江苏省2019届百校大联考数学试卷及答案(高清版)
2019届江苏省高2016级高三百校联考数学试卷及答案
2019届江苏省高2016级高三百校联考数学试卷★祝考试顺利★考生注意:1.本试卷共200分。
考试时间150分钟。
2.请将各题答案填写在答题卡上。
3.本试卷主要考试内容:高考全部内容。
―、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上。
1.设全集 U=R ,集合 A={0<2|2x x x -},B={0>|x x },则集合=)(CuB A ▲ .2.设复数z 满足i i z 21)2(-=+ (i 为虚数单位),则z 的模为 ▲ .3.已知双曲线12222=-by a x (a>0,b>0)的一条渐近线经过点(1,2),则该双曲线的离心率为 ▲ .4.各项均为正数的等比数列{n a }中,n S 为其前n 项和,若13=a ,且225+=S S ,则公比q 的值为 ▲ .5.下表是关于青年观众的性别与是否喜欢综艺“奔跑吧,兄弟”的调査数据,人数如下表所示:现要在所有参与调查的人中用分层抽样的方法抽取n 个人做进一步的调研,若在“不喜欢的男性青年观众”的人中抽取了 8人,则n 的值为 ▲ . 6.根据如图所示的伪代码,输出I 的值为 ▲ .7.甲,乙两队参加关于“一带一路”知识竞赛,甲队有编号为1,2,3的三名运动员,乙队有编号为1,2,3,4的四名运动员,若两队各出一名队员进行比赛,则出场 的两名运动员编号相同的概率为 ▲ .8.函数)23ln(x x y -=的定义域为▲ .9.设y x ,满足约束条件⎪⎩⎪⎨⎧≥++≤--≤-+01201022y x y x y x ,则21++=y x z 的取值范围是▲ .10.将函数x x f sin )(=的图象向右平移3π个单位长度后得到)(x g y =函数的图象,则函数)()(x g x f 的最大值为 ▲ .11.如图,在直四棱柱ABCD-A 1B 1C 1D 1,中,底面ABCD 是平行四边形,点E 是棱BB 1的中点,点F 是棱CC 1上靠近Q 的三等分点,且三棱锥A 1一AEF 的体积为2,则四棱柱ABCD-A 1B 1C 1D 1,的体积为 ▲ . 12. 在面积为26的△ABC 中,32=⋅,若点M 是AB 的中点,点N 满足NC AN 2=,则CM BN ⋅的最大值是 ▲ .13.在平面直角坐标系xOy 中,已知圆C :1)1(22=-+y x 及点A(3,0),设点P 是圆C 上的 动点,在△ACP 中,若∠ACP 的角平分线与AP 相交于点Q(n m ,),则22n m +的取值范围是 ▲ .14.已知函数⎪⎩⎪⎨⎧++=0>x x,-lnx 0<,2161)(2x x a x x f ,若关于z 的方0)()(=-+x f x f 在定义域上有四个不同的解,则实数a 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分。
2019年4月2019届高三第二次全国大联考(新课标Ⅰ卷)-文科数学(考试版)
文科数学试题 第1页(共6页) 文科数学试题 第2页(共6页)绝密★启用前|学科网试题命制中心2019年第二次全国大联考【新课标Ⅰ卷】文科数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合2{|310}A x x x =∈<N ,{2,3,4,5}B =,则A B =I A .{1,2,3} B .∅ C .{4,5}D .{2,3}2.设复数z 满足i (17i)(23i)z +=+-,则z = A .2310i - B .2310i + C .2310i -+D .2310i --3.《九章算术·衰分》中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱. 欲以钱数多少衰出之,问各几何?”翻译为:“今有甲持钱560,乙持钱350,丙持钱180,甲、乙、丙三个人一起出关,关税共计100钱,要按每个人带钱多少的比率交税,问三人各应付多少税钱?”则下列说法中错误..的是 A .乙付的税钱应占总税钱的35109B .乙、丙两人付的税钱不超过甲C .丙应出的税钱约为32D .甲、乙、丙三人出税钱的比例为56∶35∶184.已知函数()cos()(0,0)f x M x M ωϕω=+>>,其图象上一组相邻的最高点与最低点的坐标分别为π(,3)8A ,5π(,3)8B -,则ϕ的值可能为 A .π3-B .11π6 C .7π4D .2π35.已知抛物线2:2(0)C y px p =>的焦点为F ,准线方程为2x =-,过点F 的直线与抛物线C 交于1122(,),(,)M x y N x y 两点,若||8MN =,则2212y y +=A .16B .32C .24D .486.已知ABC △中,角,,A B C 所对的边分别为,,a b c .若c =,b =,2B C =,则ABC △的面积为A .B .C .D .7.已知实数,,a b c 满足21log 9a =,b =3log 8c =-,则实数,,a b c 的大小关系为 A .c a b >>B .c b a >>C .a b c >>D .a c b >>8.运行如图所示的程序框图,若输出的n 的值为575,则判断框中可以填A .6?i >B .7?i >C .8?i >D .9?i >○………………订………………○…不密封○………………订………………○…9.已知正方体1111ABCD A B C D-中,点E是线段1CC的中点,则直线1D E与平面ADE所成角的余弦值为A.35B.45C.5D.510.记双曲线2222:1(0,0)x yC a ba b-=>>的左、右焦点分别为12,F F,且线段2MF的垂直平分线方程为bx ay-=,若11||||4MF OF==(O为坐标原点),则双曲线C的渐近线方程为A.y=B.y x=±C.2y x=±D.y=11.已知函数()2||f x x=-,若关于x的不等式2()x xf x m≥--的解集中仅有1个整数,则实数m的取值范围为A.[3,1)--B.(3,1)--C.[2,1)--D.(2,1)--12.已知正四面体S ABC-的表面积为点P在ABC△内(不含边界). 若2P SAB P SCA P SBCV V V---+=,且P SCAVλ-<,则实数λ的取值范围为A.)+∞B.)+∞C.)+∞D.)+∞第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.已知向量(2,)λ=a,(4,3)=-b,若⊥a b,则||=a____________.14.若直线220x y+-=与直线10x my++=互相垂直,则点(,)A m m到直线30x y++=的距离为____________.15.已知实数,x y满足12310xy xx y≥⎧⎪≥+⎨⎪+≤⎩,则4z x y=-的最小值为____________.16.已知函数bxaxxxf--=2ln)(的图象在点))1(,1(f处的切线斜率为a2-,若命题:p“对[1,)x∀∈+∞,使得()0f x≠成立”是假命题,则实数的最小值为____________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)记等差数列{}na的前n项和为nS,且2171219,78a a S+==.数列{}nb满足2n anb=.(1)求数列313+21{}n na a-的前n项和;(2)若数列{}nb的前p项和2044pT S=+,求p的值.18.(本小题满分12分)如图,四棱锥S ABCD-的底面是由等边三角形BCD与等腰三角形ABD拼接而成的,其中30ABD ADB∠=∠=︒,SB SD AB==.(1)在线段SC上找出一点E,使得BE∥平面SAD,并给出证明;(2)若BCD△的面积为,SA=S ABCD-的体积.19.(本小题满分12分)春节期间,由于高速免费,车流量逐步增加,某高速口统计了5天中的车流量与空气质量指数的关系,所得数据如下表所示:a文科数学试题第3页(共6页)文科数学试题第4页(共6页)文科数学试题 第5页(共6页) 文科数学试题 第6页(共6页)………○………………线…………………○………………线…………:______________________(1)在下列网格纸中绘制出散点图;(2)由(1)判断是否能用线性回归模型拟合y 与x 的关系,并用相关系数加以说明;(3)记这5天的空气质量指数的平均数为y ,若从5天中任选2天的数据作调研,求这2天中恰有1天的空气质量指数高于y 的概率.参考公式:相关系数()()niix x y y r --=∑.1.414≈2.236≈3.162≈.20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,且过点1(2. (1)求椭圆C 的方程;(2)若直线1:l y kx =与椭圆C 交于,M N 两点,过点(1,0)且与直线1l 平行的直线2l 交椭圆C 于,P Q两点,且2||||PQ MN λ=,求λ的值.21.(本小题满分12分)已知函数2()e ()xf x x m =-. (1)讨论函数()f x 的单调性;(2)若0m >,证明:当(0,)x ∈+∞时,21()20ex f x --+>.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在以极点为原点,极轴为x 轴正半轴的直角坐标系中,曲线C 的参数方程为2cos (01,sin x a a a y θθθ=+⎧>≠⎨=⎩且为参数),将曲线C 上每一点的横坐标不变,纵坐标变为原来的a 倍,得到曲线M .(1)若2=a ,求曲线M 的极坐标方程; (2)若直线π6θ=与曲线M 相交于两个不同的点Q P ,,且P 为OQ 的中点,求a 的值及||PQ 的值.23.(本小题满分10分)选修4-5:不等式选讲已知函数()||f x x m =+)1(≥m . (1)当2=m 时,求不等式121)(->-xx f 的解集; (2)设)1()(mx f x g +-=,记()()()p x f x g x =+,证明:()3p x ≥.。
2019届江苏省百校联考高三数学试题(含全解析)
答案 8 3 2 6 3
uuur uuur 由任意三角形面积公式与 AB AC 2 3 构建关系表示 | AB|| AC| ,再由已知与平面向量
的线性运算、平面向量数量积的运算转化
uuur uuuur BN CM ,最后由重要不等式求得最值 .
