(4-4)圆筒形件拉深工艺计算
《冲压模具设计与制造》课程教学大纲DOC
《冲压模具基础》课程教学大纲课程编号:课程英文译名:课内总学时:72学时学分:4。
5学分课程类别:必修课开课对象:汽车制造与装配技术专业执笔人:编写日期:一、课程性质、目的和任务《冲压模具设计与制造》是汽车制造及汽车整形专业的一门主干专业技术课,它是一门将冲压成形加工原理、冲压设备、冲压工艺、冲模设计与冲模制造有机融合,综合性和实践性较强的课程。
其目的是使学生了解冲压变形规律,认识冲压成形工艺方法,冲压模具结构,冲压模具制造方法与手段,掌握冲压模具设计与计算方法,掌握冲压工艺与模具设计方法,冲压模具制造工艺方法,能进行中等冲压零件的冲压工艺编制,冲模设计与冲模制造工艺编制,并培养学生发现问题、分析问题和解决问题的能力,培养学生逻辑思维能力,为毕业设计及毕业以后从事专业工作打下必要的基础。
二、教学基本要求本课程是冲压模具设计与计算,冲压模具结构,模具制造工艺方法为重点。
学外本课程应达到以下基本要求:1、能应用冲压变形理论,分析中等复杂冲压件变形特点,制定合理冲压工艺规程的能力。
2、协调冲压设备与模具的关系,选择冲压设备的能力。
3、熟悉掌握冲模设计计算方法,具备中等复杂冲模结构选择和设计的能力,所设计的冲模应工作可行、操作方便、便于加工和装配,技术经济性好。
4、具备正确选择冲压模具加工方法,制定中等复杂冲模制造工艺和装配工艺的能力.5、初步具备进行多工位级进模设计和制造的能力。
6、初步具备进行分析和处理试模过程中产生的有关技术问题的能力。
三、教学内容及要求:第1章冲压模具设计与制造基础1.1 冲压成形与模具技术概述掌握冲压与冲模概念;冲压工序的分类;冲模的分类;冲模设计与制造的要求;了解冲压现状与发展方向。
1.2 冲压设备及选用了解常见冲压设备;掌握冲压设备的选用;模具的安装。
1.3 冲压变形理论基础掌握塑性变形的概念;理解塑性力学基础;掌握金属塑性变形的一些基本规律;冲压材料及其冲压成形性能.1.4 模具材料选用掌握冲压对模具材料的要求;冲模材料的选用原则;冲模常见材料及热处理要求。
圆筒形件的拉深
1.1 拉深系数
1) 材料的力学性能
3) 材料的表面质量
5) 润滑条件
圆筒形件的拉深
2) 材料的相对厚度 t/D
及压边圈的使用 4)
拉深次数
6) 拉深速度
1.2 拉深次数的确定
圆筒形件的拉深
拉深件一般经过几次拉深才能达到最终 尺寸形状。如果拉深件总的拉深系数 m总 大 于第一次允许的极限拉深系数 m1,即: m总> m1。
冲压工艺与模具设计
1.1 拉深系数
圆筒形件的拉深
拉深系数表示拉深后圆筒形件的直 径 d 与拉深前毛坯(或半成品)的直径 D 之比。拉深系数表示拉深时板料的变 形程度,用符号 m 表示。M 是小于1的 系数,m 值越小,说明拉深时变形程度
越大。
1.1 拉深系数
圆筒形件的拉深工件总的Fra bibliotek形系数:圆 筒 形 件 的 多 次 拉 深
说明拉深该工件的实际变形程度比第一
次容许的极限变形程度要小,工件可以一次
拉成。否则需要多次拉深才能成形。
圆筒形件的拉深
1.3 各次拉深工序尺寸的确定
圆筒形件的拉深
1.3 各次拉深工序尺寸的确定
冲压工艺与模具设计
[机械电子]圆筒形件拉深模设计
按功能分类
(1)经济型数控车床 采用步进电动机和单片机对普通车床 的进给 系统进 行改造 后形成 的简易 型数控 车床, 成本较 低,但 自动化 程度和 功能都 比较差 ,车削 加工精 度也不 高,适 用于要 求不高 的回转 类零件 的车削 加工。
(2)普通数控车床 根据车削加工要求在结构上进行专门 设计并 配备通 用数控 系统而 形成的 数控车 床,数 控系统 功能强 ,自动 化程度 和加工 精度也 比较高 ,适用 于一般 回转类 零件的 车削加 工。这 种数控 车床可 同时控 制两个 坐标轴 ,即X轴 和Z轴 。
圆筒形件拉深模设计
学习目的与要求:
1.了解拉深变形规律及拉深件质量影响因素; 2.掌握拉深工艺计算方法。 3.掌握拉深工艺性分析与工艺设计方法; 4.认识拉深模典型结构及特点,掌握拉深模工作零件设计方 法; 5.掌握拉深工艺与拉深模设计的方法和步骤。
圆筒形件拉深模设计
本学习情境重点:
1.拉深变形规律及拉深件质量影响因素; 2.拉深工艺计算方法; 3.拉深工艺性分析与工艺方案制定; 4.拉深模典型结构与结构设计; 5.拉深工艺与拉深模设计的方法和步骤。
热处理的高速钢,又叫作白钢。
硬质合金 硬质合金由难熔材料的碳化钨、碳 化钛和 钴的粉 末,在 高压下 成形, 经1350-1560摄氏度 高温烧
结而成的。具有极高的硬度,常温下 可达HR A92, 仅次于 金刚石 ;红硬 性很好 ,在1000摄氏 度左右 仍能保 持良好 的切削 机能; 具有较 高使用 强度, 抗弯
圆筒形件拉深模设计
第一节 拉深基本原理
(2)网格变化
① 筒底 无变化
② 筒壁 无变化
③ 凸缘区 径向伸长,切向压缩。
(2)拉深变形特点
第一节 圆筒形零件拉深讲解
筒壁传力区拉裂: 由于拉应力超过抗拉强度引起板料断裂。
一、无凸缘圆筒形零件拉深 4、圆筒形零件拉深成形的缺陷及防止措施
1)凸缘变形区的起皱 主要决定于:
切向压应力σ3的大小,越大越容易失稳起皱; 凸缘区板料本身的抵抗失稳的能力。
凸缘宽度越大,厚度越薄,材料弹性模量和硬化模量越小, 抵抗失稳能力越差。
第n次拉深系数: mn=dn/dn-1
6、拉深系数的确定 1)拉深系数的概念
拉深系数m 表示拉深前后坯料(工序件)直径的变化率.
