相交线与平行线 全章测试

合集下载

相交线与平行线单元测试题总集完整含答案

相交线与平行线单元测试题总集完整含答案

B E DA CF87654321DCBA第五章 相交线与平行线测试题一、选择题(每题3分,共30分)1、如图1,直线a ,b 相交于点O ,若∠1等于40°,则∠2等于( )A .50°B .60°C .140°D .160°图1 图2 图3 2、如图2,已知AB ∥CD ,∠A =70°,则∠1的度数是( )A .70°B .100°C .110°D .130°3、已知:如图3,AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠ 与2∠的关系一定成立的是( )A .相等B .互余C .互补D .互为对顶角4、如图4,AB DE ∥,65E ∠=,则B C ∠+∠=( )A .135B .115C .36D .65图4 图5 图65、如图5,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A .右转80°B .左转80°C .右转100°D .左转100° 6、如图6,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7;B .∠2=∠6C 、∠3+∠4+∠5+∠6=1800D 、∠4=∠87、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30,那么这两个角是( )A . 42138、;B . 都是10;C . 42138、或4210、;D . 以上都不对8、下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中( )A .①、②是正确的命题;B .②、③是正确命题;C .①、③是正确命题 ;D .以上结论皆错DB A C1ab1 2OABCD EF 2 1Oa b M P N 1 2 3A B C a b1 23 B E9、下列语句错误的是( )A .连接两点的线段的长度叫做两点间的距离;B .两条直线平行,同旁内角互补C .若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D .平移变换中,各组对应点连成两线段平行且相等10、如图7,a b ∥,M N ,分别在a b ,上,P 为两平行线间一点,那么123∠+∠+∠=( )A .180B .270C .360D .540二、填空题(每题3分,共18分)11、如图8,直线a b ∥,直线c 与a b ,相交.若170∠=,则2_____∠=.图7 图8 图9 图1012、如图9,已知170,270,360,∠=︒∠=︒∠=︒则4∠=______︒.13、如图10,已知AB ∥CD ,BE 平分∠ABC ,∠CDE =150°,则∠C =______14、如图11,已知a b ∥,170∠=,240∠=,则3∠ 图11 1315、如图12的一个条件 .16、如图13,已知AB CD //,∠α=____________ 三、解答题(共52分)17、推理填空:(每空1分,共12分)如图: ① 若∠1=∠2,则 ∥ ( ) 若∠DAB+∠ABC=1800,则∥ ()②当 ∥ 时,∠ C+∠ABC=1800 ( ) 当 ∥ 时,∠3=∠C ( )18、如图,∠1=30°,AB ⊥CD ,垂足为O ,EF 经过点O .求∠2、∠3的度数. (8分)12 bac b ac d1 2 3 4 A BCDE 321DCBAABCDO123EF19、已知:如图AB ∥CD ,EF 交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=500,求:∠BHF 的度数.(8分)20、(10分(1)如图a ,图中共有___对对顶角;(2)如图b ,图中共有___对对顶角; (3)如图c ,图中共有___对对顶角.(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成多少对对顶角?(5)若有2008条直线相交于一点,则可形成 多少对对顶角?21、(6分)如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =30º,求∠EAD ,∠DAC ,∠C 的度数。

相交线与平行线单元测试题(含答案)

相交线与平行线单元测试题(含答案)

相交线与平行线一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,共24分)1.在下面各图中,∠1与∠2是对顶角的是()A.B.C.D.2.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°3.如图,直线a,b相交于点O,若∠1=40°,则∠2=()A.40°B.50°C.60°D.140°4.如图,点P在直线l外,点A,B在直线l上,PA=3,PB=7,点P到直线l的距离可能是()A.2 B.4 C.7 D.85.如图,直线a∥b,∠1=50°,则∠2的度数为()A.40°B.50°C.55°D.60°6.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连接直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行7.如图,已知ON丄a,OM丄a,所以OM与ON重合的理由是()A.两点确定一条直线B.经过一点有且只有一条线段垂直于己知直线C.过一点只能作一条垂线D.垂线段最短8.如图,直线AB∥CD,∠A=70°,∠E=30°,则∠C等于()A.30°B.40°C.60°D.70°二、填空题(本大题共6小题,每小题3分,共18分)9.如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:.10.如图,已知O是直线AB上一点,∠1=30°,OD平分∠BOC,则∠2=.11.如图,直线AB、CD相交于点O,EO⊥AB,∠AOC=25°。

《相交线与平行线》单元测试题

《相交线与平行线》单元测试题

《相交线与平行线》单元测试题一.选择题(共10小题)1.下列图形中,∠1与∠2是对顶角的是()A.B.C.D.2.下列句子中不是命题的是()A.明年是2020年B.延长线段EFC.三角形的内角和是360度D.对顶角相等3.在同一平面内,已知点P在直线l上,过点P画直线l的垂线,可以画出多少条()A.1条B.2条C.3条D.4条4.如图,下列判断正确的是()A.∠3与∠6是同旁内角B.∠2与∠4是同位角C.∠1与∠6是对顶角D.∠5与∠3是内错角5.如图,点P是直线l外一点,从点P向直线l引P A,PB,PC,PD四条线段,其中只有PC与l垂直,这四条线段中长度最短的是()A.P A B.PB C.PC D.PD6.下面推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c7.如图,在下列给出的条件中,不能判定AB∥CD的是()A.∠BAD+∠ADC=180°B.∠ABD=∠BDCC.∠ADB=∠DBC D.∠ABE=∠DCE8.如图,△ABC沿射线BC方向平移到△DEF(点E在线段BC上),如果BC=7cm,EC =4cm,那么平移距离为()A.3cm B.5cm C.8cm D.13cm9.如图,AC∥BD,AE∥BF,下列结论错误的是()A.∠A=∠B B.∠A+∠B=180°C.∠B=∠DPE D.∠A=∠APB 10.某同学的作业如下框,其中横线处应填的依据是()如图所示,当∠1=∠2时,∠3=∠4吗?为什么?请完成下面的说理过程.解,∵∠1=∠2(已知).∴直线a∥b(______________).∴∠3=∠4(两直线平行,同位角相等)A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行二.填空题(共6小题)11.如图所示,△EFG是由△ABC沿水平方向平移得到的,如果∠ABC=90°,AB=3cm,BC=2cm,则EF=,FG=,EG=.12.将命题“互为补角的两个角都是锐角”改写成“如果……,那么……”的形式是.13.如图,在三角形ABC中,∠C=90°,AC=3,BC=4,AB=5,则点A到BC的距离等于.14.如图,在长方体中,与棱AB平行的棱有条.15.如图,一个弯形管道ABCD,若它的两个拐角∠ABC=120°,∠BCD=60°,则管道AB∥CD.这里用到的推理依据是.16.如图,已知∠1=∠2=32°,∠D=78°,则∠BCD=.三.解答题(共8小题)17.如图,直线AB,CD相交于点O,OA平分∠EOC,若∠EOD=88°,求∠BOD的度数.18.指出下列命题的题设和结论,并判断其真假,如果是假命题,请举出一个反例.(1)邻补角互补;(2)同旁内角互补.19.如图,△ABC,△A1B1C1的顶点都在边长为1个单位长度的小正方形组成的网格线交点上.(1)将△ABC向右平移4个单位得到△A2B2C2,请画出△A2B2C2.(2)试描述△A1B1C1经过怎样的平移可得到△A2B2C2.20.如图,在直角三角形ABC中,∠C=90°,DE⊥AC交AC于点E,交AB于点D.(1)请分别写出当BC,DE被AB所截时,∠B的同位角、内错角和同旁内角.(2)试说明∠1=∠2=∠B的理由.21.如图,已知AB∥CD,射线AH交BC于点F,交CD于点D,从D点引一条射线DE,若∠B+∠CDE=180°,求证:∠AFC=∠EDH.证明:∵AB∥CD(已知)∴∠B=(两直线平行,内错角相等)∵∠B+∠CDE=180°(已知)∴∠BCD+∠CDE=180°(等量代换)∴BC∥(同旁内角互补,两直线平行)∴=∠EDH()∵=∠BFD(对顶角相等)∴∠AFC=∠EDH(等量代换)22.如图是两个重叠的直角三角形,将其中一个直角三角形沿着BC方向平移BE的长度就得到该图形,求阴影部分的面积(单位:厘米)23.如图,点O在直线AB上,OC⊥OD,∠D与∠1互余,F是DE上一点,连结OF.(1)ED是否平行于AB,请说明理由;(2)若OD平分∠BOF,∠OFD=80°,求∠1的度数.24.如图,图①是一种网红弹弓的实物图,在两头上系上皮筋,拉动皮筋可形成平面示意图如图②和图③,弹弓的两边可看成是平行的,即AB∥CD,各活动小组探索∠APD与∠A,∠C之间数量关系时,有如下发现:(1)在图②所示的图形中,若∠A=30°,∠D=35°,则∠APD=;(2)在图③中,若∠A=150°,∠APD=60°,则∠D=;(3)有同学在图②和图③的基础上,画出了图④所示的图形,其中AB∥CD,请判断∠α,∠β,∠γ之间的关系,并说明理由.。

