数值分析实验(2)

合集下载

数值分析实验报告2

数值分析实验报告2

实验报告实验项目名称函数逼近与快速傅里叶变换实验室数学实验室所属课程名称数值逼近实验类型算法设计实验日期班级学号姓名成绩512*x^10 - 1280*x^8 + 1120*x^6 - 400*x^4 + 50*x^2 - 1并得到Figure,图像如下:实验二:编写程序实现[-1,1]上n阶勒让德多项式,并作画(n=0,1,…,10 在一个figure中)。

要求:输入Legendre(-1,1,n),输出如a n x n+a n-1x n-1+…多项式。

在MATLAB的Editor中建立一个M-文件,输入程序代码,实现勒让德多项式的程序代码如下:function Pn=Legendre(n,x)syms x;if n==0Pn=1;else if n==1Pn=x;else Pn=expand((2*n-1)*x*Legendre(n-1)-(n-1)*Legendre(n-2))/(n);endx=[-1:0.1:1];A=sym2poly(Pn);yn=polyval(A,x);plot (x,yn,'-o');hold onend在command Windows中输入命令:Legendre(10),得出的结果为:Legendre(10)ans =(46189*x^10)/256 - (109395*x^8)/256 + (45045*x^6)/128 - (15015*x^4)/128 + (3465*x^2)/256 - 63/256并得到Figure,图像如下:实验三:利用切比雪夫零点做拉格朗日插值,并与以前拉格朗日插值结果比较。

在MATLAB的Editor中建立一个M-文件,输入程序代码,实现拉格朗日插值多项式的程序代码如下:function [C,D]=lagr1(X,Y)n=length(X);D=zeros(n,n);D(:,1)=Y';for j=2:nfor k=j:nD(k,j)=(D(k,j-1)- D(k-1,j-1))/(X(k)-X(k-j+1));endendC=D(n,n);for k=(n-1):-1:1C=conv(C,poly(X(k)));m=length(C);C(m)= C(m)+D(k,k);end在command Windows 中输入如下命令:clear,clf,hold on;k=0:10;X=cos(((21-2*k)*pi)./22); %这是切比雪夫的零点Y=1./(1+25*X.^2);[C,D]=lagr1(X,Y);x=-1:0.01:1;y=polyval(C,x);plot(x,y,X,Y,'.');grid on;xp=-1:0.01:1;z=1./(1+25*xp.^2);plot(xp,z,'r')得到Figure ,图像如下所示:比较后发现,使用切比雪夫零点做拉格朗日插值不会发生龙格现象。

MATLAB数值分析实验二(复合梯形、辛普森和龙贝格求积,以及二重积分计算等)

MATLAB数值分析实验二(复合梯形、辛普森和龙贝格求积,以及二重积分计算等)

佛山科学技术学院实验报告课程名称_______________ 数值分析________________________实验项目_______________ 数值积分____________________专业班级机械工程姓名余红杰学号2111505010 指导教师陈剑成绩日期月日一、实验目的b1、理解如何在计算机上使用数值方法计算定积分 a f ""X的近似值;2、学会复合梯形、复合Simpson和龙贝格求积分公式的编程与应用。

3、探索二重积分.11 f (x, y)dxdy在矩形区域D = {( x, y) | a _ x _ b, c _ y _ d}的数值D积分方法。

二、实验要求(1)按照题目要求完成实验内容;(2)写出相应的Matlab程序;(3)给出实验结果(可以用表格展示实验结果);(4)分析和讨论实验结果并提出可能的优化实验。

(5)写出实验报告。

三、实验步骤1、用不同数值方法计算积xln xdx =-- 0 9(1)取不同的步长h,分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h的函数,并与积分精确值比较两公式的精度。

(2)用龙贝格求积计算完成问题(1 )。

2、给出一种求矩形区域上二重积分的复化求积方法,然后计算二重积分..e"y dxdy,其中积分区域D二{0乞x岂1,0岂y乞1}。

1.%lnt_t.m复化梯形:function F = Int_t(x1,x2,n)%复化梯形求积公式% x1,x2为积分起点和中点%分为n个区间,没选用步长可以防止区间数为非整数。

%样点矩阵及其函数值:x = lin space(x1,x2 ,n+1);y = f(x);m = len gth(x);%本题中用Matlab计算端点位置函数值为NaN,故化为零: y(1) = 0;y(m) = 0;%算岀区间长度,步长h:h = (x2 -x1)/n;a = [1 2*o nes(1,m-2) 1];%计算估计的积分值:F = h/2*sum(a.*y);%f.mfun cti on y = f(x)y = sqrt(x).*log(x);%run 11.mclc,clear;%分为10个区间,步长0.1的积分值:F = In t_t(0,1,10);F10 = F%分为100个区间F = In t_t(0,1,100);F100 = F%误差计算W10 = abs((-4/9)-F10);W100 = abs((-4/9)-F100);W = [W10 W100]%复化辛普森:%l nt_s.mfun cti on F = In t_s(x1,x2 ,n)%复化梯形求积公式% x1,x2区间,分为n个区间。