m 愈小,说明拉深变形程度愈大,相反变形程度愈小. 拉深件的总拉深系数等于各次拉深系数的乘积,即
若m 取得过小,会使拉深件起皱、断裂或严重变薄超差。 极限拉深系数: 工件在危险断面不至拉破时,所能达到的最小拉深系数mmin。
压料装置产生的压料力Fy大小应适当;
在保证变形区不起皱的前提下,尽量选用小的压料力。 理想的压料力是随起皱可能性变化而变。
9、圆筒形零件拉深的压料力和拉深力
2)拉深力与压力机的公称压力 ①拉深力F
按经验公式可计算出圆筒形件带压料装置和不带压料装置的 首次拉深和以后各次拉深的拉深力。 ②压力机的公称压力
②金属的流动过程 工艺网格实验 材料转移:高度、厚度发生变化。
③拉深变形过程
外力
凸缘产生内应力: 径向拉应力σ1;切向压应力σ3
凸缘塑性变形: 径向伸长,切向压缩,形成筒壁
直径为d高度为H的圆筒形件(H>(D-d)/2)
拉深单元变形动画
一、无凸缘圆筒形零件拉深
2、圆筒形零件拉深过程中坯料内的应力与应变状态 拉深过程中某一瞬间坯料所处的状态
当筒壁拉应力超过筒壁材料的抗拉强度时,拉深件就会在 底部圆角与筒壁相切处——“危险断面”产生破裂。
拉伸工艺系数(常用)
拉深件坯料形状和尺寸是以冲件形状和尺寸为基础,按体积不变原则和相似原则确定。
体积不变原则,即对于不变薄拉深,假设变形前后料厚不变,拉深前坯料表面积与拉深后冲件表面积近似相等,得到坯料尺寸;相似原则,即利用拉深前坯料的形状与冲件断面形状相似,得到坯料形状。
当冲件的断面是圆形、正方形、长方形或椭圆形时,其坯料形状应与冲件的断面形状相似,但坯料的周边必须是光滑的曲线连接。
对于形状复杂的拉深件,利用相似原则仅能初步确定坯料形状,必须通过多次试压,反复修改,才能最终确定出坯料形状,因此,拉深件的模具设计一般是先设计拉深模,坯料形状尺寸确定后再设计冲裁模。
由于金属板料具有板平面方向性和模具几何形状等因素的影响,会造成拉深件口部不整齐,因此在多数情况下采取加大工序件高度或凸缘宽度的办法,拉深后再经过切边工序以保证零件质量。
切边余量可参考表4.3.1和表4.3.2。
当零件的相对高度H/d很小,并且高度尺寸要求不高时,也可以不用切边工序。
首先将拉深件划分为若干个简单的便于计算的几何体,并分别求出各简单几何体的表面积。
把各简单几何体面积相加即为零件总面积,然后根据表面积相等原则,求出坯料直径。
图 4.3.1 圆筒形拉深件坯料尺寸计算图在计算中,零件尺寸均按厚度中线计算;但当板料厚度小于1mm时,也可以按外形或内形尺寸计算。
常用旋转体零件坯料直径计算公式见表4.3.3。
4才对比较准确该类拉深零件的坯料尺寸,可用久里金法则求出其表面积,即任何形状的母线绕轴旋转一周所得到的旋转体面积,等于该母线的长度与其重心绕该轴线旋转所得周长的乘积。
如图4.3.2所示,旋转体表面积为 A。
图4.3.2 旋转体表面积计算图1.拉深系数的定义图4.4.1 圆筒形件的多次拉深在制定拉深工艺时,如拉深系数取得过小,就会使拉深件起皱、断裂或严重变薄超差。
因此拉深系数减小有一个客观的界限,这个界限就称为极限拉深系数。
极限拉深系数与材料性能和拉深条件有关。
4-4旋转体拉深件毛坯尺寸计算(模具设计与制造)
变化,上部变厚,下部变薄。为了计算简便,假 设板厚的平均值为原来板料厚度。按体积不变条 件,则有毛坯的表面积等于拉深件的表面积。 2.截面形状相似原则
毛坏的形状一般与工件截面形状相似。如工 件的断面是圆形的、椭圆形的,则拉深前毛坯的 形状基本上也是圆形的或椭圆形的,并且毛坯周 边必须制成光滑曲线,无急剧转折。
教育部十一五规划教材《模具设计与制造》
第4章 拉深工艺与拉深模具
2020/7/9
教育部十一五规划教材《模具设计与制造》
第4章 拉深工艺与拉深模具
教育部十一五规划教材《模具设计与制造》
第4章 拉深工艺与拉深模具
教育部十一五规划教材《模具设计与制造》
第4章 拉深工艺与拉深模具
4.4.1 确定毛坯尺寸的原则
2020/7/9
2020/7/9
教育部十一五规划教材《模具设计与制造》
第4章 拉深工艺与拉深模具
4.4.2 旋转体拉深件毛坯尺寸确定的方法
2.解析法
形状复杂的旋转体拉深件可以根据久里金 法则求毛坯尺寸,即:任何形状的母线绕轴线 旋转一周所得到的旋转体面积,等于该母线的 长度与其形心绕该轴线旋转所得周长的乘积。
D0 8RXL
2020/7/9
教育部十一五规划教材《模具设计与制造》
第4章 拉深工艺与拉深模具
4.4.1 确定毛坯尺寸的原则
3.毛坯尺寸应包括修边余量 为了获得规则的工件,拉深后需要进行修边,
毛坯尺寸应包括修边余量,即在计算拉深件毛坯 尺寸前,将修边部位增加一定的修边余量。
另外,计算毛坯尺寸时通常以工件最后一次 拉深后的尺寸为计算基础,当板料厚度t > 1 mm时,按工件中线尺寸计算。
圆筒件的拉深系数
若某相邻两阶梯直径比值dn/dn-1小于相应圆筒 形件的极限拉深系数时,则由直径dn-1到dn按 凸缘件的拉深办法,其拉深顺序由小阶梯到大 阶梯依次拉深。
若mΣ>m(极限拉深系数),则该零件只 需拉深一次,否则必须多次拉深。
多次拉深时,拉深次数的确定:
取首次拉深系数为m1,则m1=d1/D,故d1=m1D 取第二次拉深系数为m2,则m2=d2/d1
故d2=m2d1=m1m2D … 第n次拉深时,工作直径则为:dn=m1m2m3……mnD 因而mΣ=m1m2m3…mn
工序图:
二、有凸有凸缘圆筒形件的拉深将毛坯拉深至某一时刻 达到零件所要求的凸缘直径dt时不再拉深。
毛坯直径为 :D d2t1 4d1h1 3.44d1r
当圆角半径rd=rp=r时,第一次拉深 系数为 :
m1
d1 D
1
d t1 d1
2
h1 4
d1
3.44 r d1
