高中数学竞赛考试大纲及必备辅导书汇总,尖子生请收好

合集下载

高中数学竞赛校本教材[全套](共30讲

高中数学竞赛校本教材[全套](共30讲

实用标准文案高中数学竞赛校本教材[ 全套 ]( 共 30 讲,含详细答案 )目录§1 数学方法选讲(1)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 §2 数学方法选讲(2)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11 §3 集合⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯22 §4 函数的性质⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯30 §5 二次函数 (1) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯41 §6 二次函数 (2) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯55 §7 指、对数函数 , 幂函数⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯63 §8 函数方程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯73§9 三角恒等式与三角不等式⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯76§10 向量与向量方法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯85§11 数列⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯95 §12 递推数列⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯102§13 数学归纳法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯105§14 不等式的证明⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯111§15 不等式的应用⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯122§16 排列,组合⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯130§17 二项式定理与多项式⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯134§18 直线和圆,圆锥曲线⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯143§19 立体图形,空间向量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯161§20 平面几何证明⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯173文档大全实用标准文案§21 平面几何名定理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯180 §22 几何变换⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯186 §23 抽屉原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯194 §24 容斥原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯205 §25 奇数偶数⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯214 §26 整除⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯222 §27 同余⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯230 §28 高斯函数⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯238 §29 覆盖⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯245 §29 涂色问题⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯256 §30 组合数学选讲⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯265§1 数学方法选讲(1)同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。

攻略高中数学联赛赛程、时间安排、25本数竞书单

攻略高中数学联赛赛程、时间安排、25本数竞书单

攻略⾼中数学联赛赛程、时间安排、25本数竞书单挤进清北等优质名校是众多⾼中⽣的梦想,有梦想是好的,但现实很残酷,这些⾼校招⽣名额有限!尤其在招⽣⽅式改⾰后,⾼考裸分被录取的可能性更⼩。

因此,通过学科竞赛拿奖牌获得降分优惠或直接被保送,成为许多考⽣的必然选择。

但你知道,学科竞赛应该如何备考才能拿到⾼含⾦量的奖牌吗?学科竞赛⽹(jingsai985)根据多年经验,总结出⼀份⾼含⾦量的数学竞赛备考秘籍。

我们从不轻易告诉外⼈,但今天很⾼兴与你分享,因为我们是⾃家⼈!(⼀)先看赛程数学预选赛(初赛)在各地市学校举⾏,评选出的奖项分为市⼀、市⼆、市三,考核优秀的学⽣晋级参加数学联赛。

数学联赛(⼀试、⼆试)全省在指定的⼀个或⼏个地⽅进⾏选拔考试,评选出的奖项分为省⼀(含省队)、省⼆、省三,考核优秀的学⽣晋级参加全国数学决赛,即冬令营(CMO)。

冬令营全国统⼀指定⼀个地⽅进⾏选拔考核,评选出的奖项分为国⼀(含集训队)、国⼆、国三,考核优秀的学⽣晋级参加国家集训队。

最终选出6名优秀选⼿代表中国参加IMO。

IMO全世界在指定的⼀个地⽅进⾏选拔考核,评选出国际⾦牌,国际银牌,国际铜牌。

(⼆)重点看时间安排和阶段备考内容⾼中学业较之前本来就繁重,还要挤出时间备战数竞,因此,进⾏科学规划显得尤为重要。

从初赛到国决⼤略可分为以下五个阶段:1、第⼀阶段:初三暑假到⾼⼀上学期⼤部分学⽣的竞赛之路是从初三毕业那个暑假开始的,虽然某些省份呈低龄化趋势,但并⾮主流。

这个阶段多数竞赛⽣学习必备知识,由于预选赛(初赛)和⼀试的内容均是⾼中知识,且初赛难度较⼩,所以,⽆需单独备考初赛,准备⼀试即可。

此阶段,你需要配合⽼师的课堂教学,以最短时间尽可能⾃学完成⾼考要求掌握的数学知识,同时要注意做题训练。

可以从数学53(五年⾼考三年模拟)【⽂末附详细书单】开始练习,若做起来⽐较顺⼿,就跳过直接刷浙⼤版《⾼中数学竞赛培优教程:⼀试》(第四版),偶尔选53重要题型练⼿感;若做起来有难度,还是要坚持先把53弄懂吃透,奠定⾼考基础。

高中数学竞赛书籍

高中数学竞赛书籍

高中数学竞赛书籍
高中数学竞赛是一项需要大量练习和理解的活动,为此需要一些优质的竞赛书籍作为辅助资料。

以下是一些推荐的高中数学竞赛书籍: 1. 《高中数学竞赛全书》
这本书是一本全面介绍高中数学竞赛知识的工具书,内容涵盖了数学竞赛的各个领域,包括代数、几何、概率与统计等。