相交线与平行线》单元测试题及答案

相交线与平行线》单元测试题及答案

相交线与平行线》单元测试题及答案初一下学期数学相交线与平行线单元质量检测姓名。

学号:本次考试为90分钟,共100分。

一、填空题:(每小题3分,共30分)1、空间内两条直线的位置关系可能是相交或平行。

2、“两直线平行,同位角相等”的题设是前提条件,结论是同位角相等。

3、已知∠A和∠B是邻补角,且∠A比∠B大20,则∠A=110度,∠B=70度。

4、如图1,O是直线AB上的点,OD是∠COB的平分线,若∠AOC=40,则∠BOD=70度。

5、如图2,如果AB∥CD,那么∠B+∠F+∠E+∠D=360度。

6、如图3,图中ABCD-A B C D是一个正方体,则图中与BC所在的直线平行的直线有3条,与A B所在的直线成异面直线的直线有2条。

7、如图4,直线a∥b,且∠1=28度,∠2=50度,则∠ACB=102度。

8、如图5,若A是直线DE上一点,且BC∥DE,则∠2+∠4+∠5=180度。

9、在同一平面内,如果直线l1∥l2,l2∥l3,则l1与l3的位置关系是平行。

10、如图6,∠ABC=120度,∠BCD=85度,AB∥ED,则∠CDE=15度。

二、选择题:(每小题3分,共30分)11、已知:如图7,∠1=60度,∠2=120度,∠3=70度,则∠4的度数是(B)A、70 B、60 C、50 D、4012、已知:如图8,下列条件中,不能判断直线l1∥l2的是(E)A、∠1=∠3 B、∠2=∠3 C、∠4=∠5 D、∠2+∠4=180 E、无法判断13、如图9,已知AB∥CD,HI∥FG,EF⊥CD于F,∠1=40度,那么∠EHI=(D)A、40 B、45 C、50 D、5514、一个角的两边分别平行于另一个角的两边,则这两个角(B)A、相等 B、相等或互补 C、互补 D、不能确定15、在正方体的六个面中,和其中一条棱平行的面有(B)A、5个B、4个C、3个D、2个16、两条直线被第三条直线所截,则(B)A、同位角相等 B、内错角相等 C、同旁内角互补 D、以上结论都不对17、如图10,AB∥CD,则∠ACD=∠BDC。

七年级数学下册《相交线与平行线》单元测试卷(附答案)

七年级数学下册《相交线与平行线》单元测试卷(附答案)

七年级数学下册《相交线与平行线》单元测试卷(附答案)一、选择题(每题3分,共30分)1.如图1,A、B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小.如图2,连接AB,与l交于点C,则C点即为所求的码头的位置,这样做的理由是()A.垂线段最短B.两点确定一条直线C.两点之间,线段最短D.平行于同一条直线的两条直线平行2.如图,将一个含有30°角的直角三角尺放置在两条平行线a,b上.若∠1=135°,则∠2的度数为()A.95°B.110°C.105°D.115°3.如图,将△ABC沿BC方向平移1个单位得△DEF,若△ABC的周长等于10,则四边形ABFD 的周长为()A.12 B.10 C.9 D.84.下面四个图案中,能由如图经过平移得到的是()A.B. C. D.5.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm6.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直7.如图,下列说法错误的是()A.∠A与∠3是同位角B.∠4与∠B是同旁内角C.∠A与∠C是内错角D.∠1与∠2是同旁内角8.平面内两两相交的3条直线,其交点个数最少为m个,最多为n个,则m+n等于()A.4 B.5 C.6 D.以上都不对9.甲、乙、丙3人从图书馆各借了一本书(如下表所示),他们相约在每个星期天相互交换读完的书,经过数次交换后,他们都读完了这3本书.已知甲读的第三本书是乙读的第二本书,则丙读的第二本书是()甲乙丙书A书B书C A.书A B.书B C.书C D.无法确定10.下列各项正确的是()A.直线外一点到已知直线的垂线段叫做这点到直线的距离B.过一点有且只有一条直线与已知直线垂直C.同一平面内,两条直线的位置关系只有相交和平行两种D.有公共顶点且相等的两个角是对顶角二、填空题(每题3分,共24分)11.如图,已知∠1+∠2=180°,则图中与∠1相等的角共有_____个.12.如图,在图中标注的∠1、∠3、∠4、∠5中,当∠2 =∠_______时,AE∥BF.13.如图,已知a∥b,∠1=45°,则∠2=_________.14.“互补的两个角一定是同旁内角”是命题(填“真”或“假”).15.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠2=24°,则∠1的度数为.16.一平面内,三条直线两两相交,最多有3个交点;4条直线两两相交,最多有6个交点;5条直线两两相交,最多有10个交点;8条直线两两相交,最多有个交点.17.如图所示,l1∥l2,点A,E,D在直线l1上,点B,C在直线l2上,满足BD平分∠ABC,BD⊥CD,CE平分∠DCB,若∠BAD=128°,那么∠AEC=.18.如图,将一张长方形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′,D′处,C′E 交AF于点G,若∠CEF=70°,则∠GFD′=°.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.如图,直线AB与CD相交于点O,OE平分∠BOC,∠AOD=110°,求∠AOE的度数.20.已知,如图a∥b,c∥d,∠1=73°,求∠2和∠3的度数.21.(8分)如图,已知AB∥CD,试再添加一个条件,使∠1=∠2成立.(1)写出两个不同的条件;(2)从(1)中选择一个来证明.22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.完成下列画图(1)如图,将△ABC向右平移4个单位,再向上平移2个单位长度,得到△A′B′C′,线段AB 与A′B′位置及数量关系是.(2)如图,一辆汽车在笔直的公路AB上由A向B行驶,M、是位于公路AB一侧的村庄.设汽车行驶到点P时,离村庄M的距离最小,请在图中公路AB上画出点P的位置,并说明数学原理.24.在ABC 中,D 是BC 边上一点,且CDA CAB ∠=∠,MN 是经过点D 的一条直线.(1)若直线MN AC ⊥,垂足为点E . ①依题意补全图1.②若70,CAB ︒∠=20DAB ︒∠=,则CAD ∠=________,CDE ∠=________. (2)如图2,若直线MN 交AC 边于点F ,且CDF CAD ∠=∠,求证:FD AB ∥.参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 CCABCDAAAC二、填空题:11.312.413.45°. 解析:∵a∥b,∠1=45°,∴∠2=∠1=45°.14.解:如图,∠1=∠2=90°,∵∠1+∠2=180°,∴∠1与∠2互补,但它们是一对内错角,不是同旁内角,∴“互补的两个角一定是同旁内角”是假命题,故答案为:假.15.解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH∥EF,∴∠AEC=∠2=24°,∴∠1=∠ABC﹣∠AEC=36°.故答案为:36°.16.解:∵由已知总结出在同一平面内,n条直线两两相交,则最多有个交点,∴8条直线两两相交,交点的个数最多为=28.故答案为:28.17.【分析】根据平行线的性质和角平分线的性质,可以得到∠AEC的度数,本题得以解决.【解答】解:∵l1∥l2,∴∠BAD+∠ABC=180°,∵∠BAD=128°,∴∠ABC=52°,∵BD平分∠ABC,∴∠DBC=26°,∵BD⊥CD,∴∠BDC=90°,∴∠BCD=64°,∵CE平分∠DCB,∴∠ECB=32°,∵l1∥l2,∴∠AEC+∠ECB=180°,∴∠AEC=148°,故答案为:148°.【点评】本题考查平行线的性质、角平分线的性质、垂线,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】由AD∥BC可得∠AFE=∠CEF,∠CEF+∠DFE=180°,由翻折可得∠D'FE=∠DFE,进而求解.【解答】解:∵AD∥BC,∴∠AFE=∠CEF=70°,∵∠CEF+∠DFE=180°,∴∠DFE=180°﹣∠CEF=110°,由翻折可得∠D'FE=∠DFE=110°,∴∠GFD'=∠D'FE﹣∠AFE=110°﹣70°=40°,故答案为:40.【点评】本题考查角的相关计算,解题关键是掌握平行线的性质.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.【答案】解:∵∠AOD=110°,∴∠COB=110°,∠AOC=70°,∵OE平分∠BOC,∴∠COE=55°,∴∠AOE=70°+55°=125°.故答案为:∠AOE=125°.20.【答案】解:∵a∥b,∴∠1=∠2=73°,∵c∥d,∴∠3=180°-73°=107°.21.解:此题答案不唯一,合理即可.(1)添加∠FCB=∠CBE或CF∥BE.(2)已知AB∥CD,CF∥BE.求证:∠1=∠2.证明:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠CBE,∴∠DCB-∠FCB=∠ABC-∠CBE,即∠1=∠2.22.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B ,∴∠2+∠5+∠6=3∠B +∠B +∠B =180°, ∴∠B =36°, ∴∠2=108°, ∵∠1+∠2=180°, ∴∠1=72°.23.(1)解:如图,△A ′B ′C ′即为所求作;线段AB 与A ′B ′位置及数量关系分别是平行且相等, 故答案为:平行且相等. (2)解:如图,点P 即为所求.数学原理是:连接直线外一点与直线上各点的所有线段中,垂线段最短, 24.(1)①如图所示.②70,CAB ︒∠=20DAB ︒∠=,50CAD ︒∴∠=.70CDA CAB ︒∠=∠=,18060C CAD CDA ︒︒∴∠=-∠-∠=.DE AC ⊥,第 11 页 共 11 页 9030CDE C ︒︒∴∠=-∠=. 故答案为50,︒30︒.(2)CDA CAB ∠=∠, 且,CDA CDF ADF ∠=∠+∠CAB CAD BAD ∠=∠+∠, CDF ADF CAD BAD ∴∠+∠=∠+∠. ,CDF CAD ∠=∠,ADF BAD ∴∠=∠FD AB ∴∥.。