对于中小型零件(d t<200mm), 采用减小圆筒形部分直径、增加 高度来达到,而圆角半径rp和rd 在整个变形过程中基本保持不变。
用此方法制成的零件,表面质量较差, 容易在筒壁部分和凸缘上残留有中间工 序中形成的圆角部分弯曲和厚度的局部 变化的痕迹,所以最后要加一道整形工 序。
2.改变圆角半径并减小圆筒形直径
当工件的相对拉深高度h/d>h1/d1时,则该 工件就不能用一道工序拉深出来,而需 要两次或多次才能拉出。
以后各次拉深的拉深系数为mn=dn/dn-1。
(二)窄凸缘圆筒形件拉深
对 dt / d 1.11.4 之间的凸缘件称为窄凸缘件。
这类零件因凸缘很小,可以当作一般圆筒形件 进行拉深,只在倒数第二道工序时才拉出凸缘 或拉成具有锥形的凸缘,而最后通过校正工序 压成水平凸缘。
4.5拉深模具设计
深度拉深件或落料拉深复合模:
应使工艺力曲线位于压力机滑块 的许用压力曲线之下,还需对压力机 的电机功率进行校核
三. 压力机的选择
深度拉深件或落料拉深复合模:
1 F1 max h1
1000
① 计算拉深功A
首次拉深:
以后各次拉深:
凸、凹模工作部分形状
带压边圈的拉深
:
a:用于直径d≤100mm的拉深件
b:用于直径d>100mm的拉深件
五. 拉深工艺的辅助工序
润滑
热处理
目的:消除加工硬化及残余应力
对于普通硬化金属(如08钢、10钢、15钢等), 若工艺过程正确,模具设计合理,一般可不要进行中 间热处理。 对高度硬化金属(如不锈钢、耐热钢等),一般 一、二道工序后就要进行中间热处理。
凸模圆角的影响
:
凸模圆角rp↓↓→rp处弯曲变形程度 ↑→“危险断面”受拉力大→工件易产生局部变薄; 凸模圆角rp↑↑→凸模与毛坯的接触面↓→ 易产生底部变薄和内皱
四. 凸、凹模工作部分的尺寸设计
凹模圆角半径rd的计算
:
首次拉深: d r
1
0.8 ( D d )t
以后各次拉深: d n
r (0.6 ~ 0.8)rdn1
式中:rd1、rdn-1、rdn——首次、第(n-1)次和第n 次拉深模的凹模圆角半径 D——毛坯直径;d——中径;t——工件厚度。
有平面凸缘拉深件,最后一次拉深时:
凹模圆角半径应和拉深件的一致,即rdn=r。
四. 凸、凹模工作部分的尺寸设计
凸模圆角半径rd的计算
四. 凸、凹模工作部分的尺寸设计
(4-4)圆筒形件拉深工艺计算汇总
复习上次课的内容
1.拉深件坯料尺寸的计算遵循什么原则?
2.简单旋转体与复杂旋转体的拉深件坯料尺寸的计算方法 与步骤?
第四章 拉深工艺与拉深模设计
第四节 圆筒形件拉深工艺计算
一、拉深系数与极限拉深系数
1.拉深系数的定义
拉深系数m是以拉深后的
直径d与拉深前的坯料D
(工序件dn)直径之比表
第四节 圆筒形件拉深工艺计算
二、拉深次数与工序件尺寸
1.拉深次数的确定 (2)推算方法
1)由表4.2.4或表4.2.5中查得各次的极限拉深系数; 2)依次计算出各次拉深直径,即
d1=m1D;d2=m2d1;…;dn=mndn-1; 3)当dn≤d时,计算的次数即为拉深次数。
第四节 圆筒形件拉深工艺计算
3)材料的表面质量 材料表面光滑,拉深时摩擦力小而容易流动, mmin可减小。
第四节 圆筒形件拉深工艺计算
一、拉深系数与极限拉深系数
2.影响极限拉深系数的因素
(2)模具方面
1)凸模圆角半径和凹模圆角半径
凸模圆角半径过小时,筒壁和底部的过渡区弯曲变形大,使危险断面 的强度受到削弱, mmin应取较大值;
一、拉深系数与极限拉深系数
2.影响极限拉深系数的因素
(1)材料方面
1)材料的力学性能和组织 塑性好、组织均匀、屈强比小,拉深成形性能好,可以采用较小的mmin 。 2)毛坯的相对厚度 t / D
t / D 小时,拉深变形区易起皱。为了防皱增加压料力,又会引起摩 擦阻力增大,变形抗力加大,使mmin提高。t / D 小, mmin可提高;反之, 可选用较小mmin。
D 98.2
按表4.4.4可不用压料圈,但为了保险,首次拉深仍采用压料圈。
模具第四章拉深模设计
7)确定各次拉深半成品的高度:
h10.2(5 D d1 2d1)0.4d r 3 1 1(d10.3r1 2 ) h20.2(5 D d2 2d2)0.4d r3 2 2(d20.3r2 2 )
hn0.2(5 D dn 2dn)0.4d r3 n n(dn0.3rn 2 )
D0max 的拉深系数——极限拉深系数 (圆角部分不破裂,周边变形区坯料不 失稳起皱)
mc
d D0 m ax
3、影响极限拉深系数的因素
– 板料的力学性能 – 板料的相对厚度:t/D; t/D大,抗失
稳能力强,不易起皱。 – 模具结构及其参数:有无压边圈、凹
模圆角半径、凸模圆角半径。 – 拉深工艺条件:拉深次数、压边条件、
C=(1.1-1.20)t
用压边的一次拉深 光洁拉深
C=(1.0-1.15)t
C=(0.95-1.05)t
二、凸凹模结构形式
无压料一次拉深成形的凹模结构
a)圆弧形 b)锥形 c)渐开线形 d)等切面形
无压料多次拉深的凸、凹模结构
有压料多次拉深的凸、凹模结构
四、凸凹模刃口尺寸及公差(1)
• 当工件要求外形尺寸 (D) 时:
二、常用拉深模
无压边装置的以后各次拉深模
1-推件板 2-拉深凹模 3-拉深凸模 4-压边圈 5-顶杆 6-弹簧
有压边装置的以后各次拉深模
§4-7凸凹模工作部分的设计
一、拉深模间隙:间隙太大时,拉深件壁不 直或成锥形;间隙太小,模具磨损加剧, 工件易拉裂。
不用压边的浅拉深 多次拉深
C=(1.0-1.05)t
§4-5拉深件的起皱与破裂
一、起皱 拉深件的起皱: 受切向压应力失 稳而起皱。
圆筒件拉深成形工艺分析和模具设计毕业设计(论文)
目录1.绪论1.1引言1.2Dynaform简介2.圆筒件拉深成形工艺分析和模具设计2.1拉深工艺分析2.1.1确定修边余量错误!未找到引用源。