书中配有大量的例题和试题,非常适合准备参加竞赛的学生使用。

2. 《高中数学竞赛辅导书》
这本书是一本全面介绍高中数学竞赛知识的辅导资料,内容涵盖了数学竞赛的各个领域,包括代数、几何、概率与统计等。

书中配有大量的例题和试题,并配有详细的讲解与解答,非常适合准备参加竞赛的学生使用。

3. 《高中数学竞赛题解汇编》
这本书是一本收集了大量高中数学竞赛试题的题解汇编,内容非常全面,包括代数、几何、概率与统计等多个领域。

书中题目难度各异,适合不同水平的竞赛学生学习。

4. 《高中数学竞赛例题精选》
这本书是一本精选了大量高中数学竞赛例题的参考书,内容涵盖了代数、几何、概率与统计等多个领域。

书中的例题难度适中,既有挑战性,又不失可操作性,提供了很好的练习机会。

总之,以上这些书籍都是非常优质的高中数学竞赛资料,可以帮助学生更好地理解和掌握数学竞赛知识,提高竞赛水平。

(完整word版)全国高中数学联赛竞赛大纲(修订稿)及全部定理内容

(完整word版)全国高中数学联赛竞赛大纲(修订稿)及全部定理内容

全国高中数学联赛竞赛大纲及全部定理内容一、平面几何1、数学竞赛大纲所确定的所有内容。

补充要求:面积和面积方法。

2、几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

3、几个重要的极值:到三角形三顶点距离之和最小的点--费马点。

到三角形三顶点距离的平方和最小的点--重心。

三角形内到三边距离之积最大的点--重心。

4、几何不等式。

5、简单的等周问题。

了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。

在周长一定的简单闭曲线的集合中,圆的面积最大。

在面积一定的n边形的集合中,正n边形的周长最小。

在面积一定的简单闭曲线的集合中,圆的周长最小。

6、几何中的运动:反射、平移、旋转。

7、复数方法、向量方法。

平面凸集、凸包及应用。

二、代数1、在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。

三倍角公式,三角形的一些简单的恒等式,三角不等式。

2、第二数学归纳法。

递归,一阶、二阶递归,特征方程法。

函数迭代,求n次迭代,简单的函数方程。

3、n个变元的平均不等式,柯西不等式,排序不等式及应用。

4、复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。

5、圆排列,有重复的排列与组合,简单的组合恒等式。

6、一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。

7、简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。

三、立体几何1、多面角,多面角的性质。

三面角、直三面角的基本性质。

2、正多面体,欧拉定理。

3、体积证法。

4、截面,会作截面、表面展开图。

四、平面解析几何1、直线的法线式,直线的极坐标方程,直线束及其应用。

2、二元一次不等式表示的区域。

3、三角形的面积公式。

4、圆锥曲线的切线和法线。

5、圆的幂和根轴。

五、其它抽屉原理。

容斤原理。

极端原理。

集合的划分。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

高中数学竞赛书籍排行

高中数学竞赛书籍排行

高中数学竞赛书籍排行
以下是一些高中数学竞赛的经典书籍,排名不分先后:
1. 《高中数学竞赛专题讲座》(共10本):这套书是数学竞赛的经典教材之一,包括了许多经典的数学竞赛题目和解题方法。

2. 《高中数学竞赛全解》:这本书是数学竞赛的必备参考书之一,包含了高中数学竞赛的所有知识点和经典题目,非常适合学生自学或复习。

3. 《高中数学竞赛真题解析》:这本书收录了大量的数学竞赛真题,并进行了详细的解析,是提高学生解题能力的很好参考书。

4. 《高中数学竞赛不等式选讲》:这本书主要介绍了高中数学竞赛中的不等式问题,包括了许多经典的不等式题目和解题方法。

5. 《高中数学竞赛数论与组合分册》:这本书是数学竞赛数论和组合部分的经典教材之一,包含了大量的经典题目和解题方法。

以上书籍都是高中数学竞赛的经典教材和参考书,对于提高学生的数学竞赛水平有很大帮助。

当然,每个人的学习情况不同,需要根据自己的实际情况选择适合自己的书籍。

高中数学资料参考书

高中数学资料参考书

高中数学资料参考书
以下是一些适合高中数学学习的参考书:
1. 《高中数学参考书》系列(人民教育出版社):这是一套专门为高中数学学习编写的参考书,包括代数、几何、函数等方面的内容。