数值分析实验报告二

数值分析实验报告二

数值实验报告二一、实验名称解线性方程组的列主元素高斯消去法和LU 分解法二、实验目的通过数值实验,从中体会解线性方程组选主元的必要性和LU 分解法的优点,以及方程组系数矩阵和右端向量的微小变化对解向量的影响。

三、实验内容解下列两个线性方程组(1) ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--11134.981.4987.023.116.427.199.103.601.3321x x x (2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----15900001.582012151526099999.23107104321x x x x 四、算法描述1、 列主元素高斯消去法记: ij ij a a =1)( (i, j = 1,2,3n )i i b b =1)( (i = 1,2,3n )消元过程:对于k = 1,2,3n(1) 选行号k i ,使)()(max k i ni k k k i k k a a ≤≤=。

(2) 交换)(k kj a 与)(k j i k a (j = k, k+1,k+2n )以及)()(k i k k k b b 与所含的数值。

(3)对于i = k, k+1,k+2n ,计算)()(k kkk ik ik a a m =)()()1(k kj ik k ij k ij a m a a -=+ (j = k, k+1,k+2n ))()()1(k k ik k i k i b m b b -=+回代过程:)(n nnn n a b x = )()1)()(/(k kk j n k j k kj k k k a x a a x ∑+=-= (k = n-1, n-2, n-3 1 )在此算法中的)(k k i k a 称为第k 个列主元素,它的数值总要被交换到第k 个主对角线元素的位置上。

2、 LU 分解法通过MATLAB 自有的函数,把系数矩阵A 分解成A=LU ,其中:L 是下三角矩阵,U 是上三角矩阵,这时方程组Ax=b 就可以分解成两个容易求解的三角形方程组Ly=b ,Ux=y 。

数值分析实验(2)

数值分析实验(2)

实验二 插值法 P50专业班级:信计131班 姓名:段雨博 学号:2013014907 一、实验目的1、熟悉MATLAB 编程;2、学习插值方法及程序设计算法。

二、实验题目1、已知函数在下列各点的值为i x 0.2 0.4 0.6 0.8 1.0()i f x0.980.920.810.640.38试用4次牛顿插值多项式()4P x 及三次样条函数()S x (自然边界条件)对数据进行插值用图给出(){},,0.20.08,0,1,11,10iiix y x i i =+=,()4P x 及()S x 。

2、在区间[]1,1-上分别取10,20n =用两组等距节点对龙格函数()21125f x x=+作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。

3、下列数据点的插值 x 0 1 4 9 16 25 36 49 64 y 0 12345678可以得到平方根函数的近似,在区间[]0,64上作图 (1)用这9个点作8次多项式插值()8L x (2)用三次样条(第一边界条件)程序求()S x从得到结果看在[]0,64上,哪个插值更精确;在区间[]0,1上,两种插值哪个更精确? 三、实验原理与理论基础 1、拉格朗日差值公式)()(111k kk kk k x x x x y y y x L ---+=++ 点斜式kk kk k k k kx x x x y x x x x y x L --+--=++++11111)( 两点式2、n 次插值基函数 ....,2,1,0,)()(0n j y x l y x L ijnk kk j n ===∑=n k x x x x x x x x x x x x x l n k n k k k k k ,...,1,0,)()(...)()(...)()()(1100=------=--3、牛顿插值多项式...))(](,,[)](,[)()(102100100+--+++=x x x x x x x f x x x x f x f x P n ))...(](,...,[100---+n n x x x x x x f)(],...,,[)()()(10x x x x f x P x f x R n n n n +=-=ω4、三次样条函数若函数],,[)(2b a C x S ∈且在每个小区间],[1+j j x x 上是三次多项式,其中,b x x x a n =<<<=...10是给定节点,则称)(x S 是节点n x x x ,...,,10上的三次样条函数。

数值分析方法实验报告

数值分析方法实验报告

一、实验目的通过本次实验,掌握数值分析方法的基本原理和应用,熟悉MATLAB编程环境,学会使用MATLAB进行数值计算,并分析不同数值方法的优缺点。

二、实验内容1. 二分法求方程根(1)原理:二分法是一种迭代方法,通过不断缩小根所在的区间,直到满足精度要求为止。

(2)步骤:①给定初始区间[a, b],使得f(a) f(b) < 0;②计算区间中点c = (a + b) / 2;③判断f(c)的符号:a. 若f(c) = 0,则c为方程的根;b. 若f(c) f(a) < 0,则新的区间为[a, c];c. 若f(c) f(b) < 0,则新的区间为[c, b];④重复步骤②和③,直到满足精度要求。