2.1.2毛坯尺寸计算2.1.3拉深系数和判断拉深次数2.1.4拉深力的计算2.1.5压边力的计算2.2拉深模主要零部件的设计2.2.1拉深模的间隙计算2.2.2拉深模的圆角半径计算2.2.3凸、凹模工作部分的尺寸计算2.2.4凹、凸模固定板的选择2.2.5模架的选择3.圆筒件拉深成形有限元分析4.结论参考文献致谢一、绪论1.1引言1.2 Dynaform简介基本资料在其前处理器(Preprocessor)上可以完成产品仿真模型的生成和输入文件的准备工作。
求解器(LS-DYNA)采用的是世界上最著名的通用显示动力为主、隐式为辅的有限元分析程序,能够真实模拟板料成形中各种复杂问题。
后处理器(Postprocessor)通过CAD技术生成形象的图形输出,可以直观的动态显示各种分析结果。
Dynaform 软件基于有限元方法建立, 被用于模拟钣金成形工艺。
Dynaform软件包含BSE、DFE、Formability三个大模块,几乎涵盖冲压模模面设计的所有要素,包括:定最佳冲压方向、坯料的设计、工艺补充面的设计、拉延筋的设计、凸凹模圆角设计、冲压速度的设置、压边力的设计、摩擦系数、切边线的求解、压力机吨位等。
Dynaform软件可应用于不同的领域,汽车、航空航天、家电、厨房卫生等行业。
可以预测成形过程中板料的裂纹、起皱、减薄、划痕、回弹、成形刚度、表面质量,评估板料的成形性能,从而为板成形工艺及模具设计提供帮助。
Dynaform软件设置过程与实际生产过程一致,操作上手容易。
来设计可以对冲压生产的全过程进行模拟:坯料在重力作用下的变形、压边圈闭合过程、拉延过程、切边回弹、回弹补偿、翻边、胀形、液压成形、弯管成形。
Dynaform软件适用的设备有:单动压力机、双动压力机、无压边压力机、螺旋压力机、锻锤、组合模具和特种锻压设备等。
拉深工艺及拉深模设计
拉深工艺及拉深模设计本章内容简介:本章在分析拉深变形过程及拉深件质量影响因素的基础上,介绍拉深工艺计算、工艺方案制定和拉深模设计。
涉及拉深变形过程分析、拉深件质量分析、圆筒形件的工艺计算、其它形状零件的拉深变形特点、拉深工艺性分析与工艺方案确定、拉深模典型结构、拉深模工作零件设计、拉深辅助工序等。
学习目的与要求:1.了解拉深变形规律、掌握拉深变形程度的表示;2.掌握影响拉深件质量的因素;3.掌握拉深工艺性分析。
重点:1. 拉深变形特点及拉深变形程度的表示;2.影响拉深件质量的因素;3.拉深工艺性分析。
难点:1.拉深变形规律及拉深变形特点;2.拉深件质量分析;3.拉深件工艺分析。
拉深:利用拉深模将一定形状的平面坯料或空心件制成开口空心件的冲压工序。
拉深工艺可以在普通的单动压力机上进行,也可在专用的双动、三动拉深压力机或液压机上进行。
拉深件的种类很多,按变形力学特点可以分为四种基本类型,如图5-1所示。
图5-1 拉深件示意图5.1 拉深变形过程分析5.1.1 拉深变形过程及特点图5-2所示为圆筒形件的拉深过程。
直径为D、厚度为t的圆形毛坯经过拉深模拉深,得到具有外径为d、高度为h的开口圆筒形工件。
图5-2 圆筒形件的拉深1.在拉深过程中,坯料的中心部分成为筒形件的底部,基本不变形,是不变形区,坯料的凸缘部分(即D-d的环形部分)是主要变形区。
拉深过程实质上就是将坯料的凸缘部分材料逐渐转移到筒壁的过程。
2.在转移过程中,凸缘部分材料由于拉深力的作用,径向产生拉应力,切向产生压应力。
在和的共同作用下,凸缘部分金属材料产生塑性变形,其“多余的三角形”材料沿径向伸长,切向压缩,且不断被拉入凹模中变为筒壁,成为圆筒形开口空心件。
3.圆筒形件拉深的变形程度,通常以筒形件直径d与坯料直径D的比值来表示,即m=d/D(5-1)其中m称为拉深系数,m越小,拉深变形程度越大;相反,m越大,拉深变形程度就越小。
5.1.2 拉深过程中坯料内的应力与应变状态拉深过程是一个复杂的塑性变形过程,其变形区比较大,金属流动大,拉深过程中容易发生凸缘变形区的起皱和传力区的拉裂而使工件报废。
冲压工高级考核大纲理论复习题1
2011年职业技能鉴定综合能力[冲压工(高级)]考试考核大纲本大纲依据汽车冲压工《职业标准》规定的基础理论知识部分和对高级冲压工工作要求(技能要求、相关知识)部分制定。
一、考核内容(一) 基础理论知识1、熟悉冲压作业人员相关安全生产法律法规。
2、熟悉冲压作业人员相关安全生产职业道德规范。
3、掌握冲压工规程和作业指导书。
4、熟悉冲压概念、特点、及应用。
5、熟悉冲压工艺的加工原理6、掌握冲压工序的分类。
(二) 冲压工艺理论知识1.冲裁:(1)冲裁加工原理(2)冲裁件的工艺性(3)冲裁件的排样(4)冲模的压力中心(5)凸、凹模间隙(6)凸、凹模工作部分尺寸和公差(7)冲裁时的压力(8)凹模设计(9)凸模设计(10)冲小孔凸模导向结构(11)凹模和凸模的相拼结构(12)凸模与凹模的固定(13)定位装置(14)卸料及顶料装置(15)排除工件或废料的漏料孔和排除槽(16)冲模闭合高度(17)提高冲裁件质量和精度的工艺方法(18)冲裁件质量分析2.弯曲:(1)弯曲变形分析(2)弯曲件的工艺性(3)弯曲件的弹复(4)弯曲件毛坯尺寸的计算(5)弯曲力的计算(6)弯曲凸凹模的间隙(7)弯曲模工作部分尺寸计算(8)弯曲件的工序安排及模具结构设计(9)提高弯曲件精度的工艺措施(10)弯曲件产生废品原因及消除方法3.拉深:(1)拉深基本原理(2)拉深件的工艺性(3)圆筒行件的拉深工序计算(4)盒形件拉深过程计算(5)带料连续拉深(6)变薄拉深(7)大型覆盖零件拉深(8)拉深模的凸凹模间隙确定(9)拉深模工作部分尺寸的确定(10)拉深凸模与凹模的圆角半径(11)压边圈的采用及其类型(12)拉深件的废品种类、产生原因及预防方法4.