解:
由 △ABC的面积为 6 得 1 | AB|| AC|sin ∠ BAC= 6 ,
集合 B 的补集 eU B { x | x 1} ,则 A (eU B) { x | 0 x 1}
故答案为: (0,1]
点评:
本题考查集合的交集与补集运算,属于基础题
.
2
2
2.已知双曲线
x a2
y b2
1(a 0,b 0) 的一条渐近线经过点
为 _______.
(1,2) ,则该双曲线的离心率
答案 5
绝密 ★启用前
2019 届江苏省百校联考高三数学试题
注意事项: 1 、答题前填写好自己的姓名、班级、考号等信息
2 、请将答案正确填写在
答题卡上 一、填空题
1.设全集 U R ,集合 A
x | x2 2x 0 , B { x | x 1} ,则集合
A (eU B) ______.
解:
由题可知,集合 A中 x2 2x 0 x x 2 0 0 x 2
由题可构建如图所示的图形,因为 AQ是 ACP 的角平分线,由角平分线成比例定理可
AC AQ 2
知
AP PQ 1
uuur uuur AQ 2PQ , 所以 AQ 2PQ .
uuur
uuur
设点 Q m, n ,点 P x, y ,即 AQ m 3, n , PQ
x m, y n ,
2019年普通高等学校招生全国统一考试数学试题和答案(江苏卷)
1.已知集合 A = {−1, 0,1, 6}, B = {x | x 0, x R},则 A B = ▲ .
2.已知复数 (a + 2i)(1+ i) 的实部为 0,其中 i 为虚数单位,则实数 a 的值是 ▲ .
3.下图是一个算法流程图,则输出的 S 的值是 ▲ .
1
4.函数 y = 7 + 6x − x2 的定义域是 ▲ .
15.(本小题满分 14 分) 在△ABC 中,角 A,B,C 的对边分别为 a,b,c.
(1)若 a=3c,b= 2 ,cosB= 2 ,求 c 的值; 3
(2)若 sin A = cos B ,求 sin(B + ) 的值.
a 2b
2
16.(本小题满分 14 分)
如图,在直三棱柱 ABC-A1B1C1 中,D,E 分别为 BC,AC 的中点,AB=BC. 求证:(1)A1B1∥平面 DEC1; (2)BE⊥C1E.
19.(本小题满分 16 分)
设函数 f (x) = (x − a)(x − b)(x − c), a,b,c R 、 f '(x) 为 f(x)的导函数.
(1)若 a=b=c,f(4)=8,求 a 的值;
(2)若 a≠b,b=c,且 f(x)和 f '(x) 的零点均在集合{ − 3,1,3} 中,求 f(x)的极小值;
当 x (0, 2] 时, f (x) =
1−(x
−1)2
,
g(x)
=
−
1 ,1 2
x
2
,其中 k>0.若在区间(0,9]上,关
于 x 的方程 f (x) = g(x) 有 8 个不同的实数根,则 k 的取值范围是 ▲ .
2019年普通高等学校招生全国统一考试(江苏卷)—数学(解析版)
2019年普通高等学校招生全国统一考试(江苏卷)—数学(解析版)注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!〔全卷总分值160分,考试时间120分钟〕参考公式: 棱锥的体积13V Sh=,其中S 为底面积,h 为高、 【一】填空题:本大题共14小题,每题5分,共计70分、请把答案填写在答题卡相应位置上........、 1、〔2018年江苏省5分〕集合{124}A =,,,{246}B =,,,那么A B =▲、【答案】{}1,2,4,6。
【考点】集合的概念和运算。
【分析】由集合的并集意义得{}1,2,4,6AB =。
2、〔2018年江苏省5分〕某学校高【一】高【二】高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,那么应从高二年级抽取▲名学生、 【答案】15。
【考点】分层抽样。
【解析】分层抽样又称分类抽样或类型抽样。
将总体划分为假设干个同质层,再在各层内随机抽样或机械抽样,分层抽样的特点是将科学分组法与抽样法结合在一起,分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性。
因此,由350=15334⨯++知应从高二年级抽取15名学生。
3、〔2018年江苏省5分〕设a b ∈R ,,117i i 12ia b -+=-〔i 为虚数单位〕,那么a b +的值为▲、【答案】8。
【考点】复数的运算和复数的概念。
【分析】由117i i 12i a b -+=-得()()()()117i 12i 117i 1115i 14i ===53i12i 12i 12i 14a b -+-+++=+--++,所以=5=3a b ,,=8a b +。
4、〔2018年江苏省5分〕下图是一个算法流程图,那么输出的k 的值是▲、【答案】5。
【考点】程序框图。
【分析】根据流程图所示的顺序,程序的运行过程中变量值变化如下表:是否继续循环 k 2k 5k 4-+ 循环前0 0 第一圈 是 1 0 第二圈 是 2 -2 第三圈 是 3 -2 第四圈 是 4 0 第五圈 是 5 4 第六圈否输出5∴最终输出结果k=5。
2019届江苏省百校联考高三数学试题(解析版)
一、填空题
1.设全集 ,集合 , ,则集合 ______.
【答案】
【解析】分别解得集合A与集合B的补集,再由集合交集的运算法则计算求得答案.
【详解】
由题可知,集合A中
集合B的补集 ,则
故答案为:
【点睛】
本题考查集合的交集与补集运算,属于基础题.
2.已知双曲线 的一条渐近线经过点 ,则该双曲线的离心率为_______.
3.各项均为正数的等比数列 中, 为其前 项和,若 ,且 ,则公比 的值为_____.
【答案】
【解析】将已知由前n项和定义整理为 ,再由等比数列性质求得公比,最后由数列 各项均为正数,舍根得解.
【详解】
因为
即
又等比数列 各项均为正数,故
故答案为:
【点睛】
本题考查在等比数列中由前n项和关系求公比,属于基础题.
(1)求 关于 的函数解析式;
(2)当 为何值时, 面积 为最小,政府投资最低?
【答案】(1) ;(2) .
【解析】(1)以点 为坐标原点建立如图所示的平面直角坐标系,则 ,在 中,设 ,又 ,故 , ,进而表示直线 的方程,由直线 与圆 相切构建关系化简整理得 ,即可表示OA,OB,最后由三角形面积公式表示 面积即可;
12.在平面直角坐标系 中,已知圆 及点 ,设点 是圆 上的动点,在 中,若 的角平分线与 相交于点 ,则 的取值范围是_______.
【答案】
【解析】由角平分线成比例定理推理可得 ,进而设点表示向量构建方程组表示点P坐标,代入圆C方程即可表示动点Q的轨迹方程,再由将所求视为该圆上的点与原点间的距离,所以其最值为圆心到原点的距离加减半径.