2. 《高中数学新课标解读与素养培养》(人民邮电出版社):这本书内容涵盖了高中数学课程的各个知识点,并附有详细的解题思路和解析。

3. 《高中数学竞赛全解》(清华大学出版社):这本书主要针对高中数学竞赛的题型和考点进行了全面的解析和讲解,适合喜欢挑战自己的同学。

4. 《高中数学考点攻略》(北京大学出版社):这本书系统地总结了高中数学的重点考点,并提供了大量的例题和解析,帮助同学们更好地掌握知识。

5. 《高中数学解题全书》(人民教育出版社):这本书以解题为主线,围绕着高中数学中常见的难点问题展开讲解,并提供了解题技巧和思维方法。

以上参考书对于不同阶段的学习需求和水平有所不同,可以根据自己的具体情况选择合适的进行学习。

同时,还可以参考一些高中数学习题、试卷和真题进行练习,以及参加一些数学竞赛活动来提高自己的数学水平。

高中数学竞赛有哪些值得推荐的辅导书?从入门到高阶,数竞党必读!

高中数学竞赛有哪些值得推荐的辅导书?从入门到高阶,数竞党必读!

又到了新一轮竞赛学习,不少学生反映不知道买哪些参考书,今天就来给大家推荐一些书目,从入门、进阶到拔高,适合各个不同阶段,欢迎大家对号入座~一、入门1、《奥数教程》,华东师范大学出版社这套书按年级分为高一、高二、高三三套,每个年级包含教程、测试和学习手册三本, 是比较基础、入门级的竞赛教程 。

《奥数教程》从课本知识出发,由浅入深,逐步过渡到竞赛,内容涵盖了竞赛的全部考点和热点。

每本书包含基础篇和拔高篇,基础篇主要是一试相关内容,拔高篇是二试相关内容。

共30讲,每讲又分为“内容概述”、“例题精解”、“读一读”和“巩固训练”四个部分, 系统地梳理了数学竞赛知识,比较适合刚接触竞赛的学生使用。

《奥数教程-能力测试》是配套的练习用书,每讲配备了1个小时左右的练习量,确保学生更好地掌握知识。

《奥数教程-学习手册》详细解答了《奥数教程》中“巩固训练”,并对该年级的竞赛热点进行精讲,并配有真题用作练习。

2、《2018年全国高中数学联赛备考手册》,华东师范大学出版社这本书每年出版一本,集合了各个省市联赛预赛的试题及答案详解,预赛命题人员大多为各省市数学会成员,题型和难度一般和高联一试相当,可以在学完一遍一试后作为练习题使用。

二、进阶1、《数学奥林匹克小丛书》,华东师范大学出版社俗称“小蓝本”,这套书共14册,包括《集合》、《函数与函数方程》、《三角函数》、《平均值不等式与柯西不等式》、《不等式的解题方法与技巧》、《数列与数学归纳法》、《平面几何》、《复数与向量》、《几何不等式》、《数论》、《组合数学》、《图论》、《组合极值》、《数学竞赛中的解题方法与策略》等,可以说是竞赛生人手一套的“圣书”。

力图用各种方法介绍数学竞赛中的14个专题,书中有对基本知识、基本问题以及解决这些问题的一些典型方法的讲解,还有由基本问题派生出来的教学方法和应用,相对易懂。

2、《奥赛经典》,湖南师范大学出版社这套书分为《奥林匹克数学中的组合问题》、《奥林匹克数学中的几何问题》、《奥林匹克数学中的代数问题》、《奥林匹克数学中的数论问题》、《奥林匹克数学中的真题分析》五册。

自学数学竞赛书籍推荐

自学数学竞赛书籍推荐

自学数学竞赛书籍推荐
自学数学竞赛书籍推荐:
1、《高中数学竞赛全书》(第三版):由安徽教育出版社出版,作者刘子健、贾开明主编,以中学生数学竞赛考试的形式,将历届真题进行系统总结,同时对比分析不同数学竞赛的知识点、解题思路及解题技巧,有助于考生全面掌握数学竞赛知识,并掌握试题解题技巧。

2、《高中数学竞赛必备课程》:由清华大学出版社出版,著名数学竞赛专家、中国教育学会理事长杜祖军编写,是一本集中考试、省考、模拟考、赛场知识点、技巧及解题方法于一体的竞赛教材。

3、《高中数学竞赛宝典》:由中国青年出版社出版,作者李晓峰、王荣荣编写,以中学生参加省市级数学竞赛为主要内容,重点突出知识点、解题思路、套路技巧等,逐步引导考生树立正确的数学思维,提高数学竞赛水平。

4、《高中数学竞赛完全指南》:由上海科技出版社出版,著名数学竞赛专家、中国教育学会理事长郑贵新编写,全面梳理中学生数学竞赛考试的知识点、题型特点、解题思路、技巧及应用。