(3)代码实现:```MATLABfunction root = bisection_method(f, a, b, tol)while (b - a) / 2 > tolc = (a + b) / 2;if f(c) == 0break;elseif f(a) f(c) < 0b = c;elsea = c;endendroot = (a + b) / 2;end```2. Newton法求方程根(1)原理:Newton法是一种基于切线逼近的迭代方法,通过不断逼近函数的零点。

(2)步骤:①给定初始值x0;②计算导数f'(x)和f(x)在x0处的值;③计算新的近似值x1 = x0 - f(x0) / f'(x0);④重复步骤②和③,直到满足精度要求。

(3)代码实现:```MATLABfunction root = newton_method(f, df, x0, tol)while abs(f(x0)) > tolx1 = x0 - f(x0) / df(x0);x0 = x1;endroot = x0;end```3.不动点迭代法求方程根(1)原理:不动点迭代法是一种迭代方法,通过不断逼近不动点,即方程的根。

数值分析实验报告二2汇总

数值分析实验报告二2汇总
legend('数据点(xi,yi)','牛顿插值曲线y=f(x)');xlabel('x');ylabel('y');
title('数据点(xi,yi)和牛顿插值曲线y=f(x)的图形')
运行结果:
实验结果分析:
最小二乘法拟合的曲线误差最小。
也可以得到三图合一的图像:
在以上命令的基础上
运行命令plot(x1,y1,'r*',x,y,'b-',t,p1,'k-',x,P2,'y-')
% f积分函数
% a/b:积分上下限
% tol:积分误差
% R:Romberg积分值
% k:二分次数
k=1;
h=b-a;
%第一步
T(k,1)=h/2*(f(a)+f(b));
err=1;
whileerr>=eps
T(k,k)= Tห้องสมุดไป่ตู้k,1);
h=h/2;
%第二步求梯形值T0
temp=0;
i=1;
whilei<2^k
实验结果分析:
本题用了三种方法计算,虽然三种方法的结果差别不大,但得到结果的过程不同,每个方法都有其优缺点。
成绩评定
签字:年月日
-3002399751579999/9007199254740992*x^3-311/1125899906842624*x^2+4128299658423301/562949953421312*x-2533274790396013/281474976710656
拉格朗日插值
实验步骤:

数值分析原理实验报告

数值分析原理实验报告

一、实验目的通过本次实验,掌握数值分析的基本原理和方法,了解数值分析在科学和工程领域的应用,培养动手能力和分析问题的能力。

二、实验内容1. 二分法求方程根(1)原理:二分法是一种在实数域上寻找函数零点的算法。

对于连续函数f(x),如果在区间[a, b]上f(a)f(b)<0,则存在一个根在区间(a, b)内。

二分法的基本思想是将区间[a, b]不断二分,缩小根所在的区间,直到满足精度要求。

(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化区间[a, b]和中间点c=a+(b-a)/2;③ 判断f(c)与f(a)的符号,若符号相同,则将区间缩小为[a, c],否则缩小为[c,b];④ 重复步骤②和③,直到满足精度要求;⑤ 输出根的近似值。

2. 牛顿法求方程根(1)原理:牛顿法是一种在实数域上寻找函数零点的算法。

对于可导函数f(x),如果在点x0附近,f(x0)f'(x0)≠0,则存在一个根在点x0附近。

牛顿法的基本思想是通过泰勒展开近似函数,然后求解近似方程的根。

(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化迭代次数n=0,近似根x0;③ 计算导数f'(x0);④ 求解近似方程x1=x0-f(x0)/f'(x0);⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1,n=n+1,返回步骤③。

3. 雅可比迭代法解线性方程组(1)原理:雅可比迭代法是一种解线性方程组的迭代算法。

对于线性方程组Ax=b,雅可比迭代法的基本思想是利用矩阵A的对角线元素将方程组分解为多个一元线性方程,然后逐个求解。

(2)实验步骤:① 输入系数矩阵A和常数向量b;② 初始化迭代次数n=0,近似解向量x0;③ 计算对角线元素d1, d2, ..., dn;④ 更新近似解向量x1=x0-A/d1, x2=x0-A/d2, ..., xn=x0-A/dn;⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1, x2, ..., xn,n=n+1,返回步骤③。

数值分析实验报告--实验2--插值法

数值分析实验报告--实验2--插值法

1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。

显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。

我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。

龙格(Runge )给出一个例子是极著名并富有启发性的。

设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。

实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。

(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。

(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。

1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。

1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。

Matlab 脚本文件为Experiment2_1_1fx.m 。

可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。

数值分析实验(2.3.5章)

数值分析实验(2.3.5章)