2022年人教版七年级数学下册第五章相交线与平行线综合测评试卷(精选)

2022年人教版七年级数学下册第五章相交线与平行线综合测评试卷(精选)

七年级数学下册第五章相交线与平行线综合测评(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、如图,直线AB 和CD 相交于点O ,若∠AOC =125°,则∠BOD 等于( )A .55°B .125°C .115°D .65°2、如图,直线AB ∥CD ,直线AB 、CD 被直线EF 所截,交点分别为点M 、点N ,若∠AME =130°,则∠DNM 的度数为( )A .30°B .40°C .50°D .60° 3、可以用来说明“若22a b =,则a b =.”是假命题的反例是( )A .1,2a b =-=B .2,2a b ==C .2,2a b =-=D .4,3a b ==4、如图,平行线AB,CD被直线AE所截.若∠1=70°,则∠2的度数为()A.80°B.90°C.100°D.110°5、命题“如果a<0,b<0,那么ab>0”的逆命题是()A.如果a<0,b<o,那么ab<0 B.如果ab>0,那么a<0,b<0 C.如果a>0,b>0,那么a<0 D.如果ab<0,那么a>0,b>06、下列说法正确的是()A.命题是定理,但定理未必是命题B.公理和定理都是真命题C.定理和命题一样,有真有假D.“取线段AB的中点C”是一个真命题∠构成同位角的有()7、如图,能与αA.4个B.3个C.2个D.1个8、命题“等角的余角相等”中的余角是()A.结论的一部分B.题设的一部分C.既不属于结论也不属于题设D .同属于题设和结论部分9、如图,直线被所截,下列说法,正确的有( )①1∠与2∠是同旁内角;②1∠与ACE ∠是内错角;③B 与4∠是同位角;④1∠与3∠是内错角.A .①③④B .③④C .①②④D .①②③④10、如果存在一条直线将一个图形分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合,那么我们把这种图形称为平移重合图形,下列图形中,不是平移重合图形的是( )A .B .C .D .二、填空题(5小题,每小题4分,共计20分)1、举例说明命题“如果22a b ≠,那么a b ”的逆命题为假命题__.2、如图,BD 平分ABC ∠,()430A x ∠=+︒,()15DBC x ∠=+︒,要使AD BC ∥,则x =______°.3、把命题“同角的余角相等”改写成:如果_____________________,那么_____________.4、已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a//b,a⊥c,那么b⊥c;②如果b//a,c//a,那么b//c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b//c.其中正确的是__.(填写序号)5、命题“垂直于同一直线的两条直线互相垂直”是______命题.(填“真”或“假”)三、解答题(5小题,每小题10分,共计50分)1、写出下列各命题的逆命题,并判断原命题和逆命题的真假.(1)同位角相等;(2)如果|a|=|b|,那么a=b;(3)等边三角形的三个角都是60°.2、阅读并完成下列推理过程,在括号内填写理由.已知:如图,点D ,E 分别在线段AB 、BC 上,AC DE ∥,AE 平分BAC ∠,DF 平分BDE ∠交BC 于点E 、F .求证:DF AE ∥.证明:AE ∵平分BAC ∠(已知),112(2BAC ∴∠=∠=∠ ). DF 平分BDE ∠(已知), 1342∴∠=∠= (角平分线的定义),AC DE ∥(已知),(BDE BAC ∴∠=∠ ).23(∴∠=∠ ).(DF AE ∴∥ ).3、在如图所示55⨯的网格中,每个正方形的边长都是1,横纵线段的交点叫做格点,线段AB 的两个端点都在格点上,点P 也在格点上;(1)在图①中过点P 作AB 的平行线;(2)在图②中过点P 作PQ ⊥AB ,垂足为Q ;连接AP 和BP ,则三角形ABP 的面积是 .4、如图1,点A 、O 、B 依次在直线MN 上,现将射线OA 绕点O 沿顺时针方向以每秒4°的速度旋转,同时射线OB 绕点O 沿逆时针方向以每秒6°的速度旋转,直线MN 保持不动,如图2,设旋转时间为t (0≤t ≤30,单位:秒)(1)当t=3时,求∠AOB的度数;(2)在运动过程中,当∠AOB达到60°时,求t的值;(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请直接写出t的值;如果不存在,请说明理由.5、如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC证明:∵ ∠1+∠AFE=180°∴ CD∥EF(,)∵∠A=∠2 ∴()(,)∴ AB∥CD∥EF(,)∴ ∠A= ,∠C= ,(,)∵ ∠AFE =∠EFC+∠AFC,∴ = .---------参考答案-----------一、单选题1、B【分析】根据对顶角相等即可求解.【详解】解:∵直线AB和CD相交于点O,∠AOC=125°,∴∠BOD等于125°.故选B.【点睛】本题主要考查了对顶角的性质,熟知对顶角相等的性质是解题的关键.2、C【分析】由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.【详解】解:由题意,∵∠BMN与∠AME是对顶角,∴∠BMN=∠AME=130°,∵AB∥CD,∴∠BMN+∠DNM=180°,∴∠DNM=50°;故选:C.【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN =130°.3、C【分析】若22a b =,则包括a b =或a b =-,由此分析即可.【详解】解:∵22a b =,∴a b =或a b =-,∴反例可为2,2a b =-=,故选:C .【点睛】本题考查命题的判断,以及等式的性质,掌握举例证明命题真假的方法以及等式的性质是解题关键.4、D【分析】直接利用对顶角以及平行线的性质分析得出答案.【详解】解:∵∠1=70°,∴∠1=∠3=70°,∵AB //DC ,∴∠2+∠3=180°,∴∠2=180°−70°=110°.故答案为:D.【点睛】此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.5、B【分析】根据互逆命题概念解答即可.【详解】解:命题“如果a<0,b<0,那么ab>0”的逆命题是“如果ab>0,那么a<0,b<0”,故选:B.【点睛】本题考查的是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.6、B【分析】命题是判断一件事情的句子,可分为真命题和假命题;公认的真命题称之为公理,经过证明的真命题称之为定理;命题的结构必须有条件和结论,由此进行分析判断即可得到答案.【详解】解:A、说法错误,定理是经过证明的真命题,但是命题不一定是定理;B、说法正确,公理和定理都是真命题;C、说法错误,定理是经过证明的真命题,命题有真假之分;D、说法错误,取线段AB的中点C是描述性语言,不是命题,更不是真命题.故选:B【点睛】本题考查命题的定义、公理和定理的概念等相关知识点,牢记定义内容是解此类题的关键.7、B【分析】根据同位角的定义判断即可;【详解】∠能构成同位角的有:∠1,∠2,∠3.如图,与α故选B.【点睛】本题主要考查了同位角的判断,准确分析判断是解题的关键.8、B【分析】根据命题题设与结论的定义:题设是已知事项,结论是已知事项推出的事项,进行逐一判断即可.【详解】解:“等角的余角相等”中题设是:两个等角的余角,结论是:相等,故选B.【点睛】本题主要考查了命题的题设与结论,熟知定义是解题的关键.9、D【分析】根据同位角、内错角、同旁内角的定义可直接得到答案.【详解】解:①1∠与2∠是同旁内角,说法正确;②1∠是内错角,说法正确;∠与ACE③B与4∠是同位角,说法正确;④1∠是内错角,说法正确,∠与3故选:D.【点睛】此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.10、D【分析】如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF,证明平行四边形是平移重合图形,即可判断A、B、C;再由找不到一条直线将圆分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合即可判断D.【详解】解:如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.则有:AF =FD ,BE =EC ,AB =EF =CD ,∴四边形ABEF 向右平移可以与四边形EFCD 重合,∴平行四边形ABCD 是平移重合图形.同理可证,正方形,长方形,也是平移重合图形,故选项A 、B 、C 不符合题意,而找不到一条直线将圆分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合,则圆不是平移重合图形,故D 符合题意;故选D .【点睛】本题考查平移图形的定义,解题的关键是理解题意,灵活运用所学知识解决问题.二、填空题1、如果55-≠,而22(5)5-=(举例不唯一)【解析】【分析】首先要写出原命题的逆命题,然后通过实例说明逆命题不成立即可.【详解】解:如果22a b ≠,那么a b 的逆命题是:如果a b ,那么22a b ≠.如果55-≠,而22(5)5-=.故如果a b ,那么22a b ≠为假命题.故答案为:如果55-≠,而22(5)5-=(举例不唯一).【点睛】本题考查逆命题的相关知识,关键是能够写出原命题的逆命题.2、20【解析】【分析】利用角平分线的定义求解230,ABC x 再由AD BC ∥可得180,A ABC 再列方程求解即可.【详解】 解: BD 平分ABC ∠,()15DBC x ∠=+︒,2230,ABC DBC x由AD BC ∥,180,A ABC 而()430A x ∠=+︒,230430180,x x解得:20,x =所以当20x 时,AD BC ∥,故答案为:20【点睛】本题考查的是角平分线的定义,平行线的判定与性质,一元一次方程的应用,掌握平行线的判定与性质是解本题的关键.3、两个角是同一个角的余角 这两个角相等【解析】【分析】根据命题的概念把原命题改写成“如果…,那么…”的形式,根据余角的概念判断即可.【详解】解:命题“同角的余角相等”,改写成“如果…,那么…”的形式为:如果两个角是同一个角的余角,那么这两个角相等.故答案为:两个角是同一个角的余角,这两个角相等.【点睛】本题考查的是命题的概念,命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.4、①②④【解析】【分析】根据两直线的位置关系一一判断即可.【详解】解:在同一个平面内,①如果a//b,a⊥c,那么b⊥c,正确;②如果b//a,c//a,那么b//c,正确;③如果b⊥a,c⊥a,那么b//c,错误;④如果b⊥a,c⊥a,那么b//c,正确;故答案为:①②④.【点睛】本题考查两直线的位置关系,解题的关键是掌握垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行.5、假【解析】【分析】由平行线公理进行判断,即可得到答案.【详解】解:垂直于同一直线的两条直线互相平行;∴原命题是假命题;故答案为:假;【点睛】本题考查了判断命题的真假,解题的关键是熟记平行线公理进行判断.三、解答题1、(1)相等的角是同位角,是假命题;(2)如果a=b,那么|a|=|b|,是真命题;(3)三个角都是60°的三角形是等边三角形,是真命题.【分析】根据逆命题的概念分别写出各个命题的逆命题,判断真假即可.【详解】解:(1)同位角相等的逆命题是相等的角是同位角,是假命题;(2)如果|a|=|b|,那么a=b的逆命题是如果a=b,那么|a|=|b|,是真命题;(3)等边三角形的三个角都是60°的逆命题是三个角都是60°的三角形是等边三角形,是真命题.【点睛】h本题考查的是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.2、角平分线的定义;BDE;两直线平行,同位角相等;等量代换;同位角相等,两直线平行.【分析】根据角平分线的定义和平行线的性质与判定即可证明.【详解】证明:AE∵平分BAC∠(已知),1 122BAC∴∠=∠=∠(角平分线的定义).DF平分BDE∠(已知),1 342BDE∴∠=∠=∠(角平分线的定义),//AC DE(已知),BDE BAC∴∠=∠(两直线平行,同位角相等).23∴∠=∠(等量代换).//DF AE∴(同位角相等,两直线平行).故答案为:角平分线的定义;BDE∠;两直线平行,同位角相等;等量代换;同位角相等,两直线平行.【点睛】本题主要考查了角平分线的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.3、(1)见解析;(2)见解析,5.【分析】(1)根据平行线的画法即可得;(2)根据垂线的画法即可得,再利用1个长方形的面积减去3个直角三角形的面积即可得.【详解】解:(1)如图①,PC即为所求.(2)如图②,PQ 即为所求.三角形ABP 的面积为111343131425222⨯-⨯⨯-⨯⨯-⨯⨯=,故答案为:5.【点睛】本题考查了平行线和垂线的画法等知识点,熟练掌握平行线和垂线的画法是解题关键.4、(1)150°;(2)12或24;(3)存在,9秒、27秒【分析】(1)根据∠AOB =180°−∠AOM −∠BON 计算即可.(2)先求解,OA OB 重合时,=18,t 再分两种情况讨论:当0≤t ≤18时;当18≤t ≤30时;再构建方程求解即可.(3)分两种情形,当0≤t ≤18时;当18≤t ≤30时;分别构建方程求解即可.【详解】解:(1)当t =3时,∠AOB =180°−4°×3−6°×3=150°.(2)当,OA OB 重合时,46180,t t解得:18,t当0≤t ≤18时:60,AOB ∠=︒18060120,AOM BON∴ 4t +6t =120解得:12,t =当18≤t ≤30时:则18060,AOM BON∴ 4t +6t =180+60,解得 t =24,答:当∠AOB 达到60°时,t 的值为6或24秒.(3) 当0≤t ≤18时,由,OA OB ⊥90,AOB ∴∠=︒∴ 180−4t −6t =90,解得t =9,当18≤t ≤30时,同理可得:18090,AOM BON∴ 4t +6t =180+90解得t =27.030,t 所以大于30的答案不予讨论,答:在旋转过程中存在这样的t ,使得射线OB 与射线OA 垂直,t 的值为9秒、27秒.【点睛】本题考查的是平角的定义,角的和差关系,垂直的定义,一元一次方程的应用,熟练的利用一元一次方程解决几何角度问题,清晰的分类讨论是解本题的关键.5、同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC.【分析】根据同旁内角互补,两直线平行可得 CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE,∠C=∠EFC,根据角的和可得∠AFE =∠EFC+∠AFC即可.【详解】证明:∵ ∠1+∠AFE=180°∴ CD∥EF(同旁内角互补,两直线平行),∵∠A=∠2 ,∴(AB∥CD)(同位角相等,两直线平行),∴ AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行)∴ ∠A= ∠AFE,∠C= ∠EFC,(两直线平行,内错角相等)∵ ∠AFE =∠EFC+∠AFC,∴∠A = ∠C+∠AFC.故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC.【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.。