成形:(1)胀形(2)翻边(3)缩口(4)整形(三) 冲压设备理论知识1、常用压力机的分类和规格2、压力机的选择:压力机的许用负荷、完成各种工序所需的压力F总和压力机功率的核算、行程和行程次数、最大装模高度、压力机的台面尺寸、压力机的精度3、条料、卷料和板料自动送料装置:钩式送料装置、辊式送料装置、夹持式送料装置、卷料排样自动送料装置4、半成品自动送料装置:送料装置、辅助机构5、自动化冲压生产线(四)冲压材料和热处理理论知识1、常用冲压材料2、冲压用主要材料的化学成分和机械性能3、冲压常用金属材料规格4、冲压模具常用材料及热处理要求5、冷挤压模具材料6、常用冷挤压模具钢的基本要求7、常用金属材料牌号(五)汽车覆盖件质量问题1、破裂(1)不同部位的破裂的原因分析(2)破裂问题的防止措施2、起皱:(1)起皱的分类(2)各类起皱的原因分析(3)起皱问题的防止措施3、尺寸精度和刚度问题(1)尺寸精度问题(2)刚度问题(六)冲压安全技术1、冲压生产的特点与不安全因素分析2、压力机安全装置:(1)压力机安全装置应具有的基本功能及分类(2)压力机安全控制装置(3)压力机安全防护装置3、冲压模具的安全技术:(1)冲模安全技术要求(2)冲模的安全技术装置(3)冲模其他安全措施(4)冲模安全监测装置(5)冲模安装、调试与拆卸中的安全4、冲压生产中的手用工具:手用工具和手用工具操作要点5、冲压事故与冲压生产环境:冲压事故、冲压生产环境二、考试题型及题量1.理论(120分钟):单项选择题(30题,共30分)多项选择题(15题,共15分)判断题(30题,共30分)简答题(3题,共15分)计算题(2题,共10分)2、实作(30分钟):考试内容:冲压成形模的安装及调试需掌握的技能:(1)、冲压压机力的安全使用方法及要求(2)、冲压模具的安装方法及要求;(3)、冲压模具的调整方法及要求;(4)、冲压模具的维护及保养方法要求;(5)、能正选择和使用冲压模具安装及调试所需辅助物品。
冲压工艺与模具设计习题终极
<<冲压工艺与模具设计>>习题1冲压的三要素是什么?冲压工艺,冲压模具,冲压设备2简述冲裁过程、工件平整吗?为什么?过程:弹性变形阶段,塑性变形阶段,断裂分离阶段;不平整,因为冲裁除了剪切变形外,还有弯曲,横向挤压等变形。
它的复杂应力与应变,造成了冲裁断面形态的变化。
3冲裁件的质量指标是什么?影响冲裁件的质量因素是什么断面状况,尺寸精度,形状误差。
断面尽可能垂直,光洁,毛刺小,尺寸精度应该保证在图纸规定的公差范围内。
零件外形应满足图纸要求。
因素:材料性能,间隙大小及匀称性,刃口锋利程度,模具精度及模具结构形式.4冲裁件的断面特征是什么?冲裁件为什么有毛刺?毛刺超差的原因是什么?冲裁件的断面明显的分成四个特征区,塌角,光面,毛面,毛刺;因为在凸模与凹模刃口处首先产生的微裂纹随着凸模的下降而形成毛刺.原因:间隙过小,刃口磨损。
5冲裁间隙是怎样影响冲裁件质量?间隙对断面质量的影响,对尺寸精度的影响,对冲压力的影响,对冲模寿命的影响。
6冲裁间隙的确定原则?在满足冲裁件质量的前提下,间隙值一般取偏大值,这样可以降低冲裁力和提高模具寿命。
7冲裁凸、凹模刃口尺寸计算的原则是什么?有那几种计算方法?各有何特点?原则:确定基准件.考虑冲模磨损规律.凸凹模刃口制造工差应合理.尺寸偏差应按“入体”原则标注。
分开加工法:具有互换性,制造周期短但对模具精度要求较高。
配合加工:制造容易,无互换性,制造周期长。
8什么是冲裁件的工艺性?影响它的主要因素是什么?冲裁件工艺性:即是冲裁件对冲裁工艺的适用性.主要因素:几何形状,尺寸和精度要求。
9什么叫冲裁方式?有那些方式?各有何特点?冲裁方式:冲裁时出件,卸料及废料的排除方式构成冲裁方式.10冲压力的构成?材料对凸模的最大抗力就是冲裁力。
11排样及其作用、排样的原则,排样方法有哪些?各有什么有缺点?冲裁件在条料或板料上的布置方法叫做排样。
作用:对材料的利用率,冲裁件的质量,生产率,模具结构与寿命有重要影响.原则:1.提高材料的利用率。
圆筒拉深件毛坯尺寸计算
4 . 2 直壁旋转体零件拉深工艺的设计圆筒形零件是最典型的拉深件,掌握了它的工艺计算方法后,其它零件的工艺计算可以借鉴其计算方法。
下面介绍如何计算圆筒形零件毛坯尺寸、拉深次数、半成品尺寸,拉深力和功,以及如何确定模具工作部分的尺寸等。
4.2.1 圆筒形拉深件毛坯尺寸计算 1.拉深件毛坯尺寸计算的原则<1)面积相等原则由于拉深前和拉深后材料的体积不变,对于不变薄拉深,假设材料厚度拉深前后不变,拉深毛坯的尺寸按“拉深前毛坯表面积等于拉深后零件的表面积”的原则来确定(毛坯尺寸确定还可按等体积,等重量原则>。
<2)形状相似原则拉深毛坯的形状一般与拉深件的横截面形状相似。
即零件的横截面是圆形、椭圆形时,其拉深前毛坯展开形状也基本上是圆形或椭圆形。
对于异形件拉深,其毛坯的周边轮廓必须采用光滑曲线连接,应无急剧的转折和尖角。
拉深件毛坯形状的确定和尺寸计算是否正确,不仅直接影响生产过程,而且对冲压件生产有很大的经济意义,因为在冲压零件的总成本中,材料费用一般占到60 %以上。
由于拉深材料厚度有公差,板料具有各向异性;模具间隙和摩擦阻力的不一致以及毛坯的定位不准确等原因,拉深后零件的口部将出现凸耳(口部不平>。
为了得到口部平齐,高度一致的拉深件,需要拉深后增加切边工序,将不平齐的部分切去。
所以在计算毛坯之前,应先在拉深件上增加切边余量(表42.1、4.2.2>。
