人教版七年级数学一元一次方程教案
初中七年级上册数学《解一元一次方程》教案优质优秀10篇

初中七年级上册数学《解一元一次方程》教案优质优秀10篇初中七年级上册数学《解一元一次方程》教案优质篇一一、学生起点分析学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。
符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。
学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。
同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。
学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。
二、教学任务分析对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。
为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。
教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。
本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。
教学方法是“引导分类归纳”。
本课时的教学目标如下:1.经历探索有理数加法法则的过程,理解有理数的加法法则;2.能熟练进行整数加法运算;3.培养学生的数学交流和归纳猜想的能力;4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。
2024年人教版七年级上册教学设计 第五章 一元一次方程第五章 一元一次方程

一、单元学习主题本单元是“数与代数”领域“方程与不等式”主题中的“一元一次方程”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段数与代数是数学知识体系的基础之一,是学生认知数量关系、探索数学规律、建立数学模型的基石,可以帮助学生从数量的角度清晰准确地认识、理解和表达现实世界.数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.方程与不等式的教学应当让学生经历对现实问题中量的分析,借助用字母表达的未知数,建立两个量之间关系的过程,知道方程或不等式是现实问题中含有未知数的等量关系或不等关系的数学表达,引导学生关注既含有已知数,又含有未知数的方程,感悟用字母表示数的意义,体会算术与代数的差异.在教学过程中,要关注数学知识与实际的结合,让学生在实际背景中理解数量关系和变化规律;经历从实际问题中建立数学模型、求解模型、验证反思的过程,形成模型观念;要关注基于代数的逻辑推理,能在比较复杂的情境中,提升学生发现问题、提出问题、分析问题和解决问题的能力,以及有逻辑地表达与交流的能力.2.本单元教学内容分析人教版教材七年级上册第五章“一元一次方程”,本章包括三个小节:5.1方程;5.2解一元一次方程;5.3实际问题与一元一次方程.“方程与不等式”是义务教育阶段数学课程中数与代数领域的一个重要内容,它揭示了数学中最基本的数量关系(相等关系和不等关系),是一类应用广泛的数学工具.从数学学科本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展;从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础;从应用数学的角度看,方程是一个既方便又强大的数学工具,它能够有效地刻画现实世界中的数量关系,将实际问题转化为数学模型加以解决.本单元主要内容包括:一元一次方程及其相关概念、一元一次方程的解法和利用一元一次方程解决实际问题.其中,以方程为工具分析问题、解决问题,即根据问题中的相等关系建立方程模型是本单元的重点之一,同时也是主要难点.分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于本单元的主线.对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的,它们在本单元前两节中占重要地位.解方程中蕴含的“化归思想”和列方程中蕴含的“数学建模思想”,是本单元中包含的主要数学思想,对于它们的体悟与内化,不仅对学生今后研究问题、解决问题以及终身的发展非常有益,而且也是深入贯彻实施《标准2022》的素养理念的渠道,与提高学生自身的数学素养有非常密切且直接的关系,更是促进学生思考、激发学生思维探究、教会学生学习方法、挖掘学生的学习潜力、有效提高初中数学教学质量和学生学业质量的重要保障.三、单元学情分析本单元内容是人教版教材数学七年级上册第五章一元一次方程,从学生的认知基础上看,学生在前面学段中已经学过有关于简单方程的内容,对方程有了初步的认识,会用方程表示简单情境中的数量关系,会解简单的方程,同时通过对整式的学习,学生能够进行合并同类项,去括号等整式的加减运算,即对方程的认识已经历了入门阶段,又具备了一定的基础.这些基本的、朴素的认识为进一步学习方程奠定了基础.本单元的内容是在前面对方程学习的基础之上的进一步发展,是更系统、更深入、更复杂的讨论,更强调数学思想、数学模型的渗透,结合七年级学生的思维习惯,他们虽然已经具备了一定的学习能力,但仍处于感性认识向理性认识过渡的时期,抽象思维能力还有待提高,因此教学中对问题情境的选取要符合学生的认知水平,在学生的最近发展区创设情境,给他们创造自主学习、合作探究的机会,让学生在主动参与中体验到探索成功的喜悦,在经历数学知识的形成过程中逐步体会、感悟和理解这些数学内容的内涵.四、单元学习目标1.经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,通过了解一元一次方程及其相关概念,完成从算式数学到方程式数学的进步,从而发展学生的抽象能力,培养学生的模型意识.2.掌握等式的性质,能利用它们探究一元一次方程的解法,进一步夯实学生的理论基础,培养学生的应用意识.3.了解解方程的基本目标,理解并掌握解一元一次方程的一般步骤和解法,培养学生的运算能力,进一步体会解法中蕴含的化归思想.4.能够通过“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的相等关系”来体会数学建模的思想,培养学生的模型观念.5.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决实际问题的基本过程,感受数学的应用价值,提高学生分析问题、解决问题的能力.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
2024一元一次方程教案人教版数学七年级上册教案

2024一元一次方程教案人教版数学七年级上册教案一、教学目标1.理解一元一次方程的概念,掌握一元一次方程的解法。
2.能够运用一元一次方程解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
二、教学重难点重点:一元一次方程的解法。
难点:实际问题中的一元一次方程的应用。
三、教学准备1.教学课件2.实物投影仪3.小组讨论材料四、教学过程(一)导入新课1.情景引入:同学们,你们在生活中有没有遇到过这样的问题,比如:一个物品的价格是多少?一个物品的重量是多少?这些问题都可以通过一元一次方程来解决。
2.提问:同学们,你们知道什么是一元一次方程吗?(二)探究新知1.讲解一元一次方程的定义(1)引导学生观察一元一次方程的一般形式:ax+b=0(a、b是常数,a≠0)。
(2)讲解一元一次方程的解法:将方程两边同时加上或减去一个常数,使得方程的左边变为未知数的系数,右边变为常数。
2.讲解一元一次方程的解法(1)教师示范:解方程2x6=0。
(2)引导学生模仿:解方程3x+4=7。
(3)学生独立完成:解方程5x9=2。
3.小组讨论:如何将实际问题转化为方程?(1)引导学生观察实际问题,找出未知数和等量关系。
(2)小组讨论,给出解决方案。
4.练习:解下列方程(1)2x5=3(2)3x+4=11(3)4x7=5(4)5x+2=0(2)教师点评,强调注意事项。
(三)巩固提高1.小组讨论:如何运用一元一次方程解决实际问题?2.学生展示:展示解题过程,讲解思路。
3.练习:解决实际问题(1)一个物品的价格是50元,如果降价x元后,售价为45元,求x的值。
(2)一个水果摊上的苹果每斤5元,小明买了3斤,花费了y元,求y的值。
(3)一个长方形的长是宽的2倍,如果宽为x厘米,求长方形的长。
(四)课堂小结五、课后作业1.解下列方程(1)3x4=7(2)4x+5=9(3)5x3=2(4)2x+7=02.解决实际问题(1)一辆汽车行驶了x小时,平均速度为60千米/小时,求行驶的距离。
人教版七年级数学3.2.1解一元一次方程-合并同类项解一元一次方程教案

3.通过实例分析,让学生理解合并同类项解一元一次方程的原理,并能熟练运用此方法解决实际问题。
4.掌握一元一次方程的标准化形式,即ax+b=0(a≠0)。
本节课将结合教材内容,以实用性为导向,旨在让学生掌握合并同类项解一元一次方程的方法,并能够灵活运用。
人教版七年级数学3.2.1解一元一次方程-合并同类项解一元一次方程教案
一、教学内容
本节课依据人教版七年级数学上册第三章《一元一次方程》中的3.2.1节“解一元一次方程-合并同类项解一元一次方程”进行设计。教学内容主要包括以下几部分:
1.掌握合并同类项法则,能够将含有一元一次方程的式子中的同类项进行合并。
二、核心素养目标
本节课的核心素养目标主要包括以下几方面:
1.培养学生的逻辑思维能力,使其能够运用合并同类项法则对一元一次方程进行合理变形,从而解决问题。
2.培养学生的数学运算能力,提高解题速度和准确性,熟练掌握移项、合并同类项等基本操作。
3.培养学生的分析问题和解决问题的能力,通过实际问题的引入和解决,让学生体会数学知识在实际生活中的应用。
4.培养学生的团队合作意识,通过小组讨论和交流,提高学生的沟通能力,增强合作解决问题的能力。
5.培养学生的创新意识,鼓励学生在解题过程中尝试不同的方法和思路,提高思维的灵活性。
三、教学难点与重点
1.教学重点
-理解并掌握合并同类项法则,能够将一元一次方程中的同类项进行有效合并。
-学会运用合并同类项法则解一元一次方程,包括移项、合并同类项等步骤。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解合并同类项的基本概念。合并同类项是指将含有相同字母和相同指数的项进行相加或相减。它是解一元一次方程的重要步骤,可以帮助我们简化方程,便于求解。
5.2 解一元一次方程教案-七年级上册数学人教版

