四川省资阳市2017年中考数学试卷(含答案解析)

合集下载

四川省资阳市高中阶段学校招生统一考试数学试卷.doc

四川省资阳市高中阶段学校招生统一考试数学试卷.doc

四川省资阳市高中阶段学校招生统一考试数学试卷全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.–3的绝对值是()A.3 B.–3 C.±3 D.92.下列计算正确的是()A.a+2a2=3a3B.a2·a3=a6C.32()a=a9D.a3÷a4=1a-(a≠0)3.吴某打算用同一大小的正多边形地板砖铺设家中的地面,则该地板砖的形状不能是()A.正三角形B.正方形C.正六边形D.正八边形4.若一次函数y=kx+b(k≠0)的函数值y随x的增大而增大,则()A.k<0 B.k>0 C.b<0 D.b>05的结果是()A.2x B.±2x C.D.±6.在数轴上表示不等式组11,21xx⎧≥-⎪⎨⎪->-⎩的解集,正确的是()7.如图,在矩形ABCD中,若AC=2AB,则∠AOB的大小是()A.30°B.45°C.60°D.90°8.按下图中第一、二两行图形的平移、轴对称及旋转等变换规律,填入第三行“?”处的图形应是()9.用a、b、c、d四把钥匙去开X、Y两把锁,其中仅有a钥匙能够打开X锁,仅有b钥匙能打开Y锁.在求“任意取出一把钥匙能够一次打开其中一把锁”的概率时,以下分析正确的是()A.分析1、分析2、分析3 B.分析1、分析2C.分析1 D.分析210.如图,已知Rt△ABC的直角边AC=24,斜边AB=25,一个以点P为圆心、半径为1的圆在△ABC内部沿顺时针方向滚动,且运动过程中⊙P一直保持与△ABC的边相切,当点P 第一次回到它的初始位置时所经过路径的长度是()A.563B.25 C.1123D.56第Ⅱ卷(非选择题共90分)二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11.甲、乙两人进行跳远训练时,在相同条件下各跳10次的平均成绩相同,若甲的方差为0.3,乙的方差为0.4,则甲、乙两人跳远成绩较为稳定的是_________(填“甲”或“乙”).12.方程组25,4x yx y-=⎧⎨+=⎩的解是_____________.13.若两个互补的角的度数之比为1∶2,则这两个角中较小..角的度数是_____________.14.如图,已知直线AD、BC交于点E,且AE=BE,欲证明△AEC≌△BED,需增加的条件可以是__________________(只填一个即可).15.若点A(–2,a)、B(–1,b)、C(1,c)都在反比例函数y=kx(k<0)的图象上,则用“<”连接a 、b 、c 的大小关系为___________________. 16.若n 为整数,且n ≤x <n +1,则称n 为x 的整数部分.通过计算301111198019801980+++个和301111200920092009+++个的值,可以确定x =11111119801981198220082009+++++的整数部分是______.三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)解方程:2103x x --=.18.(本小题满分7分)如图,已知□ABCD 的对角线AC 、BD 相交于点O ,AC =12,BD =18,且△AOB 的周长l =23,求AB 的长.19.(本小题满分8分)已知Z 市某种生活必需品的年需求量y 1(万件)、供应量y 2(万件)与价格x (元/件)在一定范围内分别近似满足下列函数关系式:y 1= –4x +190,y 2=5x –170.当y 1=y 2时,称该商品的价格为稳定价格,需求量为稳定需求量;当y 1<y 2时,称该商品的供求关系为供过于求;当y 1>y 2时,称该商品的供求关系为供不应求.(1)(4分) 求该商品的稳定价格和稳定需求量;(2)(4分) 当价格为45(元/件)时,该商品的供求关系如何?为什么? 20.(小题满分8分)根据W 市统计局公布的数据,可以得到下列统计图表.请利用其中提供的信息回答下列问题:W市近3年人均GDP(元)(1)(3分)从2006年到2008年,W市的GDP哪一年比上一年的增长量最大?(2)(3分)2008年W市GDP分布在第三产业的约是多少亿元?(精确到0.1亿元)(3)(2分)2008年W市的人口总数约为多少万人?(精确到0.1万人)21.(本小题满分8分)某市在举行“5.12汶川大地震”周年纪念活动时,根据地形搭建了一个台面为梯形(如图所示)的舞台,且台面铺设每平方米售价为a元的木板.已知AB=12米,AD=16米,∠B=60°,∠C=45°,计算购买铺设台面的木板所用资金是多少元.(不计铺设损耗,结果不取近似值)22.(本小题满分8分)已知关于x的一元二次方程x2+kx–3=0,(1)(4分)求证:不论k为何实数,方程总有两个不相等的实数根;(2)(4分)当k=2时,用配方法解此一元二次方程.23.(本小题满分8分)如图,已知四边形ABCD、AEFG均为正方形,∠BAG=α(0°<α<180°).(1)(6分)求证:BE=DG,且BE⊥DG;(2)(2分)设正方形ABCD、AEFG的边长分别是3和2,线段BD、DE、EG、GB 所围成封闭图形的面积为S.当α变化时,指出S的最大值及相应的α值.(直接写出结果,不必说明理由)24.(本小题满分9分)如图1,已知O是锐角∠XAY的边AX上的动点,以点O为圆心、R为半径的圆与射线AY切于点B,交射线OX于点C.连结BC,作CD⊥BC,交AY于点D.(1)(3分)求证:△ABC∽△ACD;(2)(6分)若P是AY上一点,AP=4,且sin A=35,①如图2,当点D与点P重合时,求R的值;②当点D与点P不重合时,试求PD的长(用R表示).图1 图2 25.(本小题满分9分)如图,已知抛物线y=12x2–2x+1的顶点为P,A为抛物线与y轴的交点,过A与y轴垂直的直线与抛物线的另一交点为B,与抛物线对称轴交于点O′,过点B和P的直线l交y 轴于点C,连结O′C,将△ACO′沿O′C翻折后,点A落在点D的位置.(1)(3分)求直线l的函数解析式;(2)(3分)求点D的坐标;(3)(3分)抛物线上是否存在点Q,使得S△DQC= S△DPB? 若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.。

2017年四川省资阳市中考数学试卷(含答案版)

2017年四川省资阳市中考数学试卷(含答案版)

2017年四川省资阳市中考数学试题(本试卷满分120分;考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017四川省资阳市,第1题,3分)-2的绝对值是 ( )A .±2B .2C .一2D .122.(2017四川省资阳市,第2题,3分)如图所示的立体图形的主视图是( )A .B .C .D .3.(2017四川省资阳市,第3题,3分)下列运算正确的是 ( )A .222()x y x y +=+B .235()x x =C .2x x =D .623x x x ÷=4.(2017四川省资阳市,第4题,3分)如今网络购物已成为一种常见的购物方式,2016年11月11日当天某电商平台的交易额就达到了1107亿元,用科学记数法表示为(单位:元) ( ) A ,101.10710⨯ B .111.10710⨯ C .120.110710⨯ D .121.10710⨯5.(2017四川省资阳市,第5题,3分)如图,BE 平分∠DBC ,点A 是BD 上一点,过点A 作AE ∥BC 交BE 于点E ,∠DAE=56°,则∠E 的度数为( )A .56°B .36°C .26°D .28°6.(2017四川省资阳市,第6题,3分)一组数据5,2,6,9,5,3的众数、中位数、平均数分别是( )A .5,5,6B .9,5,5C .5,5,5D .2,6,57.(2017四川省资阳市,第7题,3分)如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,将Rt △ABC 绕点A 逆时针旋转30°后得到△ADE ,则图中阴影部分的面积为 ( )A .1312πB .34πC .43πD .2512π 8.(2017四川省资阳市,第8题,3分)若一次函数y=mx+n (m ≠0)中的m ,n 是使等式12m n =+成立的整数,则一次函数y=mx+n (m ≠0)的图象一定经过的象限是 ( )A .一、三B .三、四C .一、二D .二、四9.(2017四川省资阳市,第9题,3分)如图,在矩形ABCD 中,AB=2,AD=22,点E 是CD 的中点,连接AE ,将△ADE 沿直线AE 折叠,使点D 落在点F 处,则线段CF 的长度是 ( )A .1B .22C .23D .23 10.(2017四川省资阳市,第10题,3分)如图,抛物线2y ax bx c =++(a ≠0)的顶点和该抛物线与y 轴的交点在一次函数y=kx+1(k ≠0)的图象上,它的对称轴是x =1,有下列四个结论:①abc <0,②13a <-,③a=-k ,④当0<x <1时,ax+b >k ,其中正确结论的个数是( )A .4B .3C .2D .1第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分,请把答案填在题中的横线上)11.(2017四川省资阳市,第11题,3分)使分式21x -有意义的x 取值范围是________. 12.(2017四川省资阳市,第12题,3分)一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是________.13.(2017四川省资阳市,第13题,3分)边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABC=________度.14.(2017四川省资阳市,第14题,3分)关于x 的一元二次方程2(1)(21)0a x a x a -+++=有两个不相等的实数根,则a 的取值范围是_______.15.(2017四川省资阳市,第15题,3分)如图,点A 是函数16y x =-图象上一点,连接AO 交反比例函数2k y x=(k ≠0)的图象于点B ,若BO=2AB ,则k________.16.(2017四川省资阳市,第16题,3分)按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的块数是________.三、解答题(本大题共8小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(2017四川省资阳市,第17题,7分) 先化简,再求值:2211(1)28x x x x+--÷,其中x=2. 18.(2017四川省资阳市,第18题,8分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A 1,A 2,A 3,A 4,现对A 1,A 2,A 3,A 4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A 1所在扇形的圆心角的度数;(3)现从A 1,A 2中各选出一人进行座谈,若A 1中有一名女生,A 2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.19.(2017四川省资阳市,第19题,8分)如图,AB 是半圆的直径,AC 为弦,过点C 作直线DE 交AB 的延长线于点E .若∠ACD=60°,∠E=30°.(1)求证:直线DE 与半圆相切;(2)若BE=3,求CE 的长.20.(2017四川省资阳市,第20题,8分)如图,一次函数1y kx b =+(k ≠0)的图象与反比例函数2m y x=(m ≠0,x <0)的图象交于点A (-3,1)和点C ,与y 轴交于点B ,△AOB 的面积是6.(1)求一次函数与反比例函数的解析式;(2)当x <0时,比较1y 与2y 的大小.21.(2017四川省资阳市,第21题,9分)四川省安岳县盛产柠檬和柚子两种水果,今年,某公司计划用两种型号的汽车运输柠檬和柚子到外地销售,运输中要求每辆汽车都要满载满运,且只能装运一种水果.若用3辆汽车装载柠檬、2辆汽车装载袖子可共装载33吨,若用2辆汽车装载柠檬、3辆汽车装载柚子可共装载32吨.(1)求每辆汽车可装载柠檬或柚子各多少吨?(2)据调查,全部销售完后,每吨柠檬可获利700元、每吨柚子可获利500元,计划用20辆汽车运输,且柚子不少于30吨,如何安排运输才能使公司获利最大,最大利润是多少元?22.(2017四川省资阳市,第22题,9分)如图,光明中学一教学楼顶上竖有一块高为AB 的宣传牌,点E 和点D 分别是教学楼底部和外墙上的一点(A ,B ,D ,E 在同一直线上),小红同学在距E 点9米的C 处测得宣传牌底部点B 的仰角为67°,同时测得教学楼外墙外点D 的仰角为30°,从点C 沿坡度为1:3的斜坡向上走到点F 时,DF 正好与水平线CE 平行.(1)求点F 到直线CE 的距离(结果保留根号);(2)若在点F 处测得宣传牌顶部A 的仰角为45°,求出宣传牌AB 的高度(结果精确到0.0l ). (注:sin67°≈0.92,tan67°≈2.36,2≈1.41,3≈1.73)23.(2017四川省资阳市,第23题,11分)在△ABC 中,AB=AC >BC ,D 是BC 上一点,连接AD ,作△ADE ,使AD=AE ,且∠DAE=∠BAC ,过点E 作EF ∥BC 交AB 于F ,连接FC .(1)如图1.①连接BE ,求证:△AEB ≌△ADC :②若D 是线段BC 的中点,且AC=6,BC=4,求CF 的长;(2)如图2,'若点D 在线段BC 的延长线上,且四边形CDEF 是矩形,当AC=m ,BC=n 时,求CD 的长(用含m ,n 的代数式表示).24.(2017四川省资阳市,第24题,12分)如图,抛物线2(1)4y a x =++(a ≠0)与x 轴交于A ,C 两点,与直线y=x-1交于A ,B 两点,直线AB 与抛物线的对称轴交于点E .(1)求抛物线的解析式;(2)若点P 在直线AB 上方的抛物线上运动.①点P 在什么位置时,△ABP 的面积最大,求出此时点P 的坐标;②当点P 与点C 重合时,连接PE ,将△PEB 补成矩形,使△PEB 上的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.答案。

四川省资阳市中考数学试卷

四川省资阳市中考数学试卷

四川省资阳市中考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·洛宁模拟) ﹣9的相反数是()A .B . ﹣C . 9D . ﹣92. (2分)(2019·广元) 函数的自变量x的取值范围是()A .B .C .D .3. (2分)已知多项式x2+a能用平方差公式在有理数范围内分解因式,那么在下列四个数中a可以等于()A.9 B.4 C.﹣1 D.﹣2A . 9B . 4C . -1D . -24. (2分)(2019·禅城模拟) 如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A . 8,9B . 8,8.5C . 16,8.5D . 16,10.55. (2分)下面四个几何体中,左视图是四边形的几何体共有()A . 1个B . 2个C . 3个D . 4个6. (2分) (2019八下·乌拉特前旗开学考) 某地区开展“二十四节气”标识系统设计活动,以期通过现代设计的手段,尝试推动我国非物质文化遗产创新传承与发展.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是()A .B .C .D .7. (2分)如图,将矩形ABCD沿对角线BD对折,使点C落在C′处,BC′交AD于F,下列不成立的是()A . AF=C′FB . BF=DFC . ∠BDA=∠ADC′D . ∠ABC′=∠ADC8. (2分)如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E且分别交PA、PB于点C,D,若PA=4,则△PCD的周长为()A . 5B . 7C . 8D . 109. (2分)Rt△ABC在平面坐标系中摆放如图,顶点A在x轴上,∠ACB=90°,CB∥x轴,双曲线经过CD点及AB的中点D,S△BCD=4,则k的值为()A . 8B . ﹣8C . ﹣10D . 1010. (2分)某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x元;下午,他又买了20斤,价格为每斤y元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因是()A . x<yB . x>yC . x≤yD . x≥y二、填空题 (共8题;共8分)11. (1分)(2017·泰兴模拟) 9的平方根是________.12. (1分) (2017七上·江门月考) “天鸽”为今年以来登陆我国较强的台风,据民政部8月25日通报,台风“天鸽”已造成直接经济损失达121.8亿元.数据“121.8亿”用科学记数法可表示为________.13. (1分) (2018八上·自贡期末) 若,则的值为________14. (1分)抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线________ .15. (1分)现有一圆心角为120°,半径为9cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则围成的圆锥的高为________ cm.16. (1分) (2016八上·上城期末) 在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的象限是________.17. (1分)如图,PA、PB分别切⊙O于A、B,点C、M是⊙O上的点,∠AMB=60°,过点C作的切线交PA、PB于E、F,△PEF的外心在PE上.已知PA=3,则AE的长为________.18. (1分) (2016八上·临河期中) 如图,AB=DC,AD=BC,E,F是DB上两点且BE=DF,若∠AEB=100°,∠ADB=30°,则∠BCF=________度.三、解答题 (共10题;共97分)19. (10分)先化简,再求值:(1)(a+b)2+(a﹣b)(2a+b)﹣3a2,其中,.(2),其中.20. (10分)解下列方程:(1) 2x2﹣4x﹣5=0.(2) x2﹣4x+1=0.(3)(y﹣1)2+2y(1﹣y)=0.21. (10分)如图,已知P点是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D.(1)求证:∠PCD=∠PDC;(2)求证:OP是线段CD的垂直平分线.22. (6分)(2013·河南) 从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气.某市记者为了了解”雾霾天气的主要原因“,随机调查了该市部分市民,并对调查结果进行整理.绘制了如下尚不完整的统计图表.组别观点频数(人数)A大气气压低,空气不流动80B地面灰尘大,空气湿度低mC汽车尾气排放nD工厂造成的污染120E其他60请根据图表中提供的信息解答下列问题:(1)填空:m=________,n=________.扇形统计图中E组所占的百分比为________%;(2)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?23. (11分)学校举行广播操比赛,八年级三个班的各项得分及三项得分的平均数如下(单位:分).服装统一进退场有序动作规范三项得分平均分一班80848884二班97788085三班90788484根据表中信息回答下列问题:(1)学校将“服装统一”、“队形整齐”、“动作规范”三项按2:3:5的比例计算各班成绩,求八年级三个班的成绩;(2)由表中三项得分的平均数可知二班排名第一,在(1)的条件下,二班成绩的排名发生了变化,请你说明二班成绩排名发生变化的原因.24. (10分)(2018·贺州) 如图,AB是⊙O的弦,过AB的中点E作EC⊥OA,垂足为C,过点B作直线BD 交CE的延长线于点D,使得DB=DE.(1)求证:BD是⊙O的切线;(2)若AB=12,DB=5,求△AOB的面积.25. (10分) (2019八上·秀洲期末) 一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系如图中线段AB所示,慢车离乙地的路程y2(km)与行驶的时间x(h)之间的函数关系如图中线段OC所示.根据图像进行以下研究:(1)甲、乙两地之间的距离为________km;(2)线段AB的表达式为________,线段OC的表达式为________;(3)设快、慢车之间的距离为y(km),求y与慢车行驶时间x(h)的函数表达式,并画出函数的图像.26. (10分) (2019七上·顺德期末) 某校开设篮球、足球、乒乓球、排球四个项目的选修课,为了解同学们的报名情况,随机抽取了部分学生进行调査,将获得的数据进行整理,绘制了如下两幅不完整的统计图,请你根据统计图提供的信息,完成下列问题:(1)把条形统计图1补充完整,写出图2中C所在扇形的圆心角是________°;(2)若该校有3000名学生,请你估计全校大约有多少名学生会选修足球课.27. (10分) (2016九上·北仑月考) 如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).(1)求该抛物线的解析式及顶点M坐标;(2)求△BCM的面积;(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A,P,Q,C为点的四边形为平行四边形?若存,请求出Q点坐标;若不存在,请说明理由.28. (10分) (2017八下·潮阳期末) 如图,矩形OABC在平面直角坐标系内(O为坐标原点),点A在x轴上,点C在y轴上,点B的坐标为(﹣4,4 ),点E是BC的中点,现将矩形折叠,折痕为EF,点F为折痕与y轴的交点,EF交x轴于G且使∠CEF=60°.(1)求证:△EFC≌△GFO;(2)求点D的坐标;(3)若点P(x,y)是线段EG上的一点,设△PAF的面积为s,求s与x的函数关系式并写出x的取值范围.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共97分)19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、27-1、27-2、27-3、28-1、28-2、。

最新整理资阳市中考数试题及答案.doc

最新整理资阳市中考数试题及答案.doc

资阳市 高中阶段学校招生统一考试数 学一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.4的平方根是 A .4B .2C .-2D .2或-22.如图1,在数轴上表示到原点的距离为3个单位的点有 A .D 点B .A 点C .A 点和D 点D .B 点和C 点3.下列运算正确的是 A .(ab )5=ab 5B .a 8÷a 2=a 6C .(a 2)3=a 5D .(a -b )2=a 2-b 24.如图2,CA ⊥BE 于A ,AD ⊥BF 于D ,下列说法正确的是 A .α的余角只有∠BB .α的邻补角是∠DACC .∠ACF 是α的余角D .α与∠ACF 互补5.下列说法正确的是A .频数是表示所有对象出现的次数B .频率是表示每个对象出现的次数C .所有频率之和等于1D .频数和频率都不能够反映每个对象出现的频繁程度6. 5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C 的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4°C ,峰顶的温度为(结果保留整数)A .-26°CB .-22°CC .-18°CD .22°C图2图17.已知a 、b 、c 分别是三角形的三边,则方程(a + b )x 2 + 2cx + (a + b )=0的根的情况是A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根8.已知矩形ABCD 的边AB =15,BC =20,以点B 为圆心作圆,使A 、C 、D 三点至少有一点在⊙B 内,且至少有一点在⊙B 外,则⊙B 的半径r 的取值范围是A .r >15B .15<r <20C .15<r <25D .20<r <259.在平面直角坐标系中,如果抛物线y =2x 2不动,而把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是A .y =2(x -2)2 + 2B .y =2(x + 2)2-2C .y =2(x -2)2-2D .y =2(x + 2)2 + 210.如图3,已知Rt △ABC ≌Rt △DEC ,∠E =30°,D 为AB 的中点,AC =1,若△DEC 绕点D 顺时针旋转,使ED 、CD 分别与Rt △ABC 的直角边BC相交于M 、N ,则当△DMN 为等边三角形时,AM 的值为AB.3C.3D .1二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11.如图4,□ABCD 中,对角线AC 、BD 交于点O ,请你写出其中的一对全等三角形_________________.12.计算:cot60°-2-2 + 20xx 0__________. 13.若A (1x ,1y )、B (2x ,2y )在函数12y x的图象上,则当1x 、2x 满足_______________时,1y >2y .14.如图5,校园内有一块梯形草坪ABCD ,草坪边缘本有道路通过甲、乙、丙路口,可是有少数同学为了走捷径,在草坪内走了一条直“路”EF ,假设走1步路的跨度为0.5米,结果他们仅仅为了少走________步路,就踩伤了绿化我们校园的小草(“路”宽忽略不计).图4图5图315.资阳市某学校初中20xx级有四个绿化小组,在植树节这天种下柏树的颗数如下:10,10,x,8,若这组数据的众数和平均数相等,那么它们的中位数是________颗.16.如图6,在地面上有一个钟,钟面的12个粗线段刻度是整点时时针(短针)所指的位置.根据图中时针与分针(长针)所指的位置,该钟面所显示的时刻是______时_______分.三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)先化简,再求值:(21 2x x--2144x x-+)÷222x x-,其中x=1.18.(本小题满分7分)如图7,在△ABC中,∠A、∠B的平分线交于点D,DE∥AC交BC于点E,DF∥BC 交AC于点F.(1)点D是△ABC的________心;(2)求证:四边形DECF为菱形.图7图619.(本小题满分8分)惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速地组织了30吨食物和13吨衣物的救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者.(1)3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能否将救灾物资一次性地运往灾区?(2)要使救灾物资一次性地运往灾区,共有哪几种运货方案?20.(本小题满分9分)大双、小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.大双:A袋中放着分别标有数字1、2、3的三个小球,B袋中放着分别标有数字4、5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.小双:口袋中放着分别标有数字1、2、3的三个小球,且已搅匀,大双、小双各蒙上眼睛有放..回.地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票(若积分相同,则重复第二次).(1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由; (2)小双设计的游戏方案对双方是否公平?不必说理.21.(本小题满分9分)若一次函数y =2x -1和反比例函数y =2kx的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标;(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.·22.(本小题满分10分)如图8,小唐同学正在操场上放风筝,风筝从A 处起飞,几分钟后便飞达C 处,此时,在AQ 延长线上B 处的小宋同学,发现自己的位置与风筝和旗杆PQ 的顶点P 在同一直线上.(1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,试求A 、B 之间的距离;(2)此时,在A 处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC 约为多少?(结果可保留根号)23.(本小题满分10分)阅读下列材料,按要求解答问题:如图9-1,在ΔABC 中,∠A =2∠B ,且∠A =60°.小明通过以下计算:由题意,∠B =30°,∠C =90°,c =2b ,a,得a 2-b 2=)2-b 2=2b 2=b ·c .即a 2-b 2= bc .于是,小明猜测:对于任意的ΔABC ,当∠A =2∠B 时,关系式a 2-b 2=bc 都成立. (1)如图9-2,请你用以上小明的方法,对等腰直角三角形进行验证,判断小明的猜测是否正确,并写出验证过程;(2)如图9-3,你认为小明的猜想是否正确,若认为正确,请你证明;否则,请说明理由;(3)若一个三角形的三边长恰为三个连续偶数,且∠A =2∠B ,请直接写出这个三角形三边的长,不必说明理由.图8图9-1 图9-2图9-324.(本小题满分12分)如图10,已知点A 的坐标是(-1,0),点B 的坐标是(9,0),以AB 为直径作⊙O ′,交y 轴的负半轴于点C ,连接AC 、BC ,过A 、B 、C 三点作抛物线.(1)求抛物线的解析式;(2)点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O ′于点D ,连结BD ,求直线BD 的解析式;(3)在(2)的条件下,抛物线上是否存在点P ,使得∠PDB =∠CBD ?如果存在,请求出点P 的坐标;如果不存在,请说明理由.资阳市 高中阶段学校招生统一考试数学试题参考答案及评分意见说 明:1. 解答题中各步骤所标记分数为考生解答到这一步应得分数的累计分数;2. 参考答案中的解法只是该题解法中的一种或几种,如果考生的解法和参考答案所给解法不同,请参照本答案中的标准给分;3. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几图10个相对独立的得分点,其中一处错误不影响其他得分点的得分;4. 给分和扣分都以1分为基本单位;5. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题:(每小题3分,共10个小题,满分30分) 1-5. DCBDC ;6-10. AACBB. 二、填空题:(每小题3分,共6个小题,满分18分)11.答案不唯一,ΔAOB ≌ΔCOD 、ΔAOD ≌ΔCOB 、ΔADB ≌ΔCBD 、ΔABC ≌ΔCDA 之一均可;12(或34; 13.答案不唯一,x 1<x 2<0,或 0<x 1<x 2,或210x x <<或122,3x x ==-等之一均可;14. 4; 15.10 ; 16.9,12; 三、解答题:(共9个小题,满分72分)17.原式=[1(2)x x -–21(2)x -]×(2)2x x - ················································· 3分=1(2)x x -×(2)2x x -–21(2)x -×(2)2x x - =12–2(2)x x - ···················································································· 4分=22(2)x x --–2(2)x x - =12x- ···························································································· 5分 当x =1时,原式=121- ······················································································· 6分= 1 ·································································································· 7分 说明:以上步骤可合理省略 .18.(1) 内. ····················································································· 2分 (2) 证法一:连接CD ,······································································· 3分 ∵ DE ∥AC ,DF ∥BC ,∴ 四边形DECF 为平行四边形,·························································· 4分 又∵ 点D 是△ABC 的内心,∴ CD 平分∠ACB ,即∠FCD =∠ECD , ················································ 5分 又∠FDC =∠ECD ,∴ ∠FCD =∠FDC∴ FC =FD , ···················································································· 6分 ∴ □DECF 为菱形. ·········································································· 7分 证法二:图7 过D 分别作DG ⊥AB 于G ,DH ⊥BC 于H ,DI ⊥AC 于I . ························· 3分 ∵AD 、BD 分别平分∠CAB 、∠ABC , ∴DI =DG , DG =DH .∴DH =DI . ······················································································ 4分 ∵DE ∥AC ,DF ∥BC ,∴四边形DECF 为平行四边形, ··························································· 5分 ∴S □DECF =CE ·DH =CF ·DI ,∴CE =CF . ······················································································ 6分 ∴□DECF 为菱形. ··········································································· 7分19.(1) ∵3×5+6×3=33>30,3×1+6×2=15>13, ······································ 1分 ∴3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能将救灾物资一次性地运到灾区.······································································································ 2分 (2) 设安排甲种货车x 辆,则安排乙种货车(9–x )辆, ······························· 3分 由题意得:53(9)30,2(9)13.x x x x +-≥⎧⎨+-≥⎩······························································ 5分解得:1.5≤x ≤5 ·················································································· 6分 注意到x 为正整数,∴x =2,3,4,5 ····················································· 7分 ∴安排甲、乙两种货车方案共有下表4种:······································································································ 8分 说明:若分别用“1、8”,“2、7”等方案去尝试,得出正确结果,有过程...也给全分. 20.(1) 大双的设计游戏方案不公平. ··················································· 1分 可能出现的所有结果列表如下:或列树状图如下:0·············································· 4分∴P(大双得到门票)= P(积为偶数)=46=23, P(小双得到门票)= P(积为奇数)=13, ······················································ 6分∵23≠13,∴大双的设计方案不公平. ···················································· 7分 (2) 小双的设计方案不公平. ······························································· 9分 参考:可能出现的所有结果列树状图如下:21.(1) ∵反比例函数y =2kx的图象经过点(1,1), ∴1=2k ···························································································· 1分 解得k =2, ······················································································· 2分∴反比例函数的解析式为y =1x. ·························································· 3分(2) 解方程组211.y x y x =-⎧⎪⎨=⎪⎩,得11x y =⎧⎨=⎩,;122.x y ⎧=-⎪⎨⎪=-⎩, ············································· 5分 ∵点A 在第三象限,且同时在两个函数图象上,∴A (12-,–2).················································································· 6分(3) P 1(32,–2),P 2(52-,–2),P 3(52,2).(每个点各1分)·························· 9分22. (1) 在Rt △BPQ 中,PQ =10米,∠B =30°, 则BQ =cot30°×PQ=····························································· 2分 又在Rt △APQ 中,∠P AB =45°, 则AQ =cot45°×PQ =10,即:AB=(+10)(米); ············································· 5分图8(2) 过A 作AE ⊥BC 于E ,在Rt △ABE 中,∠B =30°,AB=+10,∴ AE =sin30°×AB =12(+10), ····································· 7分 ∵∠CAD =75°,∠B =30°,∴ ∠C =45°, ··············································································· 8分 在Rt △CAE 中,sin45°=AE AC, ∴AC)米) ············································ 10分23. (1) 由题意,得∠A =90°,c =b ,a,∴a 2–b 2b )2–b 2=b 2=bc . ·········································· 3分(2) 小明的猜想是正确的. ··········································· 4分理由如下:如图3,延长BA 至点D ,使AD =AC =b ,连结CD ,··············································································· 5分则ΔACD 为等腰三角形.∴∠BAC =2∠ACD ,又∠BAC =2∠B ,∴∠B =∠ACD =∠D ,∴ΔCBD 为等腰三角形,即CD =CB =a , ································ 6分又∠D =∠D ,∴ΔACD ∽ΔCBD , ·································· 7分 ∴AD CD CD BD =.即b a a b c=+.∴a 2=b 2+bc .∴a 2–b 2= bc ······· 8分 (3) a =12,b =8,c =10. ············································· 10分24.(1) ∵以AB 为直径作⊙O ′,交y 轴的负半轴于点C ,∴∠OCA +∠OCB =90°,又∵∠OCB +∠OBC =90°,∴∠OCA =∠OBC ,又∵∠AOC = ∠COB =90°, ∴ΔAOC ∽ ΔCOB , ············································································ 1分 ∴OA OC OC OB=. 又∵A (–1,0),B (9,0), ∴19OC OC =,解得OC =3(负值舍去). ∴C (0,–3),······································································································ 3分 设抛物线解析式为y =a (x +1)(x –9),图9-3图10答案图1∴–3=a (0+1)(0–9),解得a =13, ∴二次函数的解析式为y =13(x +1)(x –9),即y =13x 2–83x –3. ························· 4分 (2) ∵AB 为O ′的直径,且A (–1,0),B (9,0),∴OO ′=4,O ′(4,0), ········································································· 5分 ∵点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O ′于点D ,∴∠BCD =12∠BCE =12×90°=45°, 连结O ′D 交BC 于点M ,则∠BO ′D =2∠BCD =2×45°=90°,OO ′=4,O ′D =12AB =5. ∴D (4,–5). ···················································································· 6分 ∴设直线BD 的解析式为y =kx +b (k ≠0)∴90,4 5.k b k b +=⎧⎨+=-⎩··················································· 7分 解得1,9.k b =⎧⎨=-⎩∴直线BD 的解析式为y =x –9. ································ 8分(3) 假设在抛物线上存在点P ,使得∠PDB =∠CBD ,解法一:设射线DP 交⊙O ′于点Q ,则BQ CD =.分两种情况(如答案图1所示):①∵O ′(4,0),D (4,–5),B (9,0),C (0,–3).∴把点C 、D 绕点O ′逆时针旋转90°,使点D 与点B 重合,则点C 与点Q 1重合,因此,点Q 1(7,–4)符合BQ CD =,∵D (4,–5),Q 1(7,–4), ∴用待定系数法可求出直线DQ 1解析式为y =13x –193. ······························ 9分 解方程组21193318 3.33y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,得1192x y ⎧=⎪⎪⎨⎪=⎪⎩2292x y ⎧+=⎪⎪⎨⎪=⎪⎩∴点P 1坐标为),[坐标为)不符合题意,舍去].······································································································ 10分 ②∵Q 1(7,–4),∴点Q 1关于x 轴对称的点的坐标为Q 2(7,4)也符合BQ CD =.∵D (4,–5),Q 2(7,4).∴用待定系数法可求出直线DQ 2解析式为y =3x –17.································· 11分。