高中数学竞赛大纲的内容和知识点

高中数学竞赛大纲的内容和知识点

高中数学竞赛大纲应该掌握的内容和知识点1.集合(set)1.1集合的阶,集合之间的关系。

1.2集合的分划1.3子集,子集族1.4容斥原理2.函数(function)2.1函数的定义域、值域2.2函数的性质2.2.1单调性2.2.2奇偶性2.2.3周期性2.2.4凹凸性2.2.5连续性2.2.6可导性2.2.7有界性2.2.8收敛性2.3初等函数2.3.1一次、二次、三次函数2.3.2幂函数2.3.3双勾函数2.3.4指数、对数函数2.4函数的迭代2.5函数方程3.三角函数(trigonometric function)3.1三角函数图像与性质3.2三角函数运算3.3三角恒等式、不等式、最值3.4正弦、余弦定理3.5反三角函数3.6三角方程4.向量(vector)4.1向量的运算4.2向量的坐标表示,数量积5.数列(sequence)5.1数列通项公式求解5.1.1换元法5.1.2特征根法5.1.3不动点法,迭代法5.1.4数学归纳法,递归法6.不等式(inequality)6.1解不等式6.2重要不等式6.2.1均值不等式6.2.2柯西不等式6.2.3排序不等式6.2.4契比雪夫不等式6.2.5赫尔德不等式6.2.6权方和不等式6.2.7幂平均不等式6.2.8琴生不等式6.2.9 Schur不等式6.2.10嵌入不等式6.2.11卡尔松不等式6.3证明不等式的常用方法6.3.1利用重要不等式6.3.2调整法6.3.3归纳法6.3.4切线法6.3.5展开法6.3.6局部法6.3.7反证法6.3.8其他7.解析几何(analytic geometry)7.1直线与二次曲线方程7.2直线与二次曲线性质7.3参数方程7.4极坐标系8.立体几何(solid geometry)8.1空间中元素位置关系8.2空间中距离和角的计算8.3棱柱,棱锥,四面体性质8.4体积,表面积8.5球,球面8.6三面角8.7空间向量9.排列,组合,概率(permutations, combinatorics, probability)9.1排列组合的基本公式9.1.1加法、乘法原理9.1.2无重复的排列组合9.1.3可重复的排列组合9.1.4圆排列、项链排列9.1.5一类不定方程非负整数解的个数9.1.6错位排列数9.1.7 Fibonacci数9.1.8 Catalan数9.2计数方法9.2.1映射法9.2.2容斥原理9.2.3递推法9.2.4折线法9.2.5算两次法9.2.6母函数法9.3证明组合恒等式的方法9.3.1 Abel法9.3.2算子方法9.3.3组合模型法9.3.4归纳与递推方法9.3.5母函数法9.3.6组合互逆公式9.4二项式定理9.5概率9.5.1独立事件概率9.5.2互逆事件概率9.5.3条件概率9.5.4全概率公式,贝叶斯公式9.5.5现代概率,几何概率9.6数学期望10.极限,导数(limits, derivatives)10.1极限定义,求法10.2导数定义,求法10.3导数的应用10.3.1判断单调性10.3.2求最值10.3.3判断凹凸性10.4洛比达法则10.5偏导数11.复数(complex numbers)11.1复数概念及基本运算11.2复数的几个形式11.2.1复数的代数形式11.2.2复数的三角形式11.2.3复数的指数形式11.2.4复数的几何形式11.3复数的几何意义,复平面11.4复数与三角,复数与方程11.5单位根及应用12.平面几何(plane geometry)12.1几个重要的平面几何定理12.1.1梅勒劳斯定理12.1.2塞瓦定理12.1.3托勒密定理12.1.4西姆松定理12.1.5斯特瓦尔特定理12.1.6张角定理12.1.7欧拉定理12.1.8九点圆定理12.2圆幂,根轴12.3三角形的巧合点12.3.1内心12.3.2外心12.3.3重心12.3.4垂心12.3.5旁心12.3.6费马点12.4调和点列12.5圆内接调和四边形12.6几何变换12.6.1平移变换12.6.2旋转变换12.6.3位似变换12.6.4对称变换(反射变换)12.6.5反演变换12.6.6配极变换12.7几何不等式12.8平面几何常用方法12.8.1纯几何方法12.8.2三角法12.8.3解析法12.8.4复数法12.8.5向量法12.8.6面积法13.多项式(polynomials)13.1多项式恒等定理13.2多项式的根及应用13.2.1韦达定理13.2.2虚根成对原理13.3多项式的整除,互质13.4拉格朗日插值多项式13.5差分多项式13.6牛顿公式13.7单位根13.8不可约多项式,最简多项式14.数学归纳法(mathematical induction)14.1第一数学归纳法14.2第二数学归纳法14.3螺旋归纳法14.4跳跃归纳法14.5反向归纳法14.6最小数原理7.初等数论(elementary number theory)15.1整数,整除15.2同余15.3素数,合数15.4算术基本定理15.5费马小定理,欧拉定理15.6拉格朗日定理,威尔逊定理15.7裴蜀定理15.8平方数15.9中国剩余定理15.10高斯函数15.11指数,阶,原根15.12二次剩余理论15.12.1二次剩余定理及性质15.12.2 Legendre符号15.12.3 Gauss二次互反律15.13不定方程15.13.1不定方程解法15.13.1.1同余法15.13.1.2构造法15.13.1.3无穷递降法15.13.1.4反证法15.13.1.5不等式估计法15.13.1.6配方法,因式分解法15.13.2重要不定方程15.13.2.1一次不定方程(组)15.13.2.2勾股方程15.13.2.3 Pell方程15.14 p进制进位制,p进制表示16.组合问题(combinatorics)16.1组合计数问题(参见9.1,9.2)16.2组合恒等式,不等式(参见9.3)16.3存在性问题16.4组合极值问题16.5操作变换,对策问题16.6组合几何16.6.1凸包16.6.2覆盖16.6.3分割16.6.4整点16.7图论16.7.1图的定义,性质16.7.2简单图,连通图16.7.3完全图,树16.7.4二部图,k部图16.7.5托兰定理16.7.6染色与拉姆塞问题16.7.7欧拉与哈密顿问题16.7.8有向图,竞赛图16.8组合方法16.8.1映射法,对应法,枚举法16.8.2算两次法16.8.3递推法16.8.4抽屉原理16.8.5极端原理16.8.6容斥原理16.8.7平均值原理16.8.8介值原理16.8.9母函数法16.8.10染色方法16.8.11赋值法16.8.12不变量法16.8.13反证法16.8.14构造法16.8.15数学归纳法16.8.16调整法16.8.17最小数原理16.8.18组合计数法17.其他(others)(了解即可,不作要求)17.1微积分,泰勒展开17.2矩阵,行列式17.3空间解析几何17.4连分数17.5级数,p级数,调和级数,幂级数17.6其他1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。