第1课时利用合并同类项解一元一次方程课时目标1.经历运用方程解决实际问题的过程,让学生体会方程是刻画现实世界的有效数学模型,培养学生的模型思想.2.通过使学生经历利用合并同类项解一元一次方程的过程,体会合并同类项这一步骤的合理性和必然性,提高学生的运算能力.3.让学生经历分析实际问题中的已知数与未知数之间的数量关系,进而列出方程的过程,积累数学学习的经验,增强分析问题、解决问题的能力.学习重点利用合并同类项解一元一次方程.学习难点探索并发现实际问题中的相等关系,列出方程.课时活动设计情境引入,其和等在一卷古埃及草卷中,记载着这样一个数学问题“它的全部与它的118于19.”你能求出这个问题中的“它”吗?学生尝试回答.设计意图:利用古代的数学问题引入本课,让学生了解数学文化的悠久历史,拓展学生的数学视野,激发学生的数学学习热情,为本节课的学习提供厚重的数学根基,支撑学生学习数学课程的信念.探究新知问题:某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍.前年这所学校购买了多少台计算机?学生先独立思考解答,然后小组交流,最后选派代表板演展示,教师巡视指导.学生探究:设前年购买计算机x台,则去年购买计算机2x台,今年购买计算机4x台.追问1:问题中的相等关系是什么,可以怎样列方程?解:前年购买量+去年购买量+今年购买量=140.列方程,得x+2x+4x=140.追问2:这个方程怎么解呢?我们知道,解方程的最终结果是要化成x=m的形式,为此可以做怎样的变形?解:把左边含有x的项合并同类项,可得7x=140.系数化为1,得x=20.所以前年这所学校购买了20台计算机.教师总结:本题中蕴含着一个基本的相等关系:各部分量的和=总量.思考:上面解方程中“合并同类项”起了什么作用?解:它把含未知数的项合并为一项,从而向x=m的形式迈进了一步,起到了化简的作用.归纳:解方程就是要使方程不断向x=m的形式转化,而合并同类项是一种恒等变形,它使方程变得简单,更接近x=m的形式.设计意图:借助贴近学生生活的实际问题,利用方程的模型表示出问题中的相等关系,为“合并同类项”解方程提供了现实原型.通过解方程的过程,让学生思考“合并同类项”这一步骤的作用,这样的深入思考、体会,会使学生更加认识到“合并同类项”这一步骤的合理性.典例精讲例1解下列方程:(1)2x-5x=6-8;(2)7x-2.5x+3x-1.5x=-15×4-6×3.2x=-2.解:(1)合并同类项,得-12系数化为1,得x=4.(2)合并同类项,得6x=-78.系数化为1,得x=-13.例2有一列数1,-3,9,-27,81,-243,…,其中第n个数是(-3)n-1(n>1),如果这列数中某三个相邻数的和是-1 701,那么这三个数各是多少?分析:从符号和绝对值两方面观察,可以发现这列数的排列规律,后面的数是它前面的数与-3的乘积.解:设所求三个数中第1个数是x,则后两个数分别是-3x,9x.由三个数的和是-1 701,得x-3x+9x=-1 701.合并同类项,得7x=-1 701.系数化为1,得x=-243.所以-3x=729,9x=-2 187.答:这三个数是-243,729,-2 187.设计意图:通过例题,进一步展现和巩固利用合并同类项解方程的变形步骤,通过规范书写解方程的过程,提高学生解方程的规范性.巩固训练1.方程2x+x=-6的解是(D)A.x=0B.x=1C.x=2D.x=-22.对于方程8x+6x-10x=8,合并同类项正确的是(B)A.3x=8B.4x=8C.-4x=8D.2x=83.解下列方程:(1)6x-5x=3;(2)-x+4x=10-1;(3)3x2+7x2=10;(4)5y-7y+12y=12+5-2.解:(1)合并同类项,得x=3.(2)合并同类项,得3x=9.系数化为1,得x=3.(3)合并同类项,得5x=10.系数化为1,得x=2.(4)合并同类项,得10y=15.系数化为1,得y=32.设计意图:通过训练,及时巩固新知识,加深学生对化归思想的理解.课堂小结1.本节课你学到了什么知识?2.你知道合并同类项在解方程中起到了什么作用吗?3.用方程来解决实际问题的关键是什么?设计意图:通过课堂小结的形式,让学生回顾知识点,形成知识体系,有利于学生养成回顾梳理知识的习惯,让学生在对课堂所学有系统认知的基础上,深化对知识的理解程度.课堂8分钟.1.教材第121页练习第1,2题,第130页习题5.2第1题(1)(2),6,9题.2.作业.第1课时利用合并同类项解一元一次方程1.一元一次方程的解法:(1)合并同类项——分配律(2)系数化成1——等式的性质22.例题讲解.教学反思第2课时利用移项解一元一次方程课时目标1.能够根据实际问题列出一元一次方程,进一步体会方程模型的作用及应用价值,培养学生的模型意识.2.通过经历“移项”这一解方程步骤的得出过程,掌握“ax+b=cx+d”型方程的解法,培养学生的化归思想,提高学生的运算能力.3.通过对实际问题的解决,增强学生分析问题、解决问题、阅读理解、抽象概括的能力,培养学生的应用意识.学习重点利用移项解一元一次方程.学习难点分析实际问题中的相等关系,列出方程.课时活动设计情境引入问题:把一批图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则缺25本.这个班有多少名学生?学生审题之后,教师提出问题:(1)题中含有怎样的相等关系?(2)应怎样设未知数,如何根据相等关系列出方程?学生发表见解后,教师引导学生回顾列方程解决实际问题的基本思路.学生自主分析相等关系,师生共同确定用含x的代数式表示相关的数量.本题中除班级人数x外,这批书的总数是一个定值,它可以有两种表示方法:每人分3本,共分出3x本,加上剩余的20本,这批书共有(3x+20)本;每人分4本,共分出4x本,减去缺的25本,这批书共有(4x-25)本.明确表示这批书总数的两个代数式相等,从而列方程,得3x+20=4x-25.设计意图:以学生身边熟悉的实际问题展开讨论,营造一种轻松的学习氛围,激发学生继续学习的兴趣,根据学生情况,逐步放手,培养学生独立解决问题的能力.探究新知问题:(1)方程3x+20=4x-25与前面学过的一元一次方程在结构上有什么不同?(2)怎样才能将它转化为x=m(常数)的形式呢?依据是什么?教师展开问题,学生独立思考、探索,小组讨论.解:(1)方程3x+20=4x-25的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25),而上一节课中的方程中含x的项在等号的一侧,常数项在等号的另一侧.(2)为了使方程的右边没有含x的项,等号两边减4x;为了使左边没有常数项,等号两边减20.利用等式的性质1,得3x-4x=-25-20.化简,得-x=-45.利用等式的性质2,得x=45.教师引导学生采用下面框图的形式来表示这个过程:在此,教师要及时归纳得出移项的定义:像上面那样把等式一边的某项变号后移到另一边,叫作移项.移项需要满足两个条件:(1)从方程的一边移到另一边;(2)移项要改变符号.如解方程3x+20=4x-25时,要移的项是+20(由等号左边移到右边)和4x(由等号右边移到左边),不要忽略符号,要注意变号.思考:以上解方程中“移项”起了什么作用?学生思考,小组讨论并派代表回答,师生共同整理.总结:通过移项,可以简化方程,使含未知数的项与常数项分别位于方程左、右两边,使方程更接近于x=m的形式.设计意图:设置上述一系列问题,自然地引出“移项”这种变形,在教学中要让学生积极观察、分析、思考、探究,使学生认识到:“移项”在解方程中的必要性,而说明“移项要变号”的道理,体现移项法则的合理性;结合解方程的过程,让学生体会化归的数学思想.典例精讲例1解下列方程:x+1.(1)3x+7=32-2x;(2)x-3=32解:(1)移项,得3x+2x=32-7.合并同类项,得5x=25.系数化为1,得x=5.x=1+3.(2)移项,得x-32x=4.合并同类项,得-12系数化为1,得x=-8.例2若干辆汽车装运一批货物,如果每辆汽车装4吨,则这批货物有2吨不能运走;如果每辆汽车装5吨,则装完这批货物后还可以装其他货物1吨,问这批货物共有多少吨?汽车共有多少辆?解:设有x辆汽车.根据题意,得4x+2=5x-1.移项,得4x-5x=-1-2.合并同类项,得-x=-3.系数化为1,得x=3.所以4x+2=4×3+2=14(吨).答:这批货物共有14吨,汽车共有3辆.设计意图:设置这两个问题,向学生进一步展现利用移项、合并同类项等步骤解方程的过程,规范学生的书写步骤,从中渗透算法程序化的思想;通过列方程解决实际问题,让学生明确分析清问题中的相等关系是列方程解实际问题的前提,培养学生的读题、审题能力.巩固训练1.下列移项正确的是(C)A.由2+x=8,得到x=8+2B.由5x=-8+x,得到5x+x=-8C.由4x=2x+1,得到4x-2x=1D.由5x-3=0,得到5x=-32.对方程7x=6+4x进行移项,得7x-4x=6.合并同类项,得3x=6.系数化为1,得x=2.3.解下列方程:(1)4-35x=7;(2)4x-3=5x-4;(3)3x+4=2x+1-3x.解:(1)移项,得-35x=7-4.合并同类项,得-35x=3.系数化为1,得x=-5.(2)移项,得4x-5x=-4+3.合并同类项,得-x=-1.系数化为1,得x=1.(3)移项,得3x-2x+3x=1-4.合并同类项,得4x=-3.系数化为1,得x=-34.4.将一堆糖果分给幼儿园某班的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗,这个班共有多少名小朋友?解:设这个班共有x名小朋友.根据题意,得2x+8=3x-12.解得x=20.答:这个班共有20名小朋友.设计意图:通过课堂训练,及时巩固所学知识,加深学生对解方程步骤和化归思想的理解.课堂小结1.本节课你学到了什么知识?2.你知道移项在解方程中起到了什么作用吗?3.用方程来解决实际问题的关键是什么?设计意图:通过课堂小结的形式,回顾知识点形成知识体系,养成回顾梳理知识的习惯,让学生对课堂所学有系统认知的基础上,深化学生对知识的理解程度.课堂8分钟.1.教材第124页练习第1,2题,第130页习题5.2第1题(3)(4),第4题(1)(2),8题.2.作业.第2课时利用移项解一元一次方程1.移项的概念:把等式一边的某项变号后移到另一边,叫作移项.2.移项的作用:使含未知数的项与常数项分别位于方程左、右两边,使方程更接近于x=m的形式.3.移项法则:移项要变号.4.解一元一次方程的步骤:移项、合并同类项、系数化成1.教学反思第3课时利用移项和合并同类项解一元一次方程的实际问题课时目标1.能够根据实际问题列出一元一次方程,进一步体会方程模型的作用及应用价值,培养学生的模型意识.2.通过使学生经历观察、分析、探究、发现实际问题中相等关系的过程,感受方程思想的现实体现,培养学生的建模意识.3.通过探究实际问题与一元一次方程的关系,感受数学的应用价值,提高学生分析问题、解决问题的能力,培养学生的应用意识.学习重点建立一元一次方程解决实际问题.学习难点会将实际问题转化为数学问题,通过列方程解决实际问题.课时活动设计情境引入从前有一只狡猾的狐狸,它平时总喜欢捉弄小动物.有一天它遇见了老虎,狐狸说:“我发现2和5是可以一样大的,我这里有一个方程5x-2=2x-2,等号两边同时加上2,得5x-2+2=2x-2+2,即5x=2x.等式两边同时除以x,得5=2.”老虎瞪大了眼睛,听傻了.请你们想一想,狐狸说得对吗?为什么?教师展开问题,学生独立思考,小组讨论,并派学生代表回答,教师巡视指导.解:对于方程5x-2=2x-2,根据等式的性质1,等号两边同时加上2,得5x-2+2=2x-2+2,即5x=2x.这一步是对的.对于5x=2x.等式两边同时除以x,得5=2.这一步是错误的.追问:为什么?你的理由是什么?解:根据等式的性质2,等式两边同除以一个不为0的数,结果仍相等.而x有可能为0,所以这样做是错误的.对于5x=2x.应根据等式的性质1,移项,得5x-2x=0.合并同类项,得3x=0.系数化为1,得x=0.设计意图:通过这个有趣的小故事来复习我们已经学过的等式的性质和利用移项、合并同类项解一元一次方程的知识,既激发了学生学习数学的兴趣,又加深了对所学知识的理解,同时为新课的学习奠定了基础.探究新知问题1:一批商界人士在露天茶座聚会,他们先是两人一桌,服务员给每桌送上一瓶果汁;后来他们又改为三人一桌,服务员又给每桌送上一瓶葡萄酒;不久他们改坐成四人一桌,服务员再给每桌送上一瓶矿泉水.此外他们每人都要了一瓶可口可乐.聚会结束时,服务员共收拾了50个空瓶.如果没人带走瓶子,那么这次聚会共有几人参加?追问:这个问题中的相等关系如何寻找?学生先独立思考,然后小组讨论,选派学生代表板演展示,教师巡视指导.