四川省资阳市安岳县2017届九年级上期中数学试卷含答案解析

四川省资阳市安岳县2017届九年级上期中数学试卷含答案解析

试卷第1页,总18页○……○…………班级:_________○……○…………绝密★启用前四川省资阳市安岳县2017届九年级上期中数学试卷含答案解析题号 一 二 三 得分注意事项:1.本试卷共XX 页,三个大题,满分110分,考试时间为1分钟。

请用钢笔或圆珠笔直接答在试卷上。

2.答卷前将密封线内的项目填写清楚。

一、单选题(共30分)评卷人 得分1.(3分)A. x≥﹣2B. x >﹣2C. x≥2D. x≤22.关于x 的一元二次方程(a ﹣2)x 2+x+a 2﹣4=0的一个根是0,则a 的值为( )(3分) A. 2 B. ﹣2 C. 2或﹣2 D. 03.下列运算正确的是( )(3分)A.试卷第2页,总18页……外…………○……线…………○…………内…………○……线…………○…… B.C.D.4.关于x 的一元二次方程(m ﹣2)x 2+2x+1=0有实数根,则m 的取值范围是( )(3分) A. m≤3 B. m <3 C. m <3且m≠2 D. m≤3且m≠25.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的平均增长率为x ,则下列方程正确的是( )(3分) A. 1.4(1+x)=4.5 B. 1.4(1+2x)=4.5 C. 1.4(1+x)2=4.5D. 1.4(1+x)+1.4(1+x)2=4.56.如图,已知直线a∥b∥c,直线m ,n 与a ,b ,c 分别交于点A ,C ,E ,B ,D ,F ,若AC=4,CE=6,BD=3,则DF 的值是( )(3分)A. 4B. 4.5试卷第3页,总18页……○…………内…………○…………装……○…………订…………○…………线………学校:___________姓名:_____班级:___________考号:___________……○…………外…………○…………装……○…………订…………○…………线……… C. 5 D. 5.5 7.(3分) A.B.C. D.8.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE∥AC,若S △BDE :S △CDE =1:3,则S △DOE :S △AOC 的值为( )(3分)A.B.C.试卷第4页,总18页…………装…………○…………订………线…………○……※※请※※不※※要※※在※※装※※订※※线※※内※…………装…………○…………订………线…………○…… D.9.(3分) A. (2,1) B. (3,1) C. (2,3) D. (3,3) 10.(3分) A. 1个 B. 2个 C. 3个 D. 4个二、填空题(共24分)评卷人 得分试卷第5页,总18页………内…………装…………○…………订…………○…………○……__姓名:___________班级:__________考号:___________………外…………装…………○…………订…………○…………○……11.(3分)12.设x 1、x 2是一元二次方程x 2﹣5x ﹣1=0的两实数根,则x 12+x 22的值为 .(3分)13.如图,在直角三角形ABC 中(∠C=90°),放置边长分别3,4,x 的三个正方形,则x 的值为 .(3分)14.(3分)15.若关于x 的方程x 2+3x+a=0有一个根为﹣1,则另一个根为 .(3分)16.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m ,它的影子BC=1.6m ,木竿PQ 的影子有一部分落在了墙上,PM=1.2m ,MN=0.8m ,则木竿PQ 的长度为 m.(3分)17.方程x 2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为 .(3分)。

2017年四川省各市中考数学试题汇编(1)(含参考答案与解析)

2017年四川省各市中考数学试题汇编(1)(含参考答案与解析)

2017年四川省各市中考数学试题汇编(1)(含参考答案)(word版,9份)目录1.四川省成都市中考数学试题及参考答案 (2)2.四川省攀枝花市中考数学试题及参考答案 (15)3.四川省自贡市中考数学试题及参考答案 (36)4.四川省泸州市中考数学试题及参考答案 (53)5.四川省宜宾市中考数学试题及参考答案 (70)6.四川省绵阳市中考数学试题及参考答案 (87)7.四川省眉山市中考数学试题及参考答案 (109)8.四川省南充市中考数学试题及参考答案 (125)9.四川省达州市中考数学试题及参考答案 (136)2017年四川省成都市中考数学试题及参考答案A 卷(共100分)一、选择题(本大题共10 个小题,每小题3 分,共30 分).1. 《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若气温为零上010C 记作010C +,则03C -表示气温为 ( ) A.零上03C B.零下03C C.零上07C D.零下07C2. 如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )A. B. C. D.3. 总投资647 亿元的西域高铁预计2017 年11月竣工,届时成都到西安只需3 小时,上午游武侯区,晚上看大雁塔将成为现实.用科学计数法表示647 亿元为( )A.864710⨯B.96.4710⨯C.106.4710⨯D. 116.4710⨯4. x 的取值范围是( )A.1x ≥B. 1x >C. 1x ≤D.1x < 5. 下列图标中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.6. 下列计算正确的是 ( )A.5510a a a +=B. 76a a a ÷=C. 326a a a =D.()236aa -=-7. 学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:则得分的众数和中位数分别为( )A.70 分,70 分B.80 分,80 分C. 70 分,80 分D.80 分,70 分 8. 如图,四边形ABCD 和A B C D '''' 是以点O 为位似中心的位似图形,若:2:3OA OA '= ,则四边形ABCD 与四边形A B C D ''''的面积比为( )A. 4:9B. 2:5C. 2:3 9. 已知3x =是分式方程2121kx k x x--=-的解,那么实数k 的值为( ) A.-1 B. 0 C. 1 D.210. 在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像如图所示,下列说法正确的是 ( )A. 20,40abc b ac <-> B.20,40abc b ac >-> C. 20,40abc b ac <-< D.20,40abc b ac >-< 二、填空题(本大题共4 个小题,每小题4 分,共16 分).11.)1=________________.12. 在ABC ∆中,::2:3:4A B C ∠∠∠=,则A ∠的度数为______________.13.如图,正比例函数11y k x =和一次函数22y k x b =+的图像相交于点()2,1A .当2x <时,1y2y .(填“>”或“<”)14.如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交,AB AD 于点,M N ;②分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作AP 射线,交边CD 于点Q ,若2,3DQ QC BC ==,则平行四边形ABCD 周长为 .三、解答题(本大题共6 个小题,共54 分)15.(12112sin 452-⎛⎫+ ⎪⎝⎭.(2)解不等式组:()2731423133x x x x ⎧-<-⎪⎨+≤-⎪⎩①② . 16.化简求值:2121211x x x x -⎛⎫÷- ⎪+++⎝⎭,其中1x = .17. 随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类, 并将检查结果绘制成下面两个统计图.(1)本次调查的学生共有__________人,估计该校1200 名学生中“不了解”的人数是__________人. (2)“非常了解”的4 人有12,A A 两名男生,12,B B 两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18. 科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西60°方向行驶4 千米至B 地,再沿北偏东45°方向行驶一段距离到达古镇C ,小明发现古镇C 恰好在A 地的正北方向,求,B C 两地的距离.19. 如图,在平面直角坐标系xOy 中,已知正比例函数12y x =的图象与反比例函数ky x=的图象交于(),2,A a B -两点.(1)求反比例函数的表达式和点B 的坐标;(2)P 是第一象限内反比例函数图像上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连接PO ,若POC ∆的面积为3,求点P 的坐标.20. 如图,在ABC ∆中,AB AC =,以AB 为直径作圆O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH AC ⊥于点H ,连接DE 交线段OA 于点F . (1)求证:DH 是圆O 的切线;(2)若AE 为H 的中点,求EFFD的值; (3)若1EA EF ==,求圆O 的半径.B 卷(共50分)一、填空题(本大题共5 个小题,每小题4 分,共20 分) 21. 如图,数轴上点A 表示的实数是_____________.22.已知12,x x 是关于x 的一元二次方程250x x a -+=的两个实数根,且221210x x -=,则a =___________. 23.已知O 的两条直径,AC BD 互相垂直,分别以,,,AB BC CD DA 为直径向外作半圆得到如图所示的图形.现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为1P ,针尖落在O 内的概率为2P ,则12P P =______________.24.在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点(),P x y ,我们把点11,P x y ⎛⎫'⎪⎝⎭称为点P 的 “倒影点”.直线1y x =-+上有两点,A B ,它们的倒影点,A B ''均在反比例函数ky x=的图像上.若AB =k =____________.25.如图1,把一张正方形纸片对折得到长方形ABCD ,再沿ADC ∠的平分线DE 折叠,如图2,点C 落在点C '处,最后按图3所示方式折叠,使点A 落在DE 的中点A '处,折痕是FG .若原正方形纸片的边长为6cm ,则FG =_____________cm .二、解答题(共3个小题 ,共30分)26. 随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的,,,,A B C D E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x ,(单位:千米),乘坐地铁的时间1y 单位:分钟)是关于x 的一次函数, 其关系如下表:(1)求1y 关于x 的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x 的影响,其关系可以用22111782y x x =-+来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家里所需的时间最短?并求出最短时间. 27.问题背景:如图1,等腰ABC ∆中,0,120AB AC BAC =∠=,作AD BC ⊥于点D ,则D 为BC的中点,01602BAD BAC ∠=∠=,于是2BC BD AB AB== 迁移应用:如图2,ABC ∆和ADE ∆都是等腰三角形,0120BAC ADE ∠=∠=,,,D E C 三点在同一条直线上,连接BD .① 求证:ADB AEC ∆≅∆;② 请直接写出线段,,AD BD CD 之间的等量关系式;拓展延伸:如图3,在菱形ABCD 中,0120BAC ∠=,在ABC ∠内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接,CE CF . ① 证明:CEF ∆是等边三角形; ② 若5,2AE CE ==,求BF 的长.28.如图1,在平面直角坐标系xOy 中,抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,4D ,AB =(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C '.(1)求抛物线C 的函数表达式;(2)若抛物线C '与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围;(3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C '上的对应点为P ',设M 是C 上的动点,N 是C '上的动点,试探究四边形PMP N '能否成为正方形,若能,求出m 的值;若不能,请说明理由.试卷答案A 卷一、选择题1-5:BCCAD 6-10: BCADB. 二、填空题11. 1; 12. 40°; 13. <; 14. 15. 三、解答题15.(1)解:原式1241432-⨯+=-= (2)解:①可化简为:2733x x -<-,4x -<,∴4x >-; ②可化简为:213x ≤-,∴1x ≤- ∴ 不等式的解集为41x -<≤-. 16.解:原式=()()2211211111111x x x x x x x x x -+--+÷==+-+++,当1x =时,原式=. 17.解:(1)50,360;(2)树状图:由树状图可知共有12种结果,抽到1男1女分别为1112212212112122A B A B A B A B B A B A B A B A 、、、、、、、 共8种.∴82123P ==. 18.解:过点B 作BD AC ⊥,由题060,4BAD AB ∠==,∴0cos602AD AB ==,∵0145∠=, ∴045CBD ∠=,∴BD CD =,∵0sin 60BD AB ==∴CD =∴0cos 45BC BD ==19.解:(1)把(),2A a -代入12y x =,4a ⇒=-, ∴()4,2A --, 把()4,2A --代入ky x=,8k ⇒=, ∴8y x=, 联立812y x y x ⎧=⎪⎪⎨⎪=⎪⎩4x ⇒=-或4x =,∴()4,2B ;(2)如图,过点P 作//PE y 轴,设8,P m m ⎛⎫⎪⎝⎭,AB y kx b =+,代入A B 、两点, 12AB y x ⇒=, ∴1,2C m m ⎛⎫ ⎪⎝⎭, 118322POCS m m m ∆=-=,1862m m m -=,2862m m -=⇒=,218622m m -=⇒=,∴P ⎛ ⎝⎭或()2,4P . 20.(1)证明: 连接OD ,∵OB OD =,∴OBD ∆是等腰三角形, OBD ODB ∠=∠ ①,又在ABC ∆中, ∵AB AC =, ∴ABC ACB ∠=∠ ②,则由①②得,ODB OBD ACB ∠=∠=∠, ∴//OD AC , ∵DH AC ⊥, ∴DH OD ⊥,∴DH 是O 的切线;(2)在O 中, ∵E B ∠=∠, ∵由O 中可知,E B C ∠=∠=∠,EDC ∆是等腰三角形,又∵DH AC ⊥且点A 是EH 中点,∴设,4AE x EC x ==,则3AC x =, 连接AD ,则在O 中,090ADB ∠=,即AD BD ⊥,又∵ABC ∆是等腰三角形,∴D 是BC 中点, 则在ABC ∆中,OD 是中位线, ∴13//,22OD AC OD x =, ∵//OD AC , ∴E ODF ∠=∠,在AEF ∆和ODF ∆中,E ODFOFD AFE ∠=∠⎧⎨∠=∠⎩, ∴AEFODF ∆∆,∴2,332EF AE AE x FD OD OD x ===, ∴23EF FD =. (3)设O 半径为r ,即OD OB r ==, ∵EF EA =, ∴EFA EAF ∠=∠, 又∵//OD EC , ∴FOD EAF ∠=∠,则FOD EAF EFA OFD ∠=∠=∠=∠, ∴OF OD r ==, ∴1DE DF EF r =+=+, ∴1BD CD DE r ===+,在O 中, ∵BDE EAB ∠=∠,∴BFD EFA EAB BDE ∠=∠=∠=∠, ∵BF BD =,BDF ∆是等腰三角形, ∴1BF BD r ==+,∴()2211AF AB BF OB BF r r r =-=-=-+=-, 在BFD ∆与EFA ∆中BFD EFAB E ∠=∠⎧⎨∠=∠⎩,∵BFD EFA ∆∆,∴11,1EF BF r FA DF r r+==-,解得12r r ==(舍) ∴综上,O.B 卷一、填空题21.; 22.752; 23.2π; 24.43-;二、解答题26. 解:(1)设y 1=kx+b ,将(8,18),(9,20),代入得:818920k b k b +=⎧⎨+=⎩,解得:22k b =⎧⎨=⎩, 故y 1关于x 的函数表达式为:y 1=2x+2;(2)设李华从文化宫回到家所需的时间为y ,则y=y 1+y 2=2x+2+12x 2﹣11x+78=12x 2﹣9x+80, ∴当x=9时,y 有最小值,y min =2148092142⨯⨯-⨯=39.5, 答:李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟. 27. 迁移应用:①证明:如图2,∵∠BAC=∠ADE=120°, ∴∠DAB=∠CAE , 在△DAE 和△EAC 中,DA EA DAB EAC AB AC =⎧⎪∠=∠⎨⎪=⎩, ∴△DAB ≌△EAC ,②解:结论:理由:如图2﹣1中,作AH ⊥CD 于H.∵△DAB ≌△EAC , ∴BD=CE ,在Rt △ADH 中,, ∵AD=AE ,AH ⊥DE , ∴DH=HE ,∵AD+BD.拓展延伸:①证明:如图3中,作BH ⊥AE 于H ,连接BE.∵四边形ABCD 是菱形,∠ABC=120°, ∴△ABD ,△BDC 是等边三角形, ∴BA=BD=BC ,∵E 、C 关于BM 对称,∴BC=BE=BD=BA ,FE=FC , ∴A 、D 、E 、C 四点共圆, ∴∠ADC=∠AEC=120°, ∴∠FEC=60°,∴△EFC 是等边三角形, ②解:∵AE=5,EC=EF=2, ∴AH=HE=2.5,FH=4.5,在Rt △BHF 中,∵∠BHF=30°, ∴HFBF=cos30°,∴BF ==28.解:(1)由题意抛物线的顶点C (0,4),A(0),设抛物线的解析式为y=ax 2+4,把A(0)代入可得a=12-, ∴抛物线C 的函数表达式为y=12-x 2+4.(2)由题意抛物线C′的顶点坐标为(2m ,﹣4),设抛物线C′的解析式为y=12(x ﹣m )2﹣4, 由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到x 2﹣2mx+2m 2﹣8=0, 由题意,抛物线C′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()()2222428020280m m m m ⎧--⎪⎪⎨⎪-⎪⎩>>>,解得2<m<∴满足条件的m 的取值范围为2<m<(3)结论:四边形PMP′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H.由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP′N 是正方形, ∴PF=FM ,∠PFM=90°,易证△PFE ≌△FMH ,可得PE=FH=2,EF=HM=2﹣m , ∴M (m+2,m ﹣2), ∵点M 在y=﹣12x 2+4上, ∴m ﹣2=﹣12(m+2)2+4,解得﹣3﹣3(舍弃), ∴﹣3时,四边形PMP′N 是正方形. 情形2,如图,四边形PMP′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M(m﹣2,2﹣m)代入y=﹣12x2+4中,2﹣m=﹣12(m﹣2)2+4,解得m=6或0(舍弃),∴m=6时,四边形PMP′N是正方形.2017年四川省攀枝花市中考数学试题及参考答案一、选择题(本大题共l0小题,每小题3分,共30分)1.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×1072.下列计算正确的是()A.33=9 B.(a﹣b)2=a2﹣b2C.(a3)4=a12D.a2•a3=a63.如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33°B.57°C.67°D.60°4.某篮球队10名队员的年龄如下表所示:则这10名队员年龄的众数和中位数分别是()年龄(岁)18 19 20 21人数 2 4 3 1 A.19,19 B.19,19.5 C.20,19 D.20,19.55.如图是每个面上都有一个汉字的正方体的一种表面展开图,那么在这个正方体的表面,与“我”相对的面上的汉字是()A.花B.是C.攀D.家6.关于x的一元二次方程(m﹣1)x2﹣2x﹣1=0有两个实数根,则实数m的取值范围是()A.m≥0B.m>0 C.m≥0且m≠1D.m>0且m≠17.下列说法正确的是()A.真命题的逆命题都是真命题B.在同圆或等圆中,同弦或等弦所对的圆周角相等C.等腰三角形的高线、中线、角平分线互相重合D.对角线相等且互相平分的四边形是矩形8.如图,△ABC内接于⊙O,∠A=60°,BC=6√3,则BĈ的长为()A .2πB .4πC .8πD .12π9.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则下列命题中正确的是( )A .a >b >cB .一次函数y=ax+c 的图象不经第四象限C .m (am+b )+b <a ( m 是任意实数)D .3b+2c >010.如图,正方形ABCD 中.点E ,F 分别在BC ,CD 上,△AEF 是等边三角形.连接AC 交EF 于点G .过点G 作GH ⊥CE 于点H ,若S △EGH =3,则S △ADF =( )A .6B .4C .3D .2二、填空题(本大题共6小题,每小题4分,共24分)11.在函数y =中,自变量x 的取值范围是 .12.一个不透明的袋中装有除颜色外均相同的5个红球和n 个黄球,从中随机摸出一个,摸到红球的概率是58,则n .13.计算:()113|12π-⎛⎫-+= ⎪⎝⎭.14.若关于x 的分式方程7311mxx x +=--无解,则实数m= . 15.如图,D 是等边△ABC 边AB 上的点,AD=2,DB=4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E 、F 分别在边AC 和BC 上,则CFCE= .16.如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE﹣ED﹣DC运动到点C 停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③当14<t<22时,y=110﹣5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是.三、解答题(本大题共8小题,共66分)17.(本题满分6分)先化简,再求值:222111xx x x-⎛⎫-÷⎪++⎝⎭,其中x=2.18.(本题满分6分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)参加比赛的学生共有名;(2)在扇形统计图中,m的值为,表示“D等级”的扇形的圆心角为度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.19.(本题满分6分)如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为E,F,AE,CF分别与BD交于点G和H,且AB=(1)若tan∠ABE=2,求CF的长;(2)求证:BG=DH.20.(本题满分8分)攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了1箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.21.(本题满分8分)如图,在平面直角坐标系中,坐标原点O是菱形ABCD的对称中心.边AB与x轴平行,点B(1,﹣2),反比例函数kyx(k≠0)的图象经过A,C两点.(1)求点C的坐标及反比例函数的解析式.(2)直线BC与反比例函数图象的另一交点为E,求以O,C,E为顶点的三角形的面积.22.(本题满分8分)如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC交BC 于点E,交CD于点F.且CE=CF.(1)求证:直线CA是⊙O的切线;(2)若BD=43DC,求DFCF的值.23.(本题满分12分)如图1,在平面直角坐标系中,直线MN分别与x轴、y轴交于点M(6,0),N(0,2√3),等边△ABC的顶点B与原点O重合,BC边落在x轴正半轴上,点A恰好落在线段MN上,将等边△ABC从图l的位置沿x轴正方向以每秒l个单位长度的速度平移,边AB,AC分别与线段MN交于点E,F(如图2所示),设△ABC平移的时间为t(s).(1)等边△ABC的边长为;(2)在运动过程中,当t=时,MN垂直平分AB;(3)若在△ABC开始平移的同时.点P从△ABC的顶点B出发.以每秒2个单位长度的速度沿折线BA﹣AC运动.当点P运动到C时即停止运动.△ABC也随之停止平移.①当点P在线段BA上运动时,若△PEF与△MNO相似.求t的值;②当点P在线段AC上运动时,设S△PEF=S,求S与t的函数关系式,并求出S的最大值及此时点P 的坐标.24.(本题满分12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0).与y 轴交于点C(0,3).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.参考答案与解析一、选择题1.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 700 000=6.7×106,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下列计算正确的是()A.33=9 B.(a﹣b)2=a2﹣b2C.(a3)4=a12D.a2•a3=a6【考点】幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.【分析】直接利用完全平方公式以及幂的乘方运算法则和同底数幂的乘法运算法则计算得出答案.【解答】解:A、33=27,故此选项错误;B、(a﹣b)2=a2﹣2ab+b2,故此选项错误;C、(a3)4=a12,正确;D、a2•a3=a5,故此选项错误;故选:C.【点评】此题主要考查了完全平方公式以及幂的乘方运算和同底数幂的乘法运算等知识,正确掌握运算法则是解题关键.3.如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33°B.57°C.67°D.60°【考点】平行线的性质.【分析】由题意可求得∠3的度数,然后由两直线平行,同位角相等,求得∠2的度数.【解答】解:如图,∵把一块直角三角板的直角顶点放在直尺的一边上,∴∠3=90°﹣∠1=90°﹣33°=57°,∵a∥b,∴∠2=∠3=57°.故选:B.【点评】此题考查了平行线的性质.注意运用:两直线平行,同位角相等.4.某篮球队10名队员的年龄如下表所示:则这10名队员年龄的众数和中位数分别是()年龄(岁)18 19 20 21人数 2 4 3 1 A.19,19 B.19,19.5 C.20,19 D.20,19.5【考点】众数;中位数.【分析】由表格中的数据可以直接看出众数,然后将这十个数据按照从小到大的顺序排列即可得到中位数,本题得以解决.【解答】解:由表格可知,一共有2+4+3+1=10个数据,其中19出现的次数最多,故这组数据的众数是19,按从小到大的数据排列是:18、19、19、19、19、19、20、20、20、21,故中位数是19.故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义.5.如图是每个面上都有一个汉字的正方体的一种表面展开图,那么在这个正方体的表面,与“我”相对的面上的汉字是()。

