高中物理带电粒子在无边界匀强磁场中运动解题技巧及练习题及解析

合集下载

高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,有一磁感强度39.110B T -=⨯的匀强磁场,C 、D 为垂直于磁场方向的同一平面内的两点,它们之间的距离l =0.1m ,今有一电子在此磁场中运动,它经过C 点的速度v 的方向和磁场垂直,且与CD 之间的夹角θ=30°。

(电子的质量319.110kg m -=⨯,电量191.610C q -=⨯)(1)电子在C 点时所受的磁场力的方向如何?(2)若此电子在运动后来又经过D 点,则它的速度应是多大? (3)电子从C 点到D 点所用的时间是多少?【答案】(1)见解析;(2)81.610m/s ⨯;(3)106.510s t -=⨯。

【解析】 【分析】 【详解】(1) 电子以垂直磁场方向的速度在磁场中做匀速圆周运动,洛伦兹力提供向心力,根据左手定则可判断电子在C 点所受磁场力的方向如图所示,垂直于速度方向。

(2)电子在洛伦兹力作用下作匀速圆周运动,夹角θ=30°为弦切角,圆弧CD 所对的圆心角为60°,即∠DOC =60°,△CDO 为等边三角形,由此可知轨道半径R =l由牛顿第二定律可得2mv evB R= 代入数值解得81.610m/s eBlv m==⨯ (3)将R =l 和eBl v m =代入周期公式2RT vπ=中得2mT eBπ=设电子从C 点到D 点所用时间为t ,由于电子做匀速圆周运动,所以1326t T ==ππ 由上两式得163m t T eBπ== 代入数据得106.510s t -=⨯2.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间.【答案】(1)2q v mϕ=;(2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ== 22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos xv v α=1cos 2α=060α∴=3.如图所示,某同学没计了一个屏蔽高能粒子辐射的装置,圆环形区域内有垂直纸面向里的匀强磁场,磁感应强度为B 。

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题及解析

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题及解析

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题及解析一、带电粒子在无边界匀强磁场中运动1专项训练1.如图1所示,在ABCD矩形区域里存在垂直于纸面方向的磁场(磁场边界有磁场),规定垂直纸面向里为磁场正方向,磁感应强度B如图2所示的变化。

0t=时刻,一质量为m,带电量为q的带正电粒子从B点以速度0v沿BC方向射入磁场,其中0B已知,0T未知,不计重力。

(1)若AB BC=,粒子从D点射出磁场,求AB边长度的可能值及粒子运动的可能时间;(2)若3:1AB BC=:,粒子仍从D点射出,求AB边长度的可能值及粒子运动的可能时间;(3)若AB BC=,求磁场周期T需满足什么条件粒子不从AB边射出,并求恰好不射出时0T时刻粒子距BC边的距离。

【答案】(1)0nmvABqB=,2n mtqBπ=1,n=(2,3...);(2)033n mvABqB=,043n mtqBπ=1,n=(2,3...);(3)053mTqBπ≤,()032mvdqB+=【解析】【详解】(1)若粒子通过D点,其运动轨迹如图所示,则必须满足:则必须满足:2vqvB mr=22AB n r=1,n=(2,3...)4Tt n =1,n =(2,3...)2mT qB π=由以上各式解得:nmv AB qB =, 02n mt qB π=1,n =(2,3...) (2)若粒子通过D 点,其运动轨迹如图所示:则必须满足:20v qvB m r=23BD nr =1,n =(2,3...) 23Tt n= 1,n =(2,3...) 又因为2mT qB π=由以上各式解得:33n mv AB qB =, 043n mt qB π=1,n =(2,3...) (3)如图3所示:粒子恰不从AB 边射出时,02T T -时的轨迹与AB 边相切,故需满足 sin()2rrπθ-=, 解得粒子在002T -时间内转过的角度不超过150°,则有: 01502360T T ≤ 0T 时刻粒子离AB 的距离为2cos30d r r =+︒由以上方程解得:0053mT qB π≤, ()0032mv d qB +=。

高中物理带电粒子在无边界匀强磁场中运动解题技巧分析及练习题(含答案)

高中物理带电粒子在无边界匀强磁场中运动解题技巧分析及练习题(含答案)

高中物理带电粒子在无边界匀强磁场中运动解题技巧分析及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,在竖直分界线MN 的左侧有垂直纸面的匀强磁场,竖直屏与MN 之间有方向向上的匀强电场。

在O 处有两个带正电的小球A 和B ,两小球间不发生电荷转移。

若在两小球间放置一个被压缩且锁定的小型弹簧(不计弹簧长度),解锁弹簧后,两小球均获得沿水平方向的速度。

已知小球B 的质量是小球A 的1n 倍,电荷量是小球A 的2n 倍。

若测得小球A 在磁场中运动的半径为r ,小球B 击中屏的位置的竖直偏转位移也等于r 。

两小球重力均不计。

(1)将两球位置互换,解锁弹簧后,小球B 在磁场中运动,求两球在磁场中运动半径之比、时间之比;(2)若A 小球向左运动求A 、B 两小球打在屏上的位置之间的距离。

【答案】(1)2n ,21n n ;(2)123r r n n - 【解析】 【详解】(1)两小球静止反向弹开过程,系统动量守恒有A 1B mv n mv =①小球A 、B 在磁场中做圆周运动,分别有2A A A mv qv B r =,21B2B Bn mv n qv B r =②解①②式得A2Br n r = 磁场运动周期分别为A 2πmT qB=,1B 22πn m T n qB =解得运动时间之比为AA2B B 122T t n T t n == (2)如图所示,小球A 经圆周运动后,在电场中做类平抛运动。

水平方向有A A L v t =③竖直方向有2A A A 12y a t =④ 由牛顿第二定律得A qE ma =⑤解③④⑤式得2A A()2qE L y m v =⑥ 小球B 在电场中做类平抛运动,同理有22B 1B()2n qE L y n m v =⑦ 由题意知B y r =⑧应用几何关系得B A 2y y r y ∆=+-⑨解①⑥⑦⑧⑨式得123r y r n n ∆=-2.如图所示,容器A 中装有大量的质量不同、电荷量均为+q 的粒子,粒子从容器下方的小孔S 1不断飘入加速电场(初速度可视为零)做直线运动,通过小孔S 2后从两平行板中央垂直电场方向射入偏转电场。

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题含解析

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题含解析

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题含解析一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,虚线为两磁场的边界,虚线左侧存在着半径为R 的半圆形匀强磁场,磁感应强度为B ,方向垂直纸面向里,圆心O 为虚线上的一点,虚线右侧存在着宽度为R 的匀强磁场,方向垂直纸面向外。

质量为m 、电荷量为q 的带负电的粒子,从圆周上的A 点以某一初速度沿半径方向射入半圆形磁场区域,恰好从D 点射出,AO 垂直OD 。

若将带电粒子从圆周上的C 点,以相同的初速度射入磁场,已知∠AOC =53°,粒子刚好能从虚线右侧磁场区域射出,不计粒子重力,sin53°=0.8,cos53°=0.6,求: (1)带电粒子的初速度及其从A 到D 的运动时间;(2)粒子从C 点入射,第一次运动到两磁场的边界时速度的方向及其离O 点的距离; (3)虚线右侧磁场的磁感应强度。