表4.2.1无凸缘零件切边余量Δh<mm>拉深件高度h拉深相对高度h/d或h/B附图>0.5~0.8 >0.8~1.6 >1.6~2.5 >2.5~4≤10>10~20 >20~50 >50~100 >100~150 >150~200 >200~250>250 1.01.22345671.21.62.53.856.37.58.51.522.53.856.37.58.522.5468101112[img=118,139]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设计.mht![/img]表4.2.2有凸缘零件切边余量ΔR<mm>凸缘直径dt或Bt相对凸缘直径dt/d或Bt/B附图< 1.5 1.5~2 2~2.5 2.5~3< 25>25~50 >50~100 >100~150 >150~200 >200~250>250 1.82.53.54.35.05.56.01.62.03.03.64.24.65.01.41.82.53.03.53.84.01.21.62.22.52.72.83.0[img=125,125]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设计.mht![/img]2.简单形状的旋转体拉深零件毛坯尺寸的确定(图4.2.1>对于简单形状的旋转体拉深零件求其毛坯尺寸时,一般可将拉深零件分解为若干简单的几何体,分别求出它们的表面积后再相加(含切边余量在内> 。
(4-5)其它形状零件的拉深
3.宽凸缘圆筒形件的拉深(续) (1)宽凸缘圆筒形件的工艺设计要点 1)毛坯尺寸的计算:按等面积原理进行,参考无凸缘圆 筒形零件毛坯的计算方法计算。 2)判别工件能否一次拉成:当m总>m1、h/d≤h1/d1时,可 一次拉成,否则,应进行多次拉深。
凸缘件多次拉深原则:按课本表4.2.7和表4.2.8确定第一次
第四章 拉深工艺与拉深模设计
第五节 其它形状零件的拉深
三、曲面形状零件的拉深(续)
4. 锥形零件的拉深 锥形零件的拉深方法: o o (1)对于浅锥形件(h/d2<0.25~0.30, 50 ~ 80 ):该类 零件可以一次拉成,但精度不高,回弹较严重。
(2)对于中锥形件(h/d2<0.30~0.70, 15o ~ 45o ):拉深 方法取决于料厚。 (3)对于高锥形件(h/d2>0.70~0.80, 10o ~ 30o):该类 零件因直径大小相差很小,变形程度更大,很容易产生变 薄而拉裂和起皱。这时,可采用以下两种方法: 1)阶梯过渡拉深成形法; 2)锥面逐步成形法。
第四章 拉深工艺与拉深模设计
第五节 其它形状零件的拉深
三、曲面形状零件的拉深(续)
4. 锥面零件的拉深 锥面零件的拉深成形机理与球 面形状零件一样,具有拉深、胀形 两种机理。由于锥形冲件各部分的 尺寸比例关系(见右图)不同,其 冲压难易程度和应采用的成形方法 也有很大差别。锥形件拉深成形极 限表现为起皱与破裂,起皱出现在 中间悬空部分靠凹模圆角处,破裂 是在胀形部分的冲头转角处。
第四章 拉深工艺与拉深模设计
第五节 其它形状零件的拉深
一、有凸缘圆筒形件的拉深(续)
3.宽凸缘圆筒形件的拉深 (3)宽凸缘圆筒形件的拉深方法 中小零件(dt<200mm):如图a) 大型零件(dt>200mm) :如图b)
无凸缘圆筒形件的落料——拉深复合模具设计
无凸缘圆筒形件的落料——拉深复合模具设计绪论毕业设计是为了模具设计与制造专业学生在学完基础理论课、技术基础课和专业课的基础上,所设置的一个重要环节。
目的就是为了运用我们所学课程的理论和生产实际知识,进行一次模具设计的实际训练,从而培养和提高我们独立工作的能力。
冲压模具设计通过收集资料、工艺分析、工艺计算、确定冲模的结构设计,各个零部件的设计、绘制模具总装配图、零件图,最后完善和书写设计说明书,终于完成整个的设计过程。
目前,我国冲压技术与先进工业发达国家相比还有一定差距,主要原因是我国在冲压基础理论及成形工艺、模具标准化、模具设计、模具制造工艺及设备等方面与工业发达国家尚有相当大的差距。
导致我国模具在寿命、效率、加工精度、生产周期等方面与先进工业发达国家的模具相比差距相当大。
随着科学技术的不断进步和工业生产的迅速发展,冲压加工作为现代工业领域内重要的生产手段之一,更加体现出其特有的优越性。
在现代工业生产中,由于市场竞争日益激烈,产品性能和质量要求越来越高,更新换代的速度越来越快,冲压产品正朝着复杂化、多样化、高性能、高质量方向发展,模具也正朝着复杂化、高效率、长寿命方向发展。
一、冲压成形理论及冲压工艺加强冲压变形基础理论的研究,以提供更加准确、实用、方便的计算方法,正确地确定冲压工艺参数和模具工作部分的几何形状和尺寸,解决冲压变形中出现的各种实际问题,进一步提高冲压件的质量。
研究和推广采用新工艺,如精冲工艺、软模成形工艺、高能高速成形工艺、超塑性成形工艺以及其他高效经济的成形工艺等,进一步提高冲压技术水平。
二、模具先进制造工艺及设备模具制造技术现代化是模具工业发展的基础。
计算机技术、信息技术、自动化技术等先进技术正在不断向传统制造技术渗透、交叉、融合,形成先进制造技术。
模具先进制造技术主要体现如下方面:1.高速铣削加工普通铣削加工采用低的进给速度和大的切削参数,而高速铣削加工则采用高的进给速度和小的切削参数。
拉深工艺
变形阻力与拉深筋
1.影响拉深变形阻力的因素 .凹模口形状 .拉深深度 .拉深件的侧壁形状 .压料力 .凹模图角半径 .润滑条件 .压料面面积
2.拉深筋(槛)
拉深筋的作用 .增加进料阻力 .调节材料的流动情况 .扩大压料力的调节范围 .当具有深拉筋时,对压料面的加工要求 .纠平材料不平整的缺陷
• 拉深筋的种类
Text1
Text4
Text5
Block Diagram
Add Your Text
Add Your Text
concept
Concept
Concept
Concept
2
ThemeGallery is a Design Digital Content & Contents mall developed by Guild Design Inc.