分析:要求聚会有几人参加,就要先设出未知数,再根据题意列出等量关系.设共有x人参加,由题意,得一共要了x2瓶果汁,x3瓶葡萄酒,x4瓶矿泉水,x瓶可口可乐,即空瓶子数为各类饮料瓶子数之和,由这个等量关系,列出方程求解.解:设这次聚会共有x人参加.由题意,得x+x2+x3+x4=50.解得x=24.答:这次聚会共有24人参加.问题2:某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200 t;如用新工艺,则废水排量比环保限制的最大量少100 t.新、旧工艺的废水排量之比为2 5,采用两种工艺的废水排量各是多少吨?学生先独立思考,然后小组讨论,选派学生代表板演展示,教师巡视指导.分析:本题中涉及两个量的比,设未知数时应利用这种比的关系使要求的量的形式尽可能简单易算,因此根据新、旧工艺的废水排量之比为2 5,可设它们分别为2x t和5x t,再根据它们与环保限制的最大量之间的关系列方程.学生思考后发表自己的见解,然后师生结合问题引导学生:1.如何设未知数?学生回答:因为新、旧工艺的废水排量之比为2 5,所以可设它们分别为2x t 和5x t.2.环保限制的最大量是一个定值,如何表示?学生回答:它有两种表示方法:(1)旧工艺中:环保限制的最大量=旧工艺的废水排量-200 t;(2)新工艺中:环保限制的最大量=新工艺的废水排量+100 t.所以可列方程5x-200=2x+100求解.解:若设新工艺的废水排量为2x t,则旧工艺的废水排量为5x t.由题意,得5x-200=2x+100.移项,得5x-2x=100+200.合并同类项,得3x=300.系数化为1,得x=100.所以2x=200,5x=500.答:新工艺的废水排量为200 t,旧工艺的废水排量为500 t.追问:方程中的x是所求的量吗?注意:求出的x的值并不是要求的量的表达式,要进一步代入相应的表达式2x和5x,才能求出问题中要求的所有量.设计意图:设置贴近实际生活的问题情境,让学生经历利用方程来解决实际问题的过程,感受数学的应用价值,体会方程模型是解决实际问题最常见,也是最有效的工具.典例精讲例七年级(2)班男生、女生人数之比为5 3,后来又转来了14名女生,此时男生人数正好与女生人数相等,求原来七年级(2)班有男生多少名?女生多少名?分析:因为七年级(2)班男生、女生人数之比为5 3,所以可设男生人数为5x 名,女生人数为3x名,再根据男生人数=原来女生人数+14来列方程即可.解:设原来七年级(2)班有男生5x名,则女生人数有3x名.由题意,得5x=3x+14.移项,得5x-3x=14.合并同类项,得2x=14.系数化为1,得x=7.所以5x=35,3x=21.答:原来七年级(2)班有男生35名,女生21名.设计意图:通过例题,引导学生运用已有经验、知识、方法去探索与发现新知,使学生的学习变为一个再创造的过程,成为获取知识、思想和方法的途径,进而培养学生分析问题、解决问题的能力.巩固训练1.小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑年龄的5倍,则小郑今年的年龄是(A)A.7岁B.8岁C.9岁D.10岁2.根据市场调查,某种消毒液的大瓶装(500 g)和小瓶装(250 g)的销售瓶数的比为2 5.已知每天生产这种消毒液22.5吨,这些消毒液应该分装20 000大瓶.3.某生态食品加工厂收购了一批质量为10 000千克的某种山货,根据市场需求对其进行粗加工和精加工处理.已知精加工的该种山货质量比粗加工的质量的3倍还多2 000千克,求粗加工的该种山货质量.解:设粗加工的这种山货质量为x千克,则精加工的这种山货质量为(3x+2 000)千克.由题意,得3x+2 000=10 000-x.解得x=2 000.答:粗加工的这种山货质量为2 000千克.4.甲、乙、丙三位同学向贫困山区的希望小学捐赠图书,已知这三位同学捐赠图书本数的比是5 8 9,如果他们共捐书374本,那么这三位同学各捐书多少本?解:设甲捐书5x本,则乙捐书8x本,丙捐书9x本.根据题意,得5x+8x+9x=374.解得x=17.所以5x=85,8x=136,9x=153.答:甲捐书85本,乙捐书136本,丙捐书为153本.设计意图:通过课堂训练,及时巩固所学知识,加深学生对解方程步骤、化归思想和建模思想的理解.课堂小结1.本节课你学到了什么知识?2.你知道移项和合并同类项在解方程中起到了什么作用吗?3.列方程解决实际问题的关键是什么?设计意图:通过课堂小结的形式,让学生回顾知识点,形成知识体系,有利于学生养成回顾梳理知识的习惯,让学生在对课堂所学有系统认知的基础上,深化对知识的理解程度.课堂8分钟.1.教材124页练习第3,4题,第130页习题5.2第10题.2.作业.第3课时利用移项和合并同类项解一元一次方程的实际问题1.解一元一次方程的步骤.2.列方程解决实际问题的关键:分析清题目中的相等关系.3.遇比问题:设比中的一份为x.教学反思第4课时利用去括号解一元一次方程课时目标1.能够根据实际问题列出一元一次方程,进一步体会方程模型的作用及应用价值,培养学生的模型意识.2.通过使学生经历利用去括号解一元一次方程的过程,体会去括号这一步骤的合理性和必然性,提高学生的运算能力.3.通过对实际问题的解决,增强学生分析问题、解决问题、阅读理解、抽象概括的能力,培养学生的应用意识.学习重点1.会用去括号的方法解一元一次方程.2.将实际问题转化为数学问题,通过列方程解决实际问题.学习难点在将实际问题抽象为方程模型的过程中寻找等量关系.课时活动设计情境引入小花家来客人了,妈妈给了小花10元钱,让她买1听果奶和4听可乐,从商店回来后,小花交给妈妈3元钱.如果我们知道1听可乐比1听果奶贵0.5元,能不能求出1听果奶是多少钱呢?教师展开问题,学生独立思考,小组讨论,选派学生代表回答,教师巡视指导.解:设1听果奶x元,根据题意,可列出方程4(x+0.5)+x=10-3.追问:这个方程和我们前面学过的方程有什么区别?怎样解这个方程呢?设计意图:利用学生身边的生活情境设计问题,激发学生的学习兴趣,为解一元一次方程的深入学习作铺垫.探究新知问题1:由教学活动1,我们得到一个方程4(x+0.5)+x=10-3.这个方程和我们之前学过的方程有什么不同?该如何解这个方程呢?学生先独立思考,小组讨论,最后选派学生代表上台板演.解:这个方程中有带括号的式子,应该利用去括号来解方程;去括号,得4x+2+x=7.移项,得4x+x=7-2.合并同类项,得5x=5.系数化为1,得x=1.问题2:某工厂采取节能措施,去年下半年与上半年相比,月平均用电量减少2 000 kW·h(千瓦时),全年的用电量是150 000 kW·h.这个工厂去年上半年平均每月的用电量是多少?分析:这道问题是一个“用电问题”.利用方程表示出“某工厂上、下半年用电量之和等于一年用电量”这一关系,可得一个含有括号的方程.列这个方程时依据的相等关系有:(1)月平均用电量×n(月数)=n个月用电量;(2)总量=各部分量之和.解:设去年上半年平均每月的用电量是x kW·h,则下半年平均每月的用电量是(x-2 000)kW·h;上半年的用电量是6x kW·h,下半年的用电量是6(x-2 000)kW·h.根据全年的用电量是150 000 kW·h,列得方程6x+6(x-2 000)= 150 000.教师再次追问:(1)方程6x+6(x-2 000)=150 000,与前面学过的一元一次方程在结构上有什么不同?(2)怎样才能将方程转化为x=m(常数)的形式呢?学生小组讨论,教师总结得出:(1)与前面学过的一元一次方程不同的是,该方程的左边含有x的项,且其中一项的x含在括号内,是常数6与多项式(x-2 000)的乘积,方程的右边不含有x的项.(2)为使方程能转化成左边是含有x的项和右边是常数项的形式,必须把括号去掉,因此获得“去括号”这一解方程的步骤.解:6x+6(x-2 000)=150 000.去括号,得6x+6x-12 000=150 000.移项,得6x+6x=150 000+12 000.合并同类项,得12x=162 000.系数化为1,得x=13 500.在学生回答完毕之后,教师给予评价,并适时地提问:追问1:同学们,“去括号”的目的是什么?解:“去括号”的目的就是使方程不断地向x=m的形式转化.追问2:现阶段,我们解一元一次方程的基本步骤有哪些?师生共同归纳:解一元一次方程的基本步骤:1.去括号;2.移项;3.合并同类项;4.系数化为1.设计意图:设置实际生活中的情境问题,让学生感受到生活中处处存在的数学知识,而且利用方程思想解决实际问题,能再一次让学生体会到方程的实用价值.典例精讲例1解下列方程:(1)2x-(x+10)=5x+2(x-1);(2)3x-7(x-1)=3-2(x+3).解:(1)去括号,得2x-x-10=5x+2x-2.移项,得2x-x-5x-2x=-2+10.合并同类项,得-6x=8..系数化为1,得x=-43(2)去括号,得3x-7x+7=3-2x-6.移项,得3x-7x+2x=3-6-7.合并同类项,得-2x=-10.系数化为1,得x=5.例2一艘船从甲码头到乙码头顺水而行,用了2 h;从乙码头返回甲码头逆水而行,用了2.5 h.已知水流的速度是3 km/h,求船在静水中的平均速度.分析:一般情况下可以认为这艘船往返的路程相等.根据这个相等关系,可以列方程求出船在静水中的平均速度.在学生思考过程中,可能会遇到的问题,教师要适时地进行指导:1.本题中涉及顺、逆流的问题情境,这类问题中的基本相等关系有哪些?学生回答:(1)顺流速度=静水速度+水流速度;(2)逆流速度=静水速度-水流速度.行程问题中,“路程=速度×时间”这个基本相等关系.2.本题的相等关系是什么?学生回答:轮船往返的路程相等,即轮船顺流航行所走的路程=逆流航行所走的路程.解:设船在静水中的平均速度为x km/h,则顺水速度为(x+3) km/h,逆水速度为(x-3) km/h.根据往返路程相等,列得方程2(x+3)=2.5(x-3).去括号,得2x+6=2.5x-7.5.移项,合并同类项,得-0.5x=-13.5.系数化为1,得x=27.答:船在静水中的平均速度为27 km/h.设计意图:通过例题讲解,进一步巩固所学,培养学生积极思考的习惯,持续渗透建模思想和化归思想.巩固训练1.在解方程2x-3(4-2x)=5时,去括号变形正确的是(C)A.2x-12-6x=5B.2x-12-2x=5C.2x-12+6x=5D.2x-3+6x=5).步骤如下: 去括号,得4x-1-x=2x+1; 移项,得2.解方程4(x-1)-x=2(x+12.其中开始出现错误的一步4x+x-2x=1+1; 合并同类项,得3x=2; 系数化为1,得x=23是(A)A. B. C. D.3.解下列方程:(1)3(x-1)-2x=1;(2)3x-2(3-x)=4(x+1)-3.解:(1)去括号,得3x-3-2x=1.移项,得3x-2x=1+3.合并同类项,得x=4.(2)去括号,得3x-6+2x=4x+4-3.移项,得3x+2x-4x=4-3+6.合并同类项,得x=7.4.一架飞机在两城市之间飞行,风速为24千米/时,顺风飞行需要2小时50分,逆风飞行需要3小时.求无风时飞机的飞行速度和两城市之间的航程.解:设无风时飞机的飞行速度为x千米/时,则顺风飞行的速度为(x+24)千米/时,逆风飞行的速度为(x-24)千米/时.(x+24)=3(x-24).根据题意,得176解得x=840.所以3(x-24)=2 448.答:无风时飞机的飞行速度为840千米/时,两城市之间的航程为2 448千米.设计意图:通过课堂训练,及时巩固学生所学知识,加深对解方程步骤、化归思想和建模思想的理解.课堂小结1.本节课你学到了什么知识?2.你知道去括号在解方程中起到了什么作用吗?3.列方程解决实际问题的关键是什么?设计意图:通过课堂小结的形式,让学生回顾知识点,形成知识体系,有利于学生养成回顾梳理知识的习惯,让学生在对课堂所学有系统认知的基础上,深化对知识的理解程度.课堂8分钟.1.教材第126页练习第1,2,3题,第130页习题5.2第2题,第4题(3),第5,7,13题.2.作业.第4课时利用去括号解一元一次方程1.去括号的依据和作用.2.解一元一次方程的步骤:去括号、移项、合并同类项、系数化为1.3.分析实际问题中的相等关系,列一元一次方程解决问题.教学反思第5课时利用去分母解一元一次方程课时目标1.能够根据实际问题列出一元一次方程,进一步体会方程模型的作用及应用价值,培养学生的模型意识.2.通过使学生经历利用去分母解一元一次方程的过程,体会去分母这一步骤的合理性和必然性,提高学生的运算能力.3.通过经历利用解一元一次方程的一般步骤解方程的过程,使学生体会到解方程中常用的化归和程序化的思想方法.。
人教版七年级数学上册第三章《一元一次方程的解法》教案