相交线与平行线单元测试题含答案

相交线与平行线单元测试题含答案

相交线与平行线单元测试题含答案相交线与平行线单元测试题一、选择题1、下列说法正确的是() A. 相交的两条直线一定有一个交点 B. 同位角相等 C. 两直线平行,对角线一定相等 D. 相等的两个角一定是对顶角2、以下不能说明直线AB与CD平行的是() A. AB//CD,A与B在同一方向,C与D在同一方向 B. $\angle 3 = \angle 4$ C. $\angle A = \angle C$ D. $\angle A + \angle B = 180^{\circ}$,$\angleC + \angleD = 180^{\circ}$3、下列说法正确的是() A. 过一点有且只有一条直线与已知直线平行 B. 两直线平行,同位角相等 C. 内错角相等,两直线平行 D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行4、下列说法正确的是() A. 两条直线被第三条直线所截,同位角相等 B. 相等的两个角是对顶角 C. 两直线平行,同旁内角互补 D. 互补的两个角不一定是邻补角5、下列说法正确的是() A. 同位角相等 B. 互补的角是邻补角 C. 两直线平行,同旁内角相等 D. 两直线平行,内错角相等二、填空题1、同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相________,简述为________.2、两直线平行,同位角________;两直线平行,内错角________;两直线平行,同旁内角________.3、两条直线的位置关系有________、________.4、若三条直线两两相交,则共有________个交点.5、在同一平面内,若两直线都垂直于第三条直线,那么这两条直线________.6、如图所示,若$\angle A + \angle B = 180^{\circ}$,$\angle A = \angle D$,则$\angle B =$________.7、如图所示,若$\angle A = \angle B$,则$\angle C =$________.8、如图所示,若$\angle A + \angle B = 90^{\circ}$,$\angle B + \angle C = 90^{\circ}$,则$\angle A =$________.9、若一个角的两边分别和另一个角的两边分别平行,则这两个角的关系是________.10、如图所示,若AB//CD,则$\angle A + \angle B + \angle C=$________.三、解答题1、已知两条平行线被第三条直线所截,则形成的同位角的数量是多少?这些同位角还具有什么性质?2、利用所给图形探究规律。

2024-2025学年人教版数学七年级下学期《第5章相交线与平行线》测试卷及答案解析

2024-2025学年人教版数学七年级下学期《第5章相交线与平行线》测试卷及答案解析

A.3.5
B.4
10.如图,下列说法错误的是( )
C.5.5
第 2 页 共 38 页
D.6.5
A.∠A 与∠B 是同旁内角
B.∠1 与∠3 是同位角
C.∠2 与∠A 是同位角
D.∠2 与∠3 是内错角
11.下列所示的四个图形中,∠1 和∠2 是同位角的是( )
A.①②
B.②③
12.如图,∠BAC 和∠BCA 是( )
A.A 点
B.B 点
C.C 点
8.下列图形中,线段 MN 的长度表示点 M 到直线 l 的距离的是(
D.D 点 )
A.
B.
C.
D.
9.如图,A 是直线 l 外一点,过点 A 作 AB⊥l 于点 B,在直线 l 上取一点 C,连结 AC,使
AC=2ABLeabharlann P 在线段 BC 上连结 AP.若 AB=3,则线段 AP 的长不可能是( )
循反射定律发生反射,当光线 PQ 经过 n 次反射后与边 OA 或 OB 平行时,称角为定角α
的 n 阶平行逃逸角,特别地,当光线 PQ 直接与 OA 平行时,称角β为定角α的零阶平行
逃逸角.
(1)已知∠AOB=α=20°,
①如图 1,若 PQ∥OA,则∠BPQ=
°,即该角为α的零阶平行逃逸角;
第 5 页 共 38 页
25.已知,如图,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°,
C.110°
D.100°
3.如图,若 AB,CD 相交于点 O,∠AOE=90°,则下列结论不正确的是( )
A.∠EOC 与∠BOC 互为余角
B.∠EOC 与∠AOD 互为余角