【答案】(1)0qBRv m=,2m t qB π=;(2)速度的方向与磁场边界的夹角为53°,0.6R ;(3)2 1.6B B = 【解析】 【分析】 【详解】(1)粒子从A 点进磁场D 点出磁场,作出轨迹如图由几何关系得轨道半径1r R =洛伦兹力提供匀速圆周运动的向心力,有200mv qv Bm= 解得0qBRv m =粒子在磁场中运动的圆心角为90°,有4T t =而周期为12r T v π=解得2mt qBπ=(2)粒子从C 点入射,作出轨迹如图由几何知识得EF 的长度L EF =R cos53°在三角形EFO 1中,有sin 0.6EFL Rθ== 即粒子转过的圆心角37θ=︒,则速度的方向与磁场边界的夹角为53° 而CE 的长度cos37CE L R R =-︒OF 的长度为sin 53OF CE L R L =︒-联立解得0.6OF L R =(3)粒子在右侧磁场的半径为2r ,由几何关系有22sin 37r r R ︒+=由向心力公式得2022mv qv B r =联立解得2 1.6B B =2.如图,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外。

高考物理带电粒子在无边界匀强磁场中运动解题技巧分析及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧分析及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧分析及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:13L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2v =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'=而v ''=所以,运动过程中粒子的最小速率为v v v =''-'即:0E v B =2.如图,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外。

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,在x 轴上方有一匀强磁场,磁感应强度为B 。

x 轴下方有一匀强电场,电场强度为E 。

屏MN 与y 轴平行且相距L ,一质量为m ,电荷量为e 的电子,在y 轴上某点A 自静止释放,如果要使电子垂直打在屏MN 上,那么: (1)电子释放位置与原点O 点之间的距离s 需满足什么条件? (2)电子从出发点到垂直打在屏上需要多长时间?【答案】(1)()222s 221eL B Em n =+ (n =0,1,2,3…);(2)()212BL m t n E eBπ=++ (n =0,1,2,3…) 【解析】 【分析】 【详解】(1)在电场中电子从A →O 过程,由动能定理可得2012eEs mv =在磁场中电子偏转,洛伦兹力提供向心力,有200v qv B m r=可得mv r qB=根据题意有(2n +1)r =L所以解得()222221eL B s Em n =+ (n =0,1,2,3…)(2)电子在电场中做匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子运动的总时间,即)2(2214s T T t n n a ++⋅=+ 由公式 eE ma =可得eEa m=由公式 20v qvB m r = 和 02r T v π=可得2mT eBπ=综上整理可得()212BL m t n E eBπ=++ (n =0,1,2,3…)2.如图所示,圆心为O 、半径为R 的圆形磁场区域中存在垂直纸面向外的匀强磁场,以圆心O 为坐标原点建立坐标系,在y=-3R 处有一垂直y 轴的固定绝缘挡板,一质量为m 、带电量为+q 的粒子,与x 轴成 60°角从M 点(-R,0) 以初速度v 0斜向上射入磁场区域,经磁场偏转后由N 点离开磁场(N 点未画出)恰好垂直打在挡板上,粒子与挡板碰撞后原速率弹回,再次进入磁场,最后离开磁场.不计粒子的重力,求:(1)磁感应强度B 的大小; (2)N 点的坐标;(3)粒子从M 点进入磁场到最终离开磁场区域运动的总时间. 【答案】(1)0mv qR (2) 31,)2R R - (3)(5)R v π+ 【解析】(1)设粒子在磁场中运动半径为r ,根据题设条件画出粒子的运动轨迹:由几何关系可以得到:r R =由洛伦兹力等于向心力:200v qv B m r=,得到:0mv B qR =.(2)由图几何关系可以得到:3sin 60x R R ==,1cos602y R R =-=-N 点坐标为:31,2R R ⎫-⎪⎪⎝⎭. (3)粒子在磁场中运动的周期2mT qBπ=,由几何知识得到粒子在磁场在中运动的圆心角共为180,粒子在磁场中运动时间:12Tt =,粒子在磁场外的运动,由匀速直线运动可以得到:从出磁场到再次进磁场的时间为:202s t v =,其中132s R R ==,粒子从M 点进入磁场到最终离开磁场区域运动的总时间12t t t =+ 解得:()05Rt v π+=.3.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ==22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos xv v α=1cos 2α=060α∴=4.如图1所示,在ABCD 矩形区域里存在垂直于纸面方向的磁场(磁场边界有磁场),规定垂直纸面向里为磁场正方向,磁感应强度B 如图2所示的变化。

高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,半径为R的半圆形区域内存在垂直纸面向内的匀强磁场,磁感应强度大小为B,圆弧上P点与圆心O的连线垂直于直径MN,P点放置一粒子源,其向纸面内各个方向均匀发射两种原子核、,的速率为v, 的速率为 ,沿PO方向发射的恰好从N点离开磁场,忽略原子核间的相互作用及原子核的重力,取sin53°=0.8,cos53°=0.6。

(1)求原子核的比荷 (用B、v、R表示)及其从P点到边界MN的最短时间;(2)其中一原子核的轨迹恰能与ON的中点A相切,求粒子的质量数a;(3)在直径MN上安装金属板,并与电阻r串联后接地,带正电的原子核到达金属板后被吸收形成电流。

已知粒子源P单位时间内发射n个粒子,其中占40%,占60%,求稳定后通过电阻r的电流大小。

(已知电子的电荷量为e)【答案】(1) ; (2) (3)【解析】【分析】(1)根据已知条件作出对应的运动轨迹图,根据几何关系求出最小的圆心解,再根据求解最短的运动时间;(2)根据已知条件作出对应的运动轨迹图,根据几何关系求出运动半径,根据洛伦兹力提供向心力求出比荷,即可求出质量数a;(3)根据已知条件作出对应的运动轨迹图,根据几何关系求出对应的角度,从而求出粒子可能出射击的范围,再根据电流的定义式求出电流的表达式。

【详解】(1)由已知条件得:圆周运动的半径为R,由,得弦OP最短,其所对应的圆心角也最小,对应的时间也最短,如图所示:由几何关系得:圆心角为,运动的周期为故运动的时间为(2)设圆周运动半径为,如图所示、:由几何关系得:解得:设Y粒子的质量为,电荷量为由,解得:联立解得:,即,解得:a=15(3)对Y粒子,设粒子初速度方向与切线PQ方向夹角为,如图所示:已知轨迹恰好与A 相切,则代入数据解得:,解得:由几何关系得Y 粒子在范围内出射能到达金属板单位时间打到金属板的Y 粒子数为由几何关系得Y 粒子在范围内出射能到达金属板单位时间打到金属板的Y 粒子数为 通过电阻r 上的电流【点睛】带电粒子在匀强磁场中运动,一般根据几何关系求得半径,然后由洛伦兹力做向心力求得磁感应强度;或由洛伦兹力做向心力求得半径,然后根据几何关系求得运动轨迹、运动时间。

高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图所示,在x 轴上方有一匀强磁场,磁感应强度为B 。

高考物理带电粒子在无边界匀强磁场中运动解题技巧及经典题型及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧及经典题型及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧及经典题型及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,xOy平面处于匀强磁场中,磁感应强度大小为B,方向垂直纸面向外.点3,0P L⎛⎫⎪⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q、质量为m的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x轴正向通过点Q(0,-L),求其速率v1;(2)若撤去第一象限的磁场,在其中加沿y轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v1沿x轴正向通过点Q,求匀强电场的电场强度E以及粒子2的发射速率v2;(3)若在xOy平面内加沿y轴正向的匀强电场E o,粒子3以速率v3沿y轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动.请尝试用该思路求解.【答案】(1)23BLqm(2221BLq32203BE EvB+⎛⎫⎪⎝⎭【解析】【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111vqv B mr=由几何憨可知:()222113r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:13L v t =,212qE h t m =在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图所示,虚线为两磁场的边界,虚线左侧存在着半径为R 的半圆形匀强磁场,磁感应强度为B ,方向垂直纸面向里,圆心O 为虚线上的一点,虚线右侧存在着宽度为R 的匀强磁场,方向垂直纸面向外。