试验2.1 多项式插值的振荡现象实验目的:观察多项式插值的振荡现象,了解多项式的次数与逼近效果的关系。

实验内容:问题提出:考虑在一个固定的区间上用插值逼近一个函数。

显然Lagrange 插值中使用的节点越多,插值多项式的次数就越高。

我们自然关心插值多项式的次数增加时,Ln(x)是否也更加靠近被逼近的函数。

Runge 给出的一个例子是极著名并富有启发性的。

设区间[-1,1]上的函数225x11)x (+=f ,考虑区间[-1,1]上的一个等距划分,分点为n2i 1x i +-=,i=0,1,2,…,n则拉格朗日插值多项式为:)x (l 25x11)x (Ln i ni 2i∑=+=,其中的)x (l i ,i=0,1,2,…,n 是n 次拉格朗日插值基函数。

实验要求:1、选择不断增大的分点数目n=2,3,………,画出原函数)x (f 及插值多项式函数)x (Ln 在[-1,1]上的图像,比较并分析试验结果。

2、选择其他的函数,例如定义在区间[-5,5]上的函数4()1x h x x=+,()arctan g x x =,重复上述的实验看其结果如何。

实验步骤及结果分析:1、选择不断增大的分点数目n=2,3,4,5,6,7,8,9,10做)x (f 的拉格朗日插值多项式)x (Ln ,并与原函数值做比较,如下图所示。

观察图像可知:n=2,3时插值函数和原函数差别很大,n=4,5,6时插值函数与原函数的逼近程度相对较好,继续增加插值次数n ,插值函数在插值区域的中间部分收敛,而在这区间外是发散的,此外,n=7,9时在插值中间区域逼近效果不好。

因此,适当提高插值多项式次数,可以提高逼近的精度,但是次数太高反而产生相反的效果。

2、选择其他的函数进行插值。

原函数4()1x h x x=+,区间[-5,5],插值结果如下图:观察图像可知:低次插值时,插值效果不好。

n=7,8,9,10时,在区间[-2,2],插值函数与原函数逼近程度好,但在区间外插值函数发散。

《数值分析实验》实验

《数值分析实验》实验

数值分析实验实验1 方程求根一、实验目的:1.掌握常用的求非线性方程近似根的数值方法,用所学方法求非线性方程满足指定精度要求的数值解,比较各种方法的异同点并进行收敛性分析。

2.通过对二分法与牛顿迭代法作编程练习与上机运算,进一步体会二分法与牛顿迭代法的不同特点。

3.编写割线迭代法的程序,求非线性方程的解,并与牛顿迭代法作比较。

二、实验内容:1.用二分法求方程0104)(23=-+=x x x f 在1.5附近的根。

2.用牛顿迭代法求方程033)(23=--+=x x x x f 在1.5附近的根。

3.用简单迭代法求解非线性方程3sin )1(2=-+x x 的根。

取迭代函数)1sin 3(*5.0)(2x x x --+=ϕ,精度取2101-⨯4.(选做)用牛顿法求下列方程的根: (1)02=-x e x ; (2)01=-x xe ; (3)02lg =-+x x 。

5.(选做)编写一个弦截法程序,求解题目4中的方程。

6.(选做)Matlab 函数fzero 可用于求解非线性方程的根。

例如,fzero(@(x) x^3+4*x^2-10, 1.5)可以求解题目1。

尝试用此方法求解实验中的其他题三、实验要求:1.程序要添加适当的注释,程序的书写要采用缩进格式。

2.程序要具在一定的健壮性,即当输入数据非法时,程序也能适当地做出反应,如插入删除时指定的位置不对等等。

3.程序要做到界面友好,在程序运行时用户可以根据相应的提示信息进行操作。

四、实验步骤1.按照实验内容和实验要求编写代码 2.编译并运行代码 3.检查是否发生错误五、实验源代码与实验结果实验1源代码:运行结果:实验2源代码:运行结果:实验3源代码:运行结果:4(1)的源代码:运行结果:4(2)的源代码:运行结果:4(3)的源代码:运行结果:5(3)的源代码:运行结果:六、实验心得体会通过本次实验我加深了对二分法、简单迭代法、牛顿迭代法和弦截法算法思想的了解,并对各个不同方法的优劣有了更深的理解。

数值分析实验二

数值分析实验二
b=polyfit(x,y,4);
x1=0.0:0.05:1.00;
>> y1=a(4)+a(3)*x1+a(2)*x1.^2+a(1)*x1.^3;
y2=b(5)+b(4)*x1+b(3)*x1.^2+b(2)*x1.^3+b(1)*x1.^4;
>> plot(x,y,'*');
>> hold on;
(1)掌握曲线拟合的最小二乘法;
(2)将函数逼近方法与插值法进行比较。
2.实验要求(由课任教师于实验开始前公布,不低于2行,不超过3行,由学生负责填写;5号字,行距20):
3.实验内容(由课任教师指明,由学生填写,不超出本页本栏):
1.对于给函数 在区间[-1,1]上取 =-1+0.2i(i=0,1,……,10),试求3次曲线拟合,试画出拟合曲线并打印出方程,与用插值法的结果比较。
>> plot(x1,y1,'-r')
>> y2=newton(x,y,x1);
>> hold on;
>> plot(x1,y2,'-')
2.>> y=[1.00 0.41 0.50 0.61 0.91 2.02 2.16];
>> x=[0.0 0.1 0.2 0.3 0.5 0.8 1.0];
>> a=polyfit(x,y,3);
2.由实验给出数据表
x
0.0
0.1
0.2
0.3
0.5
0.8
1.0
y
1.0
0.41