本题主要考查了棱柱与棱锥的体积的计算问题,其中解答中正确认识几何体的结构特征,合理、恰当地表示直四棱柱三棱锥的体积是解答本题的关键,着重考查了推理与运算能力,以及空间想象能力,属于中档试题。
2019年普通高等学校招生全国统一考试数学及详细解析(江苏卷)
2019年普通高等学校招生全国统一考试数学(江苏卷)第一卷(选择题共60分)参考公式:三角函数的和差化积公式sin sin 2sincossin sin 2cossin2222cos cos 2cos coscos cos 2sinsin2222αβαβαβαβαβαβαβαβαβαβαβαβ+-+-+=-=+-+-+=-=-若事件A 在一次试验中发生的概率是p ,则它在n 次独立重复试验中恰好发生k 次的概率()(1)k k n kn n P k C p p -=-一组数据12,,,n x x x 的方差2222121()()()n S x x x x x x n ⎡⎤=-+-++-⎣⎦其中x 为这组数据的平均数值一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题意要求的。
(1) 设集合A={1,2},B={1,2,3},C={2,3,4},则()A B C ⋂⋃=(A ){1,2,3} (B ){1,2,4} (C ){2,3,4} (D ){1,2,3,4}(2) 函数123()xy x R -=+∈的反函数的解析表达式为(A )22log 3y x =- (B )23log 2x y -= (C )23log 2x y -= (D )22log 3y x=-(3) 在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=(A )33 (B )72 (C )84 (D )189(4) 在正三棱柱ABC-A 1B 1C 1中,若AB=2,AA 1=1则点A 到平面A 1BC 的距离为(A(B(C(D(5) △ABC 中,,3,3A BC π==则△ABC 的周长为(A))33B π++ (B))36B π++(C )6sin()33B π++ (D )6sin()36B π++(6) 抛物线y=4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是(A )1716 (B )1516 (C )78(D )0 (7) 在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4 8.4 9.4 9.9 9.6 9.4 9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(A )9.4, 0.484 (B )9.4, 0.016 (C )9.5, 0.04 (D )9.5, 0.016 (8) 设,,αβγ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题:①若,,αγβγ⊥⊥则α∥β;②若,,m n m αα⊂⊂∥,n β∥,β则α∥β; ③若α∥,,l βα⊂则l ∥β;④若,,,l m n l αββγγα⋂=⋂=⋂=∥,γ则m ∥n .其中真命题的个数是(A )1 (B )2 (C )3 (D )4(9) 设k=1,2,3,4,5,则(x +2)5的展开式中x k 的系数不可能是(A )10 (B )40 (C )50 (D )80 (10) 若1sin(),63πα-=则2cos(2)3πα+= (A )79- (B )13- (C )13 (D )79(11) 点P (-3,1)在椭圆22221(0)x y a b a b+=>>的左准线上.过点P 且方向为a =(2,-5)的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为(A )3 (B )13 (C)2 (D )12(12) 四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为(A )96 (B )48 (C )24 (D )0 参考答案:DACBD CDBCA AB第二卷(非选择题共90分)二、填空题:本大题共6小题,每小题4分,共24分。
2019年普通高等学校招生全国统一考试数学试题卷江苏卷(附带答案及详细解析)
绝密★启用前2019年普通高等学校招生全国统一考试江苏卷数学试题卷本试卷共5页,23题(含选考题)。
全卷满分150分。
考试用时120 分钟。
★祝考试顺利★注意事项:1.答题前,先将白己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2. 选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3. 非选择题的作答:用黑色签字笔直接答在答题卡.上对应的答题区域内。
写在试卷、草稿纸和答题卡,上的非答题区域均无效。
4.选考题的作答: 先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡.上对应的答题区域内,写在试卷、草稿纸和答题卡.上的非答题区域均无效。
.5.考试结束后,请将本试卷和答题卡-并上交。
一、填空题:本大题共14小题,每小题5分,共计70分.(共14题;共70分)1.已知集合A={−1,0,1,6},B={x|x>0,x∈R},则A∩B=________.2.已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是________.3.下图是一个算法流程图,则输出的S的值是________.4.函数y=√7+6x−x2的定义域是________.5.已知一组数据6,7,8,8,9,10,则该组数据的方差是________.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.=1(b>0)经过点(3,4),7.在平面直角坐标系xOy中,若双曲线x2−y2b2则该双曲线的渐近线方程是________.8.已知数列{a n}(n∈N∗)是等差数列,S n是其前n项和.若a2a5+a8= 0,S9=27,则S8的值是________.9.如图,长方体ABCD−A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是________.10.在平面直角坐标系 xOy 中,P 是曲线 y =x +4x (x >0) 上的一个动点,则点P 到直线x +y =0的距离的最小值是________.11.在平面直角坐标系 xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是________. 12.如图,在 △ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA , AD 与CE 交于点 O .若 AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =6AO ⃗⃗⃗⃗⃗ ⋅EC ⃗⃗⃗⃗⃗ ,则 ABAC的值是________.13.已知 tanαtan(α+π4)=−23 ,则 sin(2α+π4) 的值是________.14.设 f(x),g(x) 是定义在R 上的两个周期函数, f(x) 的周期为4, g(x) 的周期为2,且 f(x) 是奇函数.当 x ∈(0,2] 时, f(x)=√1−(x −1)2 , g(x)={k(x +2),0<x ≤1−12,1<x ≤2,其中k >0.若在区间(0,9]上,关于x 的方程 f(x)=g(x) 有8个不同的实数根,则k 的取值范围是________. 二、解答题:本大题共6小题,共计90分.(共6题;共90分) 15.在△ABC 中,角A , B , C 的对边分别为a , b , c . (1)若a =3c , b = √2 ,cos B = 23 ,求c 的值;(2)若sinAa =cosB2b,求sin(B+π2)的值.16.如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.17.如图,在平面直角坐标系xOy中,椭圆C: x2a +y2b=1(a>b>0)的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2: (x−1)2+y2=4a2交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1= 52.(1)求椭圆C的标准方程;(2)求点E的坐标.18.如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.19.设函数f(x)=(x−a)(x−b)(x−c),a,b,c∈R、f ′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f ′(x)的零点均在集合{−3,1,3}中,求f(x)的极小值;(3)若a=0,0<b⩽1,c=1,且f(x)的极大值为M,求证:M≤ 427.20.定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{a n} (n∈N∗)满足:a2a4=a5,a3−4a2+4a4=0,求证:数列{a n}为“M-数列”;(2)已知数列{b n}满足: b1=1,1Sn =2b n−2b n+1,其中S n为数列{b n}的前n项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M-数列”{c n} (n∈N∗),对任意正整数k,当k≤m时,都有c k⩽b k⩽c k+1成立,求m的最大值.三、数学Ⅱ(附加题)(每题10分)【选做题】本题包括21、22、23三题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.(共3题;共30分)21.A.[选修4-2:矩阵与变换]已知矩阵A=[31 22](1)求A2;(2)求矩阵A的特征值.22.在极坐标系中,已知两点A(3,π4),B(√2,π2),直线l的方程为ρsin(θ+π4)=3.(1)求A,B两点间的距离;(2)求点B到直线l的距离.23.设x∈R,解不等式|x|+|2x−1|>2.四、【必做题】第24题、第25题,每题10分,共计20分.(共2题;共20分)24.设(1+x)n=a0+a1x+a2x2+⋯+a n x n,n⩾4,n∈N∗.已知a32=2a2a4.(1)求n的值;(2)设(1+√3)n=a+b√3,其中a,b∈N∗,求a2−3b2的值.25.在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},C n={(0,2),(1,2),(2,2),⋯,(n,2)},n∈N∗.令M n=A n∪B n∪C n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).答案解析部分一、填空题:本大题共14小题,每小题5分,共计70分.1.【答案】{1,6}【考点】交集及其运算【解析】【解答】∵集合A={−1,0,1,6},B={x|x>0,x∈R},借助数轴得:A∩B={1,6}【分析】根据已知条件借助数轴,用交集的运算法则求出集合A∩B。