高中数学竞赛讲义

高中数学竞赛讲义

若 C ≠ ∅ ,则1∈ C 或 2 ∈ C ,解得 m = 3.
综 所述, a = 2 或 a = 3 m = 3 或 − 2 2 < m < 2 2
4.计数原理的 用
例 4 集合 A,B,C 是 I={1,2,3,4,5,6,7,8,9,0}的子集, 1 若 A U B = I ,
求有序集合对 A,B 的个数 2 求 I 的非空真子集的个数
定理 1 集合的性质 对任意集合 A,B,C,有
1 A I (B U C) = ( A I B) U ( A I C); 2 A U (B I C) = ( A U B) I ( A U C)
3 C1 A U C1 B = C1 ( A I B); 4 C1 A I C1 B = C1 ( A U B).
综合除法 余式定理 因式 解 拆 添 配方 定系数法 对 式和 换对
式 整式
根式的恒等 形 恒等式的证明
3 方程和 等式
含 母系数的一元一次方程 一元 次方程的解法,一元 次方程根的 布 含绝对值
的一元一次方程 一元 次方程的解法 含 母系数的一元一次 等式的解法,一元 次
等式的解法 含绝对值的一元一次 等式 简单的多元方程组 简单的 定方程 组
法原理,子集共有 210 = 1024 个,非空真子集有 1022 个
5.配对方法
例 5 给定集合 I = {1,2,3,L, n} 的 k 个子集 A1 , A2 ,L, Ak ,满足任何 个子集的交集非 空,并且再添加 I 的任何一个 他子集 将 再 有 性质,求 k 的值
解 将 I 的子集作如 配对 个子集和它的补集 一对,共得 2n−1 对, 一对 能 在
4 函数
次函数在给定 间 的最值,简单 函数的最值 含 母系数的 次函数

高中数学竞赛考试大纲

高中数学竞赛考试大纲

高中数学竞赛大纲(修订稿)在“普及的基础上不断提高”的方针指引下,全国数学竞赛活动方兴未艾,特别是连续几年我国选手在国际数学奥林匹克中取得了可喜的成绩,使广大中小学师生和数学工作者为之振奋,热忱不断高涨,数学竞赛活动进入了一个新的阶段。

为了使全国数学竞赛活动持久、健康、逐步深入地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《数学竞赛大纲》以适应当前形势的需要。