3
ThemeGallery is a Design Digital Content & Contents mall developed by Guild Design Inc.
球形件变形特点
壁厚的变化
三个变形区域
1.胀形变形区 2.拉深变形区 3.凸缘变形区
抛物线形件拉深
分两类:以高径比h/d分类 1.浅抛物线拉深 2.深抛物线拉深
汽车灯罩的拉深
两道拉深筋的模具
液压拉深
对于复杂抛物线
拉深模
1.拉深模种类 2.拉深模的设计要点
拉深模结构
1.无压料装置的 简单拉深模
2.有压料装置的 简单拉深模
3.落料拉深复合模
作业:4、5、
第五章 局部成形工艺
用各种不同变形性质的局部变形来改变毛坯 或半成品的形状和尺寸的冲压成形工序称 为局部成形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(i=2、3、…、n) 式中: D—坯料直径;
d1、…、dn —各次拉深工序件直径;
rA1、 …、rA2 —各次拉深凹模的圆角半径。
第四节 圆筒形件拉深工艺计算
三、圆筒形件拉深的压料力与拉深力
2.拉深力与压力机公称压力
(1)拉深力 采用压边圈拉深时
首次拉深 F d1t b K1 以后各次拉深 F d i t b K 2 (i=2、3、…、n) 不采用压边圈拉深时 首次拉深 F 1.25 ( D d1 )t b
二、拉深次数与工序件尺寸
1.拉深次数的确定 (3)计算方法 拉深次数 n 1
lg d 1gm1D lg m均
式中 d——工件直径;
D——坯料直径;
m1——第一次拉深系数; m均——第一次拉深以后各次的平均拉深系数。
第四节 圆筒形件拉深工艺计算
二、拉深次数与工序件尺寸
2.各次拉深工序件尺寸的确定 (1)工序件直径的确定 确定拉深次数以后,由表查得各次拉深的极限拉深系数, 适当放大,并加以调整,其原则是: d 1)保证m1m2…mn= D 2)使m1<m2<…mn 最后按调整后的拉深系数计算各次工序件直径: d1=m1D d2=m2d1 … dn=mndn-1
为了提高工艺稳定性和零件质量,适宜采用稍大于极限拉深 系数mmin的值。
第四节 圆筒形件拉深工艺计算
二、拉深次数与工序件尺寸
1.拉深次数的确定 当 m总>m1时,拉深件可一次拉成,否则需要多次拉深。 其拉深次数的确定有以下几种方法: (1)查表法(课本P151表4.2.6) (2)推算方法 (3)计算方法
本节结束
d4=0.846×33.1mm=28mm
例4.4.1(续) 各次工序件底部圆角半径取以下数值: r1=8mm,r2=5mm,r3=4mm 各次工序件高度为
以上计算所得工序件有关尺寸都是中径尺寸,换算成工 序件的外径和总高度后,绘制的工序件草图如图所示。
例4.4.1(续) (4)工序件草图
第四节 圆筒形件拉深工艺计算
此时d4=23mm<28mm,所以应该用4次拉深成形。
例4.4.1(续) (3)各次拉深工序件尺寸的确定 经调整后的各次拉深系数为:
m1=0.52,m2=0.78,m3=0.83,m4=0.846
各次工序件直径为 d1=0.52×98.2mm=51.6mm d2=0.78×51.6mm=39.9mm d3=0.83×39.9mm=33.1mm
第四节 圆筒形件拉深工艺计算
二、拉深次数与工序件尺寸
2.各次拉深工序件尺寸的确定 (2)工序件高度的计算 根据拉深后工序件表面积与坯料表面积相等的原则,可得 到如下工序件高度计算公式。计算前应先定出各工序件的底部 圆角半径(见4.6.2节)。 D2 r1 d1 0.32r1 h1 0.25 d 0 . 43 1
采用锥形凹模—减少材料流过凹模圆角时的摩擦阻力和弯曲变形力, mmin可降低。
(3)拉深条件
是否采用压边圈,拉深次数,润滑情况,工件形状,拉深速度。
第四节 圆筒形件拉深工艺计算
一、拉深系数与极限拉深系数
3.极限拉深系数的确定 课本P151表4.2.4和表4.2.5是圆筒形件在不同条件下各次
拉深的极限拉深系数。
可选用较小mmin。 3)材料的表面质量 材料表面光滑,拉深时摩擦力小而容易流动, mmin可减小。
第四节 圆筒形件拉深工艺计算
一、拉深系数与极限拉深系数
2.影响极限拉深系数的因素 (2)模具方面 1)凸模圆角半径和凹模圆角半径
凸模圆角半径过小时,筒壁和底部的过渡区弯曲变形大,使危险断面 的强度受到削弱, mmin应取较大值; 凹模圆角半径过小时,毛坯沿凹模口部滑动的阻力增加,筒壁的拉应 力相应增大, mmin也应取较大值。
q―单位面积压料力,q值可查课本P171表4.5.3;
首次拉深压边力FQ的理ቤተ መጻሕፍቲ ባይዱ曲线
第四节 圆筒形件拉深工艺计算
三、圆筒形件拉深的压料力与拉深力
1.压料装置与压料力 圆筒形件首次拉深 圆筒形件以后各次拉深
FY
D 4
2
(d1 2rA1 ) 2 q
i 1
FY
d 4
2