四川省资阳市2017年中考数学试题(word版,含答案)

四川省资阳市2017年中考数学试题(word版,含答案)

资阳市2017年高中阶段教育学校招生统一考试数学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。

全卷满分120分。

考试时间共120分钟。

注意事项:1.答题前,请考生务必在答题卡上正确填写自己的姓名、准考证号和座位号。

考试结束,将试卷和答题卡一并交回。

2.选择题每小题选出的答案须用2B铅笔在答题卡上把对应题目....的答案标号涂黑。

如需改动,用橡皮擦擦净后,再选涂其它答案。

非选择题须用黑色墨水的钢笔或签字笔在答题卡上对应题号位置作答,在试卷上作答,答案无效。

第Ⅰ卷(选择题共30分)一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意。

1.6-的绝对值是A.6 B.6-C.16D.16-2.如图1是一个圆台,它的主视图是3.下列运算结果为a6的是A.a2+a3B.a2·a3C.(-a2)3D.a8÷a24.一组数据3、5、8、3、4的众数与中位数分别是A.3,8 B.3,3 C.3,4 D.4,35.如图2,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为A.30°B.35°C.40°D.45°6.如图3,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3-5的点P应落在线段A.AO上B.OB上C.BC上D.CD上7.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形8.如图4,AD 、BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发,沿O →C →D →O 的路线匀速运动,设∠APB =y (单位:度),那么y 与点P 运动的时间x (单位:秒)的关系图是9.如图5,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3 cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是A .13cmB .261cmC .61cmD .234cm10.如图6,在△ABC 中,∠ACB =90º,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①AB =2;②当点E 与点B 重合时,MH =12;③AF+BE=EF ;④MG •MH =12,其中正确结论为A .①②③B .①③④C .①②④D .①②③④第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共6个小题,每小题3分,共18分)11.太阳的半径约为696000千米,用科学记数法表示为_______千米.12.一个多边形的内角和是外角和的3倍,则这个多边形的边数是_______. 13.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成右图统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有_________人.14.已知:()226230a b b ++--=,则224b b a --的值为_________. 15.如图7,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数8y x =(x >0)和ky x=(x >0)的图象交于P 、Q 两点,若S △POQ =14,则k 的值为__________.每周课外阅读时间(小时) 0~1 1~2 (不含1) 2~3 (不含2) 超过3 人 数7101419图516.已知抛物线p :y =ax 2+bx +c 的顶点为C ,与x 轴相交于A 、B 两点(点A 在点B 左侧),点C 关于x 轴的对称点为C′,我们称以A 为顶点且过点C ′,对称轴与y 轴平行的抛物线为抛物线p 的“梦之星”抛物线,直线AC′为抛物线p 的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y =x 2+2x +1和y =2x +2,则这条抛物线的解析式为_____________________. 三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤。

2017年四川省各市中考数学试题汇总(12套)

2017年四川省各市中考数学试题汇总(12套)
1.﹣2的倒数是( )
A. B. C.2D.﹣2
2.随着经济发展,人民的生活水平不断提高,旅游业快速增长,2016年国民出境旅游超过120000000人次,将120000000用科学记数法表示为( )
A.1.2×109B.12×107C.0.12×109D.1.2×108
3.下列图形中,既是轴对称图形又是中心对称图形的是( )
2017年四川省南充市中考数学试题(含答案)
2017年四川省宜宾市中考数学试题(含答案)
2017年四川省成都市中考数学试题(含答案)
2017届四川省自贡市毕业生学业考试(中考)数学试卷(含答案)
2017年四川省达州市中考数学试题(含答案)
2017年四川省乐山市中考数学试卷
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.
四、本大题共3小题,每小题10分,共30分.
20.化简: .
21.为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:
(1)在表中:m=,n=;
(2)补全频数分布直方图;
(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在组;
16.对于函数 ,我们定义 ( 为常数).
例如 ,则 .
已知: .
(1)若方程 有两个相等实数根,则m的值为;
(2)若方程 有两个正数根,则m的取值范围为.
三、本大题共3小题,每小题9分,共27分.
17.计算: .
18.求不等式组 的所有整数解.
19.如图,延长▱ABCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A、E和C、F.求证:AE=CF.

四川省资阳市2017年中考数学试题(word版,含答案)

四川省资阳市2017年中考数学试题(word版,含答案)

资阳市2017年高中阶段教育学校招生统一考试数学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。

全卷满分120分。

考试时间共120分钟。

注意事项:1.答题前,请考生务必在答题卡上正确填写自己的姓名、准考证号和座位号。

考试结束,将试卷和答题卡一并交回。

2.选择题每小题选出的答案须用2B铅笔在答题卡上把对应题目....的答案标号涂黑。

如需改动,用橡皮擦擦净后,再选涂其它答案。

非选择题须用黑色墨水的钢笔或签字笔在答题卡上对应题号位置作答,在试卷上作答,答案无效。

第Ⅰ卷(选择题共30分)一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意。

1.6-的绝对值是A.6 B.6-C.16D.16-2.如图1是一个圆台,它的主视图是3.下列运算结果为a6的是A.a2+a3B.a2·a3C.(-a2)3D.a8÷a24.一组数据3、5、8、3、4的众数与中位数分别是A.3,8 B.3,3 C.3,4 D.4,35.如图2,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为A.30°B.35°C.40°D.45°6.如图3,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3-5的点P应落在线段A.AO上B.OB上C.BC上D.CD上7.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形8.如图4,AD 、BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发,沿O →C →D →O 的路线匀速运动,设∠APB =y (单位:度),那么y 与点P 运动的时间x (单位:秒)的关系图是9.如图5,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3 cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是A .13cmB .261cmC .61cmD .234cm10.如图6,在△ABC 中,∠ACB =90º,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①AB =2;②当点E 与点B 重合时,MH =12;③AF+BE=EF ;④MG •MH =12,其中正确结论为A .①②③B .①③④C .①②④D .①②③④第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共6个小题,每小题3分,共18分)11.太阳的半径约为696000千米,用科学记数法表示为_______千米.12.一个多边形的内角和是外角和的3倍,则这个多边形的边数是_______. 13.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成右图统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有_________人.14.已知:()226230a b b ++--=,则224b b a --的值为_________. 15.如图7,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数8y x =(x >0)和ky x=(x >0)的图象交于P 、Q 两点,若S △POQ =14,则k 的值为__________.每周课外阅读时间(小时) 0~1 1~2 (不含1) 2~3 (不含2) 超过3 人 数7101419图516.已知抛物线p :y =ax 2+bx +c 的顶点为C ,与x 轴相交于A 、B 两点(点A 在点B 左侧),点C 关于x 轴的对称点为C′,我们称以A 为顶点且过点C ′,对称轴与y 轴平行的抛物线为抛物线p 的“梦之星”抛物线,直线AC′为抛物线p 的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y =x 2+2x +1和y =2x +2,则这条抛物线的解析式为_____________________. 三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤。

四川省资阳市中考数学试卷及答案解析15

四川省资阳市中考数学试卷及答案解析15

四川省资阳市中考数学试卷参考答案与试题解析一、选择题.(本大题共10小题,每小题3分,共30分)1.﹣2的倒数是()A.﹣B.C.﹣2 D.2【知识点】倒数.【解析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.2.下列运算正确的是()A.x4+x2=x6B.x2•x3=x6C.(x2)3=x6D.x2﹣y2=(x﹣y)2【知识点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.【解析】根据合并同类项法则、同底数幂的乘法法则、积的乘方法则和公式法进行因式分解对各个选项进行判断即可.【解答】解:x4与x2不是同类项,不能合并,A错误;x2•x3=x5,B错误;(x2)3=x6,C正确;x2﹣y2=(x+y)(x﹣y),D错误,故选:C.3.如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.【知识点】几何体的展开图.【解析】根据几何体的展开图先判断出实心圆点与空心圆点的关系,进而可得出结论.【解答】解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.故选C.4.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()A.7.6×10﹣9B.7.6×10﹣8C.7.6×109D.7.6×108【知识点】科学记数法—表示较小的数.【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.000000076用科学记数法表示为7.6×10﹣8,故选:B.5.的运算结果应在哪两个连续整数之间()A.2和3 B.3和4 C.4和5 D.5和6【知识点】估算无理数的大小.【解析】根据无理数的大小比较方法得到<<,即可解答.【解答】解:∵<<,即5<<6,∴的运算结果应在5和6两个连续整数之间.故选:D.6.我市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金A.11,20 B.25,11 C.20,25 D.25,20【知识点】众数;中位数.【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据.【解答】解:在这一组数据中25元是出现次数最多的,故众数是25元;将这组数据已从小到大的顺序排列,处于中间位置的两个数是20、20,那么由中位数的定义可知,这组数据的中位数是20;故选:D.7.如图,两个三角形的面积分别是9,6,对应阴影部分的面积分别是m,n,则m﹣n等于()A.2 B.3 C.4 D.无法确定【知识点】三角形的面积.【解析】设空白出的面积为x ,根据题意列出关系式,相减即可求出m ﹣n 的值.【解答】解:设空白出图形的面积为x , 根据题意得:m+x=9,n+x=6, 则m ﹣n=9﹣6=3. 故选B .8.在Rt △ABC 中,∠ACB=90°,AC=2,以点B 为圆心,BC 的长为半径作弧,交AB 于点D ,若点D 为AB 的中点,则阴影部分的面积是( )A .2﹣πB .4﹣πC .2﹣πD .π【知识点】扇形面积的计算.【解析】根据点D 为AB 的中点可知BC=BD=AB ,故可得出∠A=30°,∠B=60°,再由锐角三角函数的定义求出BC 的长,根据S 阴影=S △A B C﹣S 扇形C B D 即可得出结论.【解答】解:∵D 为AB 的中点, ∴BC=BD=AB ,∴∠A=30°,∠B=60°.∵AC=2,∴BC=AC •tan30°=2•=2,∴S阴影=S △A B C ﹣S扇形C B D=×2×2﹣=2﹣π.故选A .9.如图,矩形ABCD 与菱形EFGH 的对角线均交于点O ,且EG ∥BC ,将矩形折叠,使点C 与点O 重合,折痕MN 恰好过点G 若AB=,EF=2,∠H=120°,则DN 的长为( )A .B .C .﹣D .2﹣【知识点】矩形的性质;菱形的性质;翻折变换(折叠问题).【解析】延长EG交DC于P点,连接GC、FH,则△GCP为直角三角形,证明四边形OGCM为菱形,则可证OC=OM=CM=OG=,由勾股定理求得GP的值,再由梯形的中位线定理CM+DN=2GP,即可得出答案.【解答】解:长EG交DC于P点,连接GC、FH;如图所示:则CP=DP=CD=,△GCP为直角三角形,∵四边形EFGH是菱形,∠EHG=120°,∴GH=EF=2,∠OHG=60°,EG⊥FH,∴OG=GH•sin60°=2×=,由折叠的性质得:CG=OG=,OM=CM,∠MOG=∠MCG,∴PG==,∵OG∥CM,∴∠MOG+∠OMC=180°,∴∠MCG+∠OMC=180°,∴OM∥CG,∴四边形OGCM为平行四边形,∵OM=CM,∴四边形OGCM为菱形,∴CM=OG=,根据题意得:PG是梯形MCDN的中位线,∴DN+CM=2PG=,∴DN=﹣;故选:C.,10.已知二次函数y=x2+bx+c与x轴只有一个交点,且图象过A(x1 +n,m)两点,则m、n的关系为()m)、B(x1A.m=n B.m=n C.m=n2D.m=n2【知识点】抛物线与x轴的交点.【解析】由“抛物线y=x2+bx+c与x轴只有一个交点”推知x=﹣时,y=0.且b2﹣4c=0,即b2=4c,其次,根据抛物线对称轴的定义知点A、B关于对称轴对称,故A(﹣﹣,m),B(﹣+,m);最后,根据二次函数图象上点的坐标特征即可得出结论.【解答】解:∵抛物线y=x2+bx+c与x轴只有一个交点,∴当x=﹣时,y=0.且b2﹣4c=0,即b2=4c.又∵点A(x1,m),B(x1+n,m),∴点A、B关于直线x=﹣对称,∴A(﹣﹣,m),B(﹣+,m),将A点坐标代入抛物线解析式,得m=(﹣﹣)2+(﹣﹣)b+c,即m=﹣+c,∵b2=4c,∴m=n2,故选D.二、填空题.(本大题共6小题,每小题3分,共18分)11.若代数式有意义,则x的取值范围是x≧2 .【知识点】二次根式有意义的条件.【解析】根据式子有意义的条件为a≥0得到x﹣2≥0,然后解不等式即可.【解答】解:∵代数式有意义,∴x﹣2≥0,∴x≥2.故答案为x≥2.12.如图,AC是正五边形ABCDE的一条对角线,则∠ACB= 36°.【知识点】多边形内角与外角.【解析】由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.【解答】解:∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=÷2=36°;故答案为:36°.13.已知关于x的方程mx+3=4的解为x=1,则直线y=(m﹣2)x﹣3一定不经过第一象限.【知识点】一次函数与一元一次方程.【解析】关于x的方程mx+3=4的解为x=1,于是得到m+3=4,求得m=1,得到直线y=﹣x﹣3,于是得到结论.【解答】解:∵关于x的方程mx+3=4的解为x=1,∴m+3=4,∴m=1,∴直线y=(m﹣2)x﹣3为直线y=﹣x﹣3,∴直线y=(m﹣2)x﹣3一定不经过第一象限,故答案为:一.14.如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是.【知识点】概率公式;等腰三角形的判定.【解析】根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,即可得出答案.【解答】解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;故答案为:.15.设一列数中相邻的三个数依次为m、n、p,且满足p=m2﹣n,若这列数为﹣1,3,﹣2,a,﹣7,b…,则b= 128 .【知识点】规律型:数字的变化类.【解析】根据题意求出a,再代入关系式即可得出b的值.【解答】解:根据题意得:a=32﹣(﹣2)=11,则b=112﹣(﹣7)=128.故答案为:128.16.如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④AD2+BE2﹣2OP2=2DP•PE,其中所有正确结论的序号是①②③④.【知识点】勾股定理;四点共圆.【解析】①正确.由ADO ≌△CEO ,推出DO=OE ,∠AOD=∠COE ,由此即可判断.②正确.由D 、C 、E 、O 四点共圆,即可证明.③正确.由S △A B C =×1×1=,S四边形D C E O=S △D O C +S △C E O =S △C D O +S △A D O =S △A O C =S △A B C 即可解决问题.④正确.由D 、C 、E 、O 四点共圆,得OP •PC=DP •PE ,所以2OP 2+2DP •PE=2OP 2+2OP •PC=2OP (OP+PC )=2OP •OC ,由△OPE ∽△OEC ,得到=,即可得到2OP 2+2DP •PE=2OE 2=DE 2=CD 2+CE 2,由此即可证明.【解答】解:①正确.如图,∵∠ACB=90°,AC=BC ,CO ⊥AB ∴AO=OB=OC ,∠A=∠B=∠ACO=∠BCO=45°, 在△ADO 和△CEO 中,,∴△ADO ≌△CEO ,∴DO=OE ,∠AOD=∠COE , ∴∠AOC=∠DOE=90°,∴△DOE 是等腰直角三角形.故①正确. ②正确.∵∠DCE+∠DOE=180°, ∴D 、C 、E 、O 四点共圆, ∴∠CDE=∠COE ,故②正确. ③正确.∵AC=BC=1,∴S △A B C =×1×1=,S四边形D C E O=S △D O C +S △C E O =S △C D O +S △A D O =S △A O C =S △A B C =,故③正确.④正确.∵D 、C 、E 、O 四点共圆, ∴OP •PC=DP •PE ,∴2OP 2+2DP •PE=2OP 2+2OP •PC=2OP (OP+PC )=2OP •OC , ∵∠OEP=∠DCO=∠OCE=45°,∠POE=∠COE , ∴△OPE ∽△OEC ,∴=,∴OP •OC=OE 2,∴2OP 2+2DP •PE=2OE 2=DE 2=CD 2+CE 2,∵CD=BE,CE=AD,∴AD2+BE2=2OP2+2DP•PE,∴AD2+BE2﹣2OP2=2DP•PE.故④正确.三、解答题.(本大题共8小题,共72分)17.化简:(1+)÷.【知识点】分式的混合运算.【解析】首先把括号内的式子通分相加,把除法转化为乘法,然后进行乘法运算即可.【解答】解:原式=÷=•=a﹣1.18.近几年来,国家对购买新能源汽车实行补助政策,2016年某省对新能源汽车中的“插电式混合动力汽车”实行每辆3万元的补助,小刘对该省2016年“纯电动乘用车”和“插电式混合动力车”的销售计划进行了研究,绘制出如图所示的两幅不完整的统计图.(1)补全条形统计图;(2)求出“D”所在扇形的圆心角的度数;(3)为进一步落实该政策,该省计划再补助4.5千万元用于推广上述两大类产品,请你预测,该省16年计划大约共销售“插电式混合动力汽车”多少辆?注:R为纯电动续航行驶里程,图中A表示“纯电动乘用车”,B表示“纯电动乘用车”,C表示“纯电动乘用车”(R≥250km),D为“插电式混合动力汽车”.【知识点】条形统计图;用样本估计总体;扇形统计图.【解析】(1)首先由A的数目和其所占的百分比可求出总数,进而可求出D的数目,问题得解;(2)由D的数目先求出它所占的百分比,再用百分比乘以360°,即可解答;(3)计算出补贴D类产品的总金额,再除以每辆车的补助可得车的数量.【解答】解:(1)补贴总金额为:4÷20%=20(千万元),则D类产品补贴金额为:20﹣4﹣4.5﹣5.5=6(千万元),补全条形图如图:(2)360°×=108°,答:“D”所在扇形的圆心角的度数为108°;(3)根据题意,16年补贴D类“插电式混合动力汽车”金额为:6+4.5×=7.35(千万元),∴7350÷3=2450(辆),答:预测该省16年计划大约共销售“插电式混合动力汽车”2450辆.19.某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.(1)求出A型、B型污水处理设备的单价;(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.【知识点】一元一次不等式的应用;二元一次方程组的应用.【解析】(1)根据题意结合购买A型2台、B型3台需54万,购买A 型4台、B型2台需68万元分别得出等式求出答案;(2)利用该企业每月的污水处理量不低于1565吨,得出不等式求出答案.【解答】解:(1)设A型污水处理设备的单价为x万元,B型污水处理设备的单价为y万元,根据题意可得:,解得:.答:A型污水处理设备的单价为12万元,B型污水处理设备的单价为10万元;(2)设购进a台A型污水处理器,根据题意可得:220a+190(8﹣a)≥1565,解得:a≥1.5,∵A型污水处理设备单价比B型污水处理设备单价高,∴A型污水处理设备买越少,越省钱,∴购进2台A型污水处理设备,购进6台B型污水处理设备最省钱.20.如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.【知识点】切线的性质.【解析】(1)由圆周角推论可得∠A+∠ABD=90°,由切线性质可得∠CDB+∠ODB=90°,而∠ABD=∠ODB,可得答案;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,根据勾股定理可求得MN的长.【解答】解:(1)如图,连接OD,∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵CD与⊙O相切于点D,∴∠CDB+∠ODB=90°,∵OD=OB,∴∠ABD=∠ODB,∴∠A=∠BDC;(2)∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN==.21.如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y=(k≠0,x>0)过点D.(1)求双曲线的解析式;(2)作直线AC交y轴于点E,连结DE,求△CDE的面积.【知识点】反比例函数与一次函数的交点问题;平行四边形的性质.【解析】(1)根据在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),可以求得点D的坐标,又因为双曲线y=(k≠0,x>0)过点D,从而可以求得k的值,从而可以求得双曲线的解析式;(2)由图可知三角形CDE的面积等于三角形EDA与三角形ADC的面积之和,从而可以解答本题.【解答】解:(1)∵在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),∴点D的坐标是(1,2),∵双曲线y=(k≠0,x>0)过点D,∴2=,得k=2,即双曲线的解析式是:y=;(2)∵直线AC 交y 轴于点E ,∴S △C D E =S △E D A +S △A D C =,即△CDE 的面积是3.22.如图,“中国海监50”正在南海海域A 处巡逻,岛礁B 上的中国海军发现点A 在点B 的正西方向上,岛礁C 上的中国海军发现点A 在点C 的南偏东30°方向上,已知点C 在点B 的北偏西60°方向上,且B 、C 两地相距120海里.(1)求出此时点A 到岛礁C 的距离;(2)若“中海监50”从A 处沿AC 方向向岛礁C 驶去,当到达点A ′时,测得点B 在A ′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)【知识点】解直角三角形的应用-方向角问题.【解析】(1)根据题意得出:∠CBD=30°,BC=120海里,再利用cos30°=,进而求出答案;(2)根据题意结合已知得出当点B 在A ′的南偏东75°的方向上,则A ′B 平分∠CBA ,进而得出等式求出答案.【解答】解:(1)如图所示:延长BA ,过点C 作CD ⊥BA 延长线与点D ,由题意可得:∠CBD=30°,BC=120海里,则DC=60海里,故cos30°===,解得:AC=40,答:点A 到岛礁C 的距离为40海里;(2)如图所示:过点A ′作A ′N ⊥BC 于点N ,可得∠1=30°,∠BA ′A=45°,A ′N=A ′E ,则∠2=15°,即A ′B 平分∠CBA ,设AA ′=x ,则A ′E=x ,故CA ′=2A ′N=2×x=x ,∵x+x=40,∴解得:x=20(﹣1),答:此时“中国海监50”的航行距离为20(﹣1)海里.23.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE 的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE 的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.【知识点】几何变换综合题.【解析】(1)由旋转得到∠BAC=∠BAD,而DF⊥AC,从而得出∠ABC=45°,最后判断出△ABC是等腰直角三角形;(2)①由旋转得到∠BAC=∠BAD,再根据∠DAF=∠DBA,从而求出∠FAD=∠BAC=∠BAD=60°,最后判定△AFD≌△BED,即可;②根据题意画出图形,先求出角度,得到△ABD是顶角为36°的等腰三角形,再用相似求出,,最后判断出△AFD∽△BED,代入即可.【解答】解:(1)由旋转得,∠BAC=∠BAD,∵DF⊥AC,∴∠CAD=90°,∴∠BAC=∠BAD=45°,∵∠ACB=90°,∴∠ABC=45°,∴AC=CB,(2)①由旋转得,AD=AB,∴∠ABD=∠ADB,∵∠DAF=∠ABD,∴∠DAF=∠ADB,∴AF∥BB,∴∠BAC=∠ABD,∵∠ABD=∠FAD由旋转得,∠BAC=∠BAD,∴∠FAD=∠BAC=∠BAD=×180°=60°,由旋转得,AB=AD,∴△ABD是等边三角形,∴AD=BD,在△AFD和△BED中,,∴△AFD≌△BED,∴AF=BE,②如图,由旋转得,∠BAC=∠BAD,∵∠ABD=∠FAD=∠BAC+∠BAD=2∠BAD,由旋转得,AD=AB,∴∠ABD=∠ADB=2∠BAD,∵∠BAD+∠ABD+∠ADB=180°,∴∠BAD+2∠BAD+2∠BAD=180°,∴∠BAD=36°,设BD=x,作BG平分∠ABD,∴∠BAD=∠GBD=36°∴AG=BG=BC=x,∴DG=AD﹣AG=AD﹣BG=AD﹣BD,∵∠BDG=∠ADB,∴△BDG∽△ADB,∴.∴,∴,∵∠FAD=∠EBD,∠AFD=∠BED,∴△AFD∽△BED,∴,∴AF==x.24.已知抛物线与x轴交于A(6,0)、B(﹣,0)两点,与y轴交于点C,过抛物线上点M(1,3)作MN⊥x轴于点N,连接OM.(1)求此抛物线的解析式;(2)如图1,将△OMN沿x轴向右平移t个单位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′与直线AC分别交于点E、F.①当点F为M′O′的中点时,求t的值;②如图2,若直线M′N′与抛物线相交于点G,过点G作GH∥M′O′交AC于点H,试确定线段EH是否存在最大值?若存在,求出它的最大值及此时t的值;若不存在,请说明理由.【知识点】二次函数综合题.【解析】(1)设抛物线解析式为y=a(x﹣6)(x+),把点M(1,3)代入即可求出a,进而解决问题.(2))①如图1中,AC与OM交于点G.连接EO′,首先证明△AOC ∽△MNO,推出OM⊥AC,在RT△EO′M′中,利用勾股定理列出方程即可解决问题.②由△GHE∽△AOC得==,所以EG最大时,EH最大,构建二次函数求出EG的最大值即可解决问题.【解答】解:(1)设抛物线解析式为y=a(x﹣6)(x+),把点M(1,3)代入得a=﹣,∴抛物线解析式为y=﹣(x﹣6)(x+),∴y=﹣x2+x+2.(2)①如图1中,AC与OM交于点G.连接EO′.∵AO=6,OC=2,MN=3,ON=1,∴==3,∴=,∵∠AOC=∠MON=90°,∴△AOC∽△MNO,∴∠OAC=∠NMO,∵∠NMO+∠MON=90°,∴∠MON+∠OAC=90°,∴∠AGO=90°,∴OM⊥AC,∵△M′N′O′是由△MNO平移所得,∴O′M′∥OM,∴O′M′⊥AC,∵M′F=FO′,∴EM′=EO′,∵EN′∥CO,∴=,∴=,∴EN′=(5﹣t),在RT△EO′M′中,∵O′N′=1,EN′=(5﹣t),EO′=EM′=+t,∴(+t)2=1+(﹣t)2,∴t=1.②如图2中,∵GH∥O′M′,O′M′⊥AC,∴GH⊥AC,∴∠GHE=90°,∵∠EGH+∠HEG=90°,∠AEN′+∠OAC=90°,∠HEG=∠AEN′,∴∠OAC=∠HGE,∵∠GHE=∠AOC=90°,∴△GHE∽△AOC,∴==,∴EG最大时,EH最大,∵EG=GN′﹣EN′=﹣(t+1)2+(t+1)+2﹣(5﹣t)=﹣t2+ t+=﹣(t﹣2)2+.∴t=2时,EG最大值=,∴EH最大值=.∴t=2时,EH最大值为.。