本大纲是在国家教委制定的全日制中学“数学教学大纲”的精神和基础上制定的。

《教学大纲》在教学目的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性”。

具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能”,“要重视能力的培养......,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。

同时,要重视培养学生的独立思考和自学的能力”。

《教学大纲》中所列出的内容,是教学的要求,也是竞赛的最低要求。

在竞赛中对同样的知识内容的理解程度与灵活运用能力,特别是方法与技巧掌握的熟练程度,有更高的要求。

而“课堂教学为主,课外活动为辅”是必须遵循的原则。

因此,本大纲所列的课外讲授内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,这样才能加强基础,不断提高。

一试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。

二试1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。

补充要求:面积和面积方法。

几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

几个重要的极值:到三角形三顶点距离之和最小的点--费马点。

到三角形三顶点距离的平方和最小的点--重心。

数学竞赛经典书籍

数学竞赛经典书籍

数学竞赛经典书籍
数学竞赛是一项挑战性极高的活动,需要学生具备丰富的知识、灵敏的思维和深刻的洞察力。

在这个过程中,好的教材和辅导书籍可以起到事半功倍的效果,帮助学生更好地掌握竞赛所需要的知识和技巧。

以下是数学竞赛中的经典书籍,堪称是不可或缺的参考资料。

1. 《数学竞赛入门与提高》
这是一本适合初学者的入门指南,书中介绍了竞赛中常见的数学知识点,并配有大量的例题和解析,让读者更好地理解数学的本质和思维方式。

2. 《数学竞赛全套训练》
该书是作者根据多年的竞赛教学经验总结而成,覆盖了数学竞赛中的各个知识点,并附有详细的解答和解析。

读者可以通过大量的练习,巩固所学知识,提高自己的竞赛水平。

3. 《高中数学竞赛经典题解》
这本书主要针对高中生,介绍了数学竞赛中的常见难题和解题思路,对于提高学生的解题能力和思维能力有很大的帮助。

4. 《奥数经典》
这本书是一部奥数经典著作,被广泛认为是奥数竞赛的圣经。

书中涵盖了奥数竞赛的各种知识点,以及不同难度的例题和解答,适合不同层次的学生参考。

总之,数学竞赛需要大量的学习和锻炼,而好的教材和书籍可以
帮助学生更好地掌握竞赛所需的知识和技巧,提高他们在竞赛中的表现。

以上书籍都是数学竞赛中的经典著作,值得广大学生和家长参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学竞赛考试大纲及必备辅导书汇总,尖子生请收好!首先,强调一点:不是所有学生都可以学数学竞赛,要想学习数学竞赛必须同时具备以下条件:•高考数学可以轻松应对;•对数学竞赛有兴趣,自发选择学习数学竞赛;•具备自主学习能力;•高考涉及的其他学科不存在太大问题,或个人的竞赛前景远优于高考前景。

数学竞赛需要的时间和精力都是很大的,并且如果因为学习竞赛受挫而导致对数学产生负情绪是得不偿失的,因此,我从不提倡“全民竞赛”。

当然,如果你恰好符合以上的四个条件,那么你一定要学习竞赛。

为什么?因为学习数学竞赛的好处很多。

与其他学科竞赛一样,学习数学竞赛除了能在升入高校方面获得保送或降分的优惠外,还能培养学生的自主学习能力,这对学生的整个大学学习乃至今后的学术研究或是社会工作是尤为重要的。

当然,对于大部分学生来说,高校的吸引力是最大的。

而2016年新发布的高校自主招生政策中,其中的变化值得深思:•取消“校荐”,考生需自己报名;•“年级排名”不再是报名条件;•门槛抬高,审核更为严格;•报考专业一定要与特长匹配;•试点高校自主招生考核统一安排在高考结束之后、高考成绩公布前进行。

我们最需要关注的点有三个:① 由于校荐被取消,年级排名也被废除,原本校内成绩突出的学生很难走自招,而自招的报名人数会上升,竞争更加激烈;② 据了解,985高校自招的初审底线是竞赛拿到省二以上,而北清更是要求拿到省一,门槛的提高导致了28万申请自招的学生只有4万余人通过初审,8千余人获得资格,初审和复审的通过率均低于20%;③ 现在的自招考试要求不超过两科,考试的科目和专业是相匹配的,而绝大多数专业的考试科目都有数学,因此数学竞赛的比重是很高的。

总的来说,新的政策直接导致的是各高中年级排名较高的学生更难上清北(难以进入博雅领军,难以获得自招资格,裸考进清北的人更少),而间接导致的是更多的学生走上了竞赛这条道路。