相交线与平行线测试题及答案doc

相交线与平行线测试题及答案doc

相交线与平行线测试题及答案doc一、选择题(每题5分,共20分)1. 在同一平面内,两条直线的位置关系有几种?A. 一种B. 两种C. 三种D. 四种答案:B2. 下列说法中,正确的是:A. 同一平面内,两条直线不相交,则它们一定平行B. 同一平面内,两条直线相交,则它们一定垂直C. 同一平面内,两条直线平行,则它们永不相交D. 同一平面内,两条直线相交,则它们一定平行答案:C3. 如果两条直线都与第三条直线平行,那么这两条直线的关系是:A. 相交B. 平行C. 垂直D. 无法确定答案:B4. 两条直线相交,交点处的夹角为90°,那么这两条直线的关系是:A. 相交B. 平行C. 垂直D. 重合答案:C二、填空题(每题5分,共20分)1. 如果两条直线都与第三条直线相交,且交角相等,则这两条直线____。

答案:平行2. 在同一平面内,两条直线不相交,则它们是____。

答案:平行3. 垂直于同一直线的两条直线一定是____。

答案:平行4. 两条平行线被第三条直线所截,同位角相等,内错角互补,同旁内角和为____。

答案:180°三、解答题(每题10分,共20分)1. 已知直线AB与直线CD相交于点O,且∠AOB=∠COD=90°,求证:AB∥CD。

证明:因为∠AOB=∠COD=90°,所以AB⊥OB,CD⊥OD。

根据垂直于同一条直线的两条直线平行,所以AB∥CD。

2. 已知直线l1与直线l2相交于点P,且l1∥l3,l2∥l4,求证:l3与l4相交。

证明:因为l1∥l3,l2∥l4,所以∠l1P=∠l3P,∠l2P=∠l4P。

根据同位角相等,两直线平行,所以l3∥l1,l4∥l2。

又因为l1与l2相交,所以l3与l4相交。

四、计算题(每题10分,共40分)1. 在同一平面内,直线m与直线n相交,交点为O。

已知∠1=45°,求∠2的度数。

答案:∠2=180°-45°=135°2. 已知直线a与直线b平行,直线c与直线a相交于点A,且∠BAC=60°,求∠ABC的度数。

最新人教版七年级数学下册全册单元测试(附答案)

最新人教版七年级数学下册全册单元测试(附答案)

人教版数学七年级下册第五章平行线与相交线单元测试(含答案)一、单选题(共有12道小题)1.如图,将直线乙沿四的方向得到直线b若N『50° ,则N2的度数是()A.40°B.50°C.90°D.130°2.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合, 含30。

角的直角三角板的斜边与纸条一边重合,含45。

角的三角板的一个顶点在纸条的另一边上,则N1的度数是(A. 30°B. 20°C.3.如图,Zl+Z2=180°90 a15° D. 14°\一 1,Z3=100° 则N4 等于()A. 70°B. 80°C.90°D. 100°4.如图々〃处等边△板的顶点£在直线r上,Zl= 20° ,则N2的度数为()上BA. 60°B. 45°5.如图,已知直线a〃8, N如131° oo o oC. 40°D.30°,则N2等于()则N2的度数是()7.如图,AB〃CD,EF交AB、CD于点E、F,EG平分NBEF,交CD于点G.若如1=40° , 则NEGF=()8.如图,4?是/见。

的平分线,AD//BC. ZB=30° ,则为()C. 70°D. 110°9.下列命题的逆命题不正确的是(A.平行四边形的对角线互相平分C.等腰三角形的两个底角相等C. 80°D. 120°)B.两直线平行,内错角相等D.对顶角相等10.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等,则N2的度数是()NE=3(T ,则NA的度数为(A. 30°B. °C. 35°D. ° 二、填空题(共有8道小题)13.已知三条不同的直线左6、。

相交线与平行线单元测试题及答案

相交线与平行线单元测试题及答案

相交线与平行线单元测试题及答案题目 1给定以下图示中的两条线段AB和CD,请判断它们是否相交。

A C\\ /\\ /\\ /X/ \\/ \\/ \\B DA. 相交B. 不相交答案:A. 相交题目 2给定以下图示中的两条线段EF和GH,请判断它们是否相交。

E\\\\\\\\\\\\\\\\FG\\\\\\\\\\\\\\\\\\HA. 相交B. 不相交答案:B. 不相交题目 3给定以下图示中的两条线段IJ和KL,请判断它们是否相交。

I----J| || || |K----LA. 相交B. 不相交答案:B. 不相交题目 4给定以下图示中的两条线段MN和OP,请判断它们是否相交。

M N\\ /\\ /\\ /X/ \\/ \\/ \\O PA. 相交B. 不相交答案:A. 相交题目 5给定以下图示中的两条线段QR和ST,请判断它们是否相交。

Q\\\\\\\\\\\\\\\\\\RS\\\\\\\\\\\\\\\\\\TA. 相交B. 不相交答案:B. 不相交题目 6给定以下图示中的两条线段UV和WX,请判断它们是否平行。

U-------VW-------XA. 平行B. 不平行答案:A. 平行题目 7给定以下图示中的两条线段YZ和AB,请判断它们是否平行。

Y-------ZA---BA. 平行B. 不平行答案:B. 不平行题目 8给定以下图示中的两条线段CD和EF,请判断它们是否平行。

C---DE---------------FA. 平行B. 不平行答案:A. 平行题目 9给定以下图示中的两条线段GH和IJ,请判断它们是否平行。

G--------HI--------JA. 平行B. 不平行答案:A. 平行题目 10给定以下图示中的两条线段KL和MN,请判断它们是否平行。

K--------LM---------------NA. 平行B. 不平行答案:B. 不平行以上为相交线与平行线单元测试题及答案。

2023年七年级数学下第5章《相交线与平行线》测试卷及答案解析

2023年七年级数学下第5章《相交线与平行线》测试卷及答案解析

2023年七年级数学下第5章《相交线与平行线》测试卷一.选择题(共10小题)
1.三条直线相交,交点最多有()
A.1个B.2个C.3个D.4个
2.如图,直线AB、CD相交于点O,射线OM平分∠BOD,若∠AOC=42°,则∠AOM 等于(

A.159°B.161°C.169°D.138°
3.如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE=40°,则∠AOC )
的度数为(
A.40°B.50°C.60°D.140°
4.下列命题正确的是()
A.圆内接四边形的对角互补
B.平行四边形的对角线相等
C.菱形的四个角都相等
D.等边三角形是中心对称图形
5.下列命题是假命题的是()
A.对角线互相垂直且相等的平行四边形是正方形
B.对角线互相垂直的矩形是正方形
C.对角线相等的菱形是正方形
D.对角线互相垂直且平分的四边形是正方形
6.如图,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条小路(图中
第1页共16页。

相交线与平行线单元测试题

相交线与平行线单元测试题

相交线与平行线单元测试题一、选择题(每题2分,共20分)1. 下列说法中,正确的是:A. 经过直线外一点,有且只有一条直线与已知直线平行B. 经过直线外一点,有且只有一条直线与已知直线相交C. 经过直线外一点,可以画无数条直线与已知直线平行D. 经过直线外一点,可以画无数条直线与已知直线相交2. 如果两直线相交,那么它们相交所成的角是:A. 锐角B. 直角C. 钝角D. 任意角3. 两条直线被第三条直线所截,如果同侧的内错角相等,那么这两条直线:A. 平行B. 相交C. 垂直D. 无法判断4. 平行线的性质中,下列说法不正确的是:A. 平行线之间的距离处处相等B. 平行线永不相交C. 两条平行线可以确定一个平面D. 平行线之间的夹角是锐角5. 对于两条平行线,下列说法正确的是:A. 它们之间的距离在任何地方都是相同的B. 它们可以相交C. 它们之间的夹角可以是任意角D. 它们可以确定一个平面二、填空题(每题2分,共10分)6. 如果两条直线相交成直角,则称这两条直线互相______。

7. 两条直线相交,如果其中一个角是锐角,则其他三个角分别是______。

8. 平行线之间的距离是指______。

9. 两条直线相交所成的角中,最大的角是______。

10. 如果两条直线被第三条直线所截,那么内错角相等的条件是这两条直线______。

三、判断题(每题1分,共10分)11. 两条直线相交所成的角都是锐角。

()12. 平行线在任何地方的距离都是相等的。

()13. 两条直线相交,形成的对顶角相等。

()14. 两条平行线之间的夹角是直角。

()15. 如果两条直线被第三条直线所截,同位角相等,则这两条直线平行。

()四、简答题(每题5分,共20分)16. 解释什么是“同位角”、“内错角”和“同旁内角”,并说明它们在判断两条直线是否平行时的作用。

17. 描述如何使用直角三角板来检验两条直线是否平行。

18. 给出两条直线相交的几何图形,并说明如何确定它们相交所成的角的大小。

相交线与平行线测试题及答案

相交线与平行线测试题及答案

相交线与平行线测试题及答案1. 单选题:在平面上,两条互相垂直的直线称为()。

A. 平行线B. 垂直线C. 相交线D. 对称线答案:B. 垂直线2. 单选题:下面哪种说法是正确的?A. 平行线永远不会相交B. 相交线永远不会平行C. 平行线和相交线可以同时存在D. 平行线和相交线不能同时存在答案:C. 平行线和相交线可以同时存在3. 多选题:判断下列述句是否正确。