高考物理带电粒子在无边界匀强磁场中运动解题技巧和训练方法及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧和训练方法及练习题(含答案)

一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。

y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。

现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。

求: (1)带电粒子的初速度;(2)粒子从P 点射出到再次回到P 点所用的时间。

【答案】(1)8qBLv m=;(2)41(1)45m t qB π=+【解析】 【详解】(1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得:5sin37o QC L =15sin37OOQO Q L ==在y 轴左侧磁场中做匀速圆周运动,半径为1R ,11R O Q QC =+21v qvB m R =解得:8qBLv m=; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PCt v=带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12mT qBπ=2137360oo t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m mT q B qBππ== 3212t T =从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145mt qB π⎛⎫=+⎪⎝⎭。

高中物理带电粒子在无边界匀强磁场中运动解题技巧和训练方法及练习题(含答案)

高中物理带电粒子在无边界匀强磁场中运动解题技巧和训练方法及练习题(含答案)

高中物理带电粒子在无边界匀强磁场中运动解题技巧和训练方法及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,圆心为O、半径为R的圆形磁场区域中存在垂直纸面向外的匀强磁场,以圆心O为坐标原点建立坐标系,在y=-3R 处有一垂直y轴的固定绝缘挡板,一质量为m、带电量为+q的粒子,与x轴成 60°角从M点(-R,0)以初速度v0斜向上射入磁场区域,经磁场偏转后由N点离开磁场(N点未画出)恰好垂直打在挡板上,粒子与挡板碰撞后原速率弹回,再次进入磁场,最后离开磁场.不计粒子的重力,求:(1)磁感应强度B的大小;(2)N点的坐标;(3)粒子从M点进入磁场到最终离开磁场区域运动的总时间.【答案】(1)0mvqR (2)31(,)2R R- (3)(5)Rvπ+【解析】(1)设粒子在磁场中运动半径为r,根据题设条件画出粒子的运动轨迹:由几何关系可以得到:r R=由洛伦兹力等于向心力:2vqv B mr=,得到:0mvBqR=.(2)由图几何关系可以得到:3sin602x R R==o,1cos602y R Ro=-=-N点坐标为:31,2R R⎫-⎪⎪⎝⎭.(3)粒子在磁场中运动的周期2m TqBπ=,由几何知识得到粒子在磁场在中运动的圆心角共为180o,粒子在磁场中运动时间:12Tt=,粒子在磁场外的运动,由匀速直线运动可以得到:从出磁场到再次进磁场的时间为:22stv=,其中132s R R==,粒子从M点进入磁场到最终离开磁场区域运动的总时间12t t t=+解得:()5Rtvπ+=.2.如图所示,在磁感应强度为B、方向垂直纸面向里的匀强磁场中有一粒子源,粒子源从O点在纸面内均匀的向各个方向同时发射速率为v、比荷为k的带正电的粒子,PQ是在纸面内垂直磁场放置的厚度不计的挡板,挡板的P端与O点的连线与挡板垂直,距离为vkB,且粒子打在挡板上会被吸收.不计带电粒子的重力与粒子间的相互作用,磁场分布足够大,求:(1)为使最多的粒子打在挡板上,则挡板至少多长;(2)若挡板足够长,则打在挡板上的粒子在磁场中运动的最长时间差是多少;(3)若挡板足够长,则打在挡板上的粒子占所有粒子的比率。

高中物理带电粒子在无边界匀强磁场中运动解题技巧(超强)及练习题(含答案)

高中物理带电粒子在无边界匀强磁场中运动解题技巧(超强)及练习题(含答案)

高中物理带电粒子在无边界匀强磁场中运动解题技巧(超强)及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.在科学研究中,可以通过施加适当的磁场来实现对带电粒子运动的控制.在如图所示的平面坐标系x0y 内,矩形区域(-3d<x<d ,-3d<y<3d)外存在范围足够大的匀强磁场.一质量为m 、电奇量为+q 的粒子从P(0,3d)点沿y 轴正方向射入磁场.当入射速度为0v 时,粒子从(-2d ,3d)处进入无场区. (1)求磁场的磁感应强度B 的大小.(2)求粒了离开P 点后经多长时间第一次回到P 点.(3)若仅将入射速度变为20v ,其它条件不变,求粒于离开P 点后运动多少路程经过P 点.【答案】(1)0mv qd(2)00243d dv π+ (3)2(433)s k d d π=+,其中k =1、2、3… 或()8'234333d s d k d d ππ⎡⎤=+++⎢⎥⎣⎦,其中k =0、1、2、3 【解析】 【分析】(1)找出半径,根据洛伦兹力提供向心力进行求解即可;(2)画出粒子运动轨迹,求出在磁场中运动时间和在无磁场中运动的时间; (3)画出粒子运动轨迹,注意讨论粒子运动的方向不同; 【详解】(1)由题条件可判断粒子做圆周运动半径为:R d =粒子在磁场中2v qvB m R=,得到:0mv B qd =;(2)粒子运动轨迹如图所示:粒子在磁场中运动时间:102dt vπ=粒子在无场区运动时间:2043dt = 粒子再次回到P 点时间:12t t t =+ 得到:00243d dt v π=+ (3)粒子运动轨迹如图所示:粒子速度变为02v ,则在磁场中运动半径为:2R d '=由P 点沿圆弧运动到C 点时间:3002224323dd t v v ππ⨯⨯== 由C 点沿直线运动到D 点时间:4002332d dt v v ==①粒子以2v 0沿y 轴正向经过P则粒子运动时间:34(33)t k t t =+,其中k =1、2、3… 粒子运动距离:02s v t =得到:2(433)s k d d π=+,其中k =1、2、3… ②粒子以02v 大小与-y 方向成60°经过P则:34342(33)t t t k t t '=+++,其中k =0、1、2、3… 粒子运动距离为:02s v t ''= 得到:()8'234333d s d k d d ππ⎡⎤=++⎢⎥⎣⎦,其中k =0、1、2、3… 【点睛】带电粒子在磁场中的运动,关键是找出半径和圆心,利用洛伦兹力提供向心力进行求解即可,同时还要准确地画出轨迹.2.在xOy 坐标中,有随时间周期性变化的电场和磁场(磁场持续t 1后消失;紧接着电场出现,持续t 2时间后消失,接着磁场......如此反复),如图所示,磁感应强度方向垂直纸面向里,电场强度方向沿y 轴向下,有一质量为m ,带电量为+q 的带电粒子,在t =0时刻,以初速v 0从0点沿x 轴正方向出发,在t 1时刻第一次到达y 轴上的M (0,L )点,t 1+t 2时刻第一次回到x 轴上的 N (-2L ,0)点,不计粒子重力,t 1、t 2均未知。