四川省资阳市简阳市2017届中考数学模拟试卷

四川省资阳市简阳市2017届中考数学模拟试卷

2017年四川省资阳市简阳市中考数学模拟试卷一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.a与﹣2互为相反数,则a为()A.﹣2 B.2 C.D.2.如图,AB∥CD,∠CDE=140°,则∠A的度数为()A.140°B.60° C.50° D.40°3.下列运算正确的是()A.3x2+4x2=7x4B.2x3•3x3=6x3C.x6÷x3=x2D.(x2)4=x84.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为()A.6 B.8 C.12 D.245.如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是()A.B.C.D.6.函数y=中,自变量x的取值范围是()A.x>﹣3 B.x≥﹣3 C.x≠﹣3 D.x≤﹣37.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.5 D.68.如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(﹣x,y﹣2)B.(﹣x,y+2) C.(﹣x+2,﹣y)D.(﹣x+2,y+2)9.圆心角为120°,弧长为12π的扇形半径为()A.6 B.9 C.18 D.3610.已知△ABC的两条高线的长分别为5和20,若第三条高线的长也是整数,则第三条高线长的最大值为()A.5 B.6 C.7 D.8二、填空题:(本大题共6个小题,每小题3分,共18分)11.计算:()0﹣()﹣2= .12.分解因式:2x2﹣10x= .13.甲、乙两名射击手的50次测试的平均成绩都是8环,方差分别是S甲2=0.4,S乙2=1.2,则成绩比较稳定的是(填“甲”或“乙”)14.如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=,则AC= .15.在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的A′处,则AP的长为.16.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的序号是.三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(8分)已知实数a满足a2+2a﹣15=0,求﹣÷的值.18.(6分)如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.19.(8分)了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?被调查的学生每人一周零花钱数的中位数是多少元?(3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?20.(8分)某装修工程,甲、乙两人可以合作完成,若甲、乙两人合作4天后,再由乙独作12天可以完成,已知甲独作每天需要费用580元.乙独作每天需费用280元.但乙单独完成的天数是甲单独完成天数的2倍.(1)甲、乙两人单独作这项工程各需多少天?(2)如果工期要求不超过18天完成,应如何安排甲乙两人的工期使这项工程比较省钱?(8分)一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3m,已知木箱高BE=,21.斜面坡角为30°,求木箱端点E距地面AC的高度EF.22.(10分)如图,反比例函数y=(k>0)与正比例函数y=ax相交于A(1,k),B(﹣k,﹣1)两点.(1)求反比例函数和正比例函数的解析式;(2)将正比例函数y=ax的图象平移,得到一次函数y=ax+b的图象,与函数y=(k>0)的图象交于C(x1,y1),D(x2,y2),且|x1﹣x2|•|y1﹣y2|=5,求b的值.23.(10分)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.24.(14分)如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P 过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.(1)求抛物线的解析式;(2)求证:ED是⊙P的切线;(3)若将△ADE绕点D逆时针旋转90°,E点的对应点E′会落在抛物线y=ax2+bx+c上吗?请说明理由;(4)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.2017年四川省资阳市简阳市中考数学模拟试卷参考答案与试题解析一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.a与﹣2互为相反数,则a为()A.﹣2 B.2 C.D.【考点】14:相反数.【分析】根据相反数的几何意义可知:互为相反数的两数之和为0,列出关于a的方程,求出方程的解即可得到a的值.【解答】解:根据题意得:a+(﹣2)=0,解得:a=2.故选B【点评】此题考查了相反数的定义,认识相反数应从两个角度出发:1、除0以外,相反数总是一正一负,成对出现;2、在数轴上表示互为相反数(除0外)的两个点分别在原点的两边,且到原点的距离相等.2.如图,AB∥CD,∠CDE=140°,则∠A的度数为()A.140°B.60° C.50° D.40°【考点】JA:平行线的性质.【分析】先求出∠CDE的邻补角,再根据两直线平行,内错角相等解答.【解答】解:∵∠CDE=140°,∴∠ADC=180°﹣140°=40°,∵AB∥CD,∴∠A=∠ADC=40°.故选:D.【点评】本题考查了两直线平行,内错角相等的性质,熟记性质是解题的关键.3.下列运算正确的是()A.3x2+4x2=7x4B.2x3•3x3=6x3C.x6÷x3=x2D.(x2)4=x8【考点】49:单项式乘单项式;35:合并同类项;47:幂的乘方与积的乘方.【分析】根据单项式乘单项式、合并同类项、幂的乘方与积的乘方的定义解答.【解答】解:A、∵3x2+4x2=7x2≠7x4,故本选项错误;B、∵2x3•3x3=2×3x3+3≠6x3,故本选项错误;C、∵x6和x3不是同类项,不能合并,故本选项错误;D、∵(x2)4=x2×4=x8,故本选项正确.故选D.【点评】本题考查了单项式乘单项式、合并同类项、幂的乘方与积的乘方,熟练掌握运算法则是解题的关键.4.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为()A.6 B.8 C.12 D.24【考点】U3:由三视图判断几何体.【分析】找到主视图中原几何体的长与高让它们相乘即可.【解答】解:主视图反映物体的长和高,左视图反映物体的宽和高,俯视图反映物体的长和宽.结合三者之间的关系从而确定主视图的长和高分别为4,2,所以面积为8,故选:B.【点评】解决本题的关键是根据所给的左视图和俯视图得到主视图的各边长.5.如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是()A.B.C.D.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为: =.故选:A.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.函数y=中,自变量x的取值范围是()A.x>﹣3 B.x≥﹣3 C.x≠﹣3 D.x≤﹣3【考点】E4:函数自变量的取值范围.【分析】根据被开方数大于等于0列式进行计算即可得解.【解答】解:根据题意得,x+3≥0,解得x≥﹣3.故选B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.7.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.5 D.6【考点】G5:反比例函数系数k的几何意义.【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段求出与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选:D.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.8.如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(﹣x,y﹣2)B.(﹣x,y+2) C.(﹣x+2,﹣y)D.(﹣x+2,y+2)【考点】Q3:坐标与图形变化﹣平移;P6:坐标与图形变化﹣对称.【分析】先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(﹣x,y+2),即为P′点的坐标.【解答】解:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(﹣x,y+2).故选:B.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.9.圆心角为120°,弧长为12π的扇形半径为()A.6 B.9 C.18 D.36【考点】MN:弧长的计算.【分析】根据弧长的公式l=进行计算.【解答】解:设该扇形的半径是r.根据弧长的公式l=,得到:12π=,解得 r=18,故选:C.【点评】本题考查了弧长的计算.熟记公式是解题的关键.10.已知△ABC的两条高线的长分别为5和20,若第三条高线的长也是整数,则第三条高线长的最大值为()A.5 B.6 C.7 D.8【考点】CC:一元一次不等式组的整数解;K3:三角形的面积;K6:三角形三边关系.【分析】如果设△ABC的面积为S,所求的第三条高线的长为h,根据三角形的面积公式,先用含S、h的代数式分别表示出三边的长度,再由三角形三边关系定理,列出不等式组,求出不等式组的解集,得到h的取值范围,然后根据h为整数,确定h的值.【解答】解:设△ABC的面积为S,所求的第三条高线的长为h,则三边长分别为,则.由三边关系,得,解得.所以h的最大整数值为6,即第三条高线的长的最大值为6.故选B.【点评】本题主要考查了三角形的面积公式,三角形三边关系定理及不等式组的解法,有一定难度.利用三角形的面积公式,表示出△ABC三边的长度,从而运用三角形三边关系定理,列出不等式组是解题的关键,难点是解不等式组.二、填空题:(本大题共6个小题,每小题3分,共18分)11.计算:()0﹣()﹣2= ﹣3 .【考点】6F:负整数指数幂;6E:零指数幂.【分析】分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣4=﹣3,故答案为:﹣3.【点评】本题主要考查了零指数幂,负指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.12.分解因式:2x2﹣10x= 2x(x﹣5).【考点】53:因式分解﹣提公因式法.【分析】首先确定公因式是2x,然后提公因式即可.【解答】解:原式=2x(x﹣5).故答案是:2x(x﹣5).【点评】本题考查了提公因式法,正确确定公因式是关键.13.甲、乙两名射击手的50次测试的平均成绩都是8环,方差分别是S甲2=0.4,S乙2=1.2,则成绩比较稳定的是甲(填“甲”或“乙”)【考点】W7:方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵,,∴<,∴成绩比较稳定的是甲;故答案为:甲.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=,则AC= 5 .【考点】T7:解直角三角形.【分析】根据题中所给的条件,在直角三角形中解题.根据角的正弦值与三角形边的关系,可求出AC.【解答】解:∵在Rt△ABC中,cosB=,∴sinB=,tanB==.∵在Rt△ABD中AD=4,∴AB=.在Rt△ABC中,∵tanB=,∴AC=×=5.【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.15.在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的A′处,则AP的长为或.【考点】PB:翻折变换(折叠问题).【分析】分两种情况探讨:点A落在矩形对角线BD上,点A落在矩形对角线AC上,在直角三角形中利用勾股定理列出方程,通过解方程可得答案.【解答】解:①点A落在矩形对角线BD上,如图1,∵AB=4,BC=3,∴BD=5,根据折叠的性质,AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,∴BA′=2,设AP=x,则BP=4﹣x,∵BP2=BA′2+PA′2,∴(4﹣x)2=x2+22,解得:x=,∴AP=;②点A落在矩形对角线AC上,如图2,根据折叠的性质可知DP⊥AC,∴△DAP∽△ABC,∴,∴AP===.故答案为:或.【点评】本题考查了折叠问题、勾股定理,矩形的性质以及三角形相似的判定与性质;解题中,找准相等的量是正确解答题目的关键.16.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的序号是①③④.【考点】H4:二次函数图象与系数的关系.【分析】观察函数图象,根据二次函数图象与系数的关系找出“a<0,c>0,﹣>0”,再由顶点的纵坐标在x轴上方得出>0.①由a<0,c>0,﹣>0即可得知该结论成立;②由顶点纵坐标大于0即可得出该结论不成立;③由OA=OC,可得出x A=﹣c,将点A(﹣c,0)代入二次函数解析式即可得出该结论成立;④结合根与系数的关系即可得出该结论成立.综上即可得出结论.【解答】解:观察函数图象,发现:开口向下⇒a<0;与y轴交点在y轴正半轴⇒c>0;对称轴在y轴右侧⇒﹣>0;顶点在x轴上方⇒>0.①∵a<0,c>0,﹣>0,∴b>0,∴abc<0,①成立;②∵>0,∴<0,②不成立;③∵OA=OC,∴x A=﹣c,将点A(﹣c,0)代入y=ax2+bx+c中,得:ac2﹣bc+c=0,即ac﹣b+1=0,③成立;④∵OA=﹣x A,OB=x B,x A•x B=,∴OA•OB=﹣,④成立.综上可知:①③④成立.故答案为:①③④.【点评】本题考查了二次函数图象与系数的关系以及根与系数的关系,解题的关键是观察函数图象逐条验证四条结论.本题属于基础题,难度不大,解决该题型题目时,观察函数图形,利用二次函数图象与系数的关系找出各系数的正负是关键.三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.已知实数a满足a2+2a﹣15=0,求﹣÷的值.【考点】6D:分式的化简求值.【分析】先把要求的式子进行计算,先进行因式分解,再把除法转化成乘法,然后进行约分,得到一个最简分式,最后把a2+2a﹣15=0进行配方,得到一个a+1的值,再把它整体代入即可求出答案.【解答】解:﹣÷=﹣•=﹣=,∵a2+2a﹣15=0,∴(a+1)2=16,∴原式==.【点评】此题考查了分式的化简求值,关键是掌握分式化简的步骤,先进行通分,再因式分解,然后把除法转化成乘法,最后约分;化简求值题要将原式化为最简后再代值.18.如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.【考点】N3:作图—复杂作图.【分析】(1)根据圆周角定理:直径所对的圆周角是90°画图即可;(2)与(1)类似,利用圆周角定理画图.【解答】解:(1)如图所示:点P就是三个高的交点;(2)如图所示:CT就是AB上的高.【点评】此题主要考查了复杂作图,关键是掌握三角形的三条高交于一点,直径所对的圆周角是90°.19.了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?被调查的学生每人一周零花钱数的中位数是多少元?(3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图;W4:中位数.【分析】(1)零用钱是40元的是10人,占25%,据此即可求得总人数,总人数乘以所占的比例即可求得零用钱是20元的人数,则统计图可以作出;(2)求出零用钱是50元的所占的比例,乘以360度即可求得对应的扇形的圆心角,根据中位数的定义可以求得中位数;(3)首先求得抽取的学生的零用钱的平均数,平均数的一半乘以1000即可求解.【解答】解:(1)随机调查的学生数是:10÷25%=40(人),零花钱是20元的人数是:40×15%=6(人).(2)50元的所占的比例是: =,则圆心角36°,中位数是30元;(3)学生的零用钱是: =33(元),则全校学生共捐款×33×1000=16500元.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.某装修工程,甲、乙两人可以合作完成,若甲、乙两人合作4天后,再由乙独作12天可以完成,已知甲独作每天需要费用580元.乙独作每天需费用280元.但乙单独完成的天数是甲单独完成天数的2倍.(1)甲、乙两人单独作这项工程各需多少天?(2)如果工期要求不超过18天完成,应如何安排甲乙两人的工期使这项工程比较省钱?【考点】B7:分式方程的应用;FH:一次函数的应用.【分析】(1)设甲单独作这项工程需x天,则乙单独完成需2x天,根据甲、乙两人合作4天后,再由乙独作12天可以完成,列出方程,求出方程的解,再进行检验即可;(2)设安排甲队施工a天,则乙队施工=(24﹣2a)天,设总费用为w元.根据工期不超过18天,列出关于a的一元一次不等式组,解得3≤a≤18.再用含a的代数式表示w,得w=580a+280(24﹣2a),即w=20a+6720.根据一次函数的性质即可求解.【解答】解:(1)设甲单独作这项工程需x天,则乙单独完成需2x天,根据题意得方程(+)×4+=1,解得x=12.经检验x=12是原方程的根.2x=24.答:甲单独作这项工程需12天,乙单独完成需24天;(2)设安排甲队施工a天,则乙队施工=(24﹣2a)天,设总费用为w元.∵工期不超过18天,∴,∴3≤a≤12.W=580a+280(24﹣2a),整理得w=20a+6720.∵k=20>0,所以w随a的增大而增大,当a=3时,w最小,w的值为6780元,24﹣2a=18.∴当乙队工作18天,同时甲队在此期间工作3天完成这项工程比较省钱.【点评】本题考查分式方程与一次函数的应用,分析题意,找到合适的等量关系是解决问题的关键.21.一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3m,已知木箱高BE=,斜面坡角为30°,求木箱端点E距地面AC的高度EF.【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】连接AE,在Rt△ABE中求出AE,根据∠EAB的正切值求出∠EAB的度数,继而得到∠EAF的度数,在Rt△EAF中,解出EF即可得出答案.【解答】解:连接AE,在Rt△ABE中,AB=3m,BE=m,则AE==2m,又∵tan∠EAB==,∴∠EAB=30°,在Rt△AEF中,∠EAF=∠EAB+∠BAC=60°,∴EF=AE×sin∠EAF=2×=3m.答:木箱端点E距地面AC的高度为3m.【点评】本题考查了坡度、坡角的知识,解答本题的关键是构造直角三角形,熟练运用三角函数求线段的长度.22.(10分)(2015•绵阳)如图,反比例函数y=(k>0)与正比例函数y=ax相交于A (1,k),B(﹣k,﹣1)两点.(1)求反比例函数和正比例函数的解析式;(2)将正比例函数y=ax的图象平移,得到一次函数y=ax+b的图象,与函数y=(k>0)的图象交于C(x1,y1),D(x2,y2),且|x1﹣x2|•|y1﹣y2|=5,求b的值.【考点】G8:反比例函数与一次函数的交点问题;F9:一次函数图象与几何变换.【分析】(1)首先根据点A与点B关于原点对称,可以求出k的值,将点A分别代入反比例函数与正比例函数的解析式,即可得解.(2)分别把点(x1,y1)、(x2,y2)代入一次函数y=x+b,再把两式相减,根据|x1﹣x2|•|y1﹣y2|=5得出|x1﹣x2|=|y1﹣y2|=,然后通过联立方程求得x1、x2的值,代入即可求得b的值.【解答】解:(1)据题意得:点A(1,k)与点B(﹣k,﹣1)关于原点对称,∴k=1,∴A(1,1),B(﹣1,﹣1),∴反比例函数和正比例函数的解析式分别为y=,y=x;(2)∵一次函数y=x+b的图象过点(x1,y1)、(x2,y2),∴,②﹣①得,y2﹣y1=x2﹣x1,∵|x1﹣x2|•|y1﹣y2|=5,∴|x1﹣x2|=|y1﹣y2|=,由得x2+bx﹣1=0,解得,x1=,x2=,∴|x1﹣x2|=|﹣|=||=,解得b=±1.【点评】本题考查了反比例函数与正比例函数关于原点对称这一知识点,以及用待定系数法求函数解析式以及一次函数图象上点的坐标特点,利用对称性求出点的坐标是解题的关键.23.(10分)(2014•河南)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD,BE之间的数量关系为AD=BE .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.【考点】MR:圆的综合题;KD:全等三角形的判定与性质;KH:等腰三角形的性质;KK:等边三角形的性质;KP:直角三角形斜边上的中线;LE:正方形的性质;M5:圆周角定理.【分析】(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E 在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.(2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由△DCE为等腰直角三角形及CM为△DCE中DE边上的高可得CM=DM=ME,从而证到AE=2CH+BE.(3)由PD=1可得:点P在以点D为圆心,1为半径的圆上;由∠BPD=90°可得:点P在以BD为直径的圆上.显然,点P是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于(2)中的结论即可解决问题.【解答】解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)点A到BP的距离为或.理由如下:∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°.∴BD=2.∵DP=1,∴BP=.∵∠BPD=∠BAD=90°,∴A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴=2AH+1.∴AH=.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH﹣PD.∴=2AH﹣1.∴AH=.综上所述:点A到BP的距离为或.【点评】本题考查了等边三角形的性质、正方形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、圆周角定理、三角形全等的判定与性质等知识,考查了运用已有的知识和经验解决问题的能力,是体现新课程理念的一道好题.而通过添加适当的辅助线从而能用(2)中的结论解决问题是解决第(3)的关键.24.(14分)(2015•荆州)如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.(1)求抛物线的解析式;(2)求证:ED是⊙P的切线;(3)若将△ADE绕点D逆时针旋转90°,E点的对应点E′会落在抛物线y=ax2+bx+c上吗?请说明理由;(4)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)先确定B(﹣4,0),再在Rt△OCD中利用∠OCD的正切求出OD=2,D(0,2),然后利用交点式求抛物线的解析式;(2)先计算出CD=2OC=4,再根据平行四边形的性质得AB=CD=4,AB∥CD,∠A=∠BCD=60°,AD=BC=6,则由AE=3BE得到AE=3,接着计算=,加上∠DAE=∠DCB,则可判定△AED ∽△COD,得到∠ADE=∠CDO,而∠ADE+∠ODE=90°则∠CDO+∠ODE=90°,再利用圆周角定理得到CD为⊙P的直径,于是根据切线的判定定理得到ED是⊙P的切线(3)由△AED∽△COD,根据相似比计算出DE=3,由于∠CDE=90°,DE>DC,再根据旋转的性质得E点的对应点E′在射线DC上,而点C、D在抛物线上,于是可判断点E′不能在抛物线上;(4)利用配方得到y=﹣(x+1)2+,则M(﹣1,),且B(﹣4,0),D(0,2),根据平行四边形的性质和点平移的规律,利用分类讨论的方法确定N点坐标.【解答】解:(1)∵C(2,0),BC=6,∴B(﹣4,0),在Rt△OCD中,∵tan∠OCD=,∴OD=2tan60°=2,∴D(0,2),设抛物线的解析式为y=a(x+4)(x﹣2),把D(0,2)代入得a•4•(﹣2)=2,解得a=﹣,∴抛物线的解析式为y=﹣(x+4)(x﹣2)=﹣x2﹣x+2;(2)在Rt△OCD中,CD=2OC=4,∵四边形ABCD为平行四边形,∴AB=CD=4,AB∥CD,∠A=∠BCD=60°,AD=BC=6,∵AE=3BE,∴AE=3,∴=, ==,∴=,而∠DAE=∠DCB,∴△AED∽△COD,∴∠ADE=∠CDO,而∠ADE+∠ODE=90°∴∠CDO+∠ODE=90°,∴CD⊥DE,∵∠DOC=90°,∴CD为⊙P的直径,∴ED是⊙P的切线;(3)E点的对应点E′不会落在抛物线y=ax2+bx+c上.理由如下:∵△AED∽△COD,∴=,即=,解得DE=3,∵∠CDE=90°,DE>DC,∴△ADE绕点D逆时针旋转90°,E点的对应点E′在射线DC上,而点C、D在抛物线上,∴点E′不能在抛物线上;(4)存在.∵y=﹣x2﹣x+2=﹣(x+1)2+∴M(﹣1,),而B(﹣4,0),D(0,2),如图2,当BM为平行四边形BDMN的对角线时,点D向左平移4个单位,再向下平移2个单位得。

中考数学复习:专题9-15 例谈求阴影部分面积的几种常见方法

中考数学复习:专题9-15 例谈求阴影部分面积的几种常见方法

例谈求阴影部分面积的几种常见方法【专题综述】在初中数学中,求阴影部分的面积问题是一个重要内容,在近年来的各地中考试题中屡见不鲜.这类试题大多数都是求不规则图形的面积,具有一定的难度,因此,正确把握求阴影部分面积问题的解题方法,显得尤为重要.本文举例介绍解决这类问题的常见方法.【方法解读】一、直接求解法例1 如图1,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,AD变到AD1位置,折痕为AE.再将△AED1以D1E为折痕,向右折叠,AE变到A1E位置,且A1E交BC于点F.求图中阴影部分的面积.分析因为阴影部分是一个规则的几何图形Rt△CEF,故根据已知条件可以直接计算阴影部分面积.解如图1,根据对称性可得AD=AD1=A1D1=6.由已知条件易知:EC=D1B=4,BC=6;Rt△FBA1∽Rt△FCE.设FC为x,则FB=6-x.二、间接求解法例2 如图2,⊙O1与⊙O2外切于点C,且两圆分别和直线l相切于A、B两点,若⊙O1半径为3cm;⊙O2半径为1cm,求阴影部分面积.分析这是求一个不规则图形的面积,没有现成的面积公式,因此应采用间接的方法,设法转化为规则图形的面积的和或差去计算.三、整体合并法例3 如图3,⊙A、⊙B、⊙C两两不相交,且半径都是0.5cm,求三个阴影部分面积之和.分析所求的阴影部分面积是三个扇形面积之和,因为三个扇形圆心角度数不知道,所以无法单独求解,但仔细观察发现,三个扇形的圆心角分别是△ABC的三个内角,其和为180°,而扇形半径都相等,所以三个扇形能合并成一个半圆.于是问题获解.解如图3,因为三个圆的半径相等,三个扇形圆心角之和是180°,所以其面积就是半圆面积.四、等积变换法例4 如图4,A是半径为R的⊙O外一点,弦BC为3R,OA∥BC,求阴影部分面积.分析本题的阴影部分是不规则的图形,求其面积较困难,但灵活运用等积变换,就可以把它的面积转化为扇形OBC的面积,从而获解.解连接OC,OB,五、分割法例5 如图5,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,求阴影部分面积.分析阴影部分图形不规则,不能直接求面积,可以把它分割成几个部分求面积的和.解如图5,连接CD.∵AC、BC是直径,∴∠ADC=∠BDC=90°,∴A、D、B三点共线.设阴影部分面积被分割为S1、S2、S3、S4四部分.则六、转化法例6如图(1),大半圆O与小半圆O1相切于点C,大半圆的弦AB与小半圆相切于点F,且AB∥CD,AB =4cm,求阴影部分面积.分析如果想直接求阴影部分面积,无法求解,因为它不是规则图形.但要采取转化思想,把小半圆平移到与大半圆的圆心重合的位置,作OE⊥AB于点E.连接OB,可知BE=2cm,阴影部分面积等于大半圆面积减去小半圆的面积.解如图(2),将小半圆O1移至与大半圆圆心重合,作O E⊥AB于点E,则BE=12AB=2cm.设大圆半径为R,小圆半径为x,在Rt△OEB中,有七、割补法例7 如图7,点P(3a,a)是反比例函数y=12x与⊙O在第一象限内的一个交点,求阴影部分的面积.分析阴影部分分两部分,难于逐一求解,但考虑反比例函数的对称性,结合割补原理,问题变得特别简单.解如图7,把右上角的S1部分分割下来,移到左下方补在S3处,与S2就组成了一个扇形OAB.易知:∵P(3a,a)在反比例函数y=12x的图象上,∴3a=12a.解得:a1=2,a2=-2(舍去).∴P坐标为(6,2).连接OP,作PC⊥x轴于点C,得:八、方程建模法例8如图8,正方形边长为a,以每边为直径在正方形内画四个半圆,求阴影部分的面积.分析本题直接求阴影部分面积较复杂,但观察图形特点引入方程的思想,问题变得非常简单.解正方形由四个阴影花瓣和四个空白图形组成,如图8,设一个阴影花瓣面积为x,一个空白图形面积为y.根据题意得:因此阴影部分面积为.222aaπ-.【强化训练】1.(2017内蒙古包头市)如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=42,则图中阴影部分的面积为()A.π+1B.π+2C.2π+2D.4π+12.(2017四川省凉山州)如图,一个半径为1的⊙O1经过一个半径为2的⊙O的圆心,则图中阴影部分的面积为()A.1B.12C.2D.223.(2017四川省资阳市)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将Rt△ABC绕点A逆时针旋转30°后得到△ADE,则图中阴影部分的面积为()A.1312πB.34πC.43πD.2512π4.(2017衢州)运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD、EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是()A.252πB.10πC.24+4πD.24+5π5. (2017云南省)如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为.6.(2017吉林省)如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画BE,CE.若AB=1,则阴影部分图形的周长为(结果保留π).7. (2017四川省达州市)如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=33,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE=92CE;④32S阴影.其中正确结论的序号是.8. (2017湖北省恩施州)如图,在Rt△ABC中,∠BAC=30°,以直角边AB为直径作半圆交AC于点D,以AD为边作等边△ADE,延长ED交BC于点F,BC=23,则图中阴影部分的面积为.(结果不取近似值)9. (2017内蒙古赤峰市)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM垂足为D,BD 与⊙O交于点C,OC平分∠AOB,∠B=60°.(1)求证:A M是⊙O的切线;(2)若DC=2,求图中阴影部分的面积(结果保留π和根号).10.(2017新疆)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:B E是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.。