1) 平行线没有交点。

2) 相交线可以有无数个交点。

3) 两条垂直线的交点一定是直角。

A. 正确的有1)、2)、3)B. 正确的有1)、3)C. 正确的有2)、3)D. 正确的只有3)答案:B. 正确的有1)、3)4. 填空题:两条互相垂直的直线所成的角度为()度。

答案:90度5. 判断题:两条平行线的夹角为180度。

答案:错误6. 判断题:两条相交直线一定不平行。

答案:正确7. 计算题:已知直线L1与直线L2互相垂直,L1的斜率为2,过点(1,3)的直线L2的斜率为()。

答案:-1/28. 计算题:已知直线L1过点(1,2)且斜率为3/4,直线L2与L1平行且过点(3,5),求直线L2的斜率。

答案:3/49. 解答题:请解释什么是相交线和平行线,并举例说明。

答案:相交线是指两条直线或线段在平面上有唯一一点相交。

例如,在平面上有两条直线,一条通过点A和点B,另一条通过点C和点D,如果点A与点C不重合并且点B与点D不重合,则这两条直线相交于点E。

平行线是指在平面上没有任何交点的两条直线。

例如,在平面上有一条直线通过点A和点B,另一条直线通过点C和点D,如果两条直线没有任何一点相交,则这两条直线是平行线。

10. 解答题:如何通过直线的斜率来判断两条直线是否平行或垂直?答案:两条直线平行的充要条件是它们的斜率相等,即斜率相同的两条直线是平行线。

两条直线垂直的充要条件是它们的斜率的乘积为-1,即斜率之积为-1的两条直线是垂直线。

总结:在平面几何中,相交线是指两条直线或线段在平面上有唯一一点相交,平行线是指在平面上没有任何交点的两条直线。

相交线与平行线单元测试题

相交线与平行线单元测试题

相交线与平行线单元测试题一、选择题(每题2分,共10分)1. 两条直线在同一平面内,且不相交,这两条直线叫做平行线。

以下哪项描述不正确?A. 平行线在任何情况下都不会相交B. 平行线之间的距离处处相等C. 平行线可以无限延伸D. 平行线可以相交2. 根据平行线的性质,以下哪个命题是正确的?A. 同位角相等B. 内错角相等C. 同旁内角互补D. 以上都是3. 如果两条直线相交成30度角,那么这两条直线的对顶角是:A. 30度B. 60度C. 90度D. 120度4. 已知直线AB与CD相交于点O,那么OA与OB的关系是:A. OA=OBB. OA垂直于OBC. OA平行于OBD. 无法确定5. 在平面几何中,以下哪个条件不能判定两直线平行?A. 同位角相等B. 内错角相等C. 同旁内角互补D. 两直线没有交点二、填空题(每题2分,共10分)6. 如果两条直线相交所构成的同位角不相等,则这两条直线_________。

7. 平行于同一条直线的两条直线_________。

8. 两条直线相交,如果其中一个角是直角,则这两条直线_________。

9. 如果直线a与直线b相交,且a垂直于直线b,则直线a与直线b所成的角是_________度。

10. 两条平行线被第三条直线所截,同旁内角的度数之和为_________。

三、判断题(每题1分,共5分)11. 两条直线相交所形成的角中,对顶角相等。

()12. 平行线的性质可以推出同位角相等,内错角相等,同旁内角互补。

()13. 如果两条直线相交,那么它们一定在某一点相交。

()14. 两条直线相交所形成的角中,邻角互补。

()15. 平行线之间的距离处处相等,这是平行线的一个性质。

()四、简答题(每题5分,共10分)16. 解释什么是“相交线”,并给出相交线的基本性质。

17. 解释什么是“平行线”,并说明平行线的性质有哪些。

五、解答题(每题15分,共15分)18. 在平面直角坐标系中,已知直线L1: y = 2x + 3 和直线L2: y = -x + 5,请判断这两条直线是否平行或相交,并给出证明。

冀教版七年级下《第七章相交线与平行线》全章过关测试卷含答案

冀教版七年级下《第七章相交线与平行线》全章过关测试卷含答案

冀教版七年级数学(shùxué)第七章相交线与平行线全章过关(guò〃guān)测试卷一、选择题1.下列(xiàliè)图中,∠1和∠2是对顶角的有( )个.A.1个B.2个C.3个D.4个2.下列(xiàliè)说法正确的是()A.两点之间的距离(jùlí)是两点间的线段B.同一平面内,过一点有且只有一条直线与已知直线平行C.与同一条直线垂直的两条直线也垂直D.同一平面内,过一点有且只有一条直线与已知直线垂直3.下列说法正确的是().A.相等的角是对顶角.B.两条直线被第三条直线所截,内错角相等.C.如果两条直线都和第三条直线平行,那么这两条直线也互相平行.D.若两个角的和为180°,则这两个角互为余角.4.∠1和∠2是直线AB和CD被直线EF所截得到的同位角,那么∠1和∠2的大小关系是().A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.无法确定5.如图所示中,不能通过基本图形平移得到的是().6.一个(yīɡè)人从A点出发向北偏东60°方向(fāngxiàng)走到B点,再从B 点出发向南偏西15°方向(fāngxiàng)走到C点,那么∠ABC等于(děngyú)(). A.75° B.105° C.45° D.135°7.下列(xiàliè)说法中,正确的是().A.过点P画线段AB的垂线.B.P是直线AB外一点,Q是直线AB上一点,连接PQ,使PQ⊥AB.C.过一点有且只有一条直线垂直于已知直线.D.过一点有且只有一条直线平行于已知直线.8.如果在同一平面内有两个图形甲和乙,通过平移,总可以完全重合在一起(不论甲和乙的初始位置如何),则甲和乙是().A.两个点B.两个半径相等的圆C.两个点或两个半径相等的圆D.两个能够完全重合的多边形二、填空题9.如图所示,AB∥CD,EF分别交AB、CD于G、H两点,若∠1=50°,则∠EGB=________.10.平行用符号表示,直线AB与CD平行,可以记作为.11.每天小明上学时,需要先由家向东走150米到公共汽车站点,然后再乘车向西900米到学校,每天小明由家到学校移动的方向(fāngxiàng)是________,移动的距离是________.12.如图所示,请写出能判断(pànduàn)CE∥AB的一个(yīɡè)条件,这个条件是;①:________ ②:________ ③:________13.如图,已知AB∥CD,CE,AE分别(fēnbié)平分∠ACD,∠CAB,则∠1+∠2=________.14.同一平面内的三条(sān tiáo)直线a,b,c,若a⊥b,b⊥c,则a________c.若a ∥b,b∥c,则a________c.若a∥b,b⊥c,则a________c.15. 如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西.北乙北甲16.如图所示,AC⊥BC于点C,CD⊥AB于点D,DE⊥BC于点E,能表示(biǎoshì)点到直线(或线段(xiànduàn))的距离(jùlí)的线段有条.三、解答(jiědá)题17.把图中的互相平行(píngxíng)的线写出来,互相垂直的线写出来:18.如图所示,已知∠1=∠2,AC平分∠DAB,你能推断哪两条线段平行?说明理由.19.如图,在一块长为a米,宽为b米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其它部分(bù fen)都是草地.求草地的面积.20.如图所示,点P是∠ABC内一点(yī diǎn).(1)画图(huà tú):①过点P画BC的垂线(chuí xiàn),垂足为D;②过点P画BC的平行线交AB于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于(děngyú)∠B吗?为什么?【答案与解析】一、选择题1. 【答案】A;【解析】只有第三个图中的∠1与∠2是对顶角.2. 【答案】D.3. 【答案】C;【解析】一个角的平分线分得两个角相等,但不是对顶角,A错误;内错角相等的前提必须是两条直线平行,B错误;若两个角的和为180°,这两个角互为补角,D错误;C是平行公理的推论,正确.4. 【答案(dáàn)】D;【解析(jiě xī)】因为不知道直线AB和CD是否(shì fǒu)平行,平行时同位角相等,不平行时同位角不相等,所以无法确定同位角是否相等,故选D.5. 【答案(dáàn)】D【解析(jiě xī)】易见A、B、C都可以通过基本图形平移得到,只有D不能.6. 【答案】C;【解析】根据直线平行,内错角相等,从A点北偏东60°方向等于从B点南偏西60°,再从B点向南偏西15°方向到C点,∠ABC应等于这两个角的差,故C正确.7.【答案】C;【解析】应是过一点画线段所在直线的垂线,不能是画线段的垂线,故A 错误;P是直线AB外一点,Q是直线AB上一点,如果P点不在过Q点与AB垂直的直线上,或Q点不在过P点与AB垂直的直线上,连接PQ,不可能有PQ⊥AB,故B错误;过一点画直线的平行线,这点不能在直线上,否则是同一条直线,故D错误;只有C是垂线的性质,故C 正确.8.【答案】C【解析(jiě xī)】分析:两个(liǎnɡɡè)能够完全重合的多边形,如果把其中一个多边形旋转一个角度,那么另一个多边形不论怎样平移,也不可能和这个多边形(指旋转一个(yīɡè)角度的多边形)完全重合在一起,只有两个(liǎnɡɡè)点或两个半径相等的圆总能完全重合在一起,故选C.二、填空题9. 【答案(dáàn)】50°【解析】因为AB∥CD,所以∠1=∠AGF,因为∠AGF与∠EGB是对顶角,所以∠EGB=∠AGF,故∠EGB=50°.10.【答案】∥,AB∥CD.11.【答案】向西,750米;【解析】移动的方向是起点到终点的方向,移动的距离是起点到终点的线段的长度.12.【答案】∠DCE=∠A,∠ECB=∠B,∠A+∠ACE=180°;【解析】根据平行线的判定,CE∥AB成立的条件可以是∠DCE=∠A或∠ECB=∠B或∠A+∠ACE=180°.13.【答案】90°;【解析】∠BAC+∠ACD=180°,,即∠1+∠2=90°.14.【答案】∥,∥,⊥;15.【答案(dáàn)】48°;【解析】内错角相等(xiāngděng),两直线平行.16.【答案(dáàn)】8;【解析】表示点到直线或线段(xiànduàn)距离的垂线段有:线段AC、BC、DE、CE、BE、CD、CB、AD.三、解答(jiědá)题17.【解析】解:AB∥CD,MN∥OP,EF∥GH;AB⊥GH,AB⊥EF,CD⊥EF,CD⊥GH.18.【解析】解:AB∥CD,理由如下:因为AC平分∠DAB(已知),所以∠1=∠3(角平分线定义).又因为∠1=∠2(已知),所以∠2=∠3(等量代换),所以AB∥CD(内错角相等,两直线平行).19.【解析】解:将马路的一边向另一边平移到重合,则此时草地的形状为:长为(a-2)米,宽为b米的长方形,所以面积为:(a-2)b=(ab-2b)平方米.20.【解析】解:如图所示,(1)①直线PD即为所求;②直线PE、PF即为所求.(2)∠EPF=∠B,理由(lǐyóu):因为PE∥BC(已知),所以(suǒyǐ)∠AEP=∠B(两直线平行(píngxíng),同位角相等).又因为(yīn wèi)PF∥AB(已知),所以(suǒyǐ)∠EPF=∠AEP(两直线平行,内错角相等),∠EPF=∠B(等量代换).内容总结(1)说明理由.19.如图,在一块长为a米,宽为b米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其它部分都是草地.求草地的面积.20.如图所示,点P是∠ABC内一点.(1)画图:①过点P画BC的垂线,垂足为D。