高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题含解析

高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题含解析

高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题含解析一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,在x 轴上方有一匀强磁场,磁感应强度为B 。

x 轴下方有一匀强电场,电场强度为E 。

屏MN 与y 轴平行且相距L ,一质量为m ,电荷量为e 的电子,在y 轴上某点A 自静止释放,如果要使电子垂直打在屏MN 上,那么: (1)电子释放位置与原点O 点之间的距离s 需满足什么条件? (2)电子从出发点到垂直打在屏上需要多长时间?【答案】(1)()222s 221eL B Em n =+ (n =0,1,2,3…);(2)()212BL m t n E eBπ=++ (n =0,1,2,3…) 【解析】 【分析】 【详解】(1)在电场中电子从A →O 过程,由动能定理可得2012eEs mv =在磁场中电子偏转,洛伦兹力提供向心力,有200v qv B m r=可得mv r qB=根据题意有(2n +1)r =L所以解得()222221eL B s Em n =+ (n =0,1,2,3…)(2)电子在电场中做匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子运动的总时间,即)2(2214s T T t n n a ++⋅=+ 由公式 eE ma =可得eEa m=由公式20v qvB m r = 和 02r T v π=可得2mT eBπ=综上整理可得()212BL m t n E eBπ=++ (n =0,1,2,3…)2.如图所示,半径为R 的半圆形区域内存在垂直纸面向内的匀强磁场,磁感应强度大小为B,圆弧上P 点与圆心O 的连线垂直于直径MN,P 点放置一粒子源,其向纸面内各个方向均匀发射两种原子核、,的速率为v,的速率为 ,沿PO 方向发射的恰好从N 点离开磁场,忽略原子核间的相互作用及原子核的重力,取sin53°=0.8,cos53°=0.6。

高考物理带电粒子在无边界匀强磁场中运动解题技巧和训练方法及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧和训练方法及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧和训练方法及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,在x 轴上方有一匀强磁场,磁感应强度为B 。

x 轴下方有一匀强电场,电场强度为E 。

屏MN 与y 轴平行且相距L ,一质量为m ,电荷量为e 的电子,在y 轴上某点A 自静止释放,如果要使电子垂直打在屏MN 上,那么: (1)电子释放位置与原点O 点之间的距离s 需满足什么条件? (2)电子从出发点到垂直打在屏上需要多长时间?【答案】(1)()222s 221eL B Em n =+ (n =0,1,2,3…);(2)()212BL m t n E eBπ=++ (n =0,1,2,3…) 【解析】 【分析】 【详解】(1)在电场中电子从A →O 过程,由动能定理可得2012eEs mv =在磁场中电子偏转,洛伦兹力提供向心力,有200v qv B m r=可得mv r qB=根据题意有(2n +1)r =L所以解得()222221eL B s Em n =+ (n =0,1,2,3…)(2)电子在电场中做匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子运动的总时间,即)2(2214s T T t n n a ++⋅=+ 由公式 eE ma =可得eEa m=由公式20v qvB m r = 和 02r T v π=可得2mT eBπ=综上整理可得()212BL m t n E eBπ=++ (n =0,1,2,3…)2.如图所示,半径为R 的半圆形区域内存在垂直纸面向内的匀强磁场,磁感应强度大小为B,圆弧上P 点与圆心O 的连线垂直于直径MN,P 点放置一粒子源,其向纸面内各个方向均匀发射两种原子核、,的速率为v,的速率为 ,沿PO 方向发射的恰好从N 点离开磁场,忽略原子核间的相互作用及原子核的重力,取sin53°=0.8,cos53°=0.6。

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题及解析

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题及解析

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题及解析一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图所示,在竖直分界线MN 的左侧有垂直纸面的匀强磁场,竖直屏与MN 之间有方向向上的匀强电场。

高中物理带电粒子在无边界匀强磁场中运动及其解题技巧及练习题(含答案)

高中物理带电粒子在无边界匀强磁场中运动及其解题技巧及练习题(含答案)

高中物理带电粒子在无边界匀强磁场中运动及其解题技巧及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q 两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。

高中物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题(含答案)

高中物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题(含答案)

高中物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,半径为R的半圆形区域内存在垂直纸面向内的匀强磁场,磁感应强度大小为B,圆弧上P点与圆心O的连线垂直于直径MN,P点放置一粒子源,其向纸面内各个方向均匀发射两种原子核、,的速率为v, 的速率为 ,沿PO方向发射的恰好从N点离开磁场,忽略原子核间的相互作用及原子核的重力,取sin53°=0.8,cos53°=0.6。

(1)求原子核的比荷 (用B、v、R表示)及其从P点到边界MN的最短时间;(2)其中一原子核的轨迹恰能与ON的中点A相切,求粒子的质量数a;(3)在直径MN上安装金属板,并与电阻r串联后接地,带正电的原子核到达金属板后被吸收形成电流。

已知粒子源P单位时间内发射n个粒子,其中占40%,占60%,求稳定后通过电阻r的电流大小。

(已知电子的电荷量为e)【答案】(1) ; (2) (3)【解析】【分析】(1)根据已知条件作出对应的运动轨迹图,根据几何关系求出最小的圆心解,再根据求解最短的运动时间;(2)根据已知条件作出对应的运动轨迹图,根据几何关系求出运动半径,根据洛伦兹力提供向心力求出比荷,即可求出质量数a;(3)根据已知条件作出对应的运动轨迹图,根据几何关系求出对应的角度,从而求出粒子可能出射击的范围,再根据电流的定义式求出电流的表达式。

【详解】(1)由已知条件得:圆周运动的半径为R,由,得弦OP最短,其所对应的圆心角也最小,对应的时间也最短,如图所示:由几何关系得:圆心角为,运动的周期为故运动的时间为(2)设圆周运动半径为,如图所示、:由几何关系得:解得:设Y粒子的质量为,电荷量为由,解得:联立解得:,即,解得:a=15(3)对Y粒子,设粒子初速度方向与切线PQ方向夹角为,如图所示:已知轨迹恰好与A 相切,则代入数据解得:,解得:由几何关系得Y 粒子在范围内出射能到达金属板单位时间打到金属板的Y 粒子数为由几何关系得Y 粒子在范围内出射能到达金属板单位时间打到金属板的Y 粒子数为 通过电阻r 上的电流【点睛】带电粒子在匀强磁场中运动,一般根据几何关系求得半径,然后由洛伦兹力做向心力求得磁感应强度;或由洛伦兹力做向心力求得半径,然后根据几何关系求得运动轨迹、运动时间。

高中物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题(含答案)

高中物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题(含答案)

高中物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,半径为R的半圆形区域内存在垂直纸面向内的匀强磁场,磁感应强度大小为B,圆弧上P点与圆心O的连线垂直于直径MN,P点放置一粒子源,其向纸面内各个方向均匀发射两种原子核、,的速率为v, 的速率为 ,沿PO方向发射的恰好从N点离开磁场,忽略原子核间的相互作用及原子核的重力,取sin53°=0.8,cos53°=0.6。

(1)求原子核的比荷 (用B、v、R表示)及其从P点到边界MN的最短时间;(2)其中一原子核的轨迹恰能与ON的中点A相切,求粒子的质量数a;(3)在直径MN上安装金属板,并与电阻r串联后接地,带正电的原子核到达金属板后被吸收形成电流。

