 2x 3 0
(3)若A={1,3,5}, B={2,4,6} ,C={1,2,3,4,5,6}
A__C ,B__C
(4)A x | x 2n, n Z, B y | y 2m 1, m Z
C a | a为整数则A __ C, B __ C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A∪B={x|-1≤x<3} .
3.A=Q, B={x|x是无理数}, C=R 求A∩B ,A∪B.
4.设集合A={x|x为等腰三角形},集合B={x|x为直角三角形}, 求 A∩B ,A∪B.
1.理解两个集合交集与并集的概念和性质.
2.求两个集合的交集与并集,常用数轴法和 图示法.
结束语
当你尽了自己的最大努力时,失败 也是伟大的,所以不要放弃,坚持 就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
演讲人:XXXXXX
时 间:XX年XX月XX日
§3 集合的基本运算
3.1 交集与并集
目标呈现
1. 通过两个实例,说出两个集合的交集与并集的概念,会求 两个简单集合的交集与并集.(重点)
2. 会利用数轴或Venn图求集合的交集与并集,体会直观图示 对理解抽象概念的作用.(难点)
某班50名学生中喜欢李宇春的有40人,喜欢周笔畅的 有31人,两个都不喜欢的有4人,那么同时喜欢两个人的有 多少人呢?如果喜欢李宇春的40人构成集合A,喜欢周笔畅 的31人构成集合B,同时喜欢两个人的那些人构成集合C, 想一想集合C与集合A、B有什么关系呢?
(4) A A B, B A B, A B A B;
(5) A B则A B B .
问一问:求集合的交集、并集是集合的基本运算,
那么两个集合经过运算后结果还是一个集合吗?
举例验证下列等式,并与同学讨论交流:
(1() A B) C A (B C); (2)(A B) C A (B C).
D.{2,4}
2.已知A={奇数},B={偶数},则A∩B=( )
A.A
B.B
C.无法计算 D.∅
3.A={x|x>3},B={x|x<3},则A∪B=( )
A.∅ B.R
C.{x|x≠3}
D.无法计算
4.若集合A={x|1≤x≤3},B={x|x>2},则A∩B等于
________.A∪B=________.
发现:集合C(阴影部分)就是由集合A中和集合B中的公
共元素所组成的集合.
AC
B
1.交集的概念
一般地,由既属于集合A又属于集合B的所有元素组成的集合, 叫作A与B的交集,记作A∩B(读作“A交B”),即
A∩B={x|x∈A,且x∈B}.
A
A∩B B
发现:集合D(阴影部分)就是由集合A中和集合B中的所有
目标二:交集与并集的运算性质
对于任意两个集合A,B,根据交集和并集的概念可知:
1.交集的性质
(1) A A A
(2) A
(3) A B B A
(4) A B A
(5)A B B
(6) A B 则 A B A
2.并集的性质
(1) A A A; (2) A A;
(3) A B B A;
由上述结论,(A B) C可记作A B C;
(A B) C可记作A B C.
例1 某学校所有男生组成集合A,一年级的所有学生组成 集合B,一年级的所有男生组成集合C,一年级的所有女生组成
集合D.求 A B,C D.
解:A B {x | x是该校一年级的男生} C;
C D {x | x是该校一年级学生} B.
并集,找所有元素
目标检测
1.设A={x︱x2-16=0}, B={x︱x3+64=0}, 则A∩B=___{__4_}_____; A∪B=__{__4_,_4_}_______.
2.设A={x︱-1≤x<2},B={x︱-1<x<3},求A∩B,A∪B.
解: A∩B ={x|-1<x<2};
注意 边界
元素所组成的集合.
A
B
D 2.并集的概念
一般地,由属于集合A或属于集合B的所有元素组成的集合,
叫作A与B的并集,记作A∪B,(读作“A并B”).即
A∪B={x|x∈A,或x∈B}
A
B
A∪B
练一练:
1.已知集合A={0,2,4,6},B={2,4,8,16},则A∩B=( )
A.{2}
B.{4}
C.{0,2,4,6,8,16}
例2 设A={x|x是不大于10的正奇数},B={x|x是12
的正约数}.求 A B, A B.
交集,找公共元素
解: A={x|x是不大于10的正奇数}={1,3,5,7,9},
B={x|x是12的正约数}={1,2,3,4,6,12}
A B {1,3},
A B {1, 2,3, 4,5,6,7,9,12}.
目标达成
目标一:交集与并集的概念 观察下列两个集合 (1)A={6,8,10,12}, B={3,6,9,12} ,C={6,12} D={3,6,8,9,10,12} (2)A={x|-1<x<2}, B={x|0<x<3}, C={x|0<x<2}, D={x|-1<x<3}.
试一试
(1)你能说出集合A,B与集合C之间的关系吗? (2)你能说出集合A,B与集合D之间的关系吗?