(完整版)初一平行线与相交线经典试题

(完整版)初一平行线与相交线经典试题

第一章:平行线与相交线考点1:余角、补角、对顶角一、考点讲解:1.余角:如果两个角的和是直角,那么称这两个角互为余角.2.补角:如果两个角的和是平角,那.么称这两个角互为补角.3.对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4.互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余.反过来,若∠1,∠2互余.则∠1+∠2=90○.②同角或等角的余角相等,如果∠l十∠2=90○,∠1+∠3= 90○,则∠2= ∠3.5.互为补角的有关性质:①若∠A +∠B=180○则∠A、∠B互补,反过来,若∠A、∠B 互补,则∠A+∠B=180○.②同角或等角的补角相等.如果∠A +∠C=18 0○,∠A+∠B=18 0°,则∠B=∠C.6.对顶角的性质:对顶角相等.二、经典考题剖析:【考题1-1】(2004、厦门,2分)已知:∠A= 30○,则∠A的补角是________度.解:150○点拨:此题考查了互为补角的性质.【考题1-2】(2004、青海,3分)如图l-2-1,直线AB,CD相交于点O,OE⊥AB 于点O,OF平分∠AOE,∠1=15○30’,则下列结论中不正确的是()A.∠2 =45○B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75○30′解:D 点拨:此题考查了互为余角,互为补角和对顶角之间的综合运用知识.三、针对性训练:(30 分钟) (答案:220 ) 1._______的余角相等,_______的补角相等.2.∠1和∠2互余,∠2和∠3互补,∠1=63○,∠3=__3.下列说法中正确的是()A.两个互补的角中必有一个是钝角B.一个角的补角一定比这个角大C.互补的两个角中至少有一个角大于或等于直角D.相等的角一定互余4.轮船航行到C处测得小岛A的方向为北偏东32○,那么从A处观测到C处的方向为()A.南偏西32○B.东偏南32○C.南偏西58○D.东偏南58○5.若∠l=2∠2,且∠1+∠2=90○则∠1=___,∠2=___.6.一个角的余角比它的补角的九分之二多1°,求这个角的度数.7.∠1和∠2互余,∠2和∠3互补,∠3=153○,∠l=_8.如图l-2-2,AB⊥CD,AC⊥BC,图中与∠CAB互余的角有()A.0个B.l个C.2个D.3个9.如果一个角的补角是150○,那么这个角的余角是____________10.已知∠A和∠B互余,∠A与∠C互补,∠B与∠C的和等于周角的13,求∠A+∠B+∠C的度数.11.如图如图1―2―3,已知∠AOC与∠B都是直角,∠BOC=59○.(1)求∠AOD的度数;(2)求∠AOB和∠DOC的度数;(3)∠A OB与∠DOC有何大小关系;(4)若不知道∠BOC的具体度数,其他条件不变,这种关系仍然成立吗?考点2:同位角、内错角、同旁内角的认识及平行线的性质一、考点讲解:1.同一平面内两条直线的位置关系是:相交或平行.2.“三线八角”的识另:三线八角指的是两条直线被第三条直线所截而成的八个角.正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同规”;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.3.平行线的性质:(1)两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.(2)过直线外一点有且只有一条直线和已知直线平行.(3)两条平行线之间的距离是指在一条直线上任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.二、经典考题剖析:【考题2-1】(2004贵阳,3分)如图1―2―4,直线a ∥b,则∠A CB=________解:78○点拨:过点C作CD平行于a,因为a∥b,所以CD∥b.则∠A C D=2 8○,∠DCB=5 0○.所以∠ACB=78○.【考题2-2】(2004、开福,6分)如图1―2―5,AB∥CD,直线EF分别交A B、CD于点E、F,EG平分∠B EF,交CD于点G,∠1=5 0○求∠2的度数.解:65○点拨:由AB∥CD,得∠BEF=180○-∠1=130○,∠BEG=∠2.又因为EG平分∠BEF,所以∠2=∠BEG=12∠BEF=65°(根据平行线的性质)三、针对性训练:( 40分钟) (答案:220 ) 1.如图1-2-6,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.l个B.2个C.3个D.4个2.下列说法中正确的个数是()(1)在同一平面内不相交的两条直线必平行;(2)在同一平面内不平行的两条直线必相交;(3)两条直线被第三条直线所截,所得的同位角相等;(4)两条平行线被第三条直线所截,一对内错角的平分线互相平行。

人教版数学七年级下册第五章相交线与平行线测试卷(含答案)

人教版数学七年级下册第五章相交线与平行线测试卷(含答案)