江苏省2019届高三百校联合调研测试(一)数学试题及答案
0.0005300035000.00030.0004200015000.00020.0001400025001000月收入(元)频率/组距江苏省2019届高三百校联合调研测试(一)数学试题本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.选修测试历史的而考生仅需做第I 卷,共160分,考试用时120分钟.选修测物理的考生需做第I 卷和第II 卷,共200分考试用时150分钟.第I 卷(必做题 共160分)一、填空题:本大题共14小题,每小题5分,共70分.把答案填在题中横线上。
1.已知集合{|21}x A x =>,{|1}B x x =<,则A B = .2.复数iia 212+-(i 是虚数单位)是纯虚数,则实数a 的值为 . 3.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出 人.4.某算法的伪代码如图所示,若输出y 的值为1,则输入x 的值为 .5.已知双曲线2214x y b-=的右焦点为(3,0),则该双曲线的渐近线方程为________.6.已知2sin 3cos 0θθ+=,则tan 2θ=________.7.已知正三棱柱底面边长是2,,外接球的表面积是16π,则该三棱柱的侧棱长 .8. 在R 上定义运算⊙:a ⊙b =ab +2a +b ,则不等式x ⊙(x -2)<0的解集是 . 9.投掷一枚正方体骰子(六个面上分别标有1,2,3,4,5,6),向上的面上的数字记为a ,又()n A 表示集合的元素个数,{}2||3|1,A x x ax x R =++=∈,则()4n A =的概率为10.函数1()2sin(),[2,4]1f x x x xπ=-∈--的所有零点之和为 .11.如图,PQ 是半径为1的圆A 的直径,△ABC 是边长为1的正三角形,则Read xIf x ≤0 Then y ←x +2 Elsey ←log 2014x End If Print y (第4题)CQ BP ∙的最大值为 .12. 已知数列{}n a 的首项1a a =,其前n 和为n S ,且满足213(2)n n S S n n -+=≥.若对任意的*n N ∈,1n n a a +<恒成立,则a 的取值范围是 .13. 已知圆22:(2)1C x y -+=,点P 在直线:10l x y ++=上,若过点P 存在直线m 与圆C 交于A 、B 两点,且点A 为PB 的中点,则点P 横坐标0x 的取值范围是 .14.记实数12,,,n x x x 中的最大数为12max{,,,}n x x x ,最小数为12min{,,,}n x x x .已知实数1x y ≤≤且三数能构成三角形的三边长,若11max ,,min ,,x x t y y x y x y ⎧⎫⎧⎫=⋅⎨⎬⎨⎬⎩⎭⎩⎭,则t 的取值范围是 .二、解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)已知(3,cos())a x ω=-,(sin(b x ω=,其中0ω>,函数()f x a b =⋅的最小正周期为π.(1)求()f x 的单调递增区间;(2)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c.且()2A f =,a =,求角A 、B 、C 的大小.16.(本小题满分14分)如图,在三棱锥P ABC -中,PA PC ⊥,AB PB =,,E F 分别是PA ,AC 的中点. 求证:(1)EF ∥平面PBC ; (2)平面BEF ⊥平面PAB .17. (本小题满分14分)某音乐喷泉喷射的水珠呈抛物线形,它在每分钟内随时间t (秒)的变化规律大致可用22(14sin )20(sin )6060t t y x x ππ=-++(t 为时间参数,x 的单位:m )来描述,其中地面可作为x 轴所在平面,泉眼为坐标原点,垂直于地面的直线为y 轴。
江苏省2019届五月百校联考数学试卷数学试卷含答案
江苏省2019届五月百校联考数学试卷数学试卷考生注意:1.本试卷共200分.考试时间150分钟.2.请将各题答案填写在答题卡上.3.本试卷主要考试内容:高考全部内容.一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上.1.设全集U R =,集合{}2|20A x x x =-<,{|0}B x x =>,则集合()A CuB ⋂=______.2.设复数z 满足(2)12z i i +=-(i 为虚数单位),则z 的模为______.3.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线经过点(1,2),则该双曲线的离心率为_______. 4.各项均为正数的等比数列{}n a 中,n S 为其前n 项和,若31a =,且522S S =+,则公比q 的值为_____.5.下表是关于青年观众的性别与是否喜欢综艺“奔跑吧,兄弟”的调查数据,人数如下表所示:现要在所有参与调查的人中用分层抽样的方法抽取n 个人做进一步的调研,若在“不喜欢的男性青年观众”的人中抽取了8人,则n 的值为______.6.根据如图所示的伪代码,输出I 的值为______.7.甲,乙两队参加关于“一带一路”知识竞赛,甲队有编号为1,2,3的三名运动员,乙队有编号为1,2,3,4的四名运动员,若两队各出一名队员进行比赛,则出场的两名运动员编号相同的概率为______.8.函数()ln 32x x y =-的定义域为______.9.设,x y 满足约束条件22010210x y x y x y +-≤⎧⎪--≤⎨⎪++≥⎩,则12x z y +=+的取值范围是______. 10.将函数()sin f x x =的图象向右平移3π个单位长度后得到()y g x =函数的图象,则函数()()f x g x 的最大值为______.11.如图,在直四棱柱1111ABCD A B C D -,中,底面ABCD 是平行四边形,点E 是棱1BB 的中点,点F 是棱1CC 上靠近Q 的三等分点,且三棱锥1A AEF -的体积为2,则四棱柱1111ABCD A B C D -,的体积为____. 12.ABC △中,AB AC ⋅=u u u r u u u r M 是AB 的中点,点N 满足2AN NC =u u u r u u u r ,则BN CM ⋅u u u r u u u u r 的最大值是______.13.在平面直角坐标系xOy 中,已知圆22:(1)1C x y +-=及点A ,设点P 是圆C 上的动点,在ACP △中,若ACP ∠的角平分线与AP 相交于点(,)Q m n的取值范围是_______.14.已知函数211,0()62ln ,0a x x f x x x x x ⎧++<⎪=⎨⎪->⎩,若关于z 的方()()0f x f x +-=在定义域上有四个不同的解,则实数a 的取值范围是_______.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说朋、证明过程或演算步骤.15.如图,四棱锥P ABCD -的底面ABCD 是正方形,PAD △为等边三角形,,M N 分別是, AB AD 的中点,且平面PAD ⊥平面ABCD .(1)证明:CM ⊥平面PNB ;(2)设点E 是棱PA 上一点,若PC P /平面DEM ,求:PE EA 的值.16.在ABC △中,4ABC π∠=,D 是边BC 上一点,且5AD =,35ADC ∠=.(1)求BD 的长;(2)若ABC △的面积为14,求AC 的长.17.如图,已知椭圆22221(0)x y a b a b +=>>经过点2⎛ ⎝⎭,且离心率12e =,过右焦点F 且不与坐标轴垂直的直线l 与椭圆C 相交于,M N 两点.(1)求椭圆C 的标准方程;(2)设椭圆C 的右顶点为A ,线段MN 的中点为H ,记直线, , OH AM AN 的斜率分别为012,,k k k ,求证:120k k k +为定值. 18.如图,某市一学校H 位于该市火车站O 北偏东45︒方向,且OH =,已知, OM ON 是经过火车站O 的两条互相垂直的笔直公路,及圆弧CD 都是学校道路,其中CE OM P ,DF ON P ,以学校H 为圆心,半径为2km 的四分之一圆弧分别与, CE DF 相切于点, C D .当地政府欲投资开发AOB △区域发展经济,其中,A B 分别在公路, OM ON 上,且AB 与圆弧CD 相切,设OAB d ∠=,AOB △的面积为2Skm ..(1)求S 关于0的函数解析式;(2)当θ为何值时,AOB △面积S 为最小,政府投资最低?19.已知函数2()2(3)2ln f x x a x a x =+-+,其中a ∈R.。
2019年江苏省百校大联考高三数学试卷含附加题(含答案)
江苏省2019年百校大联考高三数学试卷含附加题考生注意:1.本试卷共200分。
考试时间150分钟。
2.请将各题答案填在答题卡上。
3.本试卷主要考试内容:高考全部内容。
一、填空题:本大题共14小题,每小题5分,共计70分。
请把答案填写在答题卡相应位置.......上.。