数值分析实验二

数值分析实验二

内江师范学院数值分析实验报告册编制张莉审定牟廉明专业:班级:级班学号:姓名:数学与信息科学学院2013年9月说明一、学生在做实验之前必须要准备实验,主要包括预习与本次实验相关的理论知识,熟练与本次实验相关的软件操作,收集整理相关的实验参考资料,要求学生在做实验时能带上充足的参考资料;若准备不充分,则学生不得参加本次实验,不得书写实验报告;二、要求学生要认真做实验,主要是指不得迟到、早退和旷课,在做实验过程中要严格遵守实验室规章制度,认真完成实验内容,极积主动地向实验教师提问等;三、各个实验按照学生水平分别设置了A、B、C、D四个等级,其中对应的难度系数为1、、、,也可根据实际完成情况制定相应地的难度系数,但总体保证难度排序为A级难度最大,B级次之,C级较易,D级最简单。

四、学生可以根据自己对各个实验涉及到的知识点掌握的程度自由选取A、B、C、D等级的实验题目。

五、学生要认真工整地书写实验报告,实验报告的内容要紧扣实验的要求和目的,不得抄袭他人的实验报告;四、根据实验准备、实验态度、实验报告的书写、实验报告的内容进行综合评定,并给出实验成绩评定分。

实验名称: 实验二 插值与拟合 指导教师: 吴开腾 张莉 实验时数: 4 实验设备:安装了Matlab 、C ++、VF 软件的计算机 实验日期:2013年 10 月 23、30 日 实验地点: 第五教学楼北902 实验目的:1. 掌握插值方法的基本思想和基本步骤,能够根据实际问题选用适当地插值方法进行数值实验,并从实验过程中理解各类插值方法之间的联系与区别。

2. 理解各类插值方法优缺点,并能自行编程求解。

3. 理解插值方法与数据拟合的区别,掌握数据拟合方法解决实际问题的基本步骤和求解理论,并能通过数值实验进行验证。

实验准备:1. 在开始本实验之前,请回顾教科书的相关内容;2. 需要一台准备安装Windows XP Professional 操作系统和装有数学软件的计算机。

数值分析实验报告2

数值分析实验报告2

实验报告一、实验名称复合梯形求积公式、复合辛普森求积公式、龙贝格求积公式及自适应辛普森积分。

二、实验目的及要求1. 掌握复合梯形求积计算积分、复合辛普森求积计算积分、龙贝格求积计算积分和自适应辛普森积分的基本思路和步骤.2. 培养Matlab 编程与上机调试能力. 三、实验环境计算机,MATLAB 软件 四、实验内容1.用不同数值方法计算积分94ln 10-=⎰xdx x 。

(1)取不同的步长h 。

分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h 的函数,并与积分精确指比较两个公式的精度,是否存在一个最小的h ,使得精度不能再被改善。

(2)用龙贝格求积计算完成问题(1)。

(3)用自适应辛普森积分,使其精度达到10-4。

五、算法描述及实验步骤1.复合梯形公式将区间[a,b]划分为n 等份,分点x k =a+ah,h=(b-a)/h,k=0,1,...,n ,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用梯形公式(1.1),得)]()([2)(b f a f ab dx x f b a+-≈⎰ (1.1) )]()(2)([2)]()([211110b f x f b f hx f x f h T n k k k n k k n ++=+=∑∑-=+-= (1.2)),(),(12)(''2b a f h a b f R n ∈--=ηη(1.3) 其中Tn 称为复合梯形公式,Rn 为复合梯形公式的余项。

2.复合辛普森求积公式将区间[a,b]划分为n 等份,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用辛普森公式(1.4),得)]()2(4)([6b f ba f a f ab S +++-=(1.4) )]()(2)(4)([6)]()()([611102/112/11b f x f x f b f hx f x f x f h S n k k n k k k k n k k n +++=++=∑∑∑-=-=+++-= (1.5) ),(),()2(180)()4(4b a f h a b f R n ∈-=ηη (1.6)其中Sn 称为复合辛普森求积公式,Rn 为复合辛普森求积公式的余项。

(完整word版)数值分析课程设计实验二

(完整word版)数值分析课程设计实验二

实验二2.1一、题目:用高斯消元法的消元过程作矩阵分解。

设20231812315A ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦消元过程可将矩阵A 化为上三角矩阵U ,试求出消元过程所用的乘数21m 、31m 、31m 并以如下格式构造下三角矩阵L 和上三角矩阵U(1)(1)212223(2)313233120231,1L m U a a m m a ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦验证:矩阵A 可以分解为L 和U 的乘积,即A =LU 。