(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
五、教学反思
在今天的教学过程中,我发现学生们对一元一次方程的解法普遍感到兴趣,但也存在一些问题。首先,对于移项和合并同类项这一步骤,部分学生还是会出现符号错误或漏项的情况。在今后的教学中,我需要更加注重这一部分的讲解和练习,通过反复举例,让学生真正掌握这一关键步骤。
另外,在实践活动和小组讨论中,我发现学生们在将一元一次方程应用于解决实际问题时,还是有些力不从心。他们往往难以从问题中抽象出方程,这说明我们在教学中需要更多地将实际问题融入方程的学习中,让学生学会如何建立方程模型。
-例如,对于年龄问题,如“小华比小明大3岁,小华今年10岁,求小明几岁”,学生需要学会将问题转化为方程:设小明年龄为x,则根据题意可得x+3=10。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一元一次方程的解法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个未知数的关系的问题?”(如购物找零、时间速度问题等)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元一次方程的解法的奥秘。
2.教学难点
-移项和合并同类项:学生在解一元一次方程时,往往容易在这一步出错,如符号变化、漏项等,需要教师重点强调和反复练习。
人教版七年级数学《一元一次方程》教案

人教版七年级数学《一元一次方程》教案授课章节:第三章一元一次方程授课日期:课题:教学目标知识:了解方程、一元一次方程的概念.根据方程解的概念,会判断一个数是否是一个方程的解.能力:通过对多种实际问题的分析,能列出该问题的方程,感受方程作为刻画现实世界有效模型的意义.情感、态度、价值观:鼓励学生进行观察思考,发展合作交流的意识和能力.教学重点:了解一元一次方程的有关概念,会根据已知条件,设未知数,列出简单的一元一次方程,并会估计方程的解.教学难点:找出问题中的相等关系,列出一元一次方程以及估计方程的解。
教学过程:问题 1.一辆客车和一辆卡车同时从A地出发,沿同一公路同向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早一小时经过B地,A,B两地间的路程是多少?(1)你会用算术方法解决这个问题吗?列式试试.(2)如果设A,B两地相距xkm,你能分别列式表示客车与卡车从A地到B地的行驶时间吗?客车时间,货车时间.(3)如何用式子表示两车行驶时间之间的关系?.问题2:对于上述问题,你还能列出其他的方程吗?问题3:比较列算式和列方程解决这个问题个有什么特点?2、探讨新知问题4:你能归纳出方程的概念么?方程是含有未知数的等式.三、典型例题例1.按照下列问题,设未知数并列方程.(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用了1700h,预计每月再用150h,经过多少月这台计算机的使用时间达到规定的检修时间2450h?(3)某校女生占部分学生数的52%,比男生多80人,这个黉舍有多少学生?小结:列方程时,要先设未知数,然后按照问题中的等量关系,写出方程.问题5:窥察上面的例题,列出的三个方程有什么特点?只含有一个未知数(元),而且未知数的指数都是1(次),等号双方都是整式的方程叫一元一次方程.练下列式子哪些是方程?哪些是一元一次方程?(1)2x1;(2)(3)(4)x22x6;(5)3x 1.83y;2m153;3x55x4;(6)3a915;(7)15(8)2x311;x 3问题6:能满足方程4x=24的未知数的值是多少?可以发现,当x=6时,4x的值是24,这时方程等号左右两边相等,x=6叫做方程4x=24的解.练:x=1000和x=2000中哪一个是方程()x=80的解?课堂练依据下列问题,设未知数,列出方程.(1)环形跑道一周长400m,沿跑道跑多少周,能够跑3000m?(2)甲铅笔每支元,乙铅笔每支元,用9元钱买了两种铅笔共220支,两种铅笔各买了多少支?(3)一个梯形的下底比上底多2cm,高是5cm,面积是40cm2,求上底.(4)用买10个大水杯的钱,可以买15个小水杯,大水杯比小水杯单价多5元,两种水杯的单价各是多少?四、小结:(1)本节课学了哪些首要内容?(2)一元一次方程的三个特征各指什么?(3)从实际问题中列出方程的关键是什么?课后反思:授课章节:第三章一元一次方程授课日期:课题:教学目标:知识:通过窥察、阐发,将有理数的运算推广到字母运算,掌握用字母表示等式的两条性质.能力:培养观察能力、思考能力、归纳能力和创新能力.会用等式的两条性质解一元一次方程.情感、态度、价值观:鼓励学生对事物进行观察和思考,发展合作交流的意识和能力.教学重点:等式的性质的推导和应用.讲授难点:对等式性质的理解.讲授过程:问题1:等式具有什么样的性质呢?我们不妨做一个实验,请同学们认真观察,然后用“>、<、=”填空:5=5 5+6 5+6;-7=-7 -7-5 -7-5;a=ba+5 b+5a=ba-2 b-2;x=y x+my+ma=ba+(m+n)b+(m+n)问题2:我们再看一个实验,请同学们认真窥察后然后用“>、<、=”填空:6=6 6×56×5;-3=-3 -3×(-2)-3×(-2);a=b 6a6b18=8 8÷28÷2;-10=-10 -10÷(-5)-10÷(-5);m=nm81n8归纳:m n n m,x2x3x,33152,3x15y这样的式子叫等式.问题3:通过以上窥察,你能说说等式有什么性质么?等式性质1:等式两边都加(或减)同一个数(或式子),结果仍相等;等式性质2:等式两边乘同一个数,或除以同一个不等于的数,结果仍相等;如果a b,那么a ca如果a b,那么ac;如果a b,c那么。
七年级数学《一元一次方程》教案4篇

七年级数学《一元一次方程》教案4篇七年级数学《一元一次方程》教案4篇七年级数学《一元一次方程》教案篇一2.自主探索、合作交流:先由学生独立思考求解,再小组合作交流,师生共同评价分析。
方法1:解:方程两边都加上2,得5x-2+2=8+2也就是5x=8+2合并同类项,得5x=10所以,x=23.理性归纳、得出结论(让学生通过观察、归纳,独立发现移项法则。
)比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于5x-2=85x=8+2即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项。
教学建议:关于移项法则,不应只强调记忆,更应强调理解。
学生开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,可借助例题、练习题使相互逐步体会到移项的优越性)。
方法2;解:移项,得5x=8+2合并同类项,得5x=10方程两边都除以5,得x=24.运用反思、拓展创新[例1]解下列方程:(1)2x+6=1(2)3x+3=2x+7教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的错误,然后组织学生进行讨论交流。
[例2]解方程:教学建议:①先放手让学生去做,学生可能采取多种方法,教学时,不要拘泥于教科书中的解法,只要学生的解法合理,就应给予鼓励。
②在移项时,学生常会犯一些错误,如移项忘记变号等。
这时,教士不要急于求成,而要引导学生反思自己的解题过程。
必要时,可让学生利用等式的性质和移项法则两种方法解例1、例2中的方程,并将两者加以对照,进而使学生加深对移项法则的理解,并自觉地改正错误。
5.小结回顾:学生谈本节课的收获与体会。
师强调:移项法则。
七年级数学《一元一次方程》教案篇二教学内容:人教版七年级上册3.1.1一元一次方程教学目标:知识与技能:1、理解一元一次方程,以及一元一次方程解的概念。
2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。
3、掌握检验某个数值是不是方程解的方法。
2024-2025学年初中数学七年级上册(人教版)教案第1课时利用合并同类项解一元一次方程