1.已知{}0,2,4,6A =,{}2,34,5B =,,则A B =I .2.若复数(1i)(1i)z a =+-(i 为虚数单位)为纯虚数,则实数a = . 3.某校对全校男女学生共1600名进行健康调查,选用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数为 人. 4.根据如图所示的伪代码,最后输出的S 的值为 .5.某路口一红绿灯东西方向的红灯时间为45s ,黄灯时间为3s ,绿灯时间为60s .从西向东行驶的一辆公交车通过该路口,遇到红灯的概率为 .6.已知实数x ,y 满足132y x x x y ≤-⎧⎪≤⎨⎪+≥⎩,则y x 的最大值是 .7.如图所示的四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 是矩形,2AB =,3AD =,点E 为棱CD 上一点,若三棱锥E PAB -的体积为4,则PA 的长为 .8.已知函数2,1(),1x x x f x x x ⎧-≥=⎨<⎩ ,则不等式2()f x f x ⎛⎫< ⎪⎝⎭的解集是 .9.双曲线的两个焦点为1F ,2F ,以12F F 为边作正方形12F F MN ,且此双曲线恰好经过边1F N 和2F M 的中点,则此双曲线的离心率为 .10.已知平行于x 轴的直线与函数()sin (0π)f x x x =<<分别交于点M ,N ,设点(π,0)A ,梯形OMNA 的面积为S (O 为坐标原点).设点M 的横坐标为0x ,0π02x <<,当S 取得最大值时,00tan x x +的值为 .11.在平面直角坐标系xOy 中,圆O :221x y +=,直线l :30(0)x ay a +-=>,过直线l 上一点P 作圆O 的切线,切点为,M N ,且23PM PN =uuu r uuu r g ,则正实数a 的取值范围是 .12.在斜三角形ABC 中,112tan 0tan tan C A B++=,则t an C 的最大值是 . 13.在平面凸四边形ABCD 中,AB =,3CD =,点E 满足2DE EC =uuu r uuu r,且2AE BE ==.若85AE EC =uu u r uu u r g ,则AD BC uuu r uu u r g 的值为 .14.已知{}n a 为各项均为正整数的等差数列,127572a a +=,且存在正整数m ,使1a ,14a ,m a 成等比数列,则所有满足条件的{}n a 的公差的和为 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答.解答时应写出文字说明、证明过程或演算步骤. 15.(14分)设向量(cos ,sin )θθ=m,sin ,cos )=θθn ,3(π,π)2θ∈--,若12⋅=m n .B(1)求πsin()4θ+的值; (2)求7πcos()12θ+的值.16.(14分)如图,在三棱柱111ABC A B C -中,D 为棱BC 的中点,AB BC ⊥,1BC BB ⊥,11AB A B ==,1BB(1)证明:1A B P 平面1AC D ; (2)证明:1A B ⊥平面ABC .17.(14分)已知数列{}n a 是各项均为正数的等比数列,数列{}n b 为等差数列,且111b a ==,331b a =+,557b a =-.(1)求数列{}n a 与{}n b 的通项公式; (2)求数列{}n n a b 的前n 项和n A ;(3)设n S 为数列{}2n a 的前n 项和,若对于任意n *∈N ,有123n b n S t +=⋅,求实数t 的值.18.(16分)如图所示,有一块镀锌铁皮材料ABCD ,其边界AB ,AD 是两条线段,4AB =米,3AD =米,且AD AB ⊥.边界CB 是以AD 为对称轴的一条抛物线的一部分;边界CD 是以点E 为圆心,2EC =米为半径的一段圆弧,其中点E 在线段AD 上,且CE AD ⊥.现在要从这块镀锌铁皮材料ABCD 中裁剪出一个矩形PQAM (其中点P 在边界BCD 上,点M 在线段AD 上,点Q 在线段AB 上),并将该矩形PQAM 作为一个以PQ 为母线的圆柱的侧面,记该圆柱的体积为V (单位:立方米).(1)若点P 在边界BC 上,求圆柱体积V 的最大值; (2)如何裁剪可使圆柱的体积V 最大?并求出该最大值.19.(16分)在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b+=>>的上、下顶点分别为A ,B ,点A 到焦点的距离为2,右准线方程为x = (1)求椭圆方程;(2)点C 是椭圆上异于A ,B 的任意一点,过点C 作CD y ⊥轴于D ,E 为线段CD 的中点.直线AE 与直线1y =-交于点F ,点G 为线段BF 的中点.求∠OEG 的大小;(3)点,,P M N 为椭圆上三点,且,PM PN 的斜率之积为14-,求,M N 的横坐标之和. 20.(16分)设函数32()ln(1)f x ax x b x =-++,其中0b ≠. (1)若0a =,12b =,求()f x 在[]1,3上的最大值;(2)若23a =-,()f x 在定义域内为减函数,求实数b 的取值范围; (3)是否存在最小的正整数N ,使得当n ≥N 时,不等式311ln n n n n+->恒成立.高三数学试卷附加题21.(10分)已知矩阵1101A ⎡⎤=⎢⎥-⎣⎦,0614B ⎡⎤=⎢⎥-⎣⎦.若矩阵C 满足AC B =,求矩阵C 的特征值和相应的特征向量.22.(10分)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是,3x t y t =⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,求直线l 被圆C 截得的弦长.23.(10分)如图,在三棱锥A BCD -中,△ABD ,△B C D 都是边长为2的等边三角形,E 为BD 的中点,且AE ⊥平面BCD ,F 为线段AB 上一动点,记BFBAλ=. (1)当13λ=时,求异面直线DF 与BC 所成角的余弦值;(2)当CF 与平面ACD 所成角的正弦值为10时,求λ的值.24.(10分)设n 为正整数,定义11()k k k k k n kn k k n P x x C x C x C ++=++⋅⋅⋅+,其中1k n ≤≤.(1)求220(1)P 的值;(2)当2k n ≤≤时,证明:111(1)()()k k n kn n n x P x xP x x C -++-=-.(3)求21()2n n P 的值.高三数学试卷参考答案一、填空题:本大题共14小题,每小题5分,共计70分。
2019届高三第三次全国大联考(江苏卷)数学试题(解析版)
2019届高三第三次全国大联考(江苏卷)数学试题一、填空题1.若复数,其中是虚数单位,则______________.【答案】【解析】直接由复数的运算化简为a+bi(a,b∈R)的形式,则答案可求.【详解】,则.故答案为.【点睛】本题考查复数代数形式的乘法运算,考查了复数的代数表示法及其几何意义,是基础题2.已知集合,,那么=______________.【答案】【解析】先化简集合A,再根据交集的运算求解即可.【详解】由题意可知,,又,故.故答案为.【点睛】本题考查列举法,描述法及交集的定义,考查简单二次函数的值域,是基础题.3.在学校的春季运动会上,一个小组的5位学生的立定跳远的成绩如下:(单位:米),则这5位学生立定跳远成绩的中位数为______________米.【答案】2.1【解析】将这5位学生的立定跳远成绩按从小到大的顺序排列,由中位数的定义即可求解【详解】将这5位学生的立定跳远成绩按从小到大的顺序排列为,故这5位学生立定跳远成绩的中位数为2.1米,【点睛】本题考查中位数的定义,考查基本概念,是基础题4.运行下面的程序框图,如果输入,则输出的的值为______________.【答案】【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,循环可得结论.【详解】第1次循环,;第2次循环,;第3次循环,,输出.故答案为13.【点睛】本题考查程序框图,执行框图认真计算找到循环规律是关键,是基础题5.不等式的解集为______________.(用区间形式表示)【答案】【解析】由对数函数的单调性去掉对数符号得x的不等式求解即可【详解】原不等式等价于,解得,【点睛】本题考查对数函数的性质,解二次不等式,考查计算能力,注意定义域,是易错题6.已知正六边形的边长为1,在这6个顶点中任意取2个不同的顶点得到线段,则的概率为______________.【答案】【解析】列举在这6个顶点中任意取2个不同的顶点得到15条线段,由古典概型求解即可【详解】由已知得,,,在这6个顶点中任意取2个不同的顶点得到以下15条线段:A1A2,A1A3,A1A4,A1A5,A1A6,A2A3,A2A4,A2A5,A2A6,A3A4,A3A5,A3A6,A4A5,A4A6,A 5A6,其中满足的有以下6条线段:A1A3,A1A5,A2A4,A2A6,A 3A5,A4A6,根据古典概型的计算公式得,的概率为.故答案为.【点睛】本题考查古典概型,考查线段长度及正六边形的简单性质,是基础题7.现有橡皮泥制作成的圆柱和圆锥各一个,已知它们的底面半径都为r,高都为2,现在把它们重新捏成一个实心球体,其半径也为r(不计捏合过程中的损耗),则这个实心球体的表面积为______________.【答案】【解析】先求圆柱和圆锥的体积之和,利用球与其等体积即可求解【详解】由已知得圆柱和圆锥的体积之和为,把它们重新捏成一个半径也为r的实心球体的体积为,所以,所以,故这个实心球体的表面积为.故答案为.【点睛】本题考查柱,锥,球的表面积和体积公式,熟记体积公式准确计算是关键,是基础题8.若矩形的长和宽分别为,其对角线的长为5,则该矩形的周长的最大值为______________.【答案】【解析】由题得利用基本不等式求解即可【详解】由已知得,,所以,因为,所以,所以,当且仅当时取等号,所以该矩形的周长的最大值为. 故答案为.【点睛】本题考查基本不等式求最值,考查计算能力,是基础题,注意等号成立9.已知双曲线的方程为(a>0,b>0),以原点为圆心且过双曲线的焦点的圆弧被双曲线四等分,则双曲线离心率的平方为______________.【答案】【解析】由题意可设双曲线与圆的一个交点为,由结合点在双曲线上求得a,c的关系式求解即可【详解】由题意可设双曲线与圆的一个交点为,则(其中为双曲线的半焦距),所以,由,整理得,即,解得或,又 所以双曲线的离心率的平方为,故答案为.【点睛】本题考查双曲线的几何性质,圆与双曲线的交点,考查计算能力,是基础题10.