2017年四川省资阳市中考数学试卷(含解析版)

2017年四川省资阳市中考数学试卷(含解析版)

2017年四川省资阳市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣2的绝对值是()A.±2B.2C.﹣2D.2.(3分)如图所示的立体图形的主视图是()A.B.C.D.3.(3分)下列运算正确的是()A.(x+y)2=x2+y2B.(x2)3=x5C.D.x6÷x2=x34.(3分)如今网络购物已成为一种常见的购物方式,2016年11月11日当天某()电商平台的交易额就达到了1107亿元,用科学记数法表示为(单位:元)A.1.107×1010B.1.107×1011C.0.1107×1012D.1.107×10125.(3分)如图,BE平分∠DBC,点A是BD上一点,过点A作AE∥BC交BE于点E,∠DAE=56°,则∠E的度数为()A.56°B.36°C.26°D.28°6.(3分)一组数据5,2,6,9,5,3的众数、中位数、平均数分别是()A.5,5,6B.9,5,5C.5,5,5D.2,6,57.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将Rt△ABC绕点A 逆时针旋转30°后得到△ADE,则图中阴影部分的面积为()A.B.C.D.8.(3分)若一次函数y=mx+n(m≠0)中的m,n是使等式m=成立的整数,则一次函数y=mx+n(m≠0)的图象一定经过的象限是()A.一、三B.三、四C.一、二D.二、四9.(3分)如图,在矩形ABCD中,AB=2,AD=2,点E是CD的中点,连接AE,将△ADE沿直线AE折叠,使点D落在点F处,则线段CF的长度是()A.1B.C.D.10.(3分)如图,抛物线y=ax2+bx+c(a≠0)的顶点和该抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上,它的对称轴是x=1,有下列四个结论:①abc<0,②a<﹣,③a=﹣k,④当0<x<1时,ax+b>k,其中正确结论的个数是()A.4B.3C.2D.1二、填空题(本大题共6小题,每小题3分,共18分,请把答案填在题中的横线上)11.(3分)使分式有意义的x的取值范围是.12.(3分)一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是.13.(3分)边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABC= 度.14.(3分)关于x的一元二次方程(a﹣1)x2+(2a+1)x+a=0有两个不相等的实数根,则a的取值范围是.15.(3分)如图,点A是函数y1=﹣图象上一点,连接AO交反比例函数y2=(k≠0)的图象于点B,若BO=2AB,则k .16.(3分)按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的块数是.三、解答题(本大题共8小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(7分)先化简,再求值:(﹣1)÷,其中x=2.18.(8分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.19.(8分)如图,AB是半圆的直径,AC为弦,过点C作直线DE交AB的延长线于点E.若∠ACD=60°,∠E=30°.(1)求证:直线DE与半圆相切;(2)若BE=3,求CE的长.20.(8分)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0,x<0)的图象交于点A(﹣3,1)和点C,与y轴交于点B,△AOB的面积是6.(1)求一次函数与反比例函数的解析式;(2)当x<0时,比较y1与y2的大小.21.(9分)四川省安岳县盛产柠檬和柚子两种水果,今年,某公司计划用两种型号的汽车运输柠檬和柚子到外地销售,运输中要求每辆汽车都要满载满运,且只能装运一种水果.若用3辆汽车装载柠檬、2辆汽车装载柚子可共装载33吨,若用2辆汽车装载柠檬、3辆汽车装载柚子可共装载32吨.(1)求每辆汽车可装载柠檬或柚子各多少吨?(2)据调查,全部销售完后,每吨柠檬可获利700元、每吨柚子可获利500元,计划用20辆汽车运输,且柚子不少于30吨,如何安排运输才能使公司获利最大,最大利润是多少元?22.(9分)如图,光明中学一教学楼顶上竖有一块高为AB的宣传牌,点E和点D分别是教学楼底部和外墙上的一点(A,B,D,E在同一直线上),小红同学在距E点9米的C处测得宣传牌底部点B的仰角为67°,同时测得教学楼外墙外点D的仰角为30°,从点C沿坡度为1:的斜坡向上走到点F时,DF 正好与水平线CE平行.(1)求点F到直线CE的距离(结果保留根号);(2)若在点F处测得宣传牌顶部A的仰角为45°,求出宣传牌AB的高度(结果精确到0.0l).(注:sin67°≈0.92,tan67°≈2.36,≈1.41,≈1.73)23.(11分)在△ABC中,AB=AC>BC,D是BC上一点,连接AD,作△ADE,使AD=AE,且∠DAE=∠BAC,过点E作EF∥BC交AB于F,连接FC.(1)如图1.①连接BE,求证:△AEB≌△ADC:②若D是线段BC的中点,且AC=6,BC=4,求CF的长;(2)如图2,若点D在线段BC的延长线上,且四边形CDEF是矩形,当AC=m,BC=n时,求CD的长(用含m,n的代数式表示).24.(12分)如图,抛物线y=a(x+1)2+4(a≠0)与x轴交于A,C两点,与直线y=x﹣1交于A,B两点,直线AB与抛物线的对称轴交于点E.(1)求抛物线的解析式;(2)若点P在直线AB上方的抛物线上运动.①点P在什么位置时,△ABP的面积最大,求出此时点P的坐标;②当点P与点C重合时,连接PE,将△PEB补成矩形,使△PEB上的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.2017年四川省资阳市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣2的绝对值是()A.±2B.2C.﹣2D.【考点】15:绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2.故选:B.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.(3分)如图所示的立体图形的主视图是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】分别找出此几何体从正面看所得到的视图即可.【解答】解:此立体图形从正面看所得到的图形为矩形,里面有一条竖线,故选:A.【点评】此题主要考查了简单几何体的三视图,关键是注意所有的看到的棱都应表现在三视图中.3.(3分)下列运算正确的是()A.(x+y)2=x2+y2B.(x2)3=x5C.D.x6÷x2=x3【考点】15:绝对值;47:幂的乘方与积的乘方;48:同底数幂的除法;4C:完全平方公式;73:二次根式的性质与化简.【分析】先根据完全平方公式,幂的乘方,二次根式的性质与化简,同底数幂的除法分别求出每个式子的值,再判断即可.【解答】解:A、(x+y)2=x2+2xy+y2,故本选项错误;B、(x2)3=x6,故本选项错误;C、故本选项正确;D、x6÷x2=x4,故本选项错误;故选:C.【点评】本题考查了完全平方公式,幂的乘方,二次根式的性质与化简,同底数幂的除法等知识点,能正确求出每个式子的值是解此题的关键.4.(3分)如今网络购物已成为一种常见的购物方式,2016年11月11日当天某()电商平台的交易额就达到了1107亿元,用科学记数法表示为(单位:元)A.1.107×1010B.1.107×1011C.0.1107×1012D.1.107×1012【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:1107亿=110700000000=1.107×1011,故选:B.【点评】本题主要考查了科学计数法:熟记规律:(1)当|a|≥1时,n的值为a 的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0是解题的关键.5.(3分)如图,BE平分∠DBC,点A是BD上一点,过点A作AE∥BC交BE于点E,∠DAE=56°,则∠E的度数为()A.56°B.36°C.26°D.28°【考点】JA:平行线的性质.【分析】根据平行线的性质,可得∠DBC=56°,∠E=∠EBC,根据角平分线的定义,可得∠EBC=∠D BC=28°,进而得到∠E=28°.【解答】解:∵AE∥BC,∠DAE=56°,∴∠DBC=56°,∠E=∠EBC,∵BE平分∠DBC,∴∠EBC=∠DBC=28°,∴∠E=28°,故选:D.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等.6.(3分)一组数据5,2,6,9,5,3的众数、中位数、平均数分别是()A.5,5,6B.9,5,5C.5,5,5D.2,6,5【考点】W1:算术平均数;W4:中位数;W5:众数.【分析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;对于n个数x1,x2,…,xn,则x¯=(x1+x2+…+xn)就叫做这n个数的算术平均数进行分析和计算可得答案.【解答】解:众数是5,中位数:5,平均数:=5,故选:C.【点评】此题主要考查了众数、中位数和平均数,关键是掌握三种数的概念.7.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将Rt△ABC绕点A 逆时针旋转30°后得到△ADE,则图中阴影部分的面积为()A.B.C.D.【考点】MO:扇形面积的计算;R2:旋转的性质.【分析】观察图象可S阴=S扇形ADB+S△ABC﹣S△AED=S扇形ABD,只要求出AB,∠DAB即可解决问题.【解答】解:在Rt△ABC中,∵AC=4,BC=3,∴AB=AD==5,由题意∠EAC=∠DAB=30°,S阴=S扇形ADB+S△ABC﹣S△AED=S扇形ABD==,故选:D.【点评】本题考查旋转变换、扇形的面积公式、勾股定理等知识,解题的关键是学会用分割法求阴影部分的面积,属于中考常考题型.8.(3分)若一次函数y=mx+n(m≠0)中的m,n是使等式m=成立的整数,则一次函数y=mx+n(m≠0)的图象一定经过的象限是()A.一、三B.三、四C.一、二D.二、四【考点】F7:一次函数图象与系数的关系.【分析】根据题意分别求出m、n的值,根据一次函数图象与系数的关系判断即可.【解答】解:∵n是使等式m=成立的整数,∴n=﹣1或﹣3,则m=1或﹣1,当m=1,n=﹣1时,y=mx+n经过第一、三、四象限,当m═1,n=﹣3时,y=mx+n经过第二、三、四象限,∴一次函数y=mx+n(m≠0)的图象一定经过的象限第三、四象限,故选:B.【点评】本题考查的是一次函数图象与系数的关系,掌握k、b对一次函数图象的影响是解题的关键.9.(3分)如图,在矩形ABCD中,AB=2,AD=2,点E是CD的中点,连接AE,将△ADE沿直线AE折叠,使点D落在点F处,则线段CF的长度是()A.1B.C.D.【考点】LB:矩形的性质;PB:翻折变换(折叠问题).【分析】过点E作EM⊥CF于点M,在Rt△ADE中利用勾股定理可求出AE的长度,根据折叠的性质可得出ED=EF、∠AED=∠AEF,进而可得出△CEF为等腰三角形,根据等腰三角形的性质结合平角等于180°可得出∠AEF+∠FEM=90°,根据同角的补角相等可得出∠EAF=∠FEM,结合∠AFE=∠EMF=90°可得出△AFE ∽△EMF,再利用相似三角形的性质可求出MF的长度,将其代入CF=2MF即可得出结论.【解答】解:过点E作EM⊥CF于点M,如图所示.在Rt△ADE中,AD=2,DE=AB=1,∴AE==3.根据折叠的性质可知:ED=EF,∠AED=∠AEF.∵点E是CD的中点,∴CE=DE=FE,∴∠FEM=∠CEM,CM=FM.∵∠DEA+∠AEF+∠FEM+∠MEC=180°,∴∠AEF+∠FEM=×180°=90°.又∵∠EAF+∠AEF=90°,∴∠EAF=∠FEM.∵∠AFE=∠EMF=90°,∴△AFE∽△EMF,∴=,即=,∴MF=,CF=2MF=.故选:C.【点评】本题考查了翻折变换、矩形的性质、勾股定理以及相似三角形的判定与性质,利用相似三角形的性质求出MF的长度是解题的关键.10.(3分)如图,抛物线y=ax2+bx+c(a≠0)的顶点和该抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上,它的对称轴是x=1,有下列四个结论:①abc<0,②a<﹣,③a=﹣k,④当0<x<1时,ax+b>k,其中正确结论的个数是()A.4B.3C.2D.1【考点】H4:二次函数图象与系数的关系.【分析】由抛物线开口方向及对称轴位置、抛物线与y轴交点可判断①;由①知y=ax2﹣2ax+1,根据x=﹣1时y<0可判断②;由抛物线顶点在一次函数图象上知a+b+1=k+1,即a+b=k,结合b=﹣2a可判断③;根据0<x<1时二次函数图象在一次函数图象上方知ax2+bx+1>kx+1,即ax2+bx>kx,两边都除以x 可判断④.【解答】解:由抛物线的开口向下,且对称轴为x=1可知a<0,﹣=1,即b=﹣2a>0,由抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上知c=1,则abc<0,故①正确;由①知y=ax2﹣2ax+1,∵x=﹣1时,y=a+2a+1=3a+1<0,∴a<﹣,故②正确;∵抛物线y=ax2+bx+c(a≠0)的顶点在一次函数y=kx+1(k≠0)的图象上,∴a+b+1=k+1,即a+b=k,∵b=﹣2a,∴﹣a=k,即a=﹣k,故③正确;由函数图象知,当0<x<1时,二次函数图象在一次函数图象上方,∴ax2+bx+1>kx+1,即ax2+bx>kx,∵x>0,∴ax+b>k,故④正确;故选:A.【点评】本题考查了抛物线与x轴的交点,二次函数的性质,主要利用了二次函数的开口方向,对称轴,最值问题,以及二次函数图象上点的坐标特征.二、填空题(本大题共6小题,每小题3分,共18分,请把答案填在题中的横线上)11.(3分)使分式有意义的x的取值范围是x≠1 .【考点】62:分式有意义的条件.【分析】分式有意义时,分母不等于零.【解答】解:当分母x﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.【点评】本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12.(3分)一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是.【考点】X4:概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,∴从中任意摸出一个球恰好是红球的概率为:=.故答案为.【点评】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.13.(3分)边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABC=24 度.【考点】L3:多边形内角与外角.【专题】555:多边形与平行四边形.【分析】根据正五边形的内角和和正六边形的内角和公式求得正五边形的内角108°和正六边形的内角120°,然后根据周角的定义和等腰三角形性质可得结论.【解答】解:由题意得:正六边形的每个内角都等于120°,正五边形的每个内角都等于108°∴∠BAC=360°﹣120°﹣108°=132°∵AB=AC∴∠ACB=∠ABC==24°故答案为:24.【点评】本题考查了正多边形的内角与外角、等腰三角形的性质,熟练正五边形的内角,正六边形的内角是解题的关键.14.(3分)关于x的一元二次方程(a﹣1)x2+(2a+1)x+a=0有两个不相等的实数根,则a的取值范围是a>﹣且a≠1 .【考点】AA:根的判别式.【分析】根据二次项系数非零及根的判别式△>0,即可得出关于a的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x的一元二次方程(a﹣1)x2+(2a+1)x+a=0有两个不相等的实数根,∴,解得:a>﹣且a≠1.故答案为:a>﹣且a≠1.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.15.(3分)如图,点A是函数y1=﹣图象上一点,连接AO交反比例函数y2=(k≠0)的图象于点B,若BO=2AB,则k =﹣.【考点】G6:反比例函数图象上点的坐标特征.【分析】设点A的坐标为(﹣m,n),根据题意用m和n表示出点B的坐标,再根据反比例函数系数的意义整体代入求出k的值.【解答】解:设点A的坐标为(﹣m,n),∵OB=2AB,∴=,∴点B的坐标为(﹣m,n),∵点A在函数y1=﹣上,∴mn=6,∵点B在反比例函数y2=上,∴k=﹣m•n=﹣mn=﹣×6=﹣,故答案为=﹣【点评】本题主要考查了反比例函数图象上点的坐标特征,解题的关键是用m和n表示出点A和点B的坐标,此题难度不大.16.(3分)按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的块数是365 .【考点】38:规律型:图形的变化类.【专题】16:压轴题;2A:规律型.【分析】观察图形可知,黑色与白色的地砖的个数的和是连续奇数的平方,而黑色地砖比白色地砖多1个,求出第n个图案中的黑色与白色地砖的和,然后求出黑色地砖的块数,再把n=14代入进行计算即可.【解答】解:第1个图案只有1块黑色地砖,第2个图案有黑色与白色地砖共32=9,其中黑色的有5块,第3个图案有黑色与白色地砖共52=25,其中黑色的有13块,…第n个图案有黑色与白色地砖共(2n﹣1)2,其中黑色的有[(2n﹣1)2+1],当n=14时,黑色地砖的块数有[(2×14﹣1)2+1]=×730=365.故答案为:365.【点评】本题是对图形变化规律的考查,观察图形找出黑色与白色地砖的总块数与图案序号之间的关系是解题的关键.三、解答题(本大题共8小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(7分)先化简,再求值:(﹣1)÷,其中x=2.【考点】6D:分式的化简求值.【分析】先将(﹣1)÷进行化简,然后再将x=2代入求解即可.【解答】解:原式=•=.当x=2时,原式=.【点评】本题考查了分式的化简求值,解答本题的关键在于先将(﹣1)÷进行化简,然后再将x=2代入求解.18.(8分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.【考点】VB:扇形统计图;VC:条形统计图;X6:列表法与树状图法.【分析】(1)根据A3的人数除以A3所占的百分比即可求出总人数.(2)根据A1的人数的所占的百分比即可取出圆心角的度数.(3)列出树状图即可求出答案.【解答】解:(1)总数人数为:6÷40%=15人(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示A1所在圆心角度数为:×360°=48°(3)画出树状图如下:故所求概率为:P==【点评】本题考查统计与概率,解题的关键是熟练运用统计与概率的公式,本题属于基础题型.19.(8分)如图,AB是半圆的直径,AC为弦,过点C作直线DE交AB的延长线于点E.若∠ACD=60°,∠E=30°.(1)求证:直线DE与半圆相切;(2)若BE=3,求CE的长.【考点】ME:切线的判定与性质.【分析】(1)连接OC,根据相切的判定证明即可;(2)根据直角三角形的边角关系解答即可.【解答】证明:(1)连接OC,∵∠ACD=60°,∠E=30°,∴∠A=30°,∵OA=OC,∴∠OCA=∠A=30°,∴∠OCD=∠OCA+∠ACD=90°,∴直线DE与半圆相切;(2)在Rt△OCE中,∠E=30°,∴OE=2OC=OB+BE,∵OC=OB,∴OB=BE,∴OE=2BE=6,∴CE=OE•c osE=.【点评】本题考查了切线的性质和判定,关键是根据切线的性质和判定进行解答.20.(8分)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0,x<0)的图象交于点A(﹣3,1)和点C,与y轴交于点B,△AOB的面积是6.(1)求一次函数与反比例函数的解析式;(2)当x<0时,比较y1与y2的大小.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)根据题意和图象可以分别求得一次函数与反比例函数的解析式;(2)根据(1)中的函数解析式可以求得点C的坐标,然后根据数形结合的思想的即可解答本题.【解答】解:(1)反比例函数y2=(m≠0,x<0)的图象过点A(﹣3,1),∴1=,得m=﹣3,即反比例函数y2=,∵一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0,x<0)的图象交于点A(﹣3,1)和点C,与y轴交于点B,△AOB的面积是6,∴,得b=4,∴一次函数y1=kx+b(k≠0)的图象过点A(﹣3,1)与点B(0,4),∴,解得,,即一次函数y1=x+4;(2),解得,,,∴点C的坐标为(﹣1,3),∴当﹣1<x<0时或x<﹣3时,y1<y2,当﹣3<x<﹣1时,y1>y2,当x=﹣1或x=﹣3时,y1=y2.【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(9分)四川省安岳县盛产柠檬和柚子两种水果,今年,某公司计划用两种型号的汽车运输柠檬和柚子到外地销售,运输中要求每辆汽车都要满载满运,且只能装运一种水果.若用3辆汽车装载柠檬、2辆汽车装载柚子可共装载33吨,若用2辆汽车装载柠檬、3辆汽车装载柚子可共装载32吨.(1)求每辆汽车可装载柠檬或柚子各多少吨?(2)据调查,全部销售完后,每吨柠檬可获利700元、每吨柚子可获利500元,计划用20辆汽车运输,且柚子不少于30吨,如何安排运输才能使公司获利最大,最大利润是多少元?【考点】9A:二元一次方程组的应用;FH:一次函数的应用.【分析】(1)设每辆汽车可装载柠檬x吨,每辆汽车可装载柚子y吨,根据若用3辆汽车装载柠檬、2辆汽车装载柚子可共装载33吨,若用2辆汽车装载柠檬、3辆汽车装载柚子可共装载32吨,列方程组求解;(2)设用a辆汽车装载柚子,则用(20﹣a)辆汽车装载柠檬,设总利润为y元.根据柚子不少于30吨列出不等式,求出a的范围,再列出y关于a的函数关系式,根据函数的性质求解即可.【解答】解:(1)设每辆汽车可装载柠檬x吨,每辆汽车可装载柚子y吨,根据题意,得,解得.答:每辆汽车可装载柠檬7吨或柚子6吨;(2)设用a辆汽车装载柚子,则用(20﹣a)辆汽车装载柠檬,设总利润为y元.根据题意,得6a≥30,解得a≥5.y=500×6a+700×7(20﹣a)=﹣1900a+98000,∵﹣1900<0,∴y随a的增大而减小,∴当a=5时,y有最大值,最大值是﹣1900×5+98000=88500.答:安排5辆汽车运输柚子,15辆汽车运输柠檬,可使公司获利最大,最大利润是88500元.【点评】本题考查了一次函数的应用、二元一次方程组的应用及一元一次不等式的应用,解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系或不等关系.22.(9分)如图,光明中学一教学楼顶上竖有一块高为AB的宣传牌,点E和点D分别是教学楼底部和外墙上的一点(A,B,D,E在同一直线上),小红同学在距E点9米的C处测得宣传牌底部点B的仰角为67°,同时测得教学楼外墙外点D的仰角为30°,从点C沿坡度为1:的斜坡向上走到点F时,DF 正好与水平线CE平行.(1)求点F到直线CE的距离(结果保留根号);(2)若在点F处测得宣传牌顶部A的仰角为45°,求出宣传牌AB的高度(结果精确到0.0l).(注:sin67°≈0.92,tan67°≈2.36,≈1.41,≈1.73)【考点】T9:解直角三角形的应用﹣坡度坡角问题;TA:解直角三角形的应用﹣仰角俯角问题.【分析】(1)过点F作FH⊥CE于H.则四边形FHED是矩形,在Rt△CDE中,求出DE即可解决问题.(2)根据AB=AD+DE﹣BE,求出AD、BE、DE即可解决问题;【解答】解:(1)过点F作FH⊥CE于H.∵FD∥CE,∵FH∥DE,DF∥HE,∠FHE=90°,∴四边形FHED是矩形,则FH=DE,在Rt△CDE中,DE=CE•tan∠DCE=9×tan30°=3(米),∴FH=DE=3(米).答:点F到CE的距离为3米.(2)∵CF的坡度为1:,∴在Rt△FCH中,CH=FH=9(米),∴EH=DF=18(米),在Rt△BCE中,BE=CE•ta n∠BCE=9×tan67°≈21.24(米),∴AB=AD+DE﹣BE=18+3﹣21.24≈1.95(米),答:宣传牌AB的高度约为1.95米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,坡度坡角问题,解直角三角形等知识,解题的关键是熟练掌握锐角三角函数的定义,灵活运用所学知识解决问题,属于中考常考题型.23.(11分)在△ABC中,AB=AC>BC,D是BC上一点,连接AD,作△ADE,使AD=AE,且∠DAE=∠BAC,过点E作EF∥BC交AB于F,连接FC.(1)如图1.①连接BE,求证:△AEB≌△ADC:②若D是线段BC的中点,且AC=6,BC=4,求CF的长;(2)如图2,若点D在线段BC的延长线上,且四边形CDEF是矩形,当AC=m,BC=n时,求CD的长(用含m,n的代数式表示).【考点】LO:四边形综合题.【分析】(1)①根据SAS,由∠DAC=∠EAB,AB=AC,AD=AE,即可推出△ADC≌△AEB;②首先证明四边形EDCF是平行四边形,推出ED=CF,由△ADE∽△ACB,可得=,推出ED===,由此即可解决问题;(2)由△FBC∽△DBA,可得=,由此求出BD即可;【解答】(1)①证明:∵∠BAC=∠DAE,∴∠DAC=∠EAB,∵AB=AC,AD=AE,∴△ADC≌△AEB.②解:∵△ADC≌△AEB,∴∠EBA=∠DCA,EB=DC,∵∠ACD=∠ABC,∵EF∥BC,∴∠ABC=∠EFB,∴∠EFB=∠EBF,∴EB=EF,∴EF=DC,∴四边形EDCF是平行四边形,∴ED=CF,∵AB=AC,D是BC中点,∴AD⊥BC,CD=BC=2,∴AD===4,∵△ADE∽△ACB,∴=,∴ED===,∴FC=ED=.(2)解:∵四边形CDEF是矩形,∴∠CDA+∠ADE=90°,∵∠BAC=∠DAE,AB=AC,AD=AE,∴∠ABC=∠ADE,∴∠ABC+∠CDA=90°,∴∠BAD=∠BCF=90°,∴△FBC∽△DBA,∴=,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC+∠BFC=90°,∠ACB+∠ACF=90°,∴AF=AC,∴FB=2AC=2m,∴=,BD=,∴CD=BD﹣BC=﹣n=.【点评】本题考查四边形综合题、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.24.(12分)如图,抛物线y=a(x+1)2+4(a≠0)与x轴交于A,C两点,与直线y=x﹣1交于A,B两点,直线AB与抛物线的对称轴交于点E.(1)求抛物线的解析式;(2)若点P在直线AB上方的抛物线上运动.①点P在什么位置时,△ABP的面积最大,求出此时点P的坐标;②当点P与点C重合时,连接PE,将△PEB补成矩形,使△PEB上的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.【考点】HF:二次函数综合题.【分析】(1)先确定出点A的坐标,进而用待定系数法求出抛物线解析式;(2)先确定出点B的坐标,①设点P(m,﹣m2﹣2m+3),得出PG=﹣m2﹣3m+4,利用三角形的面积公式建立函数关系式即可得出结论;②先确定出点E的坐标,进而判断出△BPE是直角三角形,即可作出图形,利用两直线的交点坐标的求法即可得出结论.【解答】解:(1)∵点A是直线y=x﹣1与x轴的交点,∴A(1,0),∵过点A(1,0)在y=a(x+1)2+4,∴a(1+1)2+4=0,∴a=﹣1,∴抛物线的解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3(2)由题意知,,∴(是点A的纵横坐标)或,∴B(﹣4,﹣5),①如图,设点P(m,﹣m2﹣2m+3),过点P作PG∥y轴交AB于G,∴G(m,m﹣1),∴PG=﹣m2﹣2m+3﹣(m﹣1)=﹣m2﹣3m+4,∴S△ABP =S△PBG+S△PAG=PG×(xA﹣xB|=(﹣m2﹣3m+4)(1+4)=﹣(m+)2+,当m=﹣时,S△ABP最大,为,此时点P(﹣,);②方法1、由(1)知,抛物线的解析式为y=﹣x2﹣2x+3,∴C(﹣3,0)抛物线的对称轴为直线x=﹣1,∵点E在直线y=x﹣1上,∴E(﹣1,﹣2),∵点P与点C重合,∴P(﹣3,0),∵B(﹣4,﹣5),∴PE2=8,BE2=18,BP2=26,∴PE2+BE2=BP2,∴△BPE是直角三角形,且∠BEP=90°,∵C(﹣3,0),E(﹣1,﹣2),∴直线CE的解析式为y=﹣x﹣3,∵△PEB上的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,∴Ⅰ、作出如图1所示的矩形BECD(以BE为矩形的一边),∴AB∥CD,BD∥CE,∵B(﹣4,﹣5),∴直线BD的解析式为y=﹣x﹣9①,∵直线AB的解析式为y=x﹣1,且AB∥CD,∴直线CD的解析式为y=x+3②,联立①②解得,,∴D(﹣6,﹣3),即:矩形未知顶点的坐标(﹣6,﹣3).Ⅱ、以BP为矩形的一边,如图1所示的矩形BD'F'P,∵P(﹣3,0),B(﹣4,﹣5),∴直线BP的解析式为y=5x+15,∵D'F'∥BP,E(﹣1,﹣2),∴D'F'的解析式为y=5x+3③,∵PF'⊥D'F',且P(﹣3,0),∴PF'的解析式为y=﹣x﹣④,联立③④解得,,∴F'(﹣,﹣),同理:D'(﹣,﹣);方法2、Ⅰ、由(1)知,抛物线的解析式为y=﹣x2﹣2x+3,∴C(﹣3,0)抛物线的对称轴为直线x=﹣1,∵点E在直线y=x﹣1上,∴E(﹣1,﹣2),∵四边形BDCE是矩形,∵C(﹣3,0),∴点C看作点E平移得到,向左平移2个单位,再向上平移2个单位,∴点D也是向左平移2个单位,再向上平移2个单位,且B(﹣4,﹣5),∴D(﹣6,﹣3),Ⅱ、以BP为矩形的一边,如图1所示的矩形BD'F'P,∵P(﹣3,0),B(﹣4,﹣5),∴直线BP的解析式为y=5x+15,∵D'F'∥BP,E(﹣1,﹣2),∴D'F'的解析式为y=5x+3③,∵PF'⊥D'F',且P(﹣3,0),∴PF'的解析式为y=﹣x﹣④,联立③④解得,,∴F'(﹣,﹣),同理:D'(﹣,﹣);。