因此,若你有足够的实力,精力和时间,那么竞赛将是你们的不二之选。

此外,数学竞赛学到一定深度后就会发现,数学竞赛不再是由知识结构和解题方法组成,而是对思维能力的培养和运用,而思维能力的价值是远超过数学本身的,这将会对学生以后对问题的思考与对事物的判断等产生不可估量的影响。

当然,这是后话。

说归说,高中数学竞赛指的究竟是什么?我想说的是,绝不仅仅是高联(全国高中数学联赛)这么简单。

下面,我就带着大家理一理高中阶段可能会遇到的竞赛。

1. 全国高中数学联赛全国高中数学联赛旨在选拔在数学方面有突出特长的同学,让他们进入全国知名高等学府,而且选拔成绩比较优异的同学进入更高级别的竞赛,直至国际数学奥林匹克(IMO)。

并且通过竞赛的方式,培养中学生对于数学的兴趣,让学生们爱好数学,学习数学,激发学生们的钻研精神,独立思考精神以及合作精神。

2.中国数学奥林匹克(CMO)CMO考试完全模拟IMO进行,每天3道题,限四个半小时完成。

每题21分(为IMO试题的3倍,为符合中国人的认知习惯),6个题满分为126分。

颁奖与IMO类似,设立一、二、三等奖,分数最高的约前60名选手将组成参加当年国际数学奥林匹克(International Mathematical Olympiad,简称IMO)的中国国家集训队。

3.国际数学奥林匹克(IMO)国际数学奥林匹克(International Mathematical Olympiad,简称IMO)是世界上规模和影响最大的中学生数学学科竞赛活动。

正如专家们指出:IMO的重大意义之一是促进创造性的思维训练,对于科学技术迅速发展的今天,这种训练尤为重要。

数学不仅要教会学生运算技巧,更重要的是培养学生有严密的思维逻辑,有灵活的分析和解决问题的方法。

根据我的感觉,如果高考的数学难度有两星,那么高联的一试难度大概有三颗星,二试难度大概有四颗星;而CMO和IMO的难度大概在五颗星左右。

因此,参加高中竞赛的确能够凸显在数学方面的能力,从而获得各大高校的高度关注。

那么问题来了,面对数学竞赛,我们应该如何学习?首先是全国数学联赛一试,此模块立足于高考又高于高考,题目难时间短,要想攻克此模块需在巩固高考基础的前提下多做难题并分析总结,辅之以足够的模拟训练。

而之后我要详谈的是全国联赛二试以及CMO、IMO的玩法。

这里我着重强调四点:•思维启迪数学竞赛与高考数学的差异不只是在命题大纲上,更表现在思维方式上。

如果说一个在数学方面不是明显太弱的学生,可以通过大量的难题训练来让自己的高考数学成绩提高的话,那么在数学竞赛上这是完全行不通的。

从高考数学到竞赛数学,整个思维方式和学习方法的转变,如果没有一位有能力的教练的帮助,必然事倍功半。

很多竞赛高手在后期的能力都是超越当初的入门教练的,但是教练在入门时提供的如何思考、分析、解题和总结的方法却尤为重要。

•专题学习与思维养成这部分一共分为代数、平面几何、数论、组合四个模块,学生应当对四块作专题学习,并在学习过程中熟悉并运用竞赛思维。

整个学习过程最后可以有教练引导,但学生的自主学习意愿与自主学习能力尤为重要。

•专题分析与训练竞赛中有很多重要的题型或是模型最好是由教练来点拨,辅之以足够的训练可以收获良好的效果。

•赛前模拟赛前模拟的意义不言自明。

以上四点,主要针对的是备考阶段。

而关于如何学习数学竞赛,有什么不同的规划?我根据不同的学生情况,给出了3种不同的方案:① 初三开始学习高中竞赛如果孩子学过初中竞赛,并且没有太多中考压力,建议在初三开始学习高中内容(推荐的自学教材为《奥数教程》)。

这样的话,在高一刚开学就可以参加一次高联,情况好的话可拿下一试和二试的几何与组合。

接下来高一高二两年重点学习二试内容,初期是《奥林匹克小丛书》(小蓝本),往后可以是《奥赛经典》、《命题人讲座》等,并在两个考前的暑假做些赛前模拟。

② 高一开始学习高中竞赛如果你是从高一开始正式学习高中竞赛,并且定位是省一以上,那么你可能需要把比较多的精力在竞赛上。

首先在高一一年里,你必须在一试的难度上学完高中内容,并且对二试有一定的涉及,自学要求为《奥数教程》和《奥林匹克小丛书》(能力过强者可跳过《奥数教程》),然后第二年再进行更强的学习,攻克《命题人讲座》等。