已知曲线Γ上的点到(2,0)的距离比到直线5x =-的距离小3,直线1l 与曲线Γ交于),,(11y x M 22(,)N x y 两点,点3344(,),(,)P x y Q x y 在曲线Γ上,若1234,,,x x x x 均不相等,且MP NQ k k =-,则MN NP PQ QM k k k k +++=______________. 【答案】0 【解析】先求曲线Γ的方程,再求MN 及NP,NQ ,PQ,QM,MP 的斜率,由MP NQ k k =-得12340y y y y +++=,进而得QM NP k k =-,同理得MN PQ k k =-则可求 【详解】因为曲线Γ上的点到(2,0)的距离比到直线5x =-的距离小3,所以曲线Γ上的点到(2,0)的距离与到直线2x =-的距离相等,故曲线2:8y x Γ=,则21212221122181188MN y y y y k x x y y y y --===-+-,同理可得238NP k y y =+,348PQ k y y =+,418QM k y y =+,138MP k y y =+,248NQ k y y =+,由于MP NQ k k =-,则132488y y y y =-++,可得12340y y y y +++=,由此可得412388y y y y =-++,即QM NP k k =-,同理有123488y y y y =-++,即MN PQ k k =-,故0MN NP PQ QM k k k k +++=,故答案为0. 【点睛】本题考查抛物线的定义,考查直线的斜率及抛物线的应用,考查计算能力,是中档题11.将函数的图象向左平移个单位后,得到函数的图象,则函数在上的值域为______________.【答案】【解析】化简整理得g(x)进而得f (x )的解析式,利用三角函数图像和性质求值域即可 【详解】 依题意,,则,当时,,,则,故答案为.【点睛】本题考查二倍角公式,三角平移变换,三角函数的值域,熟记公式,准确化简是关键,是中档题12.如图,0,||2,||2OA OB OA OB ⋅===,点C 是线段AB 上的一个动点,D 为OB 的中点,则DC OC ⋅的最小值为______________.【答案】12【解析】选取,OA OB 为基向量,设(1)OC OA OB λλ=+-得1=[()][(1)]2DC OC OA OB OA OB λλλλ⋅+-⋅+-,利用数量积运算结合二次函数求最值即可选取,OA OB 为基向量,设(1)OC OA OB λλ=+-,其中10≤≤λ,因为D 为OB 的中点,所以2OBOD =,所以1()2DC DO OC OA OB λλ=+=+-,所以21=[()][(1)]6622DC OC OA OB OA OB λλλλλλ⋅+-⋅+-=-+=2116()22λ-+,因为10≤≤λ,所以当1=2λ时,DC OC ⋅取得最小值,为12,故答案为12.【点睛】本题考查平面向量基本定理,数量积运算,二次函数的值域,考查计算能力,是中档题 13.在锐角三角形中,内角,,的对边分别是,,,且满足,则的取值范围为______________.【答案】【解析】由二倍角公式结合正弦定理得,求得,利用锐角三角形得,利用三角函数性质求范围即可【详解】 由题中条件可得,根据正弦定理可得,即,所以,因为,所以,因为,所以,在锐角三角形中,由,得,所以,所以.故答案为.本题考查正弦定理,三角函数恒等变换化简,三角函数的图像及性质应用,考查计算能力,是中档题,注意锐角三角形的应用是易错点14.若存在实数,使函数有3个不同的零点,则实数的取值范围为______________.【答案】【解析】化简,讨论a的取值,转化为函数与直线有3个不同的交点,求h(x)的最值列a的不等式求解即可【详解】令,若,显然不合题意;当时,若函数有3个不同的零点,即函数与直线有3个不同的交点,则,即存在,使成立,令,求导可得,当时,,单调递减,所以,所以;当时,若函数有3个不同的零点,即函数与直线有3个不同的交点,则,即存在,使成立,令,求导可得,当时,,单调递减,所以,所以.综上所述,,故答案为.【点睛】本题考查分段函数的图像及性质,考查函数零点问题,考查不等式恒成立问题,考查转化化归能力,是中档题二、解答题15.如图,在三棱锥ABC P -中,PA AB =,,M N 分别为棱,PB PC 的中点,平面PAB ⊥平面PBC .求证:(1)BC ∥平面AMN ; (2)平面AMN ⊥平面PBC .【答案】(1)详见解析;(2)详见解析.【解析】(1)证得MN ∥BC ,由线面平行的判定定理证明即可;(2)证得AM ⊥平面PBC . 由面面垂直的判定定理证明即可 【详解】(1)∵,M N 分别为棱,PB PC 的中点,∴MN ∥BC 又BC Ë平面AMN ,∴BC ∥平面AMN . (2)∵PA AB =,点M 为棱PB 的中点, ∴AM PB ⊥,又平面PAB ⊥平面PBC ,平面PAB平面PBC PB =,∴AM ⊥平面PBC .∵AM ⊂平面AMN ,∴平面AMN ⊥平面PBC .【点睛】本题考查线面平行,面面垂直的判定,考查定理,是基础题16.在中,内角的对边分别为,且.(1)求角的大小;(2)若,,求的面积.【答案】(1);(2).【解析】(1)由两角和的正切得,进而得,即可求解C; (2),展开整理得,得,由正弦定理求a,则面积可求【详解】(1)因为,所以,所以,所以,因为,所以,所以.(2)由及得,即,化简得,即.因为及,所以由正弦定理得,得,所以的面积.【点睛】本题考查两角和的正切公式,正弦定理解三角形,考查面积公式,熟记公式,准确计算是关键,是中档题17.某型号汽车的刹车距离s (单位:米)与刹车时间t (单位:秒)的关系为32510(0)s t k t t t =-⋅++>,其中k 是一个与汽车的速度以及路面状况等情况有关的量.(注:汽车从刹车开始到完全静止所用的时间叫做刹车时间,所经过的距离叫做刹车距离.)(1)某人在行驶途中发现前方大约10米处有一障碍物,若此时k =8,紧急刹车的时间少于1秒,试问此人是否要紧急避让?(2)要使汽车的刹车时间不小于1秒,且不超过2秒,求k 的取值范围. 【答案】(1)应紧急避让;(2)61[8,]4. 【解析】(1)求汽车的瞬时速度215161v s't t ==-+,由'0s =,得115t =,计算s 即可判断;(2)汽车的瞬时速度为v s'=,得 21521v t kt =-+,汽车静止时0v =, 问题转化为215210t kt -+=在[1,2]t ∈内有解,分离k 求导求最值即可 【详解】(1)当8=k 时,325810s t t t =-++,这时汽车的瞬时速度为215161v s't t ==-+, 令'0s =,解得1t =(舍)或115t =, 当115t =时,106752210>=s , 故有撞击障碍物的危险,应紧急避让.(2)汽车的瞬时速度为v s'=,所以21521v t kt =-+,汽车静止时0v =, 故问题转化为215210t kt -+=在[1,2]t ∈内有解,即21511215t k t t t+==+在[1,2]t ∈内有解,记1()15f t t t =+,21()15f 't t =-,[1,2]t ∈∵,∴21()150f 't t=->,∴()f t 单调递增,∴()f t 在区间]2,1[上的取值范围为61[16,]2, ∴611622k ≤≤,即6184k ≤≤, 故k 的取值范围为61[8,]4.【点睛】本题考查导数的物理意义及实际应用,考查导数与函数的最值,注意运算的准确是基础题18.已知椭圆的离心率为,上顶点为,右焦点为,点是椭圆上的一点,轴上到,两点距离之和最小的点为右焦点.(1)求椭圆的标准方程;(2)过原点作直线交椭圆于两个不同的点,,若点是椭圆上一点,三角形是以为顶角的等腰三角形,且,求直线的方程.【答案】(1);(2)或.【解析】(1)由离心率为,得,设方程为,由距离和最小转化为,,三点共线,得T 坐标,代入方程求c 即可求方程;(2)设直线的方程为,与椭圆联立得,进而得,设直线的方程为.同理得,由得k 值则直线方程可求 【详解】(1)设椭圆的焦距为,∵椭圆的离心率为,∴,∴,∴椭圆C的方程为,设椭圆C的下顶点为,∵轴上到,两点距离之和最小的点为右焦点,∴,,三点共线,∴,故,又为椭圆C上的一点,∴,解得,故,所以椭圆的标准方程为.(2)设过原点且与直线垂直的直线为,∵三角形是以为顶角的等腰三角形,∴点为直线与椭圆的交点.当直线的斜率不存在时,点为椭圆的左顶点或右顶点,此时,,,,∴直线的斜率存在,设直线的方程为,当时,点为椭圆的上顶点或下顶点,此时,,,故,故可得直线的方程为.设,由消去得,,根据根与系数的关系得,∴,故,同理由得,∵,∴,解得,故直线的斜率为或.所以直线l的方程为或.【点睛】本题考查椭圆方程,考查直线与椭圆的位置关系及弦长公式,考查转化化归能力,准确计算是关键,是中档题19.设函数,其中为自然对数的底数.(1)求的极小值;(2)当时,求证:.【答案】(1);(2)详见解析.【解析】(1)判断其正负确定单调性得极小值;(2),构造函数,求导求其最小值大于1即可【详解】(1)易知函数的定义域为,令得所以当时,,当时,,所以在处取得极小值,又,所以的极小值为;(2),令,则,令,则,当时,,所以在上单调递增,所以,即,所以在上单调递增,所以,即.【点睛】本题考查函数极值,函数的最值,构造函数,准确计算是关键,是基础题20.设数列的前项积为.若对任意正整数,总存在正整数,使得,则称数列是“R数列”.(1)若数列的前n项积(),证明:是“R数列”;(2)设是等比数列,其首项,公比为.若是“R数列”,求的值;(3)证明:对任意的等比数列,总存在两个“R数列”和,使得()成立.【答案】(1)详见解析;(2)或;(3)详见解析.【解析】(1)由,求,,满足即可证明;(2)由,得,进而,讨论①当时和②当,分别求得q;(3)设,令,得,再利用定义证明,为“R”数列.【详解】(1)因为数列的前n项积,所以,当时,,所以,对任意正整数,令,满足,所以是“R数列”;(2)因为是等比数列,其首项,公比为,所以,所以,因为是“R数列”,所以对任意正整数,总存在正整数,使得,即对任意正整数,总存在正整数,使得,即,①当时,得,且.②当(显然)时,得,且.所以公比或;(3)对任意的等比数列,设公比为,则,令,则,下面证明:为“R”数列.因为所以,取正整数,得,所以为“R”数列,同理可以证明为“R”数列.所以对任意的等比数列,总存在两个“R数列”和,使得()成立.【点睛】本题考查等比数列的通项公式,等差数列求和,利用新定义证明有关命题,熟练运用定义是关键,是中档题21.