5.2 解一元一次方程第1课时利用合并同类项解一元一次方程教学步骤师生活动教学目标课题 5.2 第1课时利用合并同类项解一元一次方程授课人素养目标 1.会正确利用合并同类项解ax+bx=c类型的一元一次方程.2.通过解一元一次方程,体会解方程中的化归思想.教学重点建立方程解决实际问题,会解ax+bx=c类型的一元一次方程.教学难点根据实际问题建立方程模型.教学活动教学步骤师生活动活动一:回顾旧知,引入新知设计意图回顾等式的性质与合并同类项的法则,为解方程的学习作准备.【回顾导入】1.上节课我们学习了利用等式的性质解方程,请大家说一说等式的性质有哪些?(可让学生回答,课堂上一起回顾)2.合并下列各式的同类项:(1)a+2a-4a;(2)-6xy-5+2yx+xy-3.(1)-a;(2)-3xy-8.【教学建议】回顾旧知时,教师应关注学生是否忘记等式性质中“同一个数”;合并同类项,要关注学生是否能准确识别同类项,是否漏掉了负号.活动二:交流讨论,学习新知设计意图学习利用合并同类项解一元一次方程.探究点利用合并同类项解一元一次方程(教材P120问题1)某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍.前年这所学校购买了多少台计算机?问题1 你能根据题意列出方程吗?设前年购买计算机x台,则去年购买计算机2x台,今年购买计算机4x台.根据“三年共购买计算机140台”,可以得到如下相等关系:前年购买量+去年购买量+今年购买量=140.列得方程x+2x+4x=140.问题2观察方程,等号左边有3个含x的未知数项,不能直接利用等式性质解这个方程.我们可以利用什么知识,将这个方程转化一下,以便顺利地求解呢?利用合并同类项的法则,把含有x的项合并同类项,得7x=140.问题3你能进一步求出方程的解吗?系数化为1,得x=20.因此,前年这所学校购买了20台计算机.思考(教材P120思考)上面解方程中“合并同类项”起了什么作用?合并同类项是一种恒等变形,通过合并同类项,减少项数,进而将方程转化为更接近x=m的形式.【对应训练】教材P121练习第2题.【教学建议】给学生说明,“系数化为1”指使方程由ax=b(a≠1)变形为x=m,它的依据是等式的性质2.系数化为1时,要避免出现以下几种错误:(1)颠倒除数与被除数的位置;(2)忽略未知数系数的符号.【教学建议】结合解方程的过程,让学生思考有关步骤(合并同类项)的作用,是为了反复渗透“解方程就是要使方程不断向x=m(常数)的形式转化”的化归思想.活动三:熟练运用,巩固提升设计意图巩固用合并同类项解一元一次方程的方法,强化运算能力.例1(教材P120例1)解下列方程:(1)2x-52x=6-8;(2)7x-2.5x+3x-1.5x=-15×4-6×3.例2(教材P121例2)有一列数1,-3,9,-27,81,-243,…,其中第n个数是(-3)n-1(n>1).如果这列数中某三个相邻数的和是-1701.这三个数各是多少?分析:数的排列规律:后一个数=-3×前一个数.某三个相邻数的和:前面的数+中间的数+后面的数=-1701.解:设所求三个数中的第1个数是x,则后两个数分别是-3x,9x.由三个数的和是-1701,得x-3x+9x=-1701.合并同类项,得7x=-1701.系数化为1,得x=-243.所以-3x=729,9x=-2187.答:这三个数是-243,729,-2187.【对应训练】教材P121练习第1,3题.【教学建议】给学生总结:例1中,解一元一次方程时,同类项有两类,即含未知数的一次项和常数项.这两类都需要合并.【教学建议】让学生认识到:用一元一次方程解含多个未知数的问题时,通常先设其中一个为x,再根据其他未知数与x的关系,用含x的式子表示这些未知数.活动四:随堂训练,课堂总结【随堂训练】见《创优作业》“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.今天我们学习的解方程,有哪些步骤?2.解一元一次方程时,合并同类项起了什么作用?3.系数化为1的依据是什么?4.含多个未知数时,怎样设未知数、列方程?【知识结构】【作业布置】1.教材P130习题5.2第1(1)(2),14题.2.《创优作业》主体本部分相应课时训练.板书设计5.2解一元一次方程第1课时利用合并同类项解一元一次方程解一元一次方程:(1)合并同类项(2)系数化为1教学反思本节课先帮学生回顾等式的性质以及合并同类项的相关知识,为学习用合并同类项解一元一次方程作准备.教学中采用引导发现的方法,并鼓励学生自己动手,体现学生在课堂上的主体地位.在整个过程中注重调动学生的积极性,培养学生合作学习、主动探究的习惯.对于解一元一次方程的思路,灌输了将方程不断转化为x=m(常数)形式的化归思想,这一思想在后面几节课的学习中还会继续强化.解题大招利用合并同类项解一元一次方程将含有未知数的项和常数项分别合并,再结合等式的性质,将方程转化为x=m(常数)的形式,注意计算时不要出错.例1对于方程2y+3y-4y=1,合并同类项正确的是( A )A.y=1B.-y=1C.9y=1D.- 9y=1例2下列说法正确的是(B)m-0.125m=0,得m=0A.由x-3x=1,得2x=1B.38C.x=-3是方程x-3=0的解D.以上说法都不对m-0.125m=0,得0.25m=0,再将系数化为1,得m=0,解析:A.由x-3x=1,得-2x=1,故A错误;B.由38故B正确,D错误;C.x=3是方程x-3=0的解,x=-3不是,故C错误.故选B.例3如果2x与x-3的值互为相反数,那么x的值为多少?解:因为2x与x-3的值互为相反数,所以2x+x-3=0.方程两边加3,得2x+x=3.合并同类项,得3x=3.系数化为1,得x=1.故x的值为1.例4甲、乙、丙三人向某学校捐赠图书,已知这三人捐赠图书的册数之比是5∶8∶9.如果他们共捐了748册图书,那么这三人各捐了多少册图书?解:设甲捐了5x册图书,则乙捐了8x册图书,丙捐了9x册图书.根据题意,得5x+8x+9x=748.合并同类项,得22x=748.系数化为1,得x=34.所以5x=5×34=170,8x=8×34=272,9x=9×34=306.答:甲捐了170册图书,乙捐了272册图书,丙捐了306册图书.培优点月历中的数字问题例例如图是某月的月历,在月历上任意圈出一个竖列上相邻的三个数,如果被圈出的三个数之和为51,求中间的那个数.分析:在月历中,每一横行,相邻的两个数之间相差1;每一竖列,相邻的两个数之间相差7.根据这种数量关系,列方程求解.解:设中间的那个数为x,则被圈出的三个数分别是x-7,x,x+7.根据题意,得x-7+x+x+7=51.合并同类项,得3x=51.系数化为1,得x=17.答:中间的那个数为17.。
人教版数学七年级上册3.2《解一元一次方程(一)》教学设计

人教版数学七年级上册3.2《解一元一次方程(一)》教学设计一. 教材分析人教版数学七年级上册3.2《解一元一次方程(一)》是学生在学习了有理数的运算、方程与方程的解等知识的基础上,进一步学习解一元一次方程。
本节课的内容主要包括:一元一次方程的定义、解一元一次方程的一般步骤和求解实际问题中的方程。
通过本节课的学习,使学生掌握解一元一次方程的基本方法,提高解决实际问题的能力。
二. 学情分析学生在进入七年级之前,已经初步掌握了有理数的运算和方程的知识,具备一定的逻辑思维能力。
但部分学生在解决实际问题时,往往不能将数学知识与实际问题相联系,对一元一次方程的解法不够熟练。
因此,在教学过程中,需要关注学生的学习差异,引导学生将数学知识应用于实际问题,提高解题能力。
三. 教学目标1.知识与技能目标:使学生理解一元一次方程的定义,掌握解一元一次方程的一般步骤,能够熟练地求解实际问题中的方程。
2.过程与方法目标:通过自主学习、合作交流,培养学生解决实际问题的能力,提高学生的数学思维水平。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生学好数学的信心,使学生感受到数学在生活中的重要作用。
四. 教学重难点1.重点:一元一次方程的定义,解一元一次方程的一般步骤。
2.难点:将实际问题转化为方程,求解一元一次方程。
五. 教学方法1.情境教学法:通过生活实例,引导学生认识一元一次方程,激发学生的学习兴趣。
2.启发式教学法:在教学过程中,引导学生主动思考、探究,培养学生的逻辑思维能力。
3.合作学习法:学生进行小组讨论,互相交流解题方法,提高学生的合作能力。
4.反馈评价法:及时对学生的学习情况进行评价,鼓励学生自主学习,提高学习效果。
六. 教学准备1.教学课件:制作课件,展示一元一次方程的定义、解题步骤及实际问题。
2.练习题:准备一定数量的练习题,用于巩固所学知识。
3.教学道具:准备一些教学道具,如黑板、粉笔等。
七. 教学过程1.导入(5分钟)利用生活实例,如购物时发现找回的钱数不对,引出一元一次方程。
数学人教版(2024版)七年级初一上册 5.1.1 从算式到方程 教学教案 教学设计01