四川省资阳市中考数学试卷

四川省资阳市中考数学试卷

四川省资阳市中考数学试卷 (含答案)一、选择题:(本大题共 10 小题,每小题 3 分,共 30 分)在每小题给出的四个选项中,只有一个选项符 合题意.1.(3 分)(四川资阳)A .的相反数是( )B .﹣2C .D .2考点: 相反数. 专题: 计算题.分析: 根据相反数的定义进行解答即可.解答: 解:由相反数的定义可知,﹣ 的相反数是﹣(﹣ )= .故选 C .点评: 本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数. 2.(3 分)(四川资阳)下列立体图形中,俯视图是正方形的是( )A .B .C .D .考点: 简单几何体的三视图.分析: 根据从上面看得到的图形是俯视图,可得答案.解答: 解;A 、的俯视图是正方形,故 A 正确; B 、D 的俯视图是圆,故 A 、D 错误; C 、的俯视图是三角形,故 C 错误; 故选:A .点评: 本题考查了简单组合体的三视图,从上面看得到的图形是俯视图. 3.(3 分)(四川资阳)下列运算正确的是()A .a +a =aB .2a •a =2aC .(2a ) =8aD .a ÷a =a 考点: 单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析: 根据合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法分别求出每个式子的值, 再判断即可.解答: 解:A 、a 和 a 不能合并,故本选项错误; B 、2a •a =2a ,故本选项正确;C 、(2a ) =8a ,故本选项错误;D 、a ÷a =a ,故本选项错误; 故选 B .点评: 本题考查了合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查 学生的计算能力和判断能力.4.(3 分)(四川资阳)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊 心.据统计,中国每年浪费的食物总量折合粮食约 500 亿千克,这个数据用科学记数法表示为( )A .5×10 千克B .50×10 千克C .5×10 千克D .0.5×10 千克考点: 科学记数法—表示较大的数.3 4 7 3 4 7 4 3 7 8 2 43 43 4 7 4 3 128 2 6 10 9911分析: 科学记数法的表示形式为 a ×10 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值是易错点,由于 500 亿有 11 位,所以可以确定 n=11﹣1=10.解答: 解:500 亿=50000000000=5×10 . 故选 A .点评: 此题考查科学记数法表示较大的数的方法,准确确定 a 与 n 值是关键. 5.(3 分)(四川资阳)一次函数 y=﹣2x+1 的图象不经过下列哪个象限( )A .第一象限B .第二象限C .第三象限D .第四象限 考点: 一次函数图象与系数的关系.分析: 先根据一次函数的解析式判断出 k 、b 的符号,再根据一次函数的性质进行解答即可. 解答: 解:∵解析式 y=﹣2x+1 中,k=﹣2<0,b=1>0, ∴图象过一、二、四象限, ∴图象不经过第三象限.故选 C .点评: 本题考查的是一次函数的性质,即一次函数y =kx+b (k ≠0)中,当 k <0 时,函数图象经过二、四 象限,当 b >0 时,函数图象与 y 轴相交于正半轴.6.(3 分)(四川资阳)下列命题中,真命题是( )A . 一组对边平行,另一组对边相等的四边形是平行四边形B . 对角线互相垂直的平行四边形是矩形C . 对角线垂直的梯形是等腰梯形D . 对角线相等的菱形是正方形 考点: 命题与定理.分析: 利用特殊四边形的判定定理对每个选项逐一判断后即可确定正确的选项.解答: 解:A 、有可能是等腰梯形,故错误;B 、对角线互相垂直的平行四边形是菱形,故错误;C 、对角线相等的梯形是等腰梯形,故错误;D 、正确, 故选 D .点评: 本题考查了命题与定理的知识,解题的关键是了解特殊四边形的判定定理,难度不大. 7.(3 分)(四川资阳)如图,在 △R t ABC 中,∠BAC=90°.如果将该三角形绕点 A 按顺时针方向旋转到△ AB C 的位置,点 B 恰好落在边 BC 的中点处.那么旋转的角度等于()A .55°B .60°C .65°D .80° 考点: 旋转的性质.分析: 利用直角三角形斜边上的中线等于斜边的一半,进而得出△ABB 是等边三角形,即可得出旋转 角度.解答: 解:∵在 △R t ABC 中,∠BAC=90°,将该三角形绕点 A 按顺时针方向旋转到△AB △ C 的位置,点 B 恰好落在边 BC 的中点处,∴AB = BC ,BB =B C ,AB=AB ,∴BB =AB=AB , ∴△ABB 是等边三角形,n101 1 1 1 1 1 1 1 1 1 1 1 1 1∴∠BAB=60°,∴旋转的角度等于60°.故选:B.点评:此题主要考查了旋转的性质以及等边三角形的判定等知识,得△出ABB是等边三角形是解题关键.8.(3分)(四川资阳)甲、乙两名同学进行了6轮投篮比赛,两人的得分情况统计如下:第1轮第2轮第3轮第4轮第5 轮第6轮甲101412181620乙12119142216下列说法不正确的是()A.甲得分的极差小于乙得分的极差B.甲得分的中位数大于乙得分的中位数C.甲得分的平均数大于乙得分的平均数D.乙的成绩比甲的成绩稳定考点:方差;算术平均数;中位数;极差.分析:根据极差、中位数、平均数和方差的求法分别进行计算,即可得出答案.解答:解:A、甲的极差是20﹣10=10,乙的极差是:22﹣9=13,则甲得分的极差小于乙得分的极差,正确;B、甲得分的中位数是(14+16)÷2=15,乙得分的中位数是:(12+14)÷2=13,则甲得分的中位数大于乙得分的中位数,正确;C、甲得分的平均数是:(10+14+12+18+16+20)÷6=15,乙得分的平均数是:(12+11+9+14+22+16)÷6=14,则甲得分的平均数大于乙得分的平均数,正确;D、甲的方差是:[(10﹣15)+(14﹣15)+(12﹣15)+(18﹣15)+(16﹣15)+(20﹣15)]=,乙的方差是:[(12﹣14)+(11﹣14)+(9﹣14)+(14﹣14)+(22﹣14)+(16﹣14)]=,∵甲的方差<乙的方差,∴甲的成绩比乙的成绩稳定;故本选项错误;故选D.点评:此题考查了方差,用到的知识点是极差、中位数、平均数和方差的求法,掌握方差S=[(x﹣)2+(x﹣)+…+(x﹣)],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立是本题的关键.9.(3分)(四川资阳)如图,扇形AOB中,半径OA=2,∠AOB=120°,C是则图中阴影部分面积是()的中点,连接AC、BC,A.﹣2B.﹣2C.﹣考点:扇形面积的计算.D.﹣11222222 22222221222n分析: 连接 OC ,分别求出△AOC 、△BOC 、扇形 AOC ,扇形 BOC 的面积,即可求出答案. 解答: 解:连接 OC ,∵∠AOB=120°,C 为弧 AB 中点, ∴∠AOC=∠BOC=60°, ∵OA=OC=OB=2,∴△AOC 、△BOC 是等边三角形, ∴AC=BC=OA=2,, ∴△AOC 的边 AC 上的高是 △BOC 边 BC 上的高为=,∴阴影部分的面积是﹣ ×2× + ﹣ ×2×= π﹣2,故选 A .点评: 本题考查了扇形的面积,三角形的面积,等边三角形的性质和判定,圆周角定理的应用,解此题 的关键是能求出各个部分的面积,题目比较好,难度适中.10.(3 分)(四川资阳)二次函数 y=ax +bx+c (a ≠0)的图象如图,给出下列四个结论:①4ac ﹣b <0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m ≠﹣1), 其中正确结论的个数是( )A .4 个B .3 个C .2 个D .1 个 考点: 二次函数图象与系数的关系.分析: 利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断. 解答: 解:∵抛物线和 x 轴有两个交点,∴b ﹣4ac >0,∴4ac ﹣b <0,∴①正确;∵对称轴是直线 x ﹣1,和 x 轴的一个交点在点(0,0)和点(1,0)之间, ∴抛物线和 x 轴的另一个交点在(﹣3,0)和(﹣2,0)之间, ∴把(﹣2,0)代入抛物线得:y=4a ﹣2b+c >0, ∴4a+c >2b ,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c <0, ∴2a+2b+2c <0, ∵b=2a ,∴3b ,2c <0,∴③正确;∵抛物线的对称轴是直线 x=﹣1,222 2∴y=a ﹣b+c 的值最大,即把(m ,0)(m ≠0)代入得:y=am +bm+c <a ﹣b+c ,∴am +bm+b <a ,即 m (am+b )+b <a ,∴④正确; 即正确的有 3 个, 故选 B .点评: 此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状, 对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程 a x +bx+c=0 的解的方法.同时注意特殊点 的运用.二、填空题:(本大题共 6 各小题,每小题 3 分,共 18 分)把答案直接填在题中横线上.11.(3 分)(四川资阳)计算:+(﹣1) = 3 .考点: 实数的运算;零指数幂.分析: 分别根据数的开方法则、0 指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算 即可.解答: 解:原式=2+1 =3.故答案为:3.点评: 本题考查的是实数的运算,熟知数的开方法则、0 指数幂的运算法则是解答此题的关键. 12.(3 分)(四川资阳)某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500 人,结合图中信息,可得该校教师人数为 120 人.考点: 扇形统计图.分析: 用学校总人数乘以教师所占的百分比,计算即可得解.解答: 解:1500×(1﹣48%﹣44%) =1500×8% =120.故答案为:120.点评: 本题考查的是扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关 键.扇形统计图直接反映部分占总体的百分比大小. 13.(3 分)(四川资阳)函数 y=1+ 中自变量 x 的取值范围是 x ≥﹣3 .考点: 函数自变量的取值范围.分析: 根据被开方数大于等于 0 列式计算即可得解.解答: 解:由题意得,x+3≥0, 解得 x ≥﹣3.故答案为:x ≥﹣3.点评: 本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为 0; (3)当函数表达式是二次根式时,被开方数非负.14.(3 分)(四川资阳)已知⊙O 与⊙O 的圆心距为 6,两圆的半径分别是方程 x ﹣5x+5=0 的两个根,则 ⊙O 与⊙O 的位置关系是 相离 .222 02 1 21 2考点: 圆与圆的位置关系;根与系数的关系.分析: 由⊙O 与⊙O 的半径 r 、r 分别是方程 x ﹣5x+5=0 的两实根,根据根与系数的关系即可求得⊙ O 与⊙O 的半径 r 、r 的和,又由⊙O 与⊙O 的圆心距 d=6,根据两圆位置关系与圆心距 d ,两圆半径 R ,r 的数量关系间的联系即可得出两圆位置关系.解答: 解:∵两圆的半径分别是方程 x ﹣5x+5=0 的两个根, ∴两半径之和为 5, 解得:x=4 或 x=2,∵⊙O 与⊙O 的圆心距为 6, ∴6>5,∴⊙O 与⊙O 的位置关系是相离. 故答案为:相离.点评: 此题考查了圆与圆的位置关系与一元二次方程的根与系数的关系.注意掌握两圆位置关系与圆心 距 d ,两圆半径 R ,r 的数量关系间的联系是解此题的关键.15.(3 分)(四川资阳)如图,在边长为 4 的正方形 ABCD 中,E 是 AB 边上的一点,且 AE=3,点 Q 为对 角线 AC 上的动点,则△BEQ 周长的最小值为 6 .考点: 轴对称-最短路线问题;正方形的性质.分析: 连接 BD ,DE ,根据正方形的性质可知点 B 与点 D 关于直线 AC 对称,故 DE 的长即为 BQ+QE 的最小值,进而可得出结论.解答: 解:连接 BD ,DE , ∵四边形 ABCD 是正方形,∴点 B 与点 D 关于直线 AC 对称, ∴DE 的长即为 BQ+QE 的最小值,∵DE=BQ+QE== =5,∴△BEQ 周长的最小值=DE+BE=5+1=6. 故答案为:6.点评: 本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键. 16.(3 分)(四川资阳)如图,以 O (0,0)、A (2,0)为顶点作正△OAP ,以点 P 和线段 P A 的中点 B 为顶点作正△P △ BP ,再以点 P 和线段 P B 的中点 C 为顶点作△P △ CP ,…,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点 P 的坐标是 ( ,) .2 1 2 1 21 2 1 2 1 2 21 2 1 21 1 1 12 2 2 2 36考点: 规律型:点的坐标;等边三角形的性质. 分析: 根据 O (0,0)A (2,0)为顶点 △作OAP ,再以 P 和 P A 的中 B 为顶点 △作P BP ,再 P 和 P B 的中 C 为顶点作△P △ CP ,…,如此继续下去,结合图形求出点 P 的坐标.解答: 解:由题意可得,每一个正三角形的边长都是上个三角形的边长的 ,第六个正三角形的边长是 ,故顶点 P 的横坐标是 P 的纵坐标为,P 纵坐标是,=,故答案为:( ,).点评: 本题考查了点的坐标,根据规律解题是解题关键.三、解答题:(本大题共 8 小题,共 72 分)解答应写出必要的文字说明、证明过程或演算步骤.17.(7 分)(四川资阳)先化简,再求值:(a+)÷(a ﹣2+),其中,a 满足 a ﹣2=0.考点: 分式的化简求值. 专题: 计算题.分析: 原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简 结果,将 a 的值代入计算即可求出值.解答: 解:原式=÷=•=,当 a ﹣2=0,即 a=2 时,原式=3.点评: 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(8 分)(四川资阳)阳光中学组织学生开展社会实践活动,调查某社区居民对消防知识的了解程度(A : 特别熟悉,B :有所了解,C :不知道),在该社区随机抽取了 100 名居民进行问卷调查,将调查结果制成 如图所示的统计图,根据统计图解答下列问题:(1)若该社区有居民 900 人,是估计对消防知识“特别熟悉”的居民人数;(2)该社区的管理人员有男、女个 2 名,若从中选 2 名参加消防知识培训,试用列表或画树状图的方法, 求恰好选中一男一女的概率.1 1 1 12 2 2 23 6 6 56考点: 条形统计图;列表法与树状图法.分析: (1)先求的在调查的居民中,对消防知识“特别熟悉”的居民所占的百分比,再估计该社区对消防 知识“特别熟悉”的居民人数的百分比乘以 900 即可; (2)记 A 、A 表示两个男性管理人员,B ,B 表示两个女性管理人员,列出树状图,再根据概率公式 求解.解答: 解:(1)在调查的居民中,对消防知识“特别熟悉”的居民所占的百分比为:×100%=25%,该社区对消防知识“特别熟悉”的居民人数估计为 900×25%=225; (2)记 A 、A 表示两个男性管理人员,B ,B 表示两个女性管理人员,列表或树状图如下:故恰好选中一男一女的概率为:.点评: 本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩 形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇 形统计图、列表法与树状图法.19.(8 分)(四川资阳)如图,湖中的小岛上有一标志性建筑物,其底部为A ,某人在岸边的 B 处测得 A 在 B 的北偏东 30°的方向上,然后沿岸边直行 4 公里到达 C 处,再次测得 A 在 C 的北偏西 45°的方向上(其 中 A 、B 、C 在同一平面上).求这个标志性建筑物底部 A 到岸边 BC 的最短距离.考点: 解直角三角形的应用-方向角问题.1 2 1 2 1 2 1 2分析:过A作AD⊥BC于D,先由△ACD是等腰直角三角形,设A D=x,得出CD=AD=x ,再解△R tABD,得出BD==x,再由BD+CD=4 ,得出方程x+x=4,解方程求出x的值,即为A到岸边BC的最短距离.解答:解:过A作AD⊥BC于D,则A D 的长度就是A到岸边BC的最短距离.在△R t ACD中,∠ACD=45°,设AD=x,则CD=AD=x ,在△R t ABD中,∠ABD=60°,由tan∠ABD=所以BD=,即tan60°==x,,又BC=4,即BD+CD=4,所以x+x=4,解得x=6﹣2.答:这个标志性建筑物底部A到岸边BC的最短距离为(6﹣2 )公里.点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.20.(8分)(四川资阳)如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y= (m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?考点:反比例函数与一次函数的交点问题.分析:(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.解答:解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.点评:本题考查了反比例函数与一次函数的交点问题,待定系数法是求函数解析式的关键.21.(9分)(四川资阳)如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O 于点D,BD的延长线交AC于E,连接AD.(1)求证:△CDE∽△CAD;(2)若AB=2,AC=2,求AE的长.考点:切线的性质;相似三角形的判定与性质.专题:证明题.分析:(1)根据圆周角定理由AB是⊙O的直径得到∠ADB=90°,则∠B+∠BAD=90°,再根据切线的性质得AC为⊙O的切线得∠BAD+∠DAE=90°,则∠B=∠CAD,由于∠B=∠ODB,∠ODB=∠CDE,所以∠B=∠CDE,则∠CAD=∠CDE,加上∠ECD=∠DCA,根据三角形相似的判定方法即可得到△CDE∽△CAD;(2)在△R t AOC中,OA=1AC=2,根据勾股定理可计算出OC=3,则CD=OC﹣OD=2,然后利用△CDE∽△CAD,根据相似比可计算出CE.解答:(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵AC为⊙O的切线,∴BA⊥AC,∴∠BAC=90°,即∠BAD+∠DAE=90°,∴∠B=∠CAD,∵OB=OD,∴∠B=∠ODB,而∠ODB=∠CDE,∴∠B=∠CDE,∴∠CAD=∠CDE,而∠ECD=∠DCA,∴△CDE∽△CAD;(2)解:∵AB=2,∴OA=1,在△R t AOC中,AC=2,∴OC==3,∴CD=OC﹣OD=3﹣1=2,∵△CDE∽△CAD,∴=,即=,∴CE=.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理、圆周角定理和相似三角形的判定与性质.22.(9分)(四川资阳)某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y(元/台)与采购数量x (台)满足y =﹣20x+1500(0<x≤20,x为整数);冰箱的采购单价y(元/台)与采购数量x (台)满足y=﹣10x+1300(0<x≤20,x为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.考点:二次函数的应用;一元一次不等式组的应用.分析:(1)设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,然后根据数量和单价列出不等式组,求解得到x的取值范围,再根据空调台数是正整数确定进货方案;(2)设总利润为W元,根据总利润等于空调和冰箱的利润之和整理得到W与x的函数关系式并整理成顶点式形式,然后根据二次函数的增减性求出最大值即可.解答:解:(1)设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,由题意得,解不等式①得,x≥11,,1111112 22222解不等式②得,x ≤15,所以,不等式组的解集是 11≤x ≤15,∵x 为正整数,∴x 可取的值为 11、12、13、14、15,所以,该商家共有 5 种进货方案;(2)设总利润为 W 元,y =﹣10x +1300=﹣10(20﹣x )+1300=10x+1100, 则 W=(1760﹣y )x +(1700﹣y )x ,=1760x ﹣(﹣20x+1500)x+(1700﹣10x ﹣1100)(20﹣x ),=1760x+20x ﹣1500x+10x ﹣800x+12000,=30x ﹣540x+12000,=30(x ﹣9) +9570,当 x >9 时,W 随 x 的增大而增大,∵11≤x ≤15,∴当 x=15 时,W =30(15﹣9) +9570=10650(元), 答:采购空调 15 台时,获得总利润最大,最大利润值为 10650 元.点评: 本题考查了二次函数的应用,一元一次不等式组的应用,(1)关键在于确定出两个不等关系,(2) 难点在于用空调的台数表示出冰箱的台数并列出利润的表达式.23.(11 分)(四川资阳)如图,已知直线 l ∥l ,线段 AB 在直线 l 上,BC 垂直于 l 交 l 于点 C ,且 AB=BC , P 是线段 BC 上异于两端点的一点,过点 P 的直线分别交 l 、l 于点 D 、E (点 A 、E 位于点 B 的两侧), 满足 BP=BE ,连接 AP 、CE .(1)求证:△ABP ≌△CBE ;(2)连结 AD 、BD ,BD 与 AP 相交于点 F .如图 2.①当②当 =2 时,求证:AP ⊥BD ; =n (n >1)时,设△PAD 的面积为 S ,△PCE 的面积为 S ,求的值.考点: 相似形综合题.分析: (1)求出∠ABP=∠CBE ,根据 SAS 推出即可;(2)①延长 AP 交 CE 于点 H ,求出 AP ⊥CE ,证出△CPD ∽△BPE ,推出 DP=PE ,求出平行四边形 BDCE , 推出 CE ∥BD 即可;②分别用 S 表示出△PAD 和△PCE 的面积,代入求出即可.解答: (1)证明:∵BC ⊥直线 l ,∴∠ABP=∠CBE ,在△ABP 和△CBE 中2 21 12 2 2 2 2 2 2 最大值1 2 1 1 2 2 11 2 1∴△ABP ≌△CBE (SAS );(2)①证明:延长 AP 交 CE 于点 H ,∵△ABP ≌△CBE ,∴∠PAB=∠ECB ,∴∠PAB+∠AEE=∠ECB+∠AEH=90°,∴AP ⊥CE ,∵ =2,即 P 为 BC 的中点,直线 l ∥直线 l ,∴△CPD ∽△BPE ,∴ = = ,∴DP=PE ,∴四边形 BDCE 是平行四边形,∴CE ∥BD ,∵AP ⊥CE ,∴AP ⊥BD ;②解:∵ =N∴BC=n •BP , ∴CP=(n ﹣1)•BP ,∵CD ∥BE ,∴△CPD ∽△BPE ,∴ = =n ﹣1,即 S =(n ﹣1)S , ∵S=S =n •S , △ △ ∴ =(n+1)•S , △∵= =n ﹣1,∴S =(n+1)(n ﹣1)•S ,∴= =n+1.点评: 本题考查了平行四边形的性质和判定,相似三角形的性质和判定,全等三角形的性质和判定的应 用,主要考查了学生的推理能力,题目比较好,有一定的难度.24.(12 分)(四川资阳)如图,已知抛物线 y=ax +bx+c 与 x 轴的一个交点为 A (3,0),与 y 轴的交点为 B(0,3),其顶点为 C ,对称轴为 x=1.1 2 2 PAB BCE PAE 1 2(1)求抛物线的解析式;(2)已知点 M 为 y 轴上的一个动点, △当ABM 为等腰三角形时,求点 M 的坐标;(3)将△AOB 沿 x 轴向右平移 m 个单位长度(0<m <3)得到另一个三角形,将所得的三角形 △与ABC 重叠部分的面积记为 S ,用 m 的代数式表示 S .考点: 二次函数综合题.分析: (1)根据对称轴可知,抛物线 y=ax +bx+c 与 x 轴的另一个交点为(﹣1,0),根据待定系数法 可得抛物线的解析式为 y=﹣x +2x+3. (2)分三种情况:①当 MA=MB 时;②当 AB=AM 时;③当 AB=BM 时;三种情况讨论可得点 M 的坐标. (3)平移后的三角形记为△PEF .根据待定系数法可得直线 AB 的解析式为 y=﹣x+3.易得直线 EF 的解析式为 y=﹣x+3+m .根据待定系数法可得直线 AC 的解析式.连结 BE ,直线 BE 交 AC 于 G ,则 G ( ,3).在△AOB 沿 x 轴向右平移的过程中.分二种情况:①当0<m ≤ 时;②当 <m <3 时;讨论可得用 m 的代数式表示 S . 解答: 解:(1)由题意可知,抛物线 y=ax +bx+c 与 x 轴的另一个交点为(﹣1,0),则,解得. 故抛物线的解析式为 y=﹣x +2x+3.(2)①当 MA=MB 时,M (0,0);②当 AB=AM 时,M (0,﹣3);③当 AB=BM 时,M (0,3+3 )或 M (0,3﹣3 所以点 M 的坐标为:(0,0)、(0,﹣3)、(0,3+3 (3)平移后的三角形记为△PEF .设直线 AB 的解析式为 y=kx+b ,则,). )、(0,3﹣3 ).解得.则直线 AB 的解析式为 y=﹣x+3.△AOB 沿 x 轴向右平移 m 个单位长度(0<m <3)得到△PEF ,易得直线 EF 的解析式为 y=﹣x+3+m .设直线 AC 的解析式为 y=k ′x+b ′,则2 2 22,解得 .则直线 AC 的解析式为 y=﹣2x+6.连结 BE ,直线 BE 交 AC 于 G ,则 G ( ,3). 在△AOB 沿 x 轴向右平移的过程中.①当 0<m ≤ 时,如图 1 所示.设 PE 交 AB 于 K ,EF 交 AC 于 M .则 BE=EK=m ,PK=PA=3﹣m ,联立 ,解得 ,即点 M (3﹣m ,2m ).故 S=S ﹣S ﹣S △ △ △AFM= PE ﹣ PK ﹣ AF •h= ﹣ (3﹣m ) ﹣ m •2m=﹣ m +3m .②当 <m <3 时,如图 2 所示.设 PE 交 AB 于 K ,交 AC 于 H . 因为BE=m ,所以 PK=PA=3﹣m , 又因为直线 AC 的解析式为 y=﹣2x+6, 所以当x=m 时,得 y=6﹣2m , 所以点 H (m ,6﹣2m ).故 S=S ﹣S △ △PAK= PA •PH ﹣ PA =﹣ (3﹣m )•(6﹣2m )﹣ (3﹣m )2= m ﹣3m+ .综上所述,当 0<m ≤ 时,S=﹣ m +3m ;当 <m <3 时,S= m ﹣3m+ .PEF PAK 2 2 2 2 PAH 22 2 2点评:考查了二次函数综合题,涉及的知识点有:抛物线的对称轴,待定系数法求抛物线的解析式,待定系数法求直线的解析式,分类思想的应用,方程思想的应用,综合性较强,有一定的难度.。