已知粒子源P单位时间内发射n个粒子,其中占40%,占60%,求稳定后通过电阻r的电流大小。

(已知电子的电荷量为e)【答案】(1) ; (2) (3)【解析】【分析】(1)根据已知条件作出对应的运动轨迹图,根据几何关系求出最小的圆心解,再根据求解最短的运动时间;(2)根据已知条件作出对应的运动轨迹图,根据几何关系求出运动半径,根据洛伦兹力提供向心力求出比荷,即可求出质量数a;(3)根据已知条件作出对应的运动轨迹图,根据几何关系求出对应的角度,从而求出粒子可能出射击的范围,再根据电流的定义式求出电流的表达式。

【详解】(1)由已知条件得:圆周运动的半径为R,由,得弦OP最短,其所对应的圆心角也最小,对应的时间也最短,如图所示:由几何关系得:圆心角为,运动的周期为故运动的时间为(2)设圆周运动半径为,如图所示、:由几何关系得:解得:设Y粒子的质量为,电荷量为由,解得:联立解得:,即,解得:a=15(3)对Y粒子,设粒子初速度方向与切线PQ方向夹角为,如图所示:已知轨迹恰好与A相切,则代入数据解得:,解得:由几何关系得Y粒子在范围内出射能到达金属板单位时间打到金属板的Y粒子数为由几何关系得Y粒子在范围内出射能到达金属板单位时间打到金属板的Y粒子数为通过电阻r上的电流【点睛】带电粒子在匀强磁场中运动,一般根据几何关系求得半径,然后由洛伦兹力做向心力求得磁感应强度;或由洛伦兹力做向心力求得半径,然后根据几何关系求得运动轨迹、运动时间。