已知矩阵,若矩阵A属于特征值的一个特征向量为,属于特征值1的一个特征向量为,求矩阵A.【答案】【解析】由题列a,b,c,d的方程组求解即可得【详解】因为矩阵A属于特征值的一个特征向量为,所以,得,①因为矩阵A属于特征值1的一个特征向量为,所以,得②①②联立,解得,所以.【点睛】本题考查矩阵的有关计算,考查特征向量及特征向量,熟记公式准确计算是关键,是基础题22.在平面直角坐标系中,曲线的参数方程是(θ为参数),以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.若直线与曲线相交于不同的两点A,B,且,求的值.【答案】【解析】化曲线C为普通方程,直线l为参数方程,联立利用t的几何意义求解即可【详解】因为,所以直线的直角坐标方程为,其倾斜角为,过点,所以直线的参数方程为(为参数),即(为参数).曲线的参数方程(θ为参数)化为普通方程为,将代入曲线的方程,整理得,,设点,对应的参数分别为,则,所以.【点睛】本题考查参数方程与普通方程的互化,极坐标与普通方程的互化,直线参数方程的几何意义,准确计算是关键,是基础题 23.函数.若关于x 的不等式有解,求实数的取值范围. 【答案】【解析】化简,求得f (x )的最小值,转化求解t 即可 【详解】 易得,由-5<-4x+3<5,得,因为关于x 的不等式有解,所以,即,解得或.故实数的取值范围是.【点睛】本题考查绝对值不等式的化简与最值,考查不等式有解问题,准确转化是关键,是基础题24.在棱长为1的正方体1111ABCD A B C D -中,H 是线段1DD 上的动点,若G 为正方形11B BCC 的中心. (1)当113DH DD =时,求1B H 与DG 所成角的余弦值; (2)当1DH D H =时,求直线DG 与平面11AC H 所成角的正弦值.【答案】(16;(2)16.【解析】(1)建立空间直角坐标系,设1B H 与DG 所成的角为α,求向量1,B H DG ,利用异面直线所成角公式求解即可;(2)求平面11AC H 的一个法向量11(,,1)22n =--及11(,1,)22DG =,由线面角公式求解即可; 【详解】以D 为坐标原点,直线1,,DA DC DD 分别为,,x y z 轴,建立空间直角坐标系(如图所示).(1)由已知得,1(1,1,1)B ,1(0,0,)3H ,11(,1,)22G ,所以12(1,1,)3B H =---,11(,1,)22DG =,设1B H 与DG 所成的角为α,所以1111|1|||cos ||||B H DG B H DG α---⋅=== (2)由已知得,11(1,0,1),(0,0,)2A H ,1(0,1,1)C ,11(,1,)22G , 所以11(,1,)22DG =,11(1,0,)2A H =--,.B 设平面11AC H 的法向量是(,,)n a b c =,则1110,0n A H n AC ⋅=⋅=,所以0,20,c a a b ⎧--=⎪⎨⎪-+=⎩取1c =,得1212a b ⎧=-⎪⎪⎨⎪=-⎪⎩,则11(,,1)22n =--为平面11AC H 的一个法向量. 设直线DG 与平面11AC H 所成的角为β, 所以1||||1sin 6||||3DG n DG n β-⋅===. 故直线DG 与平面11AC H 所成的角的正弦值为16. 【点睛】 本题考查空间角的向量求法,熟记公式,熟练计算是关键,是基础题25.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为.现有甲、乙两人从袋中轮流、不放回地摸取1球,甲先取,乙后取,然后甲再取……直到袋中的球取完即终止.若摸出白球,则记2分,若摸出黑球,则记1分.每个球在每一次被取出的机会是等可能的.(1)求袋中白球的个数;(2)用ξ表示甲,乙最终得分差的绝对值,求随机变量的概率分布列及数学期望E .【答案】(1)3;(2)x 的概率分布列为:.【解析】试题分析:(1)这属于古典概型问题,从7个球中任取两个,共有种取法,而如果其中有个白球,则任取两个白球的取法为,由题意有,解之得;(2)首先要知道随机变量的所有可能取值,由(1)可知,袋中有3个白球、4个黑球,甲四次取球可能的情况是:4个黑球、3黑1白、2黑2白、1黑3白.相应的分数之和为4分、5分、6分、7分;与之对应的乙取球情况:3个白球、1黑2白、2黑1白、3黑,相应分数之和为6分、5分、4分、3分;即x 可能的取值是0,2,4.,再利用公式计算可得分布列和期望.试题解析:(1)设袋中原有n个白球,由题意,知,解之得n=3或n=-2(舍去),即袋中原有3个白球;(2)由(1)可知,袋中有3个白球、4个黑球。
2019-2020学年江苏省“百校大联考”高三(上)第二次考试数学试卷(10月份)-普通用卷
2019-2020学年江苏省“百校大联考”高三(上)第二次考试数学试卷(10月份)副标题一、填空题(本大题共14小题,共70.0分)1.已知集合A={1,2,4},B={a,a+1},若A∩B={2},则实数a的值为______.2.函数y______.3.“实数m=-1”是“向量______的条件(从“充分不必要”“必要不充分”“充分必要”“既不充分也不必要”中选择恰当的个填空).4.0,+∞)上是单调递减函数,则整数m的取值为______.5.tan(π-α)的值是______.6.设向量,,均为单位向量,且______.7.个单位长度后关于原点对称,=______.8.已知函数______.9.在△ABC中,设a,b,c分别为角A,B,C的对边,记△ABC的面积为S,cos C的值为______.10.设函数f(x)=e x-e-x+1,则不等式f(2x2-1)+f(x)<2的解集为______11.对任意的x∈(0,+∞a的取值范围是______.12.如图所示,P,Q两点(可与A,B两点重合)是在以AB为直径的上半圆弧上的两点,且AB=4,∠PAQ=60°______.13.已知直线l与曲线y=sin x l与曲线y=sin x的图象交于点B(β,sinβ),若α-β=π,则tanα的值为______.14.4个不等的实根,则实数a的取值集合为______.二、解答题(本大题共6小题,共90.0分)15.已知m为实常数.命题p:∃x∈(1,2),x2+x-m=0;命题q:函数f(x)=ln x-mx在区间[1,2]上是单调递增函数.(1)若命题p为真命题,求实数m的取值范围;(2)若命题“p或q”为真命题,命题“p且q”为假命题,求实数m的取值范围.16.(1)求函数f(x)的单调递增区间;(217.在△ABC中,点D为边AB的中点.(1)若CB=4,CA=3(2△ABC的形状.18.如图,在矩形纸片ABCD中,AB=6cm,AD=12cm,在线段AB上取一点M,沿着过M点的直线将矩形右下角折起,使得右下角顶点B恰好落在矩形的左边AD边上.设折痕所在直线与BC交于N点,记折痕MN的长度为l,翻折角∠BNM为θ.(1)探求l与θ的函数关系,推导出用θ表示l的函数表达式;(2)设BM的长为xcm,求x的取值范围;(3)确定点M在何处时,翻折后重叠部分的图形面积最小.19.(1)当x∈[1.5],且a≥0时,试求函数f(x)的最小值;(2a的取值范围.20.已知函数f(x)=x3-3x2+px+q,其中p,q∈R.(1)若函数f(x)在点(1,f(1))处的切线方程为x+y-3=0,求p,q的值;(2)若函数f(x)有两个极值点x1,x2(x1<x2),证明:f(x1),p+q-2,f(x2)成等差数列;(3)若函数f(x)有三个零点0,m,n(m<n),对任意的x∈[m,n],不等f(x)≤14+p恒成立,求p的取值范围.答案和解析1.【答案】2【解析】解:∵集合A={1,2,4},B={a,a+1},A∩B={2},∴a=2,或a+1=2,当a=2时,B={2,3},A∩B={2},成立;当a+1=2时,a=1,B={1,2},A∩B={1,2},不成立;综上,实数a的值为2.故答案为:2.由集合A={1,2,4},B={a,a+1},A∩B={2},得到a=2,或a+1=2,由此能求出实数a的值.本题考查实数值的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.【答案】(1,2]【解析】解:∴0<x-1≤1,解得1<x≤2,故答案为(1,2].由函数的解析式可得0<x-1≤1,由此解得x的范围,即为所求.本题主要考查求函数的定义域,对数函数的单调性和特殊点,属于基础题.3.【答案】充分必要【解析】∴3m-(m-2)=0,解得m=-1.“实数m=-1故答案为:充分必要.利用向量共线定理、简易逻辑的判定方法即可得出.本题考查了向量共线定理、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.4.【答案】1【解析】0,+∞)上是单调递减函数,∴m2-2m<0,解得0<m<2,则整数m的取值为1,故答案为:1.根据幂函数的定义和单调性即可求出m的值.本题考查了幂函数的定义,考查函数的单调性问题,是一道基础题.5.【答案】-2【解析】解:∴-2cosα=-sinα,可得tanα=2,∴tan(π-α)=-tanα=-2.故答案为:-2.由已知利用诱导公式可得-2cosα=-sinα,根据同角三角函数基本关系式可求tanα的值,利用诱导公式化简所求即可得解.本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.6.【答案】90°【解析】解:∵θ,1+2×1×1×cosθ+1=2,求得cosθ=0,∴θ=90°,故答案为:90°.由题意利用两个向量的数量积的定义,夹角.本题主要考查用两个向量的数量积表示两个向量的夹角,两个向量的数量积的定义,属于基础题.7.【解析】得到y=sin[2(x+φ]=sin(2x+φ-此时函数关于原点对称,则φkπ,k∈Z,则φ=kπ,∵|φ|<∴当k=0时,则f(x)=sin(2x(2×)=sin根据三角函数的平移关系,求出函数的解析式,结合原点对称求出φ的值,即可.本题主要考查三角函数值的计算,结合三角函数的平移关系求出函数的解析式是解决本题的关键.8.【答案】9【解析】解:∵f+2=f()+4=f()+6=f(-)+8=sin(-)+8=9.故答案为:9.f+2=f+4=f+6=f(+8=sin(+8,由此能求出结果.本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.9.