二、算法分析:设矩阵111213212223313233a a a A a a a a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,通过消元法可以将其化成上三角矩阵U ,具体算法如下: 第1步消元:111111(1)22112(1)331130,0;;2,3;i i i i i i i i a m a a a a m a i a a m a +=≠⎧⎪=+=⎨⎪=+⎩ 得到111213(1)(1)12223(1)(1)323300a a a A a a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭第2步消元:(1)(1)(1)32322222(2)(1)(1)333332230,0;;a m a a a a m a ⎧+=≠⎪⎨=+⎪⎩ 得到的矩阵为111213(1)(1)22223(2)33000a a a A a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭三、程序及运行结果b1.mA=[20 2 3;1 8 1;2 -3 15];for i=1:2M(i)=A(i+1,1)/A(1,1);endfor j=2:3A1(j,2)=A(j,2)-M(j-1)*A(1,2);A1(j,3)=A(j,3)-M(j-1)*A(1,3);endM(3)=A1(3,2)/A1(2,2);A1(3,2)=0;A1(3,3)=A1(3,3)-M(3)*A1(2,3);M,A1运行结果为:M =0.0500 0.1000 -0.4051A1 =0 0 00 7.9000 0.85000 0 15.0443所以:10020230.051007.90.850.10.405110015.0443L U ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭验证:L=[1 0 0;0.05 1 0;0.1 -0.4051 1];U=[20 2 3;0 7.9 0.85;0 0 15.0443];A1=L*UA1 =20.0000 2.0000 3.00001.0000 8.0000 1.00002.0000 -3.0003 15.0000四、精度分析因为根据LU 的递推公式可知,L ,U 分别为下三角和上三角矩阵,其中L 不在对角线上的元素值为111()k ik ik is sk s kk l a l u u -==-∑,在计算每个系数时会产生相应的计算误差。