③ 高二开始学习高中竞赛如果你是从高二开始正式学竞赛,那么前提是你必须已经具备比较强的一试功底,然后攻克《奥林匹克小丛书》和《命题人讲座》。

并且一般来说由于竞争对手们过于强大,你的定位一般是省一和自招。

(当然也不绝对,笔者当年就是从高二开始学的,通过努力,冲进国集也是有可能的)。

正所谓“春暖花开谈恋爱,不如一心一意搞竞赛”,学竞赛注定是一个孤独而有趣的过程。

高考党更多是出于外界的设定如选择了高考,但竞赛党一定是因为自己的兴趣而选择了竞赛。

多年之后,你可能会忘了竞赛题该怎么去解,也可能会忘了什么是柯西不等式或者费马小定理,但是你不会忘记你在解题过程中学会的这种思维方式和习惯,更不会忘记自己曾经在一个十六七岁的年纪,就为了某个自己喜欢的东西而奋不顾身追寻的这一腔热血。

以上正是学习数学竞赛的四个境界。

2006全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1、平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2、代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式、棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n 次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*。

3、初等数论同余,欧几里得算法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4、组合问题圆排列,有重复元素的排列和组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有 * 号的内容加试中暂不考,但在冬令营中可能考。

01高中数学学科竞赛1.全国高中数学联赛(全国高中数学联合竞赛)()2.中国数学奥林匹克CMO(全国中学生数学冬令营)()3.国际数学奥林匹克IMO(/)4.中国女子数学奥林匹克CGMO(/CGMO2013/Defa ult.aspx)5.丘成桐中学数学奖(丘奖)(/index-c.php)6.欧洲女子数学奥林匹克EGMO(/)7.全国高中数学图形计算器应用能力竞赛8.中国西部数学奥林匹克CWMO9.中国东南地区数学奥林匹克10.北方数学奥林匹克邀请赛2高中物理学科竞赛1.全国中学生物理竞赛CPhO()2.国际物理学奥林匹克IPhO(.tw/)3.亚洲物理学奥林匹克竞赛APHO(.tw/)4.全国高中应用物理知识竞赛5.北京市高中力学竞赛6.丘成桐中学生物理竞赛3高中化学学科竞赛1.全国高中学生化学竞赛CChO()2.国际奥林匹克化学竞赛ICHO(http://www.icho.sk/)4高中生物学科竞赛1.全国中学生生物学奥林匹克学科竞赛CBO()2.全国中学生生物学联赛()3.国际生物学奥林匹克竞赛IBO(/)4.全国青少年生物和环境科学实践活动5高中信息学科竞赛1.全国青少年信息学奥林匹克联赛NOIP()2.全国青少年信息学奥林匹克竞赛NOI()3.全国青少年信息学奥林匹克竞赛冬令营()4.亚洲与太平洋地区信息学奥赛APIO(/)5.IOI2013中国队选拔赛(CTSC)()6.国际信息学奥林匹克竞IOI(/index.shtml)6高中英语学科竞赛1.全国创新英语大赛(/)2.全国中学生英语能力竞赛(/)3.“21世纪杯”全国中小学生英语演讲比赛总决赛(/)4.中央电视台“英语风采大赛”全国决赛(高中组)(/)7高中语文学科&作文竞赛1.全国中学生科普作文大赛()2.全国新概念作文大赛(/portal.php)3.全国中小学生创新作文大赛(/)4.“语文报杯”全国中学生作文大赛(/)5.武汉国际中小学生楚才作文竞赛(/)6.“叶圣陶杯”全国中学生新作文大赛7.“高考”杯(华东地区)创新读写大赛8.复旦大学“博雅杯”人文知识大奖赛()8科技类竞赛1.全国青少年科技创新大赛(/)2.“明天小小科学家”奖励活动(/index.aspx)3.全国中小学电脑制作活动(/)4.国际科学与工程大奖赛Intel ISEF(/isef/)5.南京航空航天大学“飞天杯”中学生科技创新竞赛6.“未来杯”全国中学生创意设计竞赛7.全国青少年航空航天模型锦标赛9机器人竞赛1.中国教育机器人大赛(/index.html)2.中国青少年机器人竞赛(/)3.全国机器人大赛(/)4.国际奥林匹克机器人大赛(WRO)(/)5.中国水中机器人大赛(/index.htm)10综合类竞赛1.全国中学生微创新大赛(/)2.全国中学生基础学科拔尖学生创新能力邀请赛()3.国际环境科研项目奥林匹克竞赛4.头脑创新思维竞赛(DI)5.全国中学生基础学科创新能力大赛6.同济大学中学生结构设计邀请赛。

相关文档
最新文档