【解析】A∈(0,π=ca cos B,得tan B=,B∴cos C=-cos(A+B)=sin A sin B-cos A cos B,故答案为:利用三角形面积公式和数量积由已知条件得到角B,之后利用cos C=-cos(A+B)即可得解.此题考查了数量积和三角形面积,两角和公式等,难度不大.10.【答案】{x【解析】解:令g(x)=e x-e-x,则g(-x)=-g(x),且g(x)在R上单调递增,∵f(x)=e x-e-x+1=g(x)+1,∵f(2x2-1)+f(x)<2,∴g(2x2-1)+1+g(x)+1<2,∴g(2x2-1)+g(x)<0,∴g(2x2-1)<-g(x)=g(-x),∴2x2-1<-x,故答案为:{.构造函数g(x)=e x-e-x,则g(-x)=-g(x),且g(x)在R上单调递增,然后结合已知不等式可求.本题主要考查了利用函数的单调性求解不等式,解题的关键是构造函数g(x)且灵活利用函数的性质.11.【答案】(-∞,1)∪(2,+∞)【解析】解:对任意的x∈(0,+∞令f(x)=ln x-x,x>0,可得:f′(x)∴当0<x<1时,f′(x)>0;当x>1时,f′(x)<0.∴f(x)≤f(1),f(1)=-1,∴f(x)的最大值为-1.-1,解得a∈(-∞,1)∪(2,+∞).故答案为:(-∞,1)∪(2,+∞).由导数求出函数的单调区间,由单调性求出函数的最大值本题考查函数的导数的应用,考查转化思想以及计算能力.12.【答案】[0,4]【解析】,两个向量的夹角是定值,建立直角坐标系如图:当Q与B重合时,P(1是最大值,当P与A是数量积的最小值,[0,4].故答案为:[0,4].判断Q的位置以及P的位置,通过向量的数量积的表达式,然后求解数量积的范围.本题考查向量的数量积的应用,考查分析问题解决问题的能力.13.【解析】解:设y=f(x)=sin x,则f′(x)=cos x,所以l的斜率k=f′(α)=cosα,所以切线l方程为:y-sinα=cosα×(x-α),又知道直线l与曲线y=sin x的图象交于点B,所以sinβ-sinα=cosα•(β-α),因为α-β=π,所以β=α-π,所以sin(α-π)-sinα=-πcosα,即2sinα=πcosα,所以根据题意求出切线方程,又切线过B点,则B点坐标满足切线方程,再将β用α表示即可得到结果.本题考查了导数的几何意义,切线方程的求法,考查了诱导公式,属于基础题.14.【解析】设t=f(x),则t>1时,t=f(x)有1个根,当t=1时,t=f(x)有2个根当0<t<1时,t=f(x)有3个根,当t=0时,t=f(x)有1个根,4个不等的实根等价为t2-2at+a2(m∈R)有2个相异的实数根t1,t2满足的情况如下:,a或综上,则实数a的取值集合为(,)将函数f(x)表示为分段函数形式,判断函数的单调性和极值,利用换元法将方程转化为一元二次方程,利用一元二次函数根与系数之间的关系进行求解即可.本题主要考查函数与方程的应用,利用换元法转化为一元二次函数,利用数形结合以及根与系数之间的关系是解决本题的关键.综合性较强,有一定的难度.15.【答案】解:(1)命题p:∃x∈(1,2),x2+x-m=0,p真,可得m=x2+x在x∈(1,2)有解,由y=x2+x在x∈(1,2)递增,可得x2+x的值域为(2,6),则2<m<6,可得m的范围是(2,6);(2)命题q:函数f(x)=ln x-mx在区间[1,2]上是单调递增函数,q真,可得f′(x)m≥0在[1,2]恒成立,即有m[1,2]恒成立,由1],可得m命题“p或q”为真命题,命题“p且q”为假命题,可得p,q中一真一假,若p真q2<m<6;若p假q m综上可得,m的范围是(-∞,]∪(2,6).【解析】(1)p真,可得m=x2+x在x∈(1,2)有解,运用二次函数的单调性,即可得到所求范围;(2)考虑q真,可得f′(x)m≥0在[1,2]恒成立,运用参数分离和反比例函数的单调性,求得最小值,可得m的范围,由复合命题的真值表可得p,q中一真一假,得到m的不等式组,解不等式即可得到所求范围.本题考查复合命题的真假,以及方程有解的条件和含参函数的单调性,考查转化思想和分类讨论思想,化简运算能力和推理能力,属于中档题.16.【答案】解:(1)f(x),由k∈Z,k∈Z,故f(x)的增区间为[,k∈Z.(2,=,=k∈Z,,或k∈Z,,或=sin2π=0,0.【解析】(1)利用数量积得到f(x),通过三角变换化简,利用三角函数的单调区间列不等式求解即可;(2)把所给条件化为三角函数方程,求得角α,代入所求正弦值结合周期性可解.此题考查了向量数量积,三角变换,三角求值等,难度不大.17.【答案】解:(1)∵D为AB的中点,=;(ⅡAC|2化简得|AB|2=|AC|2+|BC|2,故△ABC为直角三角形.【解析】(1)利用D(2)把,再利用数量积结合余弦定理转化为三边关系,确定三角形为直角三角形.此题考查了向量数量积,余弦定理等,难度适中.18.【答案】解:(1)设顶点B翻折到AD边上的点B′,则由题得BM=B′M=l sinθ,AM=l sinθcos2θ,因为l sinθ+l sinθcos2θ=6,所以l即l与θ的函数表达式为l由题意得θ∈(0l sinθ≤6,所以,又由l cosθ≤12,可知θ∈;(2)x=l(1+tan2θ),当θ∈时,tanθ∈1],解得x≤6,则x的取值范围是6],;(3)S设g(θ)=sinθcos2θ,则g′(θ)=cosθ(cos2θ-2sin2θ)=cosθ(1-3sin2θ)=cosθ()(),当g′(θ)=0时,θ=θ1,当g′(θ)>0时,sinθ<g(θ当g′(θ)<0时,sinθg(θ)单调递减,此时θ所以,g(θ)≤g(θ1),S≥BM=3(1+tan2θ)=2,所以,当BM=2时,翻折后重合部分的三角形面积最小.【解析】(1)由题得BM=B′M=l sinθ,AM=l sinθcos2θ,根据AB=AM+BM,列出l sinθ+l sinθcos2θ=6,所以l(2)x=l(1+tan2θ),根据θ范围求出x范围即可;(3)S本题考查三角函数模型的是实际应用,涉及求解析式,利用导数求最值等知识点,属于中档题.19.【答案】(1)①当a=0时,,f(x)单调递减,∴f(x)min=f(5)=-5+ln5,②a>0时,f'(x)≤0,f(x)单调递减,综上:当a≥0(2)①当a=-1f(x)在(0,+∞)上单调递增,所以当x>1时,f(x)+1->f(1)+1-,不符合题意,②当-1<a<0时,f(x)在(0,1)和(+∞)上单调递增,在(1减,∵-1<a<0,得,4-3+ln4+0>0,不符合题意,③当a<-1时,f(x)在(,1)上单调递减,f(x)f(1),不符合题意,④当a≥0时,f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,f(x)f(1),符合题意,综上:实数a的取值范围是[0,+∞).【解析】(1)求出f(x)的导数f'(x),得出a≥0时,f(x)在[1,5]上单调递减,求出f(x)的最小值为f(5);(2)分类讨论,求出f(x)转化为f(x)的最值问题进行求解.本题主要考查导数在研究函数的单调性和最值时的应用,分类讨论是本题的关键,属于中档题.20.【答案】解:(1)f'(x)=3x2-6x+p,由题意可知切线斜率f'(1)=-1,且f(1)=2,∴p=q=2;(2)若函数f(x)有两个极值点x1,x2(x1<x2),则x1+x2=2∴f(x1)+f(x2)==2p+2q-4=2(p+q-2),∴f(x1),p+q-2,f(x2)成等差数列;(3)由函数f(x)有三个零点0,m,n(m<n)得q=0,且x2-3x+p=0的两个根为m,n,∴f'(x)=3x2-6x+p=0有两个不等实根,不妨设为u,v(u<v),0<m<v<n,函数f(x)在[m,v]上单调递减,在[v,n]上单调递增,又f(m)=f(n)=0,则f(x)≤0≤14+p恒成立,②当p∈(-∞,0)时,m<u<0<v<n,f(x)在[u,v]上单调递减,在[m,u]和[v,n]上单调递增,又f(m)=f(n)=0,f'(u)=3u2-6u+p=0f'(u)=3u2-6u+p=0∴f(x)max=f(u)=u3-3u2+pu=u(u2-3u+p)≤14+p (*)t>3*)式化简得3<t≤6,∴-9≤p<0,【解析】(1)求出f'(x),由题意f'(1)=-1,且f(1)=2,解出即可;(2)由f'(x)=0得韦达定理,利用等差中项定义即可证出;(3)由题意有f(0)=f(m)=f(n)=0,得q=0,且f'(x)=0有两个不等实根,设为u,v,分类讨论得出f(x)的最大值,再代入到不等式进行求解.本题主要考查利用导数求函数的单调性和最值,本题中(3)计算量较大,计算时须格外小心.。
2019年3月2019届高三第一次全国大联考(江苏卷)数学卷(参考答案)
这表明 f (x) 的图象与 x 轴相切, 所以此时函数 f (x) 在(1, ) 上只有 1 个零点,是 x 2 ;(14 分) 当 a 2 或2 a 0 时, g(a) 0 ,又当 x 1或 x 时, f (x) , 所以此时函数 f (x) 在 (1, ) 上有 2 个零点,一个零点是 x 2 ,另一个零点在区间(1
故直线 BE 与平面 BDG 所成角的正弦值为 23.(本小题满分 10 分)
k (2)10 头成年牛中恰有 k 头感染 H 型疾病的概率是 g(k) C10 pk (1 p)10k ( k 0,1,2,
2
e
2
1 2
1
2
,且 b a c ,结合①式,解得c 3 , a 18 , b 9 ,
2
2
2
2
2
2 x y2 故椭圆 M 的方程为 1 .(7 分) 18 9
(2)由(1)知 F1(3,0) ,则 kAC kEF1 1 ,所以直线 AC 的方程为 y x 3 ,
数学 第 2 页(共 8 页)
检验③式,对 n 1不成立.
2(n 1) 故数列{an } 的通项公式为an n .(8 分) 3 (n 2)
19.(本小题满分 16 分) 【解析】(1)设 A(x1, y1 ),C (x2 , y2 ) , 由中点坐标公式可得 x1 x2 4 , y1 y2 2 . x2 y2 x2 y2 将 A,C 的坐标分别代入 M 的方程中得 1 1 1 , 2 2 1. a2 b2 a2 b2 y y 2 b2 2 两式相减,化简得 1 ,(3 分) x1 x2 a2 又 A, C, E, F1 四点共线, 1 y y 2b2 2 2 1 2 所以 k EF1 k AC ,所以 2b (c 2) ①. 2 a ,即 c2 x x a 又 c2 a