年四川省资阳市中考数学试题

年四川省资阳市中考数学试题

2017年四川省资阳市中考数学试题(本试卷满分120分;考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017四川省资阳市,第1题,3分)-2的绝对值是 ( )A.±2B.2 C .一2 D.122.(2017四川省资阳市,第2题,3分)如图所示的立体图形的主视图是( )A. B . C. D.3.(2017四川省资阳市,第3题,3分)下列运算正确的是 ( )A .222()x y x y +=+ B.235()x x = C.2x x = D.623x x x ÷=4.(2017四川省资阳市,第4题,3分)如今网络购物已成为一种常见的购物方式,2016年11月11日当天某电商平台的交易额就达到了1107亿元,用科学记数法表示为(单位:元) ( )A,101.10710⨯ B.111.10710⨯ C.120.110710⨯ D .121.10710⨯5.(2017四川省资阳市,第5题,3分)如图,BE 平分∠D BC,点A 是BD 上一点,过点A 作A E∥B C交B E于点E,∠DAE=56°,则∠E的度数为( )A .56°B .36° C.26° D .28°6.(2017四川省资阳市,第6题,3分)一组数据5,2,6,9,5,3的众数、中位数、平均数分别是( )A.5,5,6 B .9,5,5 C.5,5,5 D.2,6,57.(2017四川省资阳市,第7题,3分)如图,在R t△AB C中,∠ACB=90°,AC=4,BC=3,将Rt △ABC 绕点A逆时针旋转30°后得到△A DE ,则图中阴影部分的面积为 ( )A.1312π B.34π C .43π D.2512π 8.(2017四川省资阳市,第8题,3分)若一次函数y=m x+n (m≠0)中的m ,n是使等式12m n =+成立的整数,则一次函数y=mx+n(m ≠0)的图象一定经过的象限是 ( )A .一、三 B.三、四 C.一、二 D.二、四9.(2017四川省资阳市,第9题,3分)如图,在矩形A BCD 中,A B=2,AD=22,点E 是CD 的中点,连接A E,将△ADE 沿直线A E折叠,使点D 落在点F 处,则线段CF 的长度是 ( )A .1 B.2 C .23D.2 10.(2017四川省资阳市,第10题,3分)如图,抛物线2y ax bx c =++(a≠0)的顶点和该抛物线与y 轴的交点在一次函数y=kx +1(k ≠0)的图象上,它的对称轴是x =1,有下列四个结论:①abc <0,②13a <-,③a=-k ,④当0<x<1时,ax +b >k,其中正确结论的个数是( )A.4 B.3 C.2 D.1第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分,请把答案填在题中的横线上)11.(2017四川省资阳市,第11题,3分)使分式21x -有意义的x 取值范围是________. 12.(2017四川省资阳市,第12题,3分)一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是________.13.(2017四川省资阳市,第13题,3分)边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABC=________度.14.(2017四川省资阳市,第14题,3分)关于x 的一元二次方程2(1)(21)0a x a x a -+++=有两个不相等的实数根,则a 的取值范围是_______.15.(2017四川省资阳市,第15题,3分)如图,点A是函数16y x=-图象上一点,连接AO 交反比例函数2k y x=(k ≠0)的图象于点B,若BO =2AB ,则k________.16.(2017四川省资阳市,第16题,3分)按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的块数是________.三、解答题(本大题共8小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(2017四川省资阳市,第17题,7分)先化简,再求值:2211(1)28x x x x+--÷,其中x=2. 18.(2017四川省资阳市,第18题,8分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A 1,A 2,A 3,A 4,现对A 1,A 2,A3,A 4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A 1所在扇形的圆心角的度数;(3)现从A1,A 2中各选出一人进行座谈,若A1中有一名女生,A 2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.19.(2017四川省资阳市,第19题,8分)如图,AB 是半圆的直径,A C为弦,过点C 作直线D E交AB 的延长线于点E.若∠ACD =60°,∠E=30°. (1)求证:直线D E与半圆相切;(2)若BE=3,求CE的长.20.(2017四川省资阳市,第20题,8分)如图,一次函数1y kx b =+(k ≠0)的图象与反比例函数2m y x=(m ≠0,x<0)的图象交于点A (-3,1)和点C,与y 轴交于点B ,△AOB 的面积是6.(1)求一次函数与反比例函数的解析式;(2)当x<0时,比较1y 与2y 的大小.21.(2017四川省资阳市,第21题,9分)四川省安岳县盛产柠檬和柚子两种水果,今年,某公司计划用两种型号的汽车运输柠檬和柚子到外地销售,运输中要求每辆汽车都要满载满运,且只能装运一种水果.若用3辆汽车装载柠檬、2辆汽车装载袖子可共装载33吨,若用2辆汽车装载柠檬、3辆汽车装载柚子可共装载32吨.(1)求每辆汽车可装载柠檬或柚子各多少吨?(2)据调查,全部销售完后,每吨柠檬可获利700元、每吨柚子可获利500元,计划用20辆汽车运输,且柚子不少于30吨,如何安排运输才能使公司获利最大,最大利润是多少元?22.(2017四川省资阳市,第22题,9分)如图,光明中学一教学楼顶上竖有一块高为AB的宣传牌,点E 和点D 分别是教学楼底部和外墙上的一点(A,B ,D,E 在同一直线上),小红同学在距E点9米的C 处测得宣传牌底部点B 的仰角为67°,同时测得教学楼外墙外点D 的仰角为30°,从点C 沿坡度为1:3的斜坡向上走到点F 时,D F正好与水平线CE 平行.(1)求点F 到直线CE 的距离(结果保留根号);(2)若在点F 处测得宣传牌顶部A的仰角为45°,求出宣传牌A B的高度(结果精确到0.0l). (注:si n67°≈0.92,tan 67°≈2.36,2≈1.41,3≈1.73)23.(2017四川省资阳市,第23题,11分)在△A BC 中,AB =AC>B C ,D 是B C上一点,连接AD ,作△ADE,使AD=A E,且∠DAE=∠BAC,过点E 作EF ∥BC 交A B于F ,连接FC .(1)如图1.①连接BE ,求证:△A EB ≌△ADC:②若D 是线段BC 的中点,且AC =6,BC=4,求CF 的长;(2)如图2,'若点D在线段BC 的延长线上,且四边形CDE F是矩形,当AC=m ,B C=n 时,求CD 的长(用含m,n 的代数式表示).24.(2017四川省资阳市,第24题,12分)如图,抛物线2(1)4y a x =++(a ≠0)与x 轴交于A ,C 两点,与直线y=x -1交于A,B两点,直线AB 与抛物线的对称轴交于点E .(1)求抛物线的解析式;(2)若点P在直线AB上方的抛物线上运动.①点P在什么位置时,△ABP的面积最大,求出此时点P的坐标;②当点P与点C重合时,连接PE,将△PEB补成矩形,使△PEB上的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.。

四川省资阳市中考数学真题试题(含解析)

四川省资阳市中考数学真题试题(含解析)

四川省资阳市中考数学真题试题一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意。

1.(3.00分)﹣的相反数是()A.3 B.﹣3 C.D.2.(3.00分)如图是由四个相同的小正方体堆成的物体,它的正视图是()A.B.C.D.3.(3.00分)下列运算正确的是()A.a2+a3=a5B.a2×a3=a6C.(a+b)2=a2+b2D.(a2)3=a64.(3.00分)下列图形具有两条对称轴的是()A.等边三角形B.平行四边形C.矩形 D.正方形5.(3.00分)﹣0.00035用科学记数法表示为()A.﹣3.5×10﹣4B.﹣3.5×104C.3.5×10﹣4D.﹣3.5×10﹣36.(3.00分)某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是()A.87 B.87.5 C.87.6 D.887.(3.00分)如图,ABCDEF为⊙O的内接正六边形,AB=a,则图中阴影部分的面积是()A.B.()a2C.2D.()a28.(3.00分)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A.12厘米B.16厘米C.20厘米D.28厘米9.(3.00分)已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(,m),则不等式组mx﹣2<kx+1<mx的解集为()A.x B.C.x D.010.(3.00分)已知二次函数y=ax2+bx+c的图象如图所示,OA=OC,则由抛物线的特征写出如下含有a、b、c三个字母的等式或不等式:①=﹣1;②ac+b+1=0;③abc>0;④a﹣b+c>0.其中正确的个数是()A.4个B.3个C.2个D.1个二、填空题:(本大题共6个小题,每小题3分,共18分)11.(3.00分)函数y=的自变量x的取值范围是.12.(3.00分)已知a、b满足(a﹣1)2+=0,则a+b= .13.(3.00分)一口袋中装有若干红色和白色两种小球,这些小球除颜色外没有任何区别,袋中小球已搅匀,蒙上眼睛从中取出一个白球的概率为.若袋中白球有4个,则红球的个数是.14.(3.00分)已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为.15.(3.00分)已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m= .16.(3.00分)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是.三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤。

2017年四川资阳 解析版

2017年四川资阳  解析版

2017年四川省资阳市中考数学试卷满分:120分 版本:华师版一、选择题(本题共10小题,每小题3分,共30分)1.(2017年四川资阳,1,3分)-2的绝对值是( ) A .±2 B .2 C .-2 D .12答案:B 解析:因为负数的绝对值是它的相反数,所以|-2|=2.故选B . 2.(2017年四川资阳,2,3分)如图1所示的立体图形的主视图是( )答案:A 解析:立体图形是三棱柱.从正面可以看到两个矩形.故选A . 3.(2017年四川资阳,3,3分)下列运算正确的是( )A .(x +y )2=x 2+y 2B .(x 2)3=x 5 C=|x | D .x 6÷x 2=x 3答案:A 解析:选项A 的结果是x 2+2xy +y 2;选项B 的结果是x 6;选项D 的结果是x 4.只有选项C 中的运算正确.故选C .4.(2017年四川资阳,4,3分)如今网络购物已成为一种常见的购物方式,2016年11月11日当天某电商平台的交易额就达到了1107亿元,用科学记数法表示为(单位:元)( ) A .1.107×1010 B .1.107×1011 C .0.1107×1012 D .1.107×1012 答案:B 解析:1107亿=110 700 000 000=1.107×1011.故选B .5.(2017年四川资阳,5,3分)如图2,BE 平分∠DBC ,点A 是BD 上一点,过点A 作AE ∥BC 交BE 于E ,∠DAE =56°,则∠E 的度数为( ) A .56° B .36° C .26° D .28°答案:D 解析:∵AE ∥BC ,∴∠E =∠EBC .由角平分线的定义,得∠EBD =∠EBC ,∴∠E =∠EBD .由三角形内角和定理的推论可知∠E =12∠DAE =12×56°=28°.故选D . 6.(2017年四川资阳,6,3分)一组数据5,2,6,9,5,3的众数、中位数、平均数分别是( )A .5,5,6B .9,5,5C .5,5,5D .2,6,5答案:C 解析:数据5出现的次数最多,所以众数是5;将数据排序后,居中的两个数都图5D ABCF图4图3EDABC图2图1A .B .C .D .是5,所以中位数是5;平均数=16×(5+2+6+9+5+3)=16×30=5.故选C . 7.(2017年四川资阳,7,3分)如图3,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,将Rt △ABC 绕点A 逆时针旋转30°后得到△ADE ,则图中阴影部分的面积为( ) A .1312π B .34π C .43π D .2512π答案:D 解析:由勾股定理,得AB =5.由旋转的性质可知△ABC ≌△ADE ,且∠DAB =30°.∴S 阴影=S △ABC +S 扇形ADB -S △ADE =S 扇形ADB =2305360πg =2512π.故选D . 8.(2017年四川资阳,8,3分)若一次函数y =mx +n (m ≠0)中的m ,n 是使等式m =12n +成立的整数,则一次函数y =mx +n (m ≠0)的图象一定经过的象限是( )A .一、三B .三、四C .一、二D .二、四答案:B 解析:依题意可知n +2=±1,∴1,1;m n =⎧⎨=-⎩或1,3;m n =-⎧⎨=-⎩(1)当m =1,n =-1时,直线y =mx +n 经过一、三、四象限;(2)当m =-1,n =-3时,直线y =mx +n 经过二、三、四象限. 可见一次函数y =mx +n (m ≠0)的图象一定经过三、四象限. 故选B .9.(2017年四川资阳,9,3分)如图4,在矩形ABCD 中,AB =2,AD =,点E 是CD 的中点,连结AE ,将△ADE 沿直线AE 折叠,使点D 落在点F 处,则线段CF 的长度是( )A .1BC .23 D答案:C 解析:连结DF 交AE 于点G .DE =12CD =12AB =1,AE 3.∴DG =AD DEAE g .由对称性可知,AE 垂直平分DF ,∴DF .∵ED =EF =EC ,∴∠EDF =90°.∴CF 23.故选C .10.(2017年四川资阳,10,3分)如图5,抛物线y =ax 2+bx +c (a ≠0)的顶点和y 轴的交点在一次函数y =kx +1(k ≠0)的图象上,它的对称轴是x =1,有以下四个结论:①abc <0,②a <-13,③a =-k ,④当0<x <1时,ax +b >k ,其中正确结论的个数是( )A .4B .3C .2D .1 答案:A 解析:∵对称轴是x =1,∴-2ba=1,即b =-2a .∵抛物线与直线y =kx +1交于y 轴上的同一点,∴c =1.∴抛物线的解析式为y =ax 2-2ax +1. (1)∵抛物线的开口向下,∴a <0.∴abc =-2a 2<0.可见结论①正确.(2)由图象可知x =-1时,y <0.∴a (-1)2+2a +1<0,即3a +1<0.∴a <-13.可见结论②正确.(3)当x =1时,y =a ·12-2a ·1+1=-a +1,∴抛物线的顶点是(1,-a +1).∵直线y =kx +1经过抛物线的顶点,∴-a +1=k ·1+1,即a =-k .可见结论③正确. (4)当0<x <1时,二次函数的值大于一次函数的值,∴ax 2+bx +1>kx +1.∴ax +b >k .可见结论④正确.综上所述,正确结论的个数是4个.故选A .二、填空题(本题共6小题,每小题3分,共18分)11.(2017年四川资阳,11,3分)使分式21x 有意义的x 取值范围是______. 答案:x ≠1 解析:∵分式的分母不能为0,∴x -1≠0,即x ≠1.12.(2017年四川资阳,12,3分)一个不透明口袋里有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是______.答案:13 解析:摸到的球的颜色共有6种,其中是红色的结果有2种,所以P (红色)=26=13. 13.(2017年四川资阳,13,3分)边长相等的正五边形和正六边形如图6所示拼接在一起,则∠ABC =______度.答案:24 解析:正六边形的一个内角=16×(6-2)×180°=120°.正五边形的一个内角=15×(5-2)×180°=108°.∴∠BAC =360°-(120°+108°)=132°.∵两个正多边形的边长相等,即AB =AC ,∴∠ABC =12×(180°-132°)=24°. 14.(2017年四川资阳,14,3分)关于x 的一元二次方程(a -1)x 2+(2a +1)x +a =0有两个不相等的实数根,则a 的取值范围是______.答案:a >-18且a ≠1 解析:依题意可知a -1≠0且△>0,即(2a +1)2-4a (a -1)>0.解得a >-18且a ≠1.15.(2017年四川资阳,15,3分)如图7,点A 是函数y 1=-6x图象上一点,连结AO 交反比例函数y 2=kx(k ≠0)的图象于点B ,若BO =2AB ,则k =______.图6答案:-83解析:如图,分别过点A ,B 向x 轴作垂线,垂足依次为C ,D .设A (a ,-6a ),∵△OBD ∽△OAC ,且相似比为23,∴B (23a ,-4a ).∴k =23a ×(-4a )=-83. 16.(2017年四川资阳,16,3分)按照如图8所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的块数是______.由此猜想第14个图案中黑色小正方形地砖的块数=1+1×4+2×4+…+13×4=1+(1+2+3+…+13)×4=1+364=365.三、解答题(本题共8小题,共72分)17.(2017年四川资阳)(本小题满分7分)先化简,再求值:(212x x +-1)÷218x x -,其中x =2. 解:原式=2212x x x -+·281x x -=441x x -+. 当x =2时,原式=43. 18.(2017年四川资阳) (本小题满分8分)当前,“精确扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四分别记为A 1,A 2,A3,A 4,现对A 1,A 2,A 3,A 4统计后,制成如图9所示的统计图.答案图图7图8第1个 第2个 第3个(1)求七年级已“建档立卡”贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示可能情况,并求出恰好选出一名男生和一名女生的概率.解:(1)6÷40%=15(人);(2)补全条形统计图如图,圆心角度数=215×360°=48°.(3)树状图如下:P=36=12.19.(2017年四川资阳)(本小题满分8分)如图10,AB是半圆的直径,AC为弦,过点C作直线DE交AB的延长线于点E.若∠ACD=60°,∠E=30°.(1)求证:直线DE与半圆相切;(2)若BE=3,求CE的长.(1)证明:如图,连结OC,∵∠ACD=60°,∠E=30°,∴∠A=30°.又∵OA=OC,∴∠OCA=∠A=30°.∴∠OCD=∠OCA+∠ACD=90°.∴直线DE与半圆相切.(2)在Rt△OCE中,∠E=30°,∴OE=2OC.又∵OC=OB,∴OE=2BE=6.∴CE=OE·cos∠E=6×3=33.20.(2017年四川资阳) (本小题满分8分)如图11,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=mx(m≠0,x<0)的图象交于点A(-3,1)和点C,与y轴交于点B,△AOB的面积DOC EBA答案图D OC EBA图10图9是6.(1)求一次函数与反比例函数的解析式; (2)当x <0时,比较y 1与y 2的大小.解:(1)∵反比例函数y 2=mx(m ≠0,x <0)图象过点A (-3,1), ∴m =-3.∴反比例函数解析式是y 2=-3x. S △AOB =12×|-3|×OB =6,∴B 点的坐标是(0,4). ∵一次函数y 1=kx +b (k ≠0)过A (-3,1)和B (0,4),∴40,13.b k b =+⎧⎨=-+⎩解得1,4.k b =⎧⎨=⎩∴一次函数的解析式为y 1=x +4.(2)解方程组4,3.y x y x =+⎧⎪⎨=-⎪⎩得113,1;x y =-⎧⎨=⎩或221,3.x y =-⎧⎨=⎩ ∴A 点的坐标是(-3,1),C 点的坐标是(-1,3). ①当-1<x <0或x <-3时,y 1<y 2; ②当-3<x <-1时,y 1>y 2;①当x =-1或x =-3时,y 1=y 2.21.(2017年四川资阳) (本小题满分9分)四川省安岳县盛产柠檬和柚子两种水果.今年,某公司计划用同种型号的汽车运输柠檬和柚子到外地销售,运输中要求每辆汽车都要满载装运,且只能装运一种水果.若用3辆汽车装载柠檬、2辆汽车装载柚子可共装载33吨;若用2辆汽车装载柠檬、3辆汽车装载柚子共可装载32吨. (1)求每辆汽车可装载柠檬或柚子各多少吨?(2)据调查,全部销售完后,每吨柠檬可获利700元、每吨柚子可获利500元,计划用20辆汽车运输,且柚子不少于30吨,如何安排运输才能使公司获利最大,最大利润是多少元? 解:(1)设每辆汽车可装载柠檬m 吨,装载柚子n 吨, 根据题意,得3233,2332.m n m n +=⎧⎨+=⎩解得7,6.m n =⎧⎨=⎩答:每辆汽车可装载柠檬7吨,或装载柚子6吨.(2)解:设用x 辆汽车装载柚子,则用(20-x )辆汽车装载柠檬,总利润为y 元. 根据题意,得6x ≥30,即\x ≥5.y =500×6x +700×7(20-x )=-1900x +98000.图11∵-19000<0,∴y随x的增大而减小.∴当x=5时,y取得最大值,最大值=-1900×5+98000=88500元.答:安排5辆汽车运输柚子,15辆汽车运输柠檬可使公司利润最大,最大利润为88500元.22.(2017年四川资阳) (本小题满分9分)如图12,光明中学一教学楼楼顶上竖有一块高为AB的宣传牌,点E和点D分别是教学楼底部和外墙上的一点(A,B,D,E在同一直线上),小江同学在距E点9米的C处测得宣传牌底部点B的仰角为67°,同时测得教学楼处墙上点D的仰角为30°,从点C沿坡度为1∶3的斜坡向上走到点F时,DF正好与水平线CE平行.(1)求点F到直线CE的距离(结果保留根号);(2)若在点F处测得宣传牌顶部A的仰角为45°,求出宣传牌AB的高度(结果精确到0.01)(注:sin67°≈0.92,tan67°≈2.36,2≈1.41,3≈1.73)图12答图:(1)过点F作FH⊥CE于H,依题意知FD∥CE,则FH=DE.在Rt△CDE中,DE=CE·tan∠DCE=9×tan30°=33.∴FH=DE=33.∴点F到直线CE的距离是33米.(2)∵斜坡CF的坡度为1∶3,在Rt△FCH中,∴CH=3FH=3×33=9.EH=DF=18.在Rt△AFD中,∠AFD=45°,∴AD=DF=18.在Rt△BCE中,BE=CE·tan∠BCE=9×tan67°=21.24.AB=AD+DE-BE=18+33-21.24≈1.95米.答:宣传牌AB的高度约为1.95米.23.(2017年四川资阳) (本小题满分11分)在△ABC中,AB=AC>BC,D是BC上一点,连结AD作△ADE,使AD=AE且∠DAE=∠BAC,过点E作EF∥BC交AB于F,连结FC.(1)如图(1)①连结BE,求证:△AEB≌△ADC;②若D是线段BC的中点,且AC=6,BC=4,求CF的长;(2)如图(2)若点D在线段BC的延长线上,且四边形CDEF是矩形,当AC=m,BC=n时,求CD的长(用含m,n的代数式表示).(1)①证明:∵AB =AC ,AD =AE ,又∵∠BAC =∠DAE ,∴∠DAC =∠BAE . ∴△ADC ≌△AEB .②由①知∠EBA =∠ACD ,∠ACD =∠ABC ,∴∠EBA =∠ABC . 又∵EF ∥BC ,∴∠ABC =∠EFB .∴∠EFB =∠EBF . ∴EB =EF .∴EF =DC .∴四边形EDCF 是平行四边形. ∴ED =FC .∵AB =AC ,D 是BC 的中点,∴AD =22AC AD -=2262-=42. 易证△ADE ∽△ACB ,∴AC AD =BCED. ∴ED =BC ADAC g =442⨯=82. (2)∵四边形CDEF 是矩形,∴∠CDA +∠ADE =90°. 由恬∠BAC =∠DAE ,∴∠ABC =∠ADE .∴∠ABC +∠CDA =90°.∴∠BAD =∠BCF .∴△FBC ∽△DBA .∴FB BD =BCAB. 易证FB =2AC =2m ,∴2m BD =n m ,BD =22m n . ∴CD =222m n n-.24.(2017年四川资阳) (本小题满分12分)如图14,抛物线y =a (x +1)2+4(a ≠0)与x 轴交于A ,C 两点,与直线y =x -1交于A ,B 两点,直线AB 与抛物线的对称轴交于点E . (1)求抛物线的解析式;(2)若点P 在直线AB 上方的抛物线上运动.①点P 在什么位置时,△ABP 的面积最大,求出此时点P 的坐标;②当点P 与点C 重合时,连结PE ,将△PEB 补成矩形,使△PEB 上的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.图(1) 图(2)23题图解:(1)∵y =x -1与x 轴交于点A ,令y =0,则x -1=0.x =1.∴A (1,0). ∵y =a (x +1)2+4过点A (1,0),∴0=a (1+1)2+4.a =-1 ∴抛物线的解析式为y =-(x +1)2+4,即y =-x 2-2x +3. (2)解方程组21,2 3.y x y x x =-⎧⎨=--+⎩得111,0;x y =⎧⎨=⎩224,5.x y =-⎧⎨=-⎩∴B (-4,,-5). ①设P (m ,-m 2-2m +3).如图1,过点P 作PG ∥y 轴交AB 于G ,则G 点的坐标是(m ,m-1).PG =-m 2-2m +3-(m -1)=-m 2-3m +4. ∴S △P AB =S △PBG +S △P AG =12×5(-m 2-3m +4)=-52(m +32)2+1258. ∵-52<0,∴当m =-32时,△ABP 的面积最大. 当m =-32时,y =-94+2×32+3=154. ∴(-32,154).(2)由-x 2-2x +3=0,得x 1=-3,x 2=1(舍去).∴P (-3,0). ∵P (-3,0),E (-1,-2),B (-4,-5),∴PE =,BE =,PBPEB =90°.(i )以BP 为对角线,点E 矩形的顶点时,如图2所示,易求得直线PD 的解析式为y =x +3,直线BD 的解析式为y =-x -9.由3,9.y x y x =+⎧⎨=--⎩得6,3.x y =-⎧⎨=-⎩此时D (-6,-3).(ii )以BP 为边,点E 在BP 对边上时,如图3所示,过点P 作y 轴的平行线交x 轴于点N ,答图3答图2答图1图14过点M作MT⊥BN.S矩形PBMF=2S△PBE,∴BM由△BTM∽△PNB,得BTPN=MTBN=PMBP.∴BT=613,MT=3013.∴M(-2213,-7113).过点F作FK⊥x轴于点K,由△FKP∽△PNB,得FKPN=PKBN=FPPB.∴FK=613,PK=3013.∴F(-913,-613).∴所示点的坐标为D(-6,-3),M(-2213,-7113),F(-913,-613).。