第五章一元一次方程5.1.1 从算式到方程【学习目标】1.让学生在掌握算式和简单方程的基础上,过渡到一元一次方程的学习;2.理解方程的意义,会根据实际情境列方程;3.掌握方程的解的概念,会判断方程的解;4.掌握一元一次方程的概念,会判断所给方程是否为一元一次方程.【学习重难点】重点:掌握一元一次方程的概念.难点:从实际问题中寻找等量关系,进而列出方程.【教学内容】新知探究1:方程的概念甲、乙两支登山队沿同一条路线同时向一山峰进发,甲队从距大本营1km的一号营地出发,每小时行进1.2km;乙队从距大本营3km的二号营地出发,每小时行进0.8km,多长时间后,甲队在途中追上乙队?你会用算术方法解决这个问题吗?列算式试试.甲、乙两队相距km,甲、乙两队的速度差是km/h,所以甲队追上乙队需要h.下面,我们引入一种新的方法来解决这个问题.思考:在这个问题中,已知:甲乙两队的行进速度及甲乙两队到大本营的距离.未知:行进的时间和路程.如果设两队的行进时间为x h,根据“路程=速度×时间”,甲队和乙队行进路程可以分别表示为1.2x km和0.8x km.甲队距大本营的路程:(1.2x+1)km乙队距大本营的路程:(0.8x+3)km想一想,甲队追上乙队时,他们距大本营的路程之间有什么关系?甲队追上乙队时,他们距大本营的路程相等.比较:列算式和列方程用算术方法解题时,列出的算式只含有已知数,对于较复杂的问题,列算式比较困难;而方程是根据问题中的等量关系列出的等式,其中既含有已知数,又含有用字母表示的未知数,解决问题比较方便.问题探究问题1 用买12个大水杯的钱,可以买16个小水杯,大水杯的单价比小水杯的单价多5元,两种水杯的单价各是多少元?思考:本题的等量关系是什么?设大水杯的单价为x元,那么小水杯的单价为(x-5)元.根据“单价×数量=总价”,可以列方程12x = 16(x-5).由这个含有未知数x的等式可以求出大水杯的单价,进而可以求出小水杯的单价.思考:若将小水杯的单价设为x元?你会列方程吗?设小水杯的单价为x元,那么大水杯的单价为元.根据“单价×数量=总价”,可以列方程12(x+5)=16x.由这个含有未知数x的等式可以求出小水杯的单价,进而可以求出大水杯的单价.问题2 下图是一枚长方形的庆祝中国共产党成立100周年纪念币,其面积是4 000mm2,长和宽的比为8:5(即宽是长的58). 这枚纪念币的长和宽分别是多少毫米?如果设这枚纪念币的长为x mm,则纪念币的宽可以表示为58x mm,依据长方形的面积公式,面积可以表示为58x2 mm.已知纪念币面积为4 000mm2,所以58x2 =4 000.由这个含有未知数x的等式可以求出这枚纪念币的长,进而可以求出纪念币的宽.像这样,先设出字母表示未知数,然后根据问题中的相等关系,列出一个含有未知数的等式,这样的等式叫作方程.注意:方程必须满足两个条件:(1)是等式;(2)化简后含有未知数. 二者缺一不可.考点解析例下列式子中,是方程的有()①8+2=10;② 3x+y=10;③x-1;④1x - 1y=1;⑤x >3;⑥x=1;⑦a2-1=0;⑧b2 ≠-1.A.4个B.5个C.6个D.7个注意:方程一定是等式,但等式不一定是方程.巩固练习1.下列各式中,是方程的是( )A.4-5=-1B.x+3y-1C.s+2t= -5D.a-6<32.下列各式中,不是方程的是.(填序号)①3x+1=4;②x2+2x+1=0;③ 4-3=1;④ |x|-1=0;⑤3x+1;⑥1a=a+1. ⑦x>0.3. 判断下列各式哪些是方程?是的标记“√”,不是的标记“×”.(1) 5x+3y-6x=37 ( ) (2) 4x-7 ( )(3) 5x ≥ 3 ( ) (4) 1+2=3 ( )(5) 6x2+x-2=0 ( ) (6) -7x- m=11 ( )注意:(1)方程中的未知数可以用字母x表示,也可以用其他字母表示,如y、z等.(2)方程中未知数的个数可以是一个,也可以是两个或两个以上,如x+y=12等.总结归纳用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只含有已知数,不含未知数;而方程是根据问题中的相等关系列出的等式,其中既含有已知数,也含有用字母表示的未知数,这为解决许多问题带来了方便.通过今后的学习,你会逐步认识到:从算式到方程是数学的一大进步.新知探究2:列方程典例解析例1 根据下列问题,设未知数并列出方程:(1) 某校女生占全体学生数的52%,比男生多80人,这所学校有多少名学生?思考:本题的等量关系是什么?解:设这所学校的学生数为x,那么女生数为0.52x,男生数为(1-0.52)x,根据“女生比男生多80人”,列得方程0.52x - (1-0.52)x = 80.(2) 如图,一块正方形绿地沿某一方向加宽5m,扩大后的绿地面积是500m2,求正方形绿地的边长.解:设正方形绿地的边长为x m,依据扩大后的绿地面积= 500m2女生人数-男生人数=80.列得方程x(x+5)=500→x2+5x=500.巩固练习1.《算法统宗》是我国古代数学著作,其中记载了一道数学问题,大意如下:用绳子测水井深度,若将绳子折成三等份,则井外余绳4尺;若将绳子折成四等份,则井外余绳1尺.问绳长和井深各多少尺?设井深为x尺,则可列方程为.解析:根据将绳三折测之,绳多四尺,则绳长为:3(x+4);根据绳四折测之,绳多一尺,则绳长为:4(x+1).故3(x+4)=4(x+1).2.甲、乙两人分别从相距30千米的A,B两地骑车相向而行,甲骑车的速度是10千米/时,乙骑车的速度是8千米/时,甲先出发25分钟后,乙骑车出发,问乙出发后多少小时两人相遇?(只列方程)莉莉:设乙出发后x小时两人相遇,列出的方程为25×10+8x+10x=30.请问莉莉列出的方程正确吗?如果不正确,请说明理由并列出正确的方程.解:莉莉列出的方程不正确.理由:列方程时未统一单位.正确方程:设乙出发后x小时两人相遇,等量关系为:甲的路程+乙的路程=30千米依×10+10x+8x=30.题意得2560总结提升归纳分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法. 这个过程可以表示如下:列方程的基本思路:(1)理解题意,弄清已知是什么,未知是什么;(2)找出题目中的相等关系;(3)根据相等关系列方程。
解一元一次方程人教版数学七年级上册教案

解一元一次方程人教版数学七年级上册教案一、教学目标1.知识与技能目标:使学生掌握一元一次方程的定义,理解一元一次方程的解法,能够熟练地解一元一次方程。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生解决问题的能力,提高学生的逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生独立思考、合作探究的精神。
二、教学重点与难点1.教学重点:一元一次方程的定义及解法。
2.教学难点:一元一次方程的移项和系数化为1的方法。
三、教学过程1.导入新课师:同学们,我们之前学过不等式,那么大家知道方程吗?方程与不等式有什么区别和联系呢?生:方程是表示两个表达式相等的式子,不等式是表示两个表达式不相等的式子。
师:很好,那今天我们就来学习一种特殊的方程——一元一次方程。
2.学习一元一次方程的定义师:请同学们看教材第39页,一元一次方程的定义是什么?生:一元一次方程是只含有一个未知数,且未知数的次数为1的方程。
师:非常正确。
那么请同学们思考一下,一元一次方程的一般形式是什么?生:一元一次方程的一般形式是ax+b=0,其中a、b是常数,且a ≠0。
3.学习一元一次方程的解法师:我们来看一下如何解一元一次方程。
我们要把方程写成一般形式ax+b=0。
然后,我们通过移项和系数化为1的方法来求解。
师:请同学们看教材第40页例1,我们一起分析一下这个方程的解法。
生:将方程2x+3=5写成一般形式2x=5-3,然后通过系数化为1,得到x=1。
师:很好,那现在请同学们自己尝试解一下方程3x-4=7。
生:将方程写成一般形式3x=7+4,然后系数化为1,得到x=3。
4.巩固练习师:同学们,我们已经学习了一元一次方程的定义和解法,现在我们来巩固一下。
3x+2=5;2x^2+3=5;5x-3=2x+1。
2x-3=5;3x+4=2x-1。
师:通过本节课的学习,我们掌握了一元一次方程的定义和解法。
那么,同学们认为解一元一次方程的关键是什么?生:关键是把方程写成一般形式,然后通过移项和系数化为1的方法来求解。
数学七年级上册《解一元一次方程》第一课时教案

教材
义务教育课程标准实验教科书(人教版)《数学》七年级上册
设计理念
本设计以“尝试指导,效果回授”教学法为主,辅之于练习法,以问题为主线,思维为核心,活动为载体,从学生已有的生活经验和认知基础出发,引导其经历数学建模的全过程。从而让学生感受数学源于生活,更好地理解一元一次方程的意义,体现“人人学有价值数学”的新课程理念。整个数学设计流程突出以学定教,体现“设计问题化,过程活动化,活动练习化,练习要点化,要点目标化,目标课标化”的要求,充分利用现代信息技术的直观、动态功能,丰富教学可视性材料,增大课堂容量,架构多向交流性信息通道,优化教学结构,实现课堂教学效果最优化。
5、发动学生答疑解惑。
【学生活动】
1、带着问题认真读题思考。
2、独立尝试寻求解决策略,同桌互换交流几个问题。
3、前后四人一组讨论,得出一元一次方程的解法步骤。
4、小组选派一名代表发言。
5、说出自己疑难和困惑。
【媒体使用】
依次出示问题及考题,同时出示分析过程和解答过程。
【设计意图】
(1)经历将实际问题转化为数学问题的过程,认识数学与实际的密切联系,体现“人人学有价值的数学”的课程理念。
知识背景分析
解一元一次方程(二)---去括号与去分母(1)是义务教育课程标准实验教科书(人教版)《数学》七年级上册第三章第三单元内容,是在学生已经学习一元一次方程的概念、等式的性质、解一元一次方程的步骤(移项、合并同内项、系数化为1),了解了用一元一次方程方程解决实际问题的一般过程,懂得列一元一次方程解决实际问题是用数学方法解决实际问题的重要途径之一的基础上展开的,重点探究列方程解应用题的思想方法,掌握解一元一次方程的一般步骤。本单元共4课时,本节是第一课时,重点讨论去括号解一元一次方程。教科书首先以节能减排为背景编拟实际问题,引导继续讨论如何分析问题中的数量关系,列一元一次方程,进而探究含有括号的一元一次方程的解法,通过例1及两个巩固练习,使学生在进一步经历“问题情景——建立模型(一元一次方程)——解释应用于拓展”的过程的同时,进一步感知当问题中数量关系复杂时,列出方程也会比较复杂,解方程的步骤也相应更多些,这种由简单到复杂的梯级问题递进过程,不仅有利于引导学生通过阅读探寻、思考分析等过程,培养学生分析解决实际问题的能力,使学生进一步感知并尝试寻找不同解决问题方法的乐趣。而且有助于促使学生弄清列方程解应用题的思想方法,熟练地通过去括号、移项、合并同类项、系数化为1等步骤解一元一次方程,强化化归思想的渗透。所以,本节课无论是在知识传承,还是在对学生数学思维训练、能力培养上都有举足轻重的作用。
2024年七年级数学解一元一次方程教案精选

2024年七年级数学解一元一次方程教案精选一、教学内容本节课选自人教版七年级数学上册第四章“一元一次方程”,具体内容包括:4.1节“一元一次方程的定义”,4.2节“一元一次方程的解法”,以及4.3节“一元一次方程的应用”。
通过本章学习,让学生掌握一元一次方程的概念、解法及应用。
二、教学目标1. 让学生理解一元一次方程的定义,能辨识一元一次方程。
2. 使学生掌握一元一次方程的解法,能熟练解一元一次方程。
3. 培养学生运用一元一次方程解决实际问题的能力。
三、教学难点与重点教学难点:一元一次方程的解法。
教学重点:一元一次方程的定义及其应用。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
2. 学具:练习本、笔。
五、教学过程1. 实践情景引入利用多媒体展示小明和小华分苹果的情景,小明有5个苹果,小华比小明少2个苹果,问小华有多少个苹果?通过这个情景,引导学生列出方程。
2. 知识讲解(1)一元一次方程的定义:含有一个未知数,且未知数的最高次数为1的方程。
(2)一元一次方程的解法:移项、合并同类项、系数化为1。
3. 例题讲解(1)解方程:3x 7 = 11。
(2)解方程:5(x 2) = 2(x + 3)。
4. 随堂练习a. 2x + 3 = 5b. 3x^2 + 4x 1 = 0a. 4x 9 = 7b. 2(3x 1) = 5(x + 2)5. 小结六、板书设计1. 一元一次方程的定义2. 一元一次方程的解法(1)移项(2)合并同类项(3)系数化为13. 例题及解答七、作业设计1. 作业题目(1)解下列方程:a. 6x 8 = 2(x + 1)b. 7(x 3) + 2 = 3(x + 4)(2)运用一元一次方程解决实际问题。
2. 答案(1)x = 2, x = 13/4(2)根据实际情况列方程解答。
八、课后反思及拓展延伸1. 反思:本节课学生对一元一次方程的定义和解法掌握程度,以及实际应用能力的培养。
初中数学新人教版七年级上册第五章第3课《实际问题与一元一次方程》教案(2024秋)