高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.在矩形区域abcd 中,存在如图甲所示的磁场区域(包括边界),规定磁场方向垂直纸面向里为正,其中22bc ab l e ==,为bc 边界上的一点,且2l ce,=重力可忽略不计的正粒子从d 点沿dc 方向以初速度0v 射入磁场,已知粒子的比荷为k ,求:(1)如果在0时刻射入磁场的粒子经小于半个周期的时间从边界上的e 点离开,则磁场的磁感应强度0B 应为多大? (2)如果磁场的磁感应强度002v B kl=,欲使在小于半个周期的任意时刻射入磁场的粒子均不能由ad 边离开磁场,则磁场的变化周期0T 应满足什么条件? (3)如果磁场的磁感应强度002v B kl=,在bc 边的右侧加一垂直bc 边向左的匀强电场,0时刻射入磁场的粒子刚好经过0T 垂直bc 边离开磁场,再次进入磁场后经过0T 从a 点离开磁场区域,则电场强度E 以及粒子在电场中的路程x 分别为多大?【答案】(1)0045v B kl =; (2)0056l T v π≤;(3)()208,(01221v E n n kl π==⋯+,,);()21,(01238n l x n π+==⋯,,,)【解析】 【分析】 【详解】(1)由题意作出粒子的运动轨迹,如图1所示,在磁场中,洛伦兹力提供向心力,有20000v qvB m R =由几何关系,有22200()2l R l R =+-解得054R l =由于qk m= 解得045v B kl=; (2)由0mv R qB =可知,粒子运动的半径为 2l R =临界情况为粒子从t=0时刻射入,并且轨迹恰好与ad 边相切,如图2所示圆周运动的周期为002m lT qB v ππ==; 由几何关系可知,02T t =内,粒子转过的圆心角为56π; 对应运动时间为1556212t T T ππ==应满足12T t ≥联立可得0056lT v π≤(3)根据题意画出粒子的运动轨迹如图3所示由题意有00122m T qB π=⨯ 得002lT v π=在电场中有qE ma =往返一次用时为2v t a∆=;应有01()2t n T ∆=+,可得()20821v E n klπ=+,(n=0,1,2…);运动的路程为()02112228n l tx v π+∆=⨯⨯=,(n=0,1,2,3…)2.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=3)060α∴= ;22m L q ϕ【解析】 【分析】【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mtL qE q ϕ== 22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos xv v α=1cos 2α=060α∴=3.相距为L 的平行金属板 M 、N ,板长也为L ,板间可视为匀强电场,两板的左端与虚线 EF 对齐,EF 左侧有水平匀强电场,M 、N 两板间所加偏转电压为 U ,PQ 是两板间的中轴线.一质量为 m 、电量大小为+q 的带电粒子在水平匀强电场中 PQ 上 A 点由静止释放,水平电场强度与M 、N 之间的电场强度大小相等,结果粒子恰好从 N 板的右边緣飞出,立即进入垂直直面向里的足够大匀强磁场中 ,A 点离 EF 的距离为 L /2;不计粒子的重力,求: (1)磁感应强度B 大小(2)当带电粒子运动到 M 点后,MN 板间偏转电压立即变为−U ,(忽略电场变化带来的影响)带电粒子最终回到 A 点,求带电粒子从出发至回到 A 点所需总时间.【答案】(12mU L q 2)344L mL qUπ+()【解析】 【详解】(1)由题意知:对粒子在水平电场中从点A 到点O :有:21022U l qmv L =-……………① 在竖直向下的电场中从点O 到N 右侧边缘点B : 水平方向:0L v t =……………②竖直方向:2122L qU t mL=……………③ 在B 点设速度v 与水平初速度成θ角 有:2tan 21LLθ=⨯=……………④粒子在磁场中做匀速圆周运动 由几何关系可得:22RL =……………⑤ 又:2v qvB m R=……………⑥联解①②③④⑤⑥得:2L mUB q=……………⑦(2)粒子在磁场中运动的圆心角32πα=22R mT v qBππ== 在磁场中运动时间:2t T απ'=在水平电场中运动时间:00v v t qU a mL==''……………⑧总的时间:22t t t t '='++'总……………⑨联解得:344L mt L qUπ=+总() ……………⑩4.如图1所示为平面坐标系xOy ,在第一象限内的虚曲线和y 轴之间存在着垂直纸面向里的匀强磁场,磁感应强度大小为B ;在第二象限内的虚直线(63x a =-)和y 轴之间存在着如图2所示的交变磁场(以垂直纸面向外为磁场的正方向).在A (2a ,0)点的放射源发出质量为m、带电量为q+的粒子,粒子速度大小为aqBvm=,速度方向与x 轴负方向的夹角为θ(090θ<<︒),所有粒子都能垂直穿过y轴后进入第二象限.不计粒子重力和粒子间相互作用.(1)求夹角45θ=︒的粒子经过y轴时的坐标;(2)求第一象限内虚曲线的曲线方程()y x;(3)假设交变磁场在0时刻,某粒子刚好经过y轴上的B(0,a)点,则①要求该粒子不回到第一象限,交变磁场的变化周期T应满足什么条件?②要求该粒子在C(63a-,a)点垂直虚直线水平射出磁场,求粒子在交变磁场中运动时间t与磁场变化周期T的比值k的最小值?并求出在这种情况下粒子在交变磁场中的运动时间.【答案】(1)(32)y a=-;(2)22ya x=-;(3)①103mTqBπ≤;②4mqBπ【解析】【详解】(1)粒子在磁场中做匀速圆周运动,轨迹半径为r,则:200vqv B mr=解得:r a=,如图1所示,当入射角为45︒时,根据几何关系可得:y轴坐标22))(32)222y a aa a a=-+-=-(((2)如图2所示,入射角为任意角θ,进入磁场入射点坐标为(x,y),根据几何关系可得:tan2ya xθ=-22tana xθ=-得222x a xya x-=-(0x a<<)(3)①粒子不回到第一象限,临界情况为轨迹与y轴相切,如图3所示;设粒子在磁场中运动的周期为0T,两圆心连线与y轴夹角为β,则:2mTqBπ=1sin2β=所以30β=︒且满足1504360TT︒=︒得103mT qB π=要求该粒子不回到第一象限,交变磁场的变化周期T 应满足103mT qB π≤; ②粒子在交变磁场中运动的时间t 与磁场变化的周期T 的比值为k ,即tk T= 如图4所示根据几何关系可得:4sin BC r k L β⨯=33sin β=由于sin 1β≤,所以k 最小等于3,即3sin 2β=当60β=︒,如图4所示,粒子运动时间100602433604mq m t qB B ππ︒=⨯⨯⨯= 当β=120°时,如图5所示,粒子运动时间220012028443360m mt t qB qB ππ︒=⨯=⨯⨯⨯=5.如图所示,直角坐标系xOy 平面内有垂直于平面向外的匀强磁场,磁感应强度大小为B ,一个半径为R 的绝缘圆筒垂直于坐标平面放置,圆心P 在x 轴上,O 、P 间的距离为2R ,y 轴上各点处均可沿x 轴正方向发射质量为m 、电荷量为q 的同种带正电粒子,粒子的发射速度大小均为v 0=2qBRm,不计粒子的重力和粒子间的相互作用,求:(1)所有打到圆筒上的粒子中,在磁场中运动时间最短的粒子在磁场运动的时间及在y 轴上发射的位置坐标;(2)从y 轴上什么范围内发射的粒子能打在圆筒上?【答案】(1)(0,2-3R R )(2)(25)52R y R -≤≤+() 【解析】 【详解】(1)粒子在磁场中做圆周运动,根据牛顿运动定律有:2v qvB m r=代入数据,解得:2r R =由题意可知,所有粒子在磁场中做圆周运动的圆心在y 轴上,做圆周运动的圆半径相等,根据224R RT v vππ⨯==得,粒子在匀强磁场运动的周期都相等,粒子在磁场中运动的时间2t T θπ=⋅,要使运动时间最短,则运动的弧长最短,圆心角θ最小,分析可知粒子打在圆筒与x 轴左侧交点所用的时间最短.由几何关系可知,这段圆弧所对圆心角θ满足:1sin 2R r θ== 得到:6πθ=粒子在磁场中做圆周运动的周期:224R R T v vππ⨯==2mqB π=则最短时间:1126m t T qBπ== 根据几何关系,发射点距坐标原点O 的距离为:()22cos 236y R R R π∆=-=-即对应粒子在y 轴上发射的位置坐标为(0,2-3R R )(2)设从圆筒上面恰好能打在圆筒上的粒子从y 轴上射出的位置在M 点,坐标为M (0,y 1)由几何关系可知,2212(3)(2)(25)y R R R R =-=设从圆筒下面恰好打在圆筒上的粒子从y 轴上射出的位置在Q 点,坐标为Q (0,y 2). 由几何关系可知,222[(3)(2)2](25)y R R R R =--=因此能打在圆筒上的粒子在y 轴上射出的范围是:(25)52)R y R ≤≤(. 【点睛】粒子在磁场中做匀速圆周运动,能正确的画出运动轨迹,并根据几何关系确定各量之间的关系.6.如图甲所示,两平行金属板AB 间接有如图乙所示的电压,两板间的电场可看作匀强电场,且两板外无电场,板长L=0.8m ,板间距离d=0.6m .在金属板右侧有一磁感应强度B=2.0×10﹣2T ,方向垂直纸面向外的匀强磁场,磁场宽度为l 1=0.12m ,磁场足够长.MN 为一竖直放置的足够大的荧光屏,荧光屏距磁场右边界的距离为l 2=0.08m ,MN 及磁场边界均与AB 两板中线OO′垂直.