数值分析的实验报告

数值分析的实验报告

数值分析的实验报告数值分析的实验报告导言数值分析是一门研究数值计算方法和数值计算误差的学科,它在科学计算、工程技术和社会经济等领域具有广泛的应用。

本实验旨在通过对数值分析方法的实际应用,验证其有效性和可靠性。

实验一:方程求根方程求根是数值分析中的基础问题之一。

我们选取了一个非线性方程进行求解。

首先,我们使用二分法进行求解。

通过多次迭代,我们得到了方程的一个近似解。

然后,我们使用牛顿法进行求解。

与二分法相比,牛顿法的收敛速度更快,但需要选择一个初始点。

通过比较两种方法的结果,我们验证了牛顿法的高效性。

实验二:插值与拟合插值与拟合是数值分析中常用的数据处理方法。

我们选取了一组实验数据,通过拉格朗日插值法和最小二乘法进行插值和拟合。

通过对比两种方法的拟合效果,我们验证了最小二乘法在处理含有噪声数据时的优势。

同时,我们还讨论了插值和拟合的精度与样本点数量之间的关系。

实验三:数值积分数值积分是数值分析中的重要内容之一。

我们选取了一个定积分进行计算。

首先,我们使用复化梯形公式进行积分计算。

通过增加分割区间的数量,我们得到了更精确的结果。

然后,我们使用复化辛普森公式进行积分计算。

与复化梯形公式相比,复化辛普森公式具有更高的精度。

通过比较两种方法的结果,我们验证了复化辛普森公式的优越性。

实验四:常微分方程数值解常微分方程数值解是数值分析中的重要应用之一。

我们选取了一个常微分方程进行数值解的计算。

首先,我们使用欧拉方法进行数值解的计算。

然后,我们使用改进的欧拉方法进行数值解的计算。

通过比较两种方法的结果,我们验证了改进的欧拉方法的更高精度和更好的稳定性。

实验五:线性方程组的数值解法线性方程组的数值解法是数值分析中的重要内容之一。

我们选取了一个线性方程组进行数值解的计算。

首先,我们使用高斯消元法进行数值解的计算。

然后,我们使用追赶法进行数值解的计算。

通过比较两种方法的结果,我们验证了追赶法在求解三对角线性方程组时的高效性。

数值分析实验报告

数值分析实验报告

数值分析实验报告一、实验目的数值分析是一门研究用计算机求解数学问题的数值方法及其理论的学科。

本次实验的目的在于通过实际操作和编程实现,深入理解和掌握数值分析中的常见算法,提高运用数值方法解决实际问题的能力,并对算法的精度、稳定性和效率进行分析和比较。

二、实验环境本次实验使用的编程语言为 Python,使用的开发工具为 PyCharm。

实验所依赖的主要库包括 NumPy、Matplotlib 等。

三、实验内容(一)函数逼近与插值1、拉格朗日插值法通过给定的离散数据点,构建拉格朗日插值多项式,对未知点进行函数值的估计。

2、牛顿插值法与拉格朗日插值法类似,但采用了不同的形式和计算方式。

(二)数值积分1、梯形公式将积分区间划分为若干个梯形,通过计算梯形面积之和来近似积分值。

2、辛普森公式基于抛物线拟合的方法,提高积分近似的精度。

(三)线性方程组求解1、高斯消元法通过逐行消元将线性方程组化为上三角形式,然后回代求解。

2、 LU 分解法将系数矩阵分解为下三角矩阵 L 和上三角矩阵 U,然后通过两次前代和回代求解。

(四)非线性方程求解1、二分法通过不断将区间一分为二,逐步缩小根所在的区间,直到满足精度要求。

2、牛顿迭代法利用函数的切线来逼近根,通过迭代逐步收敛到根的近似值。

四、实验步骤(一)函数逼近与插值1、拉格朗日插值法定义计算拉格朗日基函数的函数。

根据给定的数据点和待求点,计算插值多项式的值。

输出插值结果,并与真实值进行比较。

2、牛顿插值法计算差商表。

构建牛顿插值多项式。

进行插值计算和结果分析。

(二)数值积分1、梯形公式定义积分区间和被积函数。

按照梯形公式计算积分近似值。

分析误差。

2、辛普森公式同样定义积分区间和被积函数。

运用辛普森公式计算积分近似值。

比较与梯形公式的精度差异。

(三)线性方程组求解1、高斯消元法输入系数矩阵和右端项向量。

进行消元操作。

回代求解方程。

输出解向量。

2、 LU 分解法对系数矩阵进行 LU 分解。

清华大学高等数值分析 第二次实验作业

清华大学高等数值分析  第二次实验作业

400
600
800
1000
1200
1400
1600
1800
2000
迭代次数
图4
m步的重启动GMRES法求解Ax=b的收敛曲线
结论: m步重启GMRES方法快于m步重启Arnoldi方法, 随m增加, 迭代次数减小, 但都大于未重启算法的次数。当m=40时两种方法计算时间最短,此外,m步重 启动 Arnoldi 方法的收敛曲线有峰点和波纹,收敛速度均匀性差, m 步重启动 GMRES方法的收敛曲线很平滑,单调下降,收敛速度均匀性好。(图4是五条曲 线, 只是由于m=20和m=80两条曲线比较靠近, 看起来像四条, 放大后才能看清) 2.对于 1 中的矩阵,将特征值进行平移,使得实部有正有负,和 1 的结果进行比 较,方法的收敛速度会如何?基本的 Arnoldi 算法有无峰点?若有,基本的 GMRES 算法相应地会怎样? 解: (1)欲将特征值进行平移,使得实部有正有负,可以将矩阵 A 做如下变换:
10
0
特征值虚部按不同比例因子 k变化的 GMRES算法的收敛曲线 (阶数 n=1000)
k=0.2 k=0.5 k=2 k=5
10
-5
||rk||/||b||
10
-10
10
-15
0
100
200
300
400
500
600
700
800
900
1000
迭代次数
图8 特征值虚部按不同比例因子k变化的GMRES法求解求解Ax=b的收敛曲线
图7 特征值虚部按不同比例因子k变化的Arnoldi法求解求解Ax=b的收敛曲线
(3)GMRES法求解求解A′x=b: 利用matlab编程实现GMRES算法。b = ones(1000,1),x0 = zeros(1000, 1)。 计算每一步迭代的残差rk相对于初始残差的2范数。相对残差2范数的对数 值与迭代步数的关系曲线如图8所示:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二 插值法 P50
专业班级:信计131班 姓名:段雨博 学号:2013014907 一、实验目的
1、熟悉MATLAB 编程;
2、学习插值方法及程序设计算法。

二、实验题目
1、已知函数在下列各点的值为
i x 0.2 0.4 0.6 0.8 1.0
()i f x
0.98
0.92
0.81
0.64
0.38
试用4次牛顿插值多项式()4P x 及三次样条函数()S x (自然边界条件)对数据进行插值用图给出
(){},,0.20.08,0,1,11,10i
i
i
x y x i i =+=,()4
P x 及()S x 。

2、在区间[]1,1-上分别取10,20n =用两组等距节点对龙格函数()2
1
125f x x
=
+作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。