人教版七年级下册第五章相交线与平行线测试卷(含答案)一、选择题(每小题3分,共24分)1.如图,直线a,b相交于点O,若∠1等于35°,则∠2等于( )A.35°B.55°C.135°D.145°2.下列各组角中,∠1与∠2是对顶角的为( )3.如图,直线AB∥CD,AB,CD与直线BE分别交于点B,E,∠B=70°,则∠BED=( )A.110°B.50°C.60°D.70°4.如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A.a户最长B.b户最长C.c户最长D.三户一样长5.如图,描述同位角、内错角、同旁内角关系不正确的是( )A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角6.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于( )A.18°B.36°C.45°D.54°7.下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.A.4B.3C.2D.18.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD.其中能使AD∥BC的条件为( )A.①②B.③④C.②④D.①③④二、填空题(每小题4分,共16分)9.命题“同旁内角互补,两直线平行”写成“如果……,那么……”的形式是______________________________.它是__________命题(填“真”或“假”).10.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段__________的长度.11.如图,已知∠1=∠2,∠B=40°,则∠3=__________.12.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B两岛的视角∠ACB=__________.三、解答题(共60分)13.(6分)填写推理理由:已知:如图,D,F,E分别是BC,AC,AB上的点,DF∥AB,DE∥AC,试说明∠EDF=∠A.解:∵DF∥AB(已知),∴∠A+∠AFD=180°(____________________).∵DE∥AC(已知),∴∠AFD+∠EDF=180°(____________________).∴∠A=∠EDF(____________________).14.(10分)如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.15.(10分)如图所示,△ABC平移得△DEF,写出图中所有相等的线段、角以及平行的线段.16.(10分)已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH.(1)直线AB与CD有怎样的位置关系?说明理由;(2)∠KOH的度数是多少?17.(12分)如图所示,已知∠1+∠2=180°,∠B=∠3,你能判断∠ACB与∠AED的大小关系吗?说明理由.18.(12分)如图,直线AB与CD相交于O,OF,OD分别是∠AOE,∠BOE的平分线.(1)写出∠DOE的补角;(2)若∠BOE=62°,求∠AOD和∠EOF的度数;(3)试问射线OD与OF之间有什么特殊的位置关系?为什么?参考答案1.D2.D3.D4.D5.D6.B7.D8.C9.如果同旁内角互补,那么这两条直线平行真10.AP 11.40°12.70°13.两直线平行,同旁内角互补两直线平行,同旁内角互补同角的补角相等14.(1)图略.(2)图略.(3)∠PQC=60°.理由如下:∵PQ∥CD,∴∠DCB+∠PQC=180°.∵∠DCB=120°,∴∠PQC=60°.15.相等的线段:AB=DE,BC=EF,AC=DF;相等的角:∠BAC=∠EDF,∠ABC=∠DEF,∠BCA=∠EFD;平行的线段:AB∥DE,BC∥EF,AC∥DF.16.(1)AB∥CD.理由:∵∠1+∠2=180°,∴AB∥CD.(2)∵AB∥CD,∠3=100°,∴∠GOD=∠3=100°.∵∠GOD+∠DOH=180°,∴∠DOH=80°.∵OK平分∠DOH,∴∠KOH=12∠DOH=40°.17.∠AED=∠ACB.理由如下:∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4.∴BD∥FE.∴∠3=∠ADE.∵∠3=∠B,∴∠B=∠ADE.∴DE∥BC.∴∠AED=∠ACB.18.(1)∠DOE的补角为:∠COE,∠AOD,∠BOC.(2)∵OD是∠BOE的平分线,∠BOE=62°,∴∠BOD=12∠BOE=31°.∴∠AOD=180°-∠BOD=149°. ∴∠AOE=180°-∠BOE=118°. 又∵OF是∠AOE的平分线,∴∠EOF=12∠AOE=59°.(3)射线OD与OF互相垂直. 理由如下:∵OF,OD分别是∠AOE,∠BOE的平分线,∴∠DOF=∠DOE+∠EOF=12∠BOE+12∠EOA=12(∠BOE+∠EOA)=12×180°=90°.∴OD⊥OF.。

(完整版)《相交线与平行线》单元测试卷含答案

(完整版)《相交线与平行线》单元测试卷含答案

第4章相交线与平行线单元测试卷一、选择题(每题2分,共20分)1。

如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D。

对顶角2.如图,AB∥CD,AD平分∠BAC,若∠BAD=65°,那么∠ACD的度数为( )A.40°B.35° C。

50°D。

45°31 2 3。

如图,AB∥EC,下列说法不正确的是()A. ∠B=∠ECDB. ∠A=∠ECDC。

∠B+∠ECB=180° D. ∠A+∠B+∠ACB=180°4.如图,在俄罗斯方块游戏中,出现一小方块拼图向下运动,通过平移运动拼成一个完整的图案,最终所有图案消失,则对小方块进行的操作为( )A。

向右平移1格再向下 B。

向右平移3格再向下C.向右平移2格再向下D.以上答案均可5。

如图所示,3块相同的三角尺拼成一个图形,图中有很多对平行线,其中不能由下面的根据得出两直线平行的是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.平行于同一直线的两直线平行D。

垂直于同一直线的两直线平行6。

如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是( )A.40°B.70°C.80° D。

140°7。

同一平面内的四条互不重合的直线满足a⊥b,b⊥c,c⊥d,则下列各选项中关系能成立的是( )A。

a∥d B。

a⊥c C。

a⊥d D。

b⊥d8。

如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=( )A.120 ° B。

130° C.140° D。

150°9。

如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为( )A。

30° B.60° C。

80° D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相交线与平行线复习题
总分:120分日期:2015年12月18日
班级:__________ 姓名:__________ 学号:__________ 得分:__________
一、选择题(共8小题;共24分)
1. 如图,下列条件能判定的是
A. B.
C. D.
2. 一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能
为 ( )
A. 先右转,后右转
B. 先右转,后左转
C. 先右转,后左转
D. 先右转,后左转
3. 如图所示,已知,,,则
A. B. C. D.
4. 下列命题中,真命题是 ( )
A. 相等的角是对顶角
B. 同旁内角互补
C. 平行于同一条直线的两条直线互相平行
D. 垂直于同一条直线的两条直线互相垂直
5. 如图,直线、被直线、所截,下列条件中,不能判断直线的是
A. B.
C. D.
6. 已知直线,,,,下面推理正确的是 ( )
A. 因为,,所以
B. 因为,,所以
C. 因为,,所以
D. 因为,,所以
7. 如图,,,则等于
A. B. C. D.
8. 如图所示,,分别是和的平分线,且,那么与
的关系是bl0LIcE
A. 可能平行也可能相交
B. 一定平行
C. 一定相交
D. 以上答案都不对
二、填空题(共7小题;共21分)
9. 如图所示,与是由两条直线和被直线所截而成
的角,且是;与是由两条直线和被直线所截而成的角,且是.
10. 计划把河水引到水池中,先引,垂足为,然后沿开渠,能使所开的渠道最
短,这样设计的依据是.
11. 如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角
三角形的两条直角边相交成,,则.
12. 图中是对顶角量角器,用它测量角的原理是.
13. 下列说法正确的是.(写出正确的序号)
① 三条直线两两相交有三个交点;
② 两条直线相交不可能有两个交点;
③在同一平面内的三条直线的交点个数可能为,,,;
④同一平面内的条直线两两相交,其中无三线共点,则可得个交点;
⑤ 同一平面内的条直线经过同一点可得个角(平角除外).
14. 如图所示,点是的边上的一点.
①过点作的垂线,交于点.
②过点作的垂线,垂足为.
③线段的长度是点到的距离,线段
的长度是点到直线的距离.
④因为直线外一点与直线上各点所连的所有线中,垂线段最短,所以,,这三条线段
的大小关系是(用“ ”连接).
15. 如图,直线,,,则.
三、解答题(共8小题;共75分)
16. 已知:如图,直线,点在直线上,且,,求的度
数.
17. 如图所示,一辆汽车在直线形公路上由向行驶,,分别是位于公路两侧的村
庄.
(1) 设汽车行驶到公路上的点位置时,距离村庄最近;行驶到点位置时,距离
村庄最近,请在图中的公路上分别画出点和点的位置;
(2) 当汽车从出发向行驶时,在公路的哪一段路上距离、两村庄都越来越
近?在哪一段路上距离村庄越来越近,而离村庄越来越远?(分别用文字表述你的结论,不必说明)
18. 如图,点表示小明家,点表示小明外婆家,若小明先去外婆家拿渔具,然后再去河边钓
鱼,怎样走路程最短,请画出行走路径,并说明理由.
19. 已知:如图所示,点,,和,,分别在同一条直线上,且,
.求证:.
20. 如图所示:
(1) 过点画的垂线,垂足为;
(2) 过点画的垂线,垂足为;
(3) 过点画的垂线,垂足为;
(4) 线段,,三者中最短的是哪一条,其依据是什么?
21. 如图所示,已知.
(1) 判断与的大小关系,并说明理由;
(2) 若,是的平分线.
① 求的度数;
② 若,求的度数.
22. 如图所示,,为和之间的一点,已知,,求的
度数.
23.
(1) 观察图中各角,寻找对顶角(不含平角):
(i)图1中,共有对对顶角;
(ii)图2中,共有对对顶角;
(iii)图3中,共有对对顶角;
(iv)探究(i)~(iii)各题中直线条数与对顶角对数之间的关系,若有条直线相交于一点,则可形成对对顶角.
(2) 若条直线两两相交于不同的点时,可形成对对顶角.你能
将上述两种情形归纳一下吗?
答案第一部分
1. C
2. D
3. C
4. C
5. B
6. C
7. C
8. B
第二部分
9. ;同位角;;内错角
10. 垂线段最短
11.
12. 对顶角相等
13. ② ③ ④ ⑤
14. ①②如图所示.
③ ,.④ .
15.
第三部分
16. (1)


点在直线上,





17. (1) 过点作,垂足为,
过点作,垂足为,点,就是要画的两点,
如图.
17. (2) 当汽车从向行驶时,在这段路上,离两个村庄越来越近;在这段路上,离村庄越来越远,离村庄越来越近.
18. (1) 如图,
连接,再过点作垂直河边于点.
折线即为所求.
19. (1) ,






20. (1)
20. (2)
20. (3)
20. (4) 三条线段中最短的是线段,其依据是“垂线段最短”.
21. (1) 与的大小关系是相等.
理由是:因为(已知),
所以(两直线平行,同位角相等).
21. (2) ① 因为(已知),是的平分线(已知),所以(角平分线的定义).
答:是.
② 因为(已知),(已求),
所以(等量代换),
所以(同旁内角互补,两直线平行),
所以(两直线平行,同位角相等).
答:是.
22. (1) 过作射线.






23. (1) ;;;
23. (2) ;
归纳结论:条直线两两相交,共形成对对顶角.。

相关文档
最新文档