(d i 2rAi ) 2 q
第四节 圆筒形件拉深工艺计算
一、拉深系数与极限拉深系数
2.影响极限拉深系数的因素 (1)材料方面
1)材料的力学性能和组织
塑性好、组织均匀、屈强比小,拉深成形性能好,可以采用较小的mmin 。 2)毛坯的相对厚度 t / D
t / D 小时,拉深变形区易起皱。为了防皱增加压料力,又会引起摩 擦阻力增大,变形抗力加大,使mmin提高。t / D 小, mmin可提高;反之,
d1 d1 D2 r2 d 2 0.32r2 h2 0.25 d 0 . 43 2 d d2 2 ... D2 rn d n 0.32rn hn 0.25 d 0 . 43 n d dn n
第四节 圆筒形件拉深工艺计算
D
d2 m2 第二次拉深系数: d1
dn 第n次拉深系数: mn d n1
第四节 圆筒形件拉深工艺计算
一、拉深系数与极限拉深系数
1.拉深系数的定义(续) 拉深系数m表示拉深前后坯料(工序件)直径的变化率。 m愈小,说明拉深变形程度愈大,相反,变形程度愈小。 拉深件的总拉深系数等于各次拉深系数的乘积,即
h 6mm
D d 2 4d ( H h) 1.72 dr 0.56 r 2
将d=28mm, r=4mm,H=75mm代入上式 得 D=98.2mm
例4.4.1(续) (2)确定拉深次数 t 2 坯料相对厚度为 D 98.2 100 % 2.03% 2% 按表4.4.4可不用压料圈,但为了保险,首次拉深仍采用压料圈。 根 据 t/D = 2.03% , 查 课 本 表 4.2.4 得 各 次 极 限 拉 深 系 数 m1=0.50,m2=0.75,m3=0.78,m4=0.80,…。 故 d1=m1D=0.50×98.2mm=49.2mm d2=m2d1=0.75×49.2mm=36.9mm d3=m3d2=0.78×36.9mm=28.8mm d4=m4d3=0.8×28.8mm=23mm
以后各次拉深 F 1.3 (d i 1 d i )t b (i=2、3、…、n)
第四节 圆筒形件拉深工艺计算
三、圆筒形件拉深的压料力与拉深力
2.拉深力与压力机公称压力 (2)压力机公称压力 单动压力机,其公称压力应大于工艺总压力 Fz。 工艺总压力为 Fz F FY 式中:F—拉深力; FY —压料力。 注意:当拉深工作行程较大,尤其落料拉深复合时,应使 工艺力曲线位于压力机滑块的许用压力曲线之下。 在实际生产中,可以按下式来确定压力机的公称压力 Fg : 浅拉深 Fg (1.6 ~ 1.8)Fz 深拉深 Fg (1.8 ~ 2.0)Fz
二、拉深次数与工序件尺寸
例 求图所示筒形件的坯料尺寸及拉深各工序件尺寸。 材料为10钢,板料厚度 t=2mm。 解:因 t>1mm,故按板厚中径尺寸计算。 (1)计算坯料直径 根据零件尺寸,其相对高度为
H 76 1 75 2 .7 d 30 2 28
查表4.2.1得切边量
坯料直径为
第四节 圆筒形件拉深工艺计算
二、拉深次数与工序件尺寸
1.拉深次数的确定 (2)推算方法
1)由表4.2.4或表4.2.5中查得各次的极限拉深系数;
2)依次计算出各次拉深直径,即 d1=m1D;d2=m2d1;…;dn=mndn-1; 3)当dn≤d时,计算的次数即为拉深次数。
第四节 圆筒形件拉深工艺计算
2)凹模表面粗糙度
凹模表面光滑,可以减小摩擦阻力和改善金属的流动情况,可选择 较小的mmin 。
第四节 圆筒形件拉深工艺计算
一、拉深系数与极限拉深系数
2.影响极限拉深系数的因素 (2)模具方面 3)模具间隙
模具间隙小时,材料进入间隙后的挤压力增大,摩擦力增加, 拉深力大,故mmin提高。
4)凹模形状
d n d1 d 2 d 3 d n1 d n m m1m2 m3 mn1mn D D d1 d 2 d n2 d n1
如果m取得过小,会使拉深件起皱、断裂或严重变薄超差。 极限拉深系数mmin:把材料既能拉深成形又不被拉断时 的最小拉深系数。 从工艺的角度来看,mmin越小越有利于减少工序数。
第四章 拉深工艺与拉深模设计
复习上次课的内容
1.拉深件坯料尺寸的计算遵循什么原则? 2.简单旋转体与复杂旋转体的拉深件坯料尺寸的计算方法 与步骤?
第四章 拉深工艺与拉深模设计 第四节 圆筒形件拉深工艺计算
一、拉深系数与极限拉深系数
1.拉深系数的定义 拉深系数m是以拉深后的 直径d与拉深前的坯料D (工序件dn)直径之比表 d1 示。 m 第一次拉深系数: 1
三、圆筒形件拉深的压料力与拉深力
1. 压料装置与压料力 压料装置产生的压料力FY大小应适当:FY太小,防皱 效果不好;FY太大,则会增大传力区危险断面上的拉应力, 从而引起材料严重变薄甚至拉裂。因此,实际应用中,在保证 变形区不起皱的前提下,尽量选用小的压料力。 理想的压料力是随起皱可能性变化而变化。 压料力理论曲线 任何形状的拉深件: FY= Aq 式中A―压边圈下坯料的投影面积;