初中毕业升学考试(四川资阳卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(四川资阳卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(四川资阳卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】﹣2的倒数是()A. B. C.﹣2 D.2【答案】A.【解析】试题分析:﹣2的倒数是.故选A.考点:倒数.【题文】下列运算正确的是()A. B. C. D.【答案】C.【解析】试题分析:与不是同类项,不能合并,A错误;,B错误;,C正确;,D错误.故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.【题文】如图是一个正方体纸盒的外表面展开图,则这个正方体是()评卷人得分A. B. C. D.【答案】C【解析】试题分析:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.故选C.考点:几何体的展开图.【题文】世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()A. 7.6×10﹣9B. 7.6×10﹣8C. 7.6×109D. 7.6×108【答案】B【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.0.000000076=7.6×10﹣8.故选:A.考点:科学记数法—表示较小的数【题文】的运算结果应在哪两个连续整数之间()A.2和3 B.3和4 C.4和5 D.5和6【答案】D.【解析】试题分析:根据无理数的大小比较方法得到<<,即可解答.试题解析:∵<<,即5<<6,∴的运算结果应在5和6两个连续整数之间.故选D.考点:估算无理数的大小.【题文】我市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学筹款情况如下表:则该班同学筹款金额的众数和中位数分别是()A.11,20 B.25,11 C.20,25 D.25,20【答案】D.【解析】试题分析:在这一组数据中25元是出现次数最多的,故众数是25元;将这组数据已从小到大的顺序排列,处于中间位置的两个数是20、20,那么由中位数的定义可知,这组数据的中位数是20;故选D.考点:众数;中位数.【题文】如图,两个三角形的面积分别是9,6,对应阴影部分的面积分别是m,n,则m﹣n等于()A. 2B. 3C. 4D. 无法确定【答案】B【解析】试题分析:设空白出图形的面积为x,根据题意得:m+x=9,n+x=6,则m﹣n=9﹣6=3.故选B.考点:三角形的面积.【题文】在Rt△ABC中,∠ACB=90°,AC=,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A. B. C. D.【答案】A.【解析】试题分析:∵D为AB的中点,∴BC=BD=AB,∴∠A=30°,∠B=60°.∵AC=,∴BC=AC•tan30°==2,∴S阴影=S△ABC﹣S扇形CBD==.故选A.考点:扇形面积的计算.【题文】如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB=,EF=2,∠H=120°,则DN的长为()A. B. C. D.【答案】C.【解析】试题分析:长EG交DC于P点,连接GC、FH;如图所示:则CP=DP=CD=,△GCP为直角三角形,∵四边形EFGH是菱形,∠EHG=120°,∴GH=EF=2,∠OHG=60°,EG⊥FH,∴OG=GH•sin60°=2×=,由折叠的性质得:CG=OG=,OM=CM,∠MOG=∠MCG,∴PG==,∵OG∥CM,∴∠MOG+∠OMC=180°,∴∠MCG+∠OMC=180°,∴OM∥CG,∴四边形OGCM 为平行四边形,∵OM=CM,∴四边形OGCM为菱形,∴CM=OG=,根据题意得:PG是梯形MCDN的中位线,∴DN+CM=2PG=,∴DN=;故选C.考点:矩形的性质;菱形的性质;翻折变换(折叠问题).【题文】已知二次函数与x轴只有一个交点,且图象过A(,m)、B(+n,m)两点,则m、n的关系为()A.m=n B.m=n C.m= D.m=【答案】D.【解析】试题分析:∵抛物线与x轴只有一个交点,∴当x=时,y=0.且,即.又∵点A(,m),B(+n,m),∴点A、B关于直线x=对称,∴A(,m),B(,m),将A点坐标代入抛物线解析式,得m=,即m=,∵,∴m=,故选D.考点:抛物线与x轴的交点.【题文】(2016孝感)若代数式有意义,则x的取值范围是.【答案】x≥2.【解析】试题分析:∵代数式有意义,∴x﹣2≥0,∴x≥2.故答案为:x≥2.考点:二次根式有意义的条件.【题文】如图,AC是正五边形ABCDE的一条对角线,则∠ACB=.【答案】36°.【解析】试题分析:∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案为:36°.考点:多边形内角与外角.【题文】已知关于x的方程mx+3=4的解为x=1,则直线y=(m﹣2)x﹣3一定不经过第象限.【答案】一.【解析】试题分析:∵关于x的方程mx+3=4的解为x=1,∴m+3=4,∴m=1,∴直线y=(m﹣2)x﹣3为直线y=﹣x﹣3,∴直线y=(m﹣2)x﹣3一定不经过第一象限,故答案为:一.考点:一次函数与一元一次方程.【题文】如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是.【答案】.【解析】试题分析:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;故答案为:.考点:概率公式;等腰三角形的判定.【题文】设一列数中相邻的三个数依次为m、n、p,且满足p=m2﹣n,若这列数为﹣1,3,﹣2,a,﹣7,b…,则b=.【答案】128.【解析】试题分析:根据题意得:a=﹣(﹣2)=11,则b=﹣(﹣7)=128.故答案为:128.考点:规律型:数字的变化类.【题文】如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE ,连结DE交CO于点P,给出以下结论:①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④,其中所有正确结论的序号是.【答案】①②③④.【解析】试题分析:①正确.如图,∵∠ACB=90°,AC=BC,CO⊥AB∴AO=OB=OC,∠A=∠B=∠ACO=∠BCO=45°,在△ADO和△CEO中,∵OA=OC,∠A=∠ECO,AD=CE,∴△ADO≌△CEO ,∴DO=OE,∠AOD=∠COE,∴∠AOC=∠DOE=90°,∴△DOE是等腰直角三角形.故①正确.②正确.∵∠DCE+∠DOE=180°,∴D、C、E、O四点共圆,∴∠CDE=∠COE,故②正确.③正确.∵AC=BC=1,∴S△ABC=×1×1=,S四边形DCEO=S△DOC+S△CEO=S△CDO+S△ADO=S△AOC=S△ABC=,故③正确.④正确.∵D、C、E、O四点共圆,∴OP•PC=DP•PE,∴+2DP•PE=+2OP•PC=2OP(OP+PC)=2OP•OC,∵∠OEP=∠DCO=∠OCE=45°,∠POE=∠COE,∴△OPE∽△OEC,∴,∴OP•OC=,∴+2DP•PE===,∵CD=BE,CE=AD,∴,∴.故④正确.考点:勾股定理;四点共圆.【题文】化简:.【答案】a﹣1.【解析】试题分析:首先把括号内的式子通分相加,把除法转化为乘法,然后进行乘法运算即可.试题解析:原式===a﹣1.考点:分式的混合运算.【题文】近几年来,国家对购买新能源汽车实行补助政策,2016年某省对新能源汽车中的“插电式混合动力汽车”实行每辆3万元的补助,小刘对该省2016年“纯电动乘用车”和“插电式混合动力车”的销售计划进行了研究,绘制出如图所示的两幅不完整的统计图.(1)补全条形统计图;(2)求出“D”所在扇形的圆心角的度数;(3)为进一步落实该政策,该省计划再补助4.5千万元用于推广上述两大类产品,请你预测,该省16年计划大约共销售“插电式混合动力汽车”多少辆?注:R为纯电动续航行驶里程,图中A表示“纯电动乘用车”(100km≤R<150km),B表示“纯电动乘用车”(150km≤R<250km),C表示“纯电动乘用车”(R≥250km),D为“插电式混合动力汽车”.【答案】(1)作图见解析;(2)108°;(3)2450.【解析】试题分析:(1)首先由A的数目和其所占的百分比可求出总数,进而可求出D的数目,问题得解;(2)由D的数目先求出它所占的百分比,再用百分比乘以360°,即可解答;(3)计算出补贴D类产品的总金额,再除以每辆车的补助可得车的数量.试题解析:(1)补贴总金额为:4÷20%=20(千万元),则D类产品补贴金额为:20﹣4﹣4.5﹣5.5=6(千万元),补全条形图如图:(2)360°×=108°,答:“D”所在扇形的圆心角的度数为108°;(3)根据题意,16年补贴D类“插电式混合动力汽车”金额为:6+4.5×=7.35(千万元),∴7350÷3=2450(辆).答:预测该省16年计划大约共销售“插电式混合动力汽车”2450辆.考点:条形统计图;用样本估计总体;扇形统计图.【题文】某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.(1)求出A型、B型污水处理设备的单价;(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.【答案】(1)A型污水处理设备的单价为12万元,B型污水处理设备的单价为10万元;(2)购进2台A 型污水处理设备,购进6台B型污水处理设备最省钱.【解析】试题分析:(1)根据题意结合购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元分别得出等式求出答案;(2)利用该企业每月的污水处理量不低于1565吨,得出不等式求出答案.试题解析:(1)设A型污水处理设备的单价为x万元,B型污水处理设备的单价为y万元,根据题意可得:,解得:.答:A型污水处理设备的单价为12万元,B型污水处理设备的单价为10万元;(2)设购进a台A型污水处理器,根据题意可得:220a+190(8﹣a)≥1565,解得:a≥1.5,∵A型污水处理设备单价比B型污水处理设备单价高,∴A型污水处理设备买越少,越省钱,∴购进2台A型污水处理设备,购进6台B型污水处理设备最省钱.考点:一元一次不等式的应用;二元一次方程组的应用.【题文】如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.【答案】(1)证明见解析;(2).【解析】试题分析:(1)由圆周角推论可得∠A+∠ABD=90°,由切线性质可得∠CDB+∠ODB=90°,而∠ABD=∠ODB ,可得答案;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,根据勾股定理可求得MN 的长.试题解析:(1)如图,连接OD,∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵CD与⊙O相切于点D,∴∠CDB+∠ODB=90°,∵OD=OB,∴∠ABD=∠ODB,∴∠A=∠BDC;(2)∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN==.考点:切线的性质.【题文】(本题满分10分)如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y=(k≠0,x>0)过点D.(1)求此双曲线的解析式;(2)作直线AC交y轴于点E,连结DE,求△ CDE的面积.【答案】(1);(2)3.【解析】试题分析:(1)根据在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),可以求得点D的坐标,又因为双曲线(k≠0,x>0)过点D,从而可以求得k的值,从而可以求得双曲线的解析式;(2)由图可知三角形CDE的面积等于三角形EDA与三角形ADC的面积之和,从而可以解答本题.试题解析:(1)∵在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),∴点D的坐标是(1,2),∵双曲线(k≠0,x>0)过点D,∴l(1)求出此时点A到岛礁C的距离;(2)若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)【答案】(1);(2).【解析】试题分析:(1)根据题意得出:∠CBD=30°,BC=120海里,再利用cos30°=,进而求出答案;(2)根据题意结合已知得出当点B在A′的南偏东75°的方向上,则A′B平分∠CBA,进而得出等式求出答案.试题解析:(1)如图所示:延长BA,过点C作CD⊥BA延长线与点D,由题意可得:∠CBD=30°,BC=120海里,则DC=60海里,故cos30°===,解得:AC=.答:点A到岛礁C的距离为海里;(2)如图所示:过点A′作A′N⊥BC于点N,可得∠1=30°,∠BA′A=45°,A′N=A′E,则∠2=15°,即A′B平分∠CBA,设AA′=x,则A′E=x,故CA′=2A′N=2×x=x,∵,∴解得:x=.答:此时“中国海监50”的航行距离为海里.考点:解直角三角形的应用-方向角问题.【题文】在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.【答案】(1)证明见解析;(2)①AF=BE;②AF=x.【解析】试题分析:(1)由旋转得到∠BAC=∠BAD,而DF⊥AC,从而得出∠ABC=45°,最后判断出△ABC是等腰直角三角形;(2)①由旋转得到∠BAC=∠BAD,再根据∠DAF=∠DBA,从而求出∠FAD=∠BAC=∠BAD=60°,最后判定△AFD≌△BED,即可;②根据题意画出图形,先求出角度,得到△ABD是顶角为36°的等腰三角形,再用相似求出,=,最后判断出△AFD∽△BED,代入即可.试题解析:(1)由旋转得,∠BAC=∠BAD,∵DF⊥AC,∴∠CAD=90°,∴∠BAC=∠BAD=45°,∵∠ACB=90°,∴∠ABC=45°,∴AC=CB;(2)①由旋转得,AD=AB,∴∠ABD=∠ADB,∵∠DAF=∠ABD,∴∠DAF=∠ADB,∴AF∥BB,∴∠BAC=∠ABD ,∵∠ABD=∠FAD由旋转得,∠BAC=∠BAD,∴∠FAD=∠BAC=∠BAD=×180°=60°,由旋转得,AB=AD,∴△ABD是等边三角形,∴AD=BD,在△AFD和△BED中,∵∠F=∠BED,∠FAD=∠BED,AD=BD,∴△AFD≌△BED,∴AF=BE;②如图,由旋转得,∠BAC=∠BAD,∵∠ABD=∠FAD=∠BAC+∠BAD=2∠BAD,由旋转得,AD=AB,∴∠ABD=∠ADB=2∠BAD,∵∠BAD+∠ABD+∠ADB=180°,∴∠BAD+2∠BAD+2∠BAD=180°,∴∠BAD=36°,设BD=x,作BG平分∠ABD,∴∠BAD=∠GBD=36°,∴AG=BG=BC=x,∴DG=AD﹣AG=AD﹣BG=AD﹣BD,∵∠BDG=∠ADB,∴△BDG∽△ADB,∴,∴,∴=,∵∠FAD=∠EBD,∠AFD=∠BED,∴△AFD∽△BED ,∴,∴AF==x.考点:几何变换综合题.【题文】已知抛物线与x轴交于A(6,0)、B(,0)两点,与y轴交于点C,过抛物线上点M(1,3)作MN⊥x轴于点N,连接OM.(1)求此抛物线的解析式;(2)如图1,将△OMN沿x轴向右平移t个单位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′与直线AC分别交于点E、F.①当点F为M′O′的中点时,求t的值;②如图2,若直线M′N′与抛物线相交于点G,过点G作GH∥M′O′交AC于点H,试确定线段EH是否存在最大值?若存在,求出它的最大值及此时t的值;若不存在,请说明理由.【答案】(1);(2)①1;②t=2时,EH最大值为.【解析】试题分析:(1)设抛物线解析式为,把点M(1,3)代入即可求出a,进而解决问题.(2))①如图1中,AC与OM交于点G.连接EO′,首先证明△AOC∽△MNO,推出OM⊥AC,在RT△EO′M′中,利用勾股定理列出方程即可解决问题.②由△GHE∽△AOC得==,所以EG最大时,EH最大,构建二次函数求出EG的最大值即可解决问题.试题解析:(1)设抛物线解析式为,把点M(1,3)代入得a=,∴抛物线解析式为,∴.(2)①如图1中,AC与OM交于点G.连接EO′.∵AO=6,OC=2,MN=3,ON=1,∴=3,∴,∵∠AOC=∠MON=90°,∴△AOC∽△MNO,∴∠OAC=∠NMO,∵∠NMO+∠MON=90°,∴∠MON+∠OAC=90°,∴∠AGO=90°,∴OM⊥AC,∵△M′N′O′是由△MNO平移所得,∴O′M′∥OM,∴O′M′⊥AC,∵M′F=FO′,∴EM′=EO′,∵EN′∥CO,∴,∴,∴EN′=(5﹣t),在RT△EO′M′中,∵O′N′=1,EN′=(5﹣t),EO′=EM′=,∴,∴t=1.②如图2中,∵GH∥O′M′,O′M′⊥AC,∴GH⊥AC,∴∠GHE=90°,∵∠EGH+∠HEG=90°,∠AEN′+∠OAC=90°,∠HEG=∠AEN′,∴∠OAC=∠HGE,∵∠GHE=∠AOC=90°,∴△GHE∽△AOC,∴,∴EG最大时,EH最大,∵EG=GN′﹣EN′===,∴t=2时,EG最大值=,∴EH最大值=,∴t=2时,EH最大值为.考点:二次函数综合题;最值问题;二次函数的最值;存在型;平移的性质;压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

资阳市2017年中考数学试卷全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。

全卷满分120分。

考试时间共120分钟。

注意事项:1.答题前,请考生务必在答题卡上正确填写自己的姓名、准考证号和座位号。

考试结束,将试卷和答题卡一并交回。

2.选择题每小题选出的答案须用2B铅笔在答题卡上把对应题目....的答案标号涂黑。

如需改动,用橡皮擦擦净后,再选涂其它答案。

非选择题须用黑色墨水的钢笔或签字笔在答题卡上对应题号位置作答,在试卷上作答,答案无效。

第Ⅰ卷(选择题共30分)一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意。

1.6-的绝对值是A.6 B.6-C.16D.16-考点:绝对值..分析:根据负数的绝对值是它的相反数,可得负数的绝对值.解答:解:|﹣6|=6,故选:A.点评:本题考查了绝对值,负数的绝对值是它的相反数.2.如图1是一个圆台,它的主视图是考点:简单几何体的三视图..分析:主视图是从物体正面看,所得到的图形.解答:解:从几何体的正面看可得等腰梯形,故选:B.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.下列运算结果为a6的是A.a2+a3B.a2·a3C.(-a2)3D.a8÷a2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方..分析:根据合并同类项、同底数幂的乘除法以及积的乘方和幂的乘方进行计算即可.解答:解:A、a3÷a2不能合并,故A错误;B、a2•a3=a5,故B错误;C、(﹣a2•)3=﹣a6,故C错误;D、a8÷a2=a6,故D正确;故选D.点评:本题考查了同底数幂的乘除法、合并同类项以及积的乘方和幂的乘方,是基础知识要熟练掌握.4.一组数据3、5、8、3、4的众数与中位数分别是A.3,8 B.3,3 C.3,4 D.4,3考点:众数;中位数..分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解答:解:把这组数据从小到大排列:3、3、4、5、8,3出现了2次,出现的次数最多,则众数是3.处于中间位置的那个数是4,由中位数的定义可知,这组数据的中位数是4;点评:本题为统计题,考查中位数与众数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.5.如图2,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为A.30°B.35°C.40°D.45°考点:平行线的性质..专题:计算题.分析:先根据平行线的性质得∠BEF=∠C=70°,然后根据三角形外角性质计算∠A的度数.解答:解:∵AB∥CD,∴∠BEF=∠C=70°,∵∠BEF=∠A+∠F,∴∠A=70°﹣30°=40°.故选C.点评:本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.6.如图3,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3点P应落在线段A.AO上B.OB上C.BC上D.CD上考点:估算无理数的大小;实数与数轴..分析:根据估计无理数的方法得出0<3﹣<1,进而得出答案.解答:解:∵2<<3,∴0<3﹣<1,故表示数3﹣的点P应落在线段OB上.点评:此题主要考查了估算无理数的大小,得出的取值范围是解题关键.7.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形考点:中点四边形..分析:首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.解答:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD 的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:D.点评:本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.8.如图4,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O 的路线匀速运动,设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是考点:动点问题的函数图象..分析:根据图示,分三种情况:(1)当点P沿O→C运动时;(2)当点P沿C→D运动时;(3)当点P沿D→O运动时;分别判断出y的取值情况,进而判断出y与点P运动的时间x(单位:秒)的关系图是哪个即可.解答:解:(1)当点P沿O→C运动时,当点P在点O的位置时,y=90°,当点P在点C的位置时,∵OA=OC,∴y=45°,∴y由90°逐渐减小到45°;(2)当点P沿C→D运动时,根据圆周角定理,可得y≡90°÷2=45°;(3)当点P沿D→O运动时,当点P在点D的位置时,y=45°,当点P在点0的位置时,y=90°,∴y由45°逐渐增加到90°.故选:B.点评:(1)此题主要考查了动点问题的函数图象,解答此类问题的关键是通过看图获取信息,并能解决生活中的实际问题,用图象解决问题时,要理清图象的含义即学会识图.(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.9.如图5,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3 cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是A .13cmB. CD.考点:平面展开-最短路径问题..分析:将容器侧面展开,建立A 关于EF 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为所求. 解答:解:如图:∵高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒, 此时蚂蚁正好在容器外壁,离容器上沿3cm 与饭粒相对的点A 处, ∴A ′D =5cm ,BD =12﹣3+AE =12cm ,∴将容器侧面展开,作A 关于EF 的对称点A ′, 连接A ′B ,则A ′B 即为最短距离, A ′B ===13(Cm ).故选:A .点评:本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.10.如图6,在△ABC 中,∠ACB =90º,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①AB图5②当点E与点B重合时,MH=12;③AF+BE=EF;④MG•MH=12,其中正确结论为A.①②③B.①③④C.①②④D.①②③④考点:相似形综合题..分析:①由题意知,△ABC是等腰直角三角形,根据等腰直角三角形即可作出判断;②如图1,当点E与点B重合时,点H与点B重合,可得MG∥BC,四边形MGCB是矩形,进一步得到FG是△ACB的中位线,从而作出判断;③如图2所示,SAS可证△ECF≌△ECD,根据全等三角形的性质和勾股定理即可作出判断;④根据AA可证△ACE∽△BFC,根据相似三角形的性质可得AF•BF=AC•BC=1,由题意知四边形CHMG是矩形,再根据平行线的性质和等量代换得到MG•MH=AE×BF=AE•BF=AC•BC=,依此即可作出判断.解答:解:①由题意知,△ABC是等腰直角三角形,∴AB==,故①正确;②如图1,当点E与点B重合时,点H与点B重合,∴MB⊥BC,∠MBC=90°,∵MG⊥AC,∴∠MGC=90°=∠C=∠MBC,∴MG∥BC,四边形MGCB是矩形,∴MH=MB=CG,∵∠FCE=45°=∠ABC,∠A=∠ACF=45°,∴CE=AF=BF,∴FG是△ACB的中位线,∴GC=AC=MH,故②正确;③如图2所示,∵AC=BC,∠ACB=90°,∴∠A=∠5=45°.将△ACF顺时针旋转90°至△BCD,则CF=CD,∠1=∠4,∠A=∠6=45°;BD=AF;∵∠2=45°,∴∠1+∠3=∠3+∠4=45°,∴∠DCE=∠2.在△ECF和△ECD中,,∴△ECF≌△ECD(SAS),∴EF=DE.∵∠5=45°,∴∠BDE=90°,∴DE2=BD2+BE2,即E2=AF2+BE2,故③错误;④∵∠7=∠1+∠A=∠1+45°=∠1+∠2=∠ACE,∵∠A=∠5=45°,∴△ACE∽△BFC,∴=,∴AF•BF=AC•BC=1,由题意知四边形CHMG是矩形,∴MG∥BC,MH=CG,MG∥BC,MH∥AC,∴=;=,即=;=,∴MG=AE;MH=BF,∴MG•MH=AE×BF=AE•BF=AC•BC=,故④正确.故选:C.点评:考查了相似形综合题,涉及的知识点有:等腰直角三角形的判定和性质,平行线的判定和性质,矩形的判定和性质,三角形中位线的性质,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质,综合性较强,有一定的难度.第Ⅱ卷(非选择题共90分)二、填空题:(本大题共6个小题,每小题3分,共18分)11.太阳的半径约为696000千米,用科学记数法表示为_______千米.考点:科学记数法—表示较大的数..分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将696 000千米用科学记数法表示为6.96×105千米.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.一个多边形的内角和是外角和的3倍,则这个多边形的边数是_______.考点:多边形内角与外角..分析:任何多边形的外角和是360°,即这个多边形的内角和是3×360°.n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是8.点评:已知多边形的内角和求边数,可以转化为方程的问题来解决.考查了相似形综合题,涉及的知识点有:等腰直角三角形的判定和性质,平行线的判定和性质,矩形的判定和性质,三角形中位线的性质,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质,综合性较强,有一定的难度.13.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有人.考点:用样本估计总体..分析:先求出每周课外阅读时间在1~2(不含1)小时的学生所占的百分比,再乘以全校的人数,即可得出答案. 解答:解:根据题意得: 1200×=240(人),答:估计每周课外阅读时间在1~2(不含1)小时的学生有240人; 故答案为:240.点评:本题考查从统计表中获取信息的能力,及统计中用样本估计总体的思想.14.已知:()260a +,则224b b a --的值为_________. 考点:非负数的性质:算术平方根;非负数的性质:偶次方..分析:首先根据非负数的性质可求出a 的值,和2b 2﹣2b =6,进而可求出2b 2﹣4b ﹣a 的值. 解答:解:∵(a +6)2+=0,∴a +6=0,b 2﹣2b ﹣3=0, 解得,a =﹣6,b 2﹣2b =3, 可得2b 2﹣2b =6,则2b 2﹣4b ﹣a =6﹣(﹣6)=12, 故答案为12.点评:本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.15.如图7,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数8y x =(x >0)和ky x =(x >0)的图象交于P 、Q 两点,若S △POQ =14,则k 的值为__________.考点:反比例函数与一次函数的交点问题;反比例函数系数k的几何意义..分析:由于S△POQ=S△OMQ+S△OMP,根据反比例函数比例系数k的几何意义得到|k|+×|8|=14,然后结合函数y=的图象所在的象限解方程得到满足条件的k的值.解答:解:∵S△POQ=S△OMQ+S△OMP,∴|k|+×|8|=14,∴|k|=20,而k<0,∴k=﹣20.故答案为﹣20.点评:本题考查了反比例函数比例系数k的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.也考查了反比例函数与一次函数的交点问题.16.已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为_____________________.考点:抛物线与x轴的交点;二次函数的性质..专题:新定义.分析:先求出y=x2+2x+1和y=2x+2的交点C′的坐标为(1,4),再求出“梦之星”抛物线y=x2+2x+1的顶点A坐标(﹣1,0),接着利用点C和点C′关于x轴对称得到C(1,﹣4),则可设顶点式y=a(x﹣1)2﹣4,然后把A点坐标代入求出a的值即可得到原抛物线解析式.解答:解:∵y =x 2+2x +1=(x +1)2, ∴A 点坐标为(﹣1,0), 解方程组得或,∴点C ′的坐标为(1,4), ∵点C 和点C ′关于x 轴对称, ∴C (1,﹣4),设原抛物线解析式为y =a (x ﹣1)2﹣4, 把A (﹣1,0)代入得4a ﹣4=0,解得a =1, ∴原抛物线解析式为y =(x ﹣1)2﹣4=x 2﹣2x ﹣3. 故答案为y =x 2﹣2x ﹣3.点评:本题考查了二次函数与x 轴的交点:求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标,令y =0,即ax 2+bx +c =0,解关于x 的一元二次方程即可求得交点横坐标.△=b 2﹣4ac 决定抛物线与x 轴的交点个数,△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤。

相关文档
最新文档