5.3 实际问题与一元一次方程第1课时:配套问题与工程问题【素养目标】1.掌握配套问题和工程问题中有关量的基本关系式,并会寻求相等关系列方程求解.2.经历运用方程解决实际问题的过程,体会运用一元一次方程解决实际问题的一般步骤.【教学重点】1.用一元一次方程解决配套问题和工程问题.2.掌握用一元一次方程解决实际问题的基本过程.【教学难点】根据实际问题构建方程模型.【教学过程】活动一:创设情境,引入新知[设计意图]以实际生活中的例子唤起学生的学习兴趣.【情境引入】前面我们学习了一元一次方程的解法,本节课,我们将讨论一元一次方程的应用.生活中,有很多需要进行配套的问题,如课桌和椅子、螺栓和螺母、电扇叶片和电机等.问题1 上面的配套例子中,1张课桌配几把椅子?1个螺栓配几个螺母?1个电机配几个电扇叶片?1张课桌配1把椅子,1个螺栓配2个螺母,1个电机配3个电扇叶片.问题2 大家还能列举生活中其他涉及配套的例子吗?[教学提示]让学生根据生活经验作答.活动二:交流讨论,探究新知[设计意图]探究配套问题中的数量关系,体会用一元一次方程解决实际问题的过程.[设计意图]探究工程问题中的数量关系. 探究点1 配套问题例1(教材P133例1)某车间有22名工人,每人每天可以生产1200个螺栓或2000个螺母.1个螺栓需要配2个螺母,为使每天生产的螺栓和螺母刚好配套,应安排生产螺栓和螺母的工人各多少名?问题1 结合本题题意,你认为题中有怎样的相等关系?关键字眼(配套关系):1个螺栓需要配2个螺母.相等关系:螺母数量=2×螺栓数量.问题2 如果设安排x名工人生产螺栓,请你填一填下面的表格.产品类型生产人数单人产量总产量螺栓x 1 200 1 200x螺母22-x 2 000 2 000(22-x)问题3 请根据前面的分析列出方程,并求出安排生产螺栓和螺母的工人数.解:设应安排x名工人生产螺栓,(22-x)名工人生产螺母.根据螺母数量应是螺栓数量的2倍,列得方程2000(22-x)=2×1200x.解方程,得x=10.进而22-x=12.答:应安排10名工人生产螺栓,12名工人生产螺母.追问如果设x名工人生产螺母,怎样列方程?解:设应安排x名工人生产螺母,(22-x)名工人生产螺栓.根据螺母数量应是螺栓数量的2倍,列得方程2000x=2×1200(22-x).解方程,得x=12.进而22-x=10.答:应安排10名工人生产螺栓,12名工人生产螺母.总结:【对应训练】教材P134练习第2,3题.探究点2 工程问题例2(教材P133例2)整理一批图书,由1人整理需要40h完成.现计划由一部分人先整理4h,然后增加2人与他们一起整理8h,完成这项工作.假设这些人的工作效率相同,应先安排多少人进行整理?分析:在工程问题中:工作量=人均效率×人数×时间;总工作量=各部分工作量之和.问题1如果把总工作量设为1,则人均效率(一个人1h完成的工作量)为"1" /"40" .问题2 如果设先安排x人整理4h,请填写下表.人均效率人数时间工作量前一部分工作1/40 x 4 4x/40后一部分工作"1" /"40" x+2 8 (8(x+2))/40问题3 根据前面的分析,列出方程,并求出应先安排多少人进行整理.解:设先安排x人整理4h.根据先后两个时段的工作量之和等于总工作量,列得方程4x/40+"8(x+2)" /"40" =1.解方程,得x=2.答:应先安排2人进行整理.总结:【对应训练】教材P134练习第1题.[教学提示]给学生说明:(1)“螺母的数量是螺栓数量的2倍”是本题中特有的相等关系;“每人每天的工作效率×人数=每天的工作量(产品数量)”是工作问题中的基本相等关系.上述两者结合起来,就能列出方程.(2)本题中根据倍数关系列方程时,要弄清楚是在等号的哪一边乘2,不要弄反.[教学提示]给学生说明:(1)如果一件工作需要n个小时完成,那么平均每小时完成的工作量就是"1" /"n" ;(2)如果一件工作由m个人用n小时完成,那么人均效率为"1" /"mn" ;(3)“工作量=人均效率×人数×时间”是计算工作量的基本公式;(4)如果一件工作分几个阶段完成,那么“各阶段工作量的和=总工作量”.活动三:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.列方程的基础是什么?2.你能说说用一元一次方程解决实际问题的一般过程吗?【作业布置】1.教材P140习题5.3第2,3,4,5,6,8,11题.【教学后记】第2课时:销售中的盈亏问题【素养目标】1.分析销售中的数量关系,利用进价(成本)、标价、售价、利润、利润率之间的关系,列方程解决实际问题.2.用数学的眼光分析生活中的销售现象,形成理性消费的观念.【教学重点】根据销售问题中的数量关系列出一元一次方程,解决实际问题.【教学难点】厘清销售问题中的各种概念以及它们之间的关系,用一元一次方程解决相关问题活动一:结合生活,引入新知[设计意图]学习销售中的相关概念,为后面的学习作准备.【情境引入】生活中,我们经常可以在各种销售场合看见一些商品优惠信息,你知道它们的意思吗?下面的表格中列举了一些与销售有关的词语,请你将表格填完整.含义计算方法进价(成本) 购进商品时的价格标价商品上标出的价格折扣率实际售价占标价的百分率售价(打折后) 商品实际售出时的价格标价×折扣率利润销售商品过程中的纯收入售价 -进价利润率利润占进价的百分率利润进价×100%[教学提示]结合学生日常的知识储备,梳理与销售活动有关的概念,教师可适当提问,根据学生回答进行补充或纠正.活动二:运用数学,准确判断[设计意图]通过直观判断与准确计算的对比,感知数学的严谨性,培养理性思考的习惯. 探究点销售中的盈亏(教材P135探究1)一商店以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?问题1 你估计盈亏情况是怎样的?(汇总学生的答案)盈利、亏损、不盈不亏.问题2 销售的盈亏取决于什么?取决于总售价与总进价(两件衣服的进价之和)的关系.问题3 这一问题情境中哪些是已知量?哪些是未知量?如何设未知数?相等关系是什么?如何列方程?讨论内容分析问题中的已知量和未知量,应选用销售中的什么数量关系列方程解决问题?讨论结果已知量选用数量关系两件衣服的利润率未知量两件衣服各自的进价选用数量关系利润=进价×利润率进价+利润=售价解决过程:解:设盈利25%的那件衣服的进价是x元.依题意得x+0.25x=60.解得x=48.设亏损25%的那件衣服的进价是y元.依题意得y-0.25y=60.解得y=80.两件衣服的总进价为48+80=128(元).因为60+60-128=-8(元),所以卖这两件衣服共亏损了8元.追问列、解方程后得出的结论与你先前的估计一致吗?通过对本题的探究,你对方程在实际问题中的应用有什么新的认识?【对应训练】教材P136练习.[教学提示]让学生先大体估计盈亏,再通过准确计算检验他们的判断,经历从定性考虑(估计)到定量考虑(计算)的过程,认识数学的应用价值.[教学提示]提醒学生:在销售问题中,常常利用“利润=售价-进价”和“利润=进价×利润率”这两个算式表示同一商品的利润,从而可得到相等关系“售价-进价=进价×利润率”,并由此列方程.活动三:巩固提升,灵活运用[设计意图]学习与打折有关的销售问题. 例商场出售一种电视机,进价是4000元,标价是5000元,节日期间,商场对该种电视机进行打折出售,利润率为10%.这种电视机节日期间打了几折?解:设这种电视机节日期间打了x折.根据题意,得5000×"x" /"10" =4000×(1+10%).解得x=8.8.答:这种电视机节日期间打了八八折.【对应训练】商场出售一件商品,如果按标价的九折出售,那么商场盈利80元;如果按标价的八折出售,那么商场亏损70元.求这件商品的进价.解:设这件商品的标价为x元.根据题意,得0.9x-80=0.8x+70.解得x=1500.所以这件商品的进价为1500×0.9-80=1270(元).[教学提示]提醒学生:(1)关于售价,有两种计算方式:售价=标价×折扣率,售价=进价×(1+利润率).根据售价相等可列方程.(2)利润率是在进价的基础上计算的,折扣率是在标价的基础上计算的,计算时不要混淆.活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.已知商品的标价和折扣率,怎样求商品的售价?2.已知商品的售价和进价,怎样求利润和利润率?【作业布置】1.教材P140习题5.3第9,10题.【教学后记】第3课时球赛积分表问题【素养目标】1.通过探索球赛积分与胜、负、平场数之间的数量关系,进一步体会用方程模型解决实际问题.2.检验实际问题中方程的解的合理性.【教学重点】用方程模型解决球赛积分问题;根据方程解的合理性进行推理判断.【教学难点】准确构建方程模型解决球赛积分问题.【教学过程】活动一:创设情境,引入课题[设计意图]通过与球赛相关的话题,激发学生的学习兴趣.【情境引入】某次足球赛,甲、乙、丙、丁4个队分在同一个小组,4轮比赛过后,各个队的积分情况如表所示.球队比赛场次胜场平场负场积分甲 4 3 1 0 10乙 4 2 1 1 7丙 4 1 1 2 4丁 4 0 1 3 1上面各个队的积分是怎样计算的呢?今天我们就来学习与球赛积分相关的问题.[教学提示]可适当准备一些背景素材,与学生一起讨论,激活课堂氛围活动二:读取信息,解决问题[设计意图]培养学生从表格中获取信息的能力,以及运用一元一次方程解决实际问题的能力.设计意图检验方程的解是否符合问题的实际意义,发展推理能力. 探究点球赛积分表问题(教材P136探究2)队名比赛场次胜场负场积分前进14 10 4 24东方14 10 4 24光明14 9 5 23蓝天14 9 5 23雄鹰14 7 7 21远大14 7 7 21卫星14 4 10 18钢铁14 0 14 14问题1 仔细观察上面的积分表.我们通过哪一行,最容易得出负一场积几分?最下面一行.负一场积分为14÷14=1(分).问题2 你能进一步算出胜一场积多少分吗?设胜一场积x分.对于任何一支球队来说,有以下相等关系:由表中第一行数据可列方程10x+4×1=24.解得x=2.用表中其他行可以验证,得出结论:胜一场积2分,负一场积1分.问题3 用代数式表示一支球队的总积分与胜、负场数之间的数量关系.若一支球队胜m场,则总积分为m+14.问题4 某队的胜场总积分能等于它的负场总积分吗?设一支球队胜了y场,则负了(14-y)场.若这支球队的胜场总积分能等于负场总积分,则得方程2y=14-y.