现有带正电的粒子流由金属板左侧沿中线OO′连续射入电场中.已知每个粒子的速度v 0=4.0×105m/s,比荷qm=1.0×108C/kg ,重力忽略不计,每个粒子通过电场区域的时间极短,电场可视为恒定不变.(1)求t=0时刻进入电场的粒子打到荧光屏上时偏离O′点的距离; (2)若粒子恰好能从金属板边缘离开,求此时两极板上的电压;(3)试求能离开电场的粒子的最大速度,并通过计算判断该粒子能否打在右侧的荧光屏上?如果能打在荧光屏上,试求打在何处.【答案】(1)0.10m ;(2)900V ;(3)5×105m/s ,该粒子不能打在右侧的荧光屏上. 【解析】 【分析】 【详解】(1)t =0时进入电场的粒子匀速通过电场,进入磁场后做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:102qv B m v R =,代入数据解得:R 1=0.2m ,粒子运动轨迹如图所示:由几何知识可得:110.120.60.2l n R si θ=== 粒子在磁场中偏移的距离:111y R R cos θ=﹣代入数据解得:y 1=0.04m粒子出磁场后做匀速直线运动22y l tan θ=代入数据解得:y 2=0.06m粒子打到荧光屏上时偏离O′的距离为:y=y 1+y 2=0.10m(2)设两板间电压为U 1时,带电粒子刚好从极板边缘射出电场,如图所示:根据平抛知识可知:21122d at =, 1U qma d=, L=v 0t , 解得:U 1=900V (3)由动能定理得:2211011222U q mv mv =- 代入数据解得:v 1=5×105m/s粒子在电场中的偏向角α,5054100.8510v cos v α⨯===⨯, 粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力, 由牛顿第二定律得:1212qv B m v R =,代入数据解得:R 2=0.25mR 2﹣R 2sinα=0.25﹣0.210.8-=0.1m <l 1=0.12m该粒子不能从磁场偏出打在荧光屏上;答:(1)0.10m ;(2)900V ;(3)5×105m/s ,该粒子不能打在右侧的荧光屏上7.如图所示,半径r=0.06m的半圆形无场区的圆心在坐标原点O处,半径R=0.1m,磁感应强度大小B=0.075T的圆形有界磁场区的圆心坐标为(0,0.08m),平行金属板MN的极板长L=0.3m、间距d=0.1m,极板间所加电压U=6.4x102V,其中N极板收集到的粒子全部中和吸收.一位于O处的粒子源向第一、二象限均匀地发射速度为v的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x轴正方向,已知粒子在磁场中的运动半径R0=0.08m,若粒子重力不计、比荷q m=108C/kg、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6.(1)求粒子的发射速度v的大小;(2)若粒子在O点入射方向与x轴负方向夹角为37°,求它打出磁场时的坐标:(3)N板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s;(2)(0,0.18m);(3)29%【解析】【详解】(1)由洛伦兹力充当向心力,即qvB=m2vR可得:v=6×105m/s;(2)若粒子在O点入射方向与x轴负方向夹角为37°,作出速度方向的垂线与y轴交于一点Q,根据几何关系可得PQ=0.0637cos=0.08m,即Q为轨迹圆心的位置;Q到圆上y轴最高点的距离为0.18m-0.0637sin=0.08m,故粒子刚好从圆上y轴最高点离开;故它打出磁场时的坐标为(0,0.18m);(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:y =12at2…①a=qEm=qUmd…②t=Lv…③由①②③解得:y=0.08m设此粒子射入时与x轴的夹角为α,则由几何知识得:y=r sinα+R0-R0cosα可知tanα=43,即α=53°比例η=53180︒×100%=29%8.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B,一带电量为+q、质量为m的粒子,在P点以某一初速开始运动,初速方向在图中纸面内如图中P点箭头所示.该粒子运动到图中Q点时速度方向与P点时速度方向垂直,如图中Q点箭头所示.已知P、Q间的距离为L.若保持粒子在P点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P点时速度方向垂直,在此电场作用下粒子也由P点运动到Q 点.不计重力.求:(1)电场强度的大小.(2)两种情况中粒子由P运动到Q点所经历的时间之比.【答案】22B qLEm=;2BEttπ=【解析】【分析】【详解】(1)粒子在磁场中做匀速圆周运动,以v0表示粒子在P点的初速度,R表示圆周的半径,则有2vqv B mR=由于粒子在Q点的速度垂直它在p点时的速度,可知粒子由P点到Q点的轨迹为14圆周,故有2R=以E表示电场强度的大小,a表示粒子在电场中加速度的大小,t E表示粒子在电场中由p点运动到Q 点经过的时间,则有qE ma = 水平方向上:212E R at =竖直方向上:0E R v t =由以上各式,得 22B qL E m= 且E mt qB = (2)因粒子在磁场中由P 点运动到Q 点的轨迹为14圆周,即142B t T m qB π==所以2B E t t π=9.现代物理经常用磁场来研究同位素粒子,在xoy 坐标系内有垂直于平面向里的匀强磁场,磁感应强度为B .现有电荷量均为q +的a b 、两粒子从坐标原点O 以相同速率v 同时射入磁场,a 沿x 轴正方向,b 沿y 轴正方向,a 粒子质量为m ,b 粒子质量为2m ,不计粒子重力以及粒子间相互作用,求:(1)当a 粒子第1次刚到达y 轴时,b 粒子到达的位置坐标;(2)a b 、粒子是否会再次相遇?如能,请通过推导求出何时相遇;如不能,请简要说明理由;(3)设两粒子在y 轴上投影的距离为y ∆,则y ∆何时有最大值并求出y ∆的最大值. 【答案】(1)(22mv mv qB qB -,)(2)a 、b 粒子在4k mt qBπ=时刻相遇(k =1、2、3……)(3)(43)n m t qB π+= (n =1、2、3……) 4mvBq【解析】 试题分析:(1)由可知:a 粒子半径周期b 粒子半径2122mv r r qB ==周期21222mT T qBπ⋅==a 粒子第1次刚到达y 轴历时所以此时b 粒子运动14周,位置坐标为()(2)由图可知:ab 可能在O 、P 点再次相遇 因为,所以A.b 粒子经过24mt T qBπ==在O 点再次相遇,该过程粒子不可能在P 点相遇所以A.b 粒子在4k mt qBπ=(k=1、2、3……) 时刻相遇(3)解法一:由第(1)问分析可知,当a 粒子第二次到达其圆轨迹最高点时(即a 粒子运动了132T ),b 粒子恰好在其圆轨迹的最低点,此时两粒子在y 轴上投影的距离Δy 最大.考虑圆周运动的周期性,此后a 粒子每运动两周,b 粒子运动一周,两粒子在y 轴上投影的距离Δy 再次最大.所以113(43)22n m t T n T Bq π+=+⋅=时最大max 144mvy r Bq∆==解法二: 由可知:a 粒子半径为r 时,b 粒子的半径为2r 由可知:b 的半径扫过角时,a 的半径扫过2θ角当时,有最大值4r ,此时即222 1.52t Bqtn t T mπππω+===得:时最大,max 44mvy r Bq∆==. 考点:带电粒子在磁场中的运动【名师点睛】本题考查带电粒子在匀强磁场中的运动,要掌握住半径公式、周期公式,画出粒子的运动轨迹后,几何关系就比较明显了.10.在水平面上,平放一半径为R 的光滑半圆管道,管道处在方向竖直、磁感应强度为B 的匀强磁场中,另有一个质量为m 、带电荷量为+q 的小球.(1)当小球从管口沿切线方向以某速度射入,运动过程中恰不受管道侧壁的作用力,求此速度v 0;(2)现把管道固定在竖直面内,且两管口等高,磁场仍保持和管道平面垂直,如图所示.空间再加一个水平向右、场强E =mgq的匀强电场(未画出).若小球仍以v 0的初速度沿切线方向从左边管口射入,求小球: ①运动到最低点的过程中动能的增量; ②在管道运动全程中获得的最大速度.【答案】(1)qBRm(2)①2mgR ②222q B R gR【解析】(1)小球在水平面上只受到洛伦兹力作用,故20v qv B m R=解得:0qBRv m=. (2)①小球在管道运动时,洛伦兹力始终不做功,对小球运动到最低点的过程,由动能定理可以得到:k mgR qER E +=∆ 由题目已知:mg qE =联合以上两式可以得到:动能增量2k E mgR ∆=.②当小球到达管道中方位角为θ的位置(如图所示)时,应用动能定理,有:()22011sin cos 22mgR qE R R mv mv θθ++=- 即:()22222222sin cos q B R v gR gR mθθ=+++ 对函数sin cos y θθ=+求极值,可得45θ=时,max 2y =所以()2222222m q B R v gR m=++11.简谐运动是一种理想化的运动模型,是机械振动中最简单、最基本的振动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、带电粒子在无边界匀强磁场中运动1专项训练1.如图,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外。

