2020年高考理科数学《排列组合》题型归纳与训练
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考理科数学《排列组合》题型归纳与训练
【题型归纳】
例1 某校开设A 类选修课2门,B 类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有
A .3种
B .6种
C .9种
D .18种
【答案】 C .
【解析】 可分以下2种情况:①A 类选修课选1门,B 类选修课选2门,有
62312=⋅C C 种不同的选法;②A 类选修课选2门,B 类选修课选1门,有31322=⋅C C 种不同的选法.所以根据分类计数原理知不同的选法共有6+3=9种.故要求两类课程中各至少选一门,则不同的选法共有9种.故选:C
【易错点】注意先分类再分步
【思维点拨】两类课程中各至少选一门,包含两种情况:A 类选修课选1门,B 类选修课选2门;A 类选修课选2门,B 类选修课选1门,写出组合数,根据分类计数原理得到结果. 题型二 特殊元素以及特殊位置
例 1 将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法有( )种.(用数字作答)
【答案】 480
【解析】考虑到C B A ,,要求有顺序地排列,所以将这三个字母当作特殊元素对待。先排F
E D ,,三个字母,有12036
=A 种排法;再考虑C B A ,,的情况:C 在最左端有2种排法,最右端也是2种排法,所以答案是4804120=⨯种.
【易错点】注意特殊元素的考虑
【思维点拨】对于特殊元素与特殊位置的考量,需要瞻前顾后,分析清楚情况,做到“不重复不遗漏”;如果情况过于复杂,能够考虑列举法,虽然形式上更细碎一些,但是情况分的越多越细微,每种情况越简单,准确度就越高.
题型三 捆绑型问题以及不相邻问题
例1 由1,2,3,4,5,6组成没有重复数字且1,3都不与5相邻的六位偶数的个数是( )个.
A .72种
B .96种
C .108种
D .144种
【答案】 C
【解析】要求是偶数,所以先确定末尾数字,有2,4,6一共3种情况;然后再确定5这个特殊数字的位置,本身有5种情况,但是考虑到要与1,3不相邻,所以根据5的左右两侧情况,分为5这个特殊数字在十万位以及十位(只有1个相邻的位置),以及其它的3个位置;然后
再考虑后面的情况.分析清楚情况后,答案就出来了:108(22221333121213=+⋅)A A C A C C C 种.
【易错点】需要考虑到不同位置对于后面步骤的不同影响,实行分类讨论.
【思维点拨】对于相邻问题的捆绑法,以及不相邻问题的隔离法,需要考虑到先分类再分步的基本原则,以及瞻前顾后的原则,需要考虑到选择的不同带来的对于后续安排的不同影响.对于本题,5这个数字本身有五种安排方法,但是需要注意到五个位置带来的,相邻位置的不同:如果5这个数字在首位,以及在十位时,只有1个邻位;但是如果在其它位置,就有两个邻位,所以需要分开讨论.
【巩固训练】
题型一 计数原理的基本应用
1.如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓能够选择的最短路径条数为
A .24种
B .18种
C .12种
D .9种
【答案】B
【解析】这是个分步计数的灵活应用。注意一下问题的分析,从E 到F 的步骤,水平方向的情况确定了,整体的路径也就确定了。水平方向如果沿一条路,有3种可能;如果沿两条路,有3种可能(注意因为要求最短路径,所以没有顺序):所以从E 到F 有3+3=6种情况;而从F 到G 有3种可能,所以可能的情况一共有3*6=18种情况。
2.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )
A .12种
B .18种
C .24种
D .36种
【答案】 D
【解析】 首先确定事情如何安排:要满足条件要求,得有1个人选择2项工作.哪两项工作24C ,
哪个人来做13C ,剩下2个人2项工作22A :所以总的安排形式共有36221324
=A C C 种情况. 3.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )
A .12种
B .10种
C .9种
D .8种
【答案】A
【解析】首先确定事情如何安排:安排好甲地的情况,乙地也就唯一确定了.对于甲地的安排,
需要1名教师2名学生,所以共有122412
=C C 种情况. 题型二 特殊元素以及特殊位置
1.将数字“124467”重新排列后得到不同的偶数的个数为
A .72种
B .120种
C .192种
D .240种
【答案】 D
【解析】 注意到题中要求得到的是偶数,所以特殊位置为末位,要求末位是个偶数;另外注意到题中给出的数字,有两个4,所以需要考虑到特殊元素4以及特殊位置末位;如果末位数
字为4,则前面元素能够任意排列,共有12055
=A 种情况;如果末位数字不是4,则必然是2,6中选择1个,前面的数字中,两个4是没有先后顺序的,或者只排列剩余的3个数字即可,
所以有1203512
=A C 种情况;两者合在一起,所以最后的答案为D. 2.我们把各位数字之和为7的四位数称为“北斗数”(如2014是“北斗数”),则“北斗数”中千位为2的共有 ( )个 .
【答案】21
【解析】给出的是个新定义,但是难度不大,需要认真读题仔细分析。千位为2,要求后三位的和为5,三个数都相同的不存有,有两位相同的005,113,221,考虑先安排特殊的元素(如005为例,5的位置有3种情况,5排定后,就唯一确定了,所以有3种情况)各有3种,所
以有3*3=9种情况;三个元素都不相同的有014,023两种,实行全排列,各有633
=A 种情况,共有2*6=12种情况。综合可知,符合要求的所谓“北斗数”共有9+12=21种情况.
3.某天下午要排物理,化学,生物和两节自习课共5节课,如果第一节不排生物,最后一节不排物理,那么不同的排法共有( )