3、下列数据点的插值 x 0 1 4 9 16 25 36 49 64 y 0 1
2
3
4
5
6
7
8
可以得到平方根函数的近似,在区间[]0,64上作图 (1)用这9个点作8次多项式插值()8L x (2)用三次样条(第一边界条件)程序求()S x
从得到结果看在[]0,64上,哪个插值更精确;在区间[]0,1上,两种插值哪个更精确? 三、实验原理与理论基础 1、拉格朗日差值公式
)()(111k k
k k
k k x x x x y y y x L ---+
=++ 点斜式
k
k k
k k k k k x x x x y x x x x y x L --+--=++++11
111)( 两点式
2、n 次插值基函数 ....,2,1,0,)()(0
n j y x l y x L i
j
n
k k
k j n ===
∑=
n k x x x x x x x x x x x x x l n k n k k k k k ,...,1,0,)
()
(...
)
()
(...
)
()
()(1100=------=
--
3、牛顿插值多项式
...))(](,,[)](,[)()(102100100+--+++=x x x x x x x f x x x x f x f x P n ))...(](,...,[100---+n n x x x x x x f
)(],...,,[)()()(10x x x x f x P x f x R n n n n +=-=ω
4、三次样条函数
若函数],,[)(2
b a C x S ∈且在每个小区间],[1+j j x x 上是三次多项式,其中,
b x x x a n =<<<=...10是给定节点,则称)(x S 是节点n x x x ,...,,10上的三次样条函数。

若在节点j x 上给定函数值),,...,2,1,0)((n j x f y j i ==并成立,,...,2,1,0,)(n j y x S i j ==则称)(x S 为三次样条插值函数。

5、三次样条函数的边界条件
(1)0)()('
'''''00''====n n f x S f x S
(2)'
''00')(,)(n n f x S f x S == 四、实验内容 1、M 文件:
function [p]=Newton_Polyfit(X,Y)
format long g r=size(X); n=r(2); M=ones(n,n); M(:,1)=Y'; for i=2:n for j=i:n
M(j,i)=(M(j,i-1)-M(j-1,i-1))/(X(j)-X(j-i+1)); end end
p0=[zeros(1,n-1) M(1,1)];p=p0; for i=1:n-1
p1=M(i+1,i+1).*poly(X(1:i)); p0=[zeros(1,n-i-1) p1]; p=p+p0; end
3、M 文件:
function f=Language(~,~,~)
%%求已知数据点的拉格朗日插值多项式 %%已知数据点的x 坐标向量:x %%已知数据点的y 坐标向量:y %%插值点的x 坐标:x0 %%解得的拉格朗日插值多项式f
x=[0.0 0.4 0.8 1.2 1.6];
y=[0 0.428392 0.722101 0.910314 0.970348]; x0=[0.3 0.5];
syms t l;
if(length(x)==length(y))
n=length(x);
else
disp('x,y维数不一样');
return;
end
p=sym(0);
for i=1:n
l=sym(y(i));
for k=1:i-1
l=l*(t-x(k))/(x(i)-x(k));
end
for k=i+1:n
l=l*(t-x(k))/(x(i)-x(k));
end
p=p+1;
end
simplify(p);
f=subs(p,'t',x0);
f=vpa(f,6);
end
五、实验结果
1、
>> X=[0.2 0.4 0.6 0.8 1.0];
>> Y=[0.98 0.92 0.81 0.64 0.38];
>> [p]=Newton_Polyfit(X,Y);
>> Y2=polyval(p,X);
>> X1=0:0.01;1;
>> Y3=interp1(X,Y,X1,'spline');
>> plot(X,Y,'o',X,Y2,'r',X1,Y3,'g') 图像:
2、
>> X=-1:0.01:1;
>> Y=1./(1+25*X.^2);
>> X1=-1:0.2:1;
>> Y1=1./(1+25*X1.^2);
>> Y2=interp1(X1,Y1,X,'linear');
>> Y3=interp1(X1,Y1,X,'spline');
>> subplot(211)
>> plot(X,Y,X,Y2,'r-',X,Y3,'g-')
图像:
3、
>> x=[0;1;4;9;16;25;36;49;64];
>> y=0:1:8;
>> x0=0:0.1:64;
>> f=Language(x,y,x0);
>> Y=interp1(x,y,x0,'spline');
>> Y1=sqrt(x0);
>> plot(x0,Y1,x0,f,'g',x0,Y,'r') 图像:
六、实验结果分析与小结
1、通过这次实习,我学会了用matlab设计程序并运行绘制出图形。

根据已知的点的信息用牛顿插值法、三次样条插值法、拉格朗日插值法等插值方法来求得近似函数,在运行出图形时可以很直观地看出近似函数的精确度哪个更好。

使用matlab来处理数学问题确实很方便,使我对matlab的很多功能也有了不少的了解,知道了最基本最常用的术语怎么来表达,同时让我对这几个插值方法的算法更熟悉。

2、不过,使用matlab进行程序设计对我来说确实有点难度,不太会编写函数,特别是涉及到专门的函数,matlab中已有的函数,不太会调用,查一下资料看到别人如何表示我也不是太懂,现在用matlab写作业需要很长时间,而且还参考别人是如何写函数的,自己只是稍作修改来运行,出现问题也不太会修改。

以后实习多练习,学会编写程序,学会调用matlab内部函数,了解更多。

相关文档
最新文档