点P (3L,0)处有一粒子源,向各个方向发射速率不同、质量为m 、电荷量为-q 的带电粒子。

粒子1以某速率v 1发射,先后经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L )。

不计粒子的重力。

(1)求粒子1的速率v 1和第一次从P 到Q 的时间t 1;(2)若只撤去第一象限的磁场,另在第一象限加y 轴正向的匀强电场,粒子2以某速率v 2发射,先后经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度大小E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加上沿y 轴负向的匀强电场,场强大小为 E 0,粒子3以速率 v 3 沿 y 轴正向发射,粒子将做复杂的曲线运动,求粒子3在运动过程中的最大速率 v m 。

某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,根据运动的独立性和矢量性,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动。

本题中可将带电粒子的运动等效为沿x 轴负方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动。

请尝试用该思路求解粒子3的最大速率v m 。

【答案】(1)123qBL v m =,14π3m t qB =;(2)289qLB E m =,2219qLBv m=;(3)2200m 3E E v v B B ⎛⎫=+ ⎪⎝⎭【解析】 【分析】 【详解】(1)粒子1在第一、二、三象限做圆周运动,轨迹如图:设半径为1r ,由几何知识得()222113r L r ⎫=-+⎪⎪⎝⎭可得123L r =由向心力公式,根据牛顿第二定律2111v qv B m r =可得123qBLv m =设粒子做圆周运动的周期为1T1112r T v π=由几何知识可知60θ︒=粒子第一次从P 到Q 的时间112433m t T qBπ==(2)粒子2在二、三象限的运动与粒子1完全相同,粒子2在第一象限做类斜抛运动,并且垂直经E 过y 轴,可以逆向思考,由牛顿第二定律得qEa m=x 轴方向123L v t =y 轴方向212122r L at -=可得289qLB E m=根据()22212v v at =+可得22219qLBv m=(3)根据提示,可将粒子的初速度分解,如图:根据平衡条件40qv B qE =可得4E v B=根据运动的合成,可知22543v v v =+ 粒子的运动可视为水平向左的速率为4v 的匀速直线运动和初速度为5v 的逆时针的圆周运动的合运动,所以粒子的最大速率为m 45v v v =+可得2200m 3E E v v B B ⎛⎫=+ ⎪⎝⎭2.在磁感应强度为B 的匀强磁场中,一个静止的放射性原子核发生了一次α衰变.放射出α粒子(42He )在与磁场垂直的平面内做圆周运动,其轨道半径为R .以m 、q 分别表示α粒子的质量和电荷量.(1)放射性原子核用 A Z X 表示,新核的元素符号用Y 表示,写出该α衰变的核反应方程.(2)α粒子的圆周运动可以等效成一个环形电流,求圆周运动的周期和环形电流大小. (3)设该衰变过程释放的核能都转为为α粒子和新核的动能,新核的质量为M ,求衰变过程的质量亏损△m .【答案】(1)放射性原子核用 A Z X 表示,新核的元素符号用Y 表示,则该α衰变的核反应方程为4422AA Z Z X Y H --→+ ;(2)α粒子的圆周运动可以等效成一个环形电流,则圆周运动的周期为 2m Bq π ,环形电流大小为 22Bq mπ ;(3)设该衰变过程释放的核能都转为为α粒子和新核的动能,新核的质量为M ,则衰变过程的质量亏损△m 为损2211()()2BqR m M c + . 【解析】(1)根据核反应中质量数与电荷数守恒可知,该α衰变的核反应方程为4422X Y He A A ZZ --→+(2)设α粒子在磁场中做圆周运动的速度大小为v ,由洛伦兹力提供向心力有2v qvB m R=根据圆周运动的参量关系有2πRT v=得α粒子在磁场中运动的周期2πmT qB=根据电流强度定义式,可得环形电流大小为22πq q BI T m==(3)由2v qvB m R =,得qBR v m=设衰变后新核Y 的速度大小为v ′,核反应前后系统动量守恒,有Mv ′–mv =0 可得mv qBR v M M='=根据爱因斯坦质能方程和能量守恒定律有2221122mc Mv mv '∆=+ 解得22()()2M m qBR m mMc+∆= 说明:若利用44A M m -=解答,亦可. 【名师点睛】(1)无论哪种核反应方程,都必须遵循质量数、电荷数守恒.(2)α衰变的生成物是两种带电荷量不同的“带电粒子”,反应前后系统动量守恒,因此反应后的两产物向相反方向运动,在匀强磁场中,受洛伦兹力作用将各自做匀速圆周运动,且两轨迹圆相外切,应用洛伦兹力计算公式和向心力公式即可求解运动周期,根据电流强度的定义式可求解电流大小.(3)核反应中释放的核能应利用爱因斯坦质能方程求解,在结合动量守恒定律与能量守恒定律即可解得质量亏损.3.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。

(1)求0≤x≤L 区域内电场强度E 的大小和电子从M 点进入圆形区域时的速度v M ;(2)若圆形区域内加一个垂直于纸面向外的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴,求所加磁场磁感应强度B 的大小和电子在圆形区域内运动的时间t ; (3)若在电子从M 点进入磁场区域时,取t =0,在圆形区域内加如图乙所示变化的磁场(以垂直于纸面向外为正方向),最后电子从N 点飞出,速度方向与进入圆形磁场时方向相同,请写出磁场变化周期T 满足的关系表达式。

【答案】(1)2U E L =,2M eUv m=v M 的方向与x 轴的夹角为θ,θ=45°;(2)2M mv mv B eR L e ==,3348M R L m t v eUππ==3)T 的表达式为22T n emU =(n =1,2,3,…) 【解析】 【详解】(1)在加速电场中,从P 点到Q 点由动能定理得:2012eU mv = 可得02eUv m=电子从Q 点到M 点,做类平抛运动,x 轴方向做匀速直线运动,02L m t L v eU== y 轴方向做匀加速直线运动,2122L eE t m=⨯ 由以上各式可得:2UE L=电子运动至M 点时:220()M Ee v v t m=+ 即:2M eUv m= 设v M 的方向与x 轴的夹角为θ,02cos M v v θ== 解得:θ=45°。

(2)如图甲所示,电子从M 点到A 点,做匀速圆周运动,因O 2M =O 2A ,O 1M =O 1A ,且O 2A ∥MO 1,所以四边形MO 1AO 2为菱形,即R =L由洛伦兹力提供向心力可得:2MM v ev B m R=即2M mv mvB eR L e== 3348M RL m t v eUππ==(3)电子在磁场中运动最简单的情景如图乙所示,在磁场变化的半个周期内,粒子的偏转角为90°,根据几何知识,在磁场变化的半个周期内,电子在x 轴方向上的位移恰好等于2R ',即222R L '=因电子在磁场中的运动具有周期性,如图丙所示,电子到达N 点且速度符合要求的空间条件为:22)2n R L '=(n =1,2,3,…) 电子在磁场中做圆周运动的轨道半径0Mmv R eB '=解得:022n emUB =n =1,2,3,…) 电子在磁场变化的半个周期内恰好转过14圆周,同时在MN 间的运动时间是磁场变化周期的整数倍时,可使粒子到达N 点且速度满足题设要求,应满足的时间条件是0142T T = 又002mT eB π=则T 的表达式为22T n emU=(n =1,2,3,…)。

4.在xOy 坐标中,有随时间周期性变化的电场和磁场(磁场持续t 1后消失;紧接着电场出现,持续t 2时间后消失,接着磁场......如此反复),如图所示,磁感应强度方向垂直纸面向里,电场强度方向沿y 轴向下,有一质量为m ,带电量为+q 的带电粒子,在t =0时刻,以初速v 0从0点沿x 轴正方向出发,在t 1时刻第一次到达y 轴上的M (0,L )点,t 1+t 2时刻第一次回到x 轴上的 N (-2L ,0)点,不计粒子重力,t 1、t 2均未知。

求: (1)磁感应强度B 和电场强度E 的大小;(2)粒子从0点出发到第二次回到x 轴所用的时间; (3)粒子第n 次回到x 轴的坐标。

【答案】(1) E =202mv qL (2) t 总=04L v π+()(3) (-2L+12n -L ,0) 【解析】 【详解】(1)粒子从O 到M 做圆周运动,半径:R 0=2LqBv 0=20mv RB =2mv qLM 到N 粒子在电场中运动:2L =v 0t 2 L =2212at a =Eq m202mv E qL=(2)粒子从N 做圆周运动,在N 点v Ny =at 2,v Ny =v 0,速度方向与—x 轴夹角为45°,v N 02v ,所以做圆周运动的半径为:R 1=22L 而粒子在磁场中运动周期:T =122mt qBπ=与粒子速度无关,故经过时间t 1粒子做半圆到P 点,接下来只在电场力的作用下运动,P 点速度方向与N 点相反,所以从P 到Q 是M 到N的逆运动,有2NP MQ L==,得Q 点刚好在x 轴上(L ,0)则从O 点出发到第二次回到轴所需时间:t 总= 2(t 1+t 2)又t 1=02L v π t 2=02L v 得:t 总=04L v π+()(3)如图所示,粒子接下来做有规律的运动,到达x 轴的横坐标依次为:第一次:-2L 第二次:-2L +3L 第三次:-2L +3L-2L …………若n 取偶数2,4,6......有:-2322n n L L L +=(), 坐标为(2nL ,0) 若n 取奇数1,3,5........有:-2L +12n -(-2L +3L )=-2L +12n -L , 坐标为(-2L +L ,0)5.如图,圆心为O 、半径为r 的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B 。

相关文档
最新文档