解得y="14" /"3" 因为y(所胜的场数)的值必须是整数,所以y="14" /"3" 不符合实际,由此可以判定没有哪支球队的胜场总积分能等于负场总积分.总结:【对应训练】1.阳光体育季,赛场展风采.七年级组织迎新拔河比赛,每班代表队都需比赛10场,下表是此次比赛积分榜的部分信息:班次比赛场次胜场负场积分A班10 10 0 30B班10 8 2 26C班10 0 10 10(1)结合表中信息可知:胜一场积_____分,负一场积_____分.(2)已知D班的积分是24分,求D班的胜场数.(3)某个班的胜场总积分能否是负场总积分的2倍?请说明理由.解:(2)设D班的胜场数为x,则负场数为10-x.由D班的积分是24分,得3x+1×(10-x)=24.解得x=7.因此,D班的胜场数为7.(3)能.理由:设这个班的胜场数为y,则负场数为10-y.若胜场总积分是负场总积分的2倍,则3y=2×1×(10-y).解得y=4.因此,当某个班的胜场数为4时,这个班的胜场总积分是负场总积分的2倍.2.教材P137练习第2题.教学建议[教学提示]通过观察表格,获取信息,是很有实际应用价值的能力,教学中注意对学生这方面能力的培养.[教学提示]问题4的分析过程中渗透了反证法的思想,即先假设某队的胜场总积分等于它的负场总积分,由此列出方程,解得获胜场次不是整数而是分数,这显然不合乎实际情况,由这种矛盾现象可知先前的假设不能成立,从而作出否定的判断.建议教学中不要提及反证法,只要引导学生注意这里方程的解应是整数,由此作出判断就够了活动三:知识升华,巩固提升[设计意图]学会解决不同规则下的比赛积分问题. 例在一次有12个队参加的足球循环赛中(每两队之间比赛一场),规定胜一场积3分,平一场积1分,负一场积0分,某队在这次循环赛中所胜场数比所负场数多2场,结果共积19分.求该队在这次循环赛中的平场数.解:设该队的负场数为x,则胜场数为x+2,平场数为11-x-(x+2).根据题意,得3(x+2)+1×[11-x-(x+2)]=19.解得x=4.所以11-x-(x+2)=1.答:该队在这次循环赛中的平场数为1.【对应训练】教材P137练习第1题.[教学提示]给学生说明:不同的比赛,规则各不相同.对于比赛结果,除了有胜、负外,可能还有平局.但一般来说,有以下相等关系(以有平局的情况为例):①比赛总场数=胜场数+平场数+负场数;②比赛总积分=胜场总积分+平场总积分+负场总积分.活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.我们是怎样根据表格中的信息,得出篮球联赛的胜、负积分规则的?2.在实际问题中,通过一元一次方程求出解后,还要注意什么问题?【作业布置】1.教材P140习题5.3第7,12,13题.【教学后记】第4课时方案选择问题【素养目标】1.能根据文字构建直观的数学模型,利用图表分析实际情境和问题.2.通过分类讨论解决最优方案选择问题,锻炼统筹规划的能力.【教学重点】从实际问题中构建计费问题的数学模型,在不同区间内对各方案进行比较.【教学难点】准确分类讨论,得出最优方案.【教学过程】活动一:结合生活,引入新知[设计意图]通过生活中常见的情境,引发学生的讨论和兴趣.【问题引入】两款空调的部分信息如表.品牌售价/元平均每年耗电量/(kW·h)A 3 200 650B 2 400 900购买哪款空调较划算呢?下面是李明和王芳的对话,他们谁说得有道理?[教学提示]让学生自行讨论,适当发言,留意学生作选择的依据,后面教学时有针对性地展开讲解.活动二:交流讨论,探究新知[设计意图]整合信息,逐步设问,引出解决问题的思路. 探究点方案选择不同能效空调的综合费用比较(教材P138探究3) 购买空调时,需要综合考虑空调的价格和耗电情况.某人打算从当年生产的两款空调中选购一台,表中是这两款空调的部分基本信息.如果电价是0.5元/(kW·h),请你分析他购买、使用哪款空调综合费用较低.两款空调的部分基本信息匹数能效等级售价/元平均每年耗电量/(kW·h)1.5 1级 3 000 6401.5 3级 2 600 800问题1 一台空调的综合费用包括哪些部分?空调的售价、电费.问题2 一台空调使用了若干年,产生的总电费是怎样计算的?电价×每年耗电量×使用年数.问题3 设空调的使用年数是t,请你用代数式表示两款空调的综合费用.1级能效空调的综合费用(单位:元)是3000+0.5×640t,即3000+320t.3级能效空调的综合费用(单位:元)是2600+0.5×800t,即2600+400t.问题4 两款空调的综合费用与使用年数t有关,如何比较它们的大小呢?(1)t取什么值时,两款空调的综合费用相等?列方程3000+320t=2600+400t,解得t=5.即t=5时,两款空调的综合费用相等.(2)t取其他值时,两款空调的综合费用大小如何比较呢?我们把表示3级能效空调的综合费用的式子2600+400t变形为1级能效空调的综合费用与另外一个式子的和,即(3000+320t)+(80t-400),也就是3000+320t+80(t-5).这样,当t<5时,80(t-5)是负数,这表明3级能效空调的综合费用较低;当t>5时,80(t-5)是正数,这表明1级能效空调的综合费用较低.【对应训练】教材P139练习第1题.[教学提示]本课题涉及一定的实际生活经验,学生如有理解困难的地方,教师可适当展开讲解.[教学提示]选择最划算的方案时,需要进行先分类再综合的思考,其中用方程找关键时间(费用相同时的使用年数)是重要的一步.活动三:知识升华,巩固提升[设计意图]对方案选择问题的掌握. .例某学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为6000元并且多买都有一定的优惠,甲商场的优惠条件是:第一台按原报价收费,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.(1)设购买x台电脑,则甲商场费用为_______元,乙商场费用为_______元.(均用含x的代数式表示)(2)购买多少台电脑时,两家商场收费一样?(3)学校应该怎样选择?解:(1)(4500x+1500) 4800x(2)当两家商场收费一样时,4500x+1500=4800x,解得x=5.所以当购买5台电脑时,两家商场收费一样.(3)当购买电脑台数小于5时,选择乙商场购买;当购买电脑台数等于5时,选择哪家商场都一样;当购买电脑台数大于5时,选择甲商场购买.【对应训练】教材P139练习第2题.[教学提示]在对不同方案进行比较时,提醒学生注意临界点,以及临界点前后,不同方案在单件上优惠力度的差别.活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.计算空调的综合费用时,不确定的因素是什么?2.两款空调的综合费用的大小关系是确定的吗?有什么特点?3.如何选择合适的方案?【作业布置】1.教材P141习题5.3第14题.【教学后记】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学一元一次方程教案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]授课章节:第三章一元一次方程授课日期:课题:教学目标知识:了解方程、一元一次方程的概念.根据方程解的概念,会判断一个数是否是一个方程的解.能力:通过对多种实际问题的分析,能列出该问题的方程,感受方程作为刻画现实世界有效模型的意义.情感、态度、价值观:鼓励学生进行观察思考,发展合作交流的意识和能力.教学重点:了解一元一次方程的有关概念,会根据已知条件,设未知数,列出简单的一元一次方程,并会估计方程的解.教学难点:找出问题中的相等关系,列出一元一次方程以及估计方程的解。
教学过程:问题1.一辆客车和一辆卡车同时从A地出发,沿同一公路同向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早一小时经过B地,A,B 两地间的路程是多少(1)你会用算术方法解决这个问题吗列式试试.(2)如果设A,B两地相距xkm,你能分别列式表示客车与卡车从A地到B地的行驶时间吗客车时间,货车时间.(3)如何用式子表示两车行驶时间之间的关系.问题2:对于上述问题,你还能列出其他的方程吗问题3:比较列算式和列方程解决这个问题个有什么特点二、探究新知问题4:你能归纳出方程的概念么方程是含有未知数的等式.三、典型例题例1.根据下列问题,设未知数并列方程.(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少(2)一台计算机已使用了1700h,预计每月再用150h,经过多少月这台计算机的使用时间达到规定的检修时间2450h(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生小结:列方程时,要先设未知数,然后根据问题中的等量关系,写出方程.问题5:观察上面的例题,列出的三个方程有什么特点只含有一个未知数(元),并且未知数的指数都是1(次),等号两边都是整式的方程叫一元一次方程.练习下列式子哪些是方程哪些是一元一次方程(1)21x+;(2)2153m+=;(3)3554x x-=+;(4)2260x x+-=;(5)3 1.83x y-+=;(6)3915a+>;(7)1513x=-;(8)231x-+≠问题6:能满足方程4x=24的未知数的值是多少可以发现,当x=6时,4x的值是24,这时方程等号左右两边相等,x=6叫做方程4x=24的解.练习:x=1000和x=2000中哪一个是方程()x=80的解课堂练习依据下列问题,设未知数,列出方程.(1)环形跑道一周长400m,沿跑道跑多少周,可以跑3000m(2)甲铅笔每支元,乙铅笔每支元,用9元钱买了两种铅笔共220支,两种铅笔各买了多少支(3)一个梯形的下底比上底多2cm,高是5cm,面积是402cm,求上底.(4)用买10个大水杯的钱,可以买15个小水杯,大水杯比小水杯单价多5元,两种水杯的单价各是多少四、小结:(1)本节课学了哪些主要内容(2)一元一次方程的三个特征各指什么(3)从实际问题中列出方程的关键是什么课后反思:授课章节:第三章一元一次方程授课日期:课题:教学目标:知识:通过观察、分析,将有理数的运算推广到字母运算,掌握用字母表示等式的两条性质.能力:培养观察能力、思考能力、归纳能力和创新能力.会用等式的两条性质解一元一次方程.情感、态度、价值观:鼓励学生对事物进行观察和思考,发展合作交流的意识和能力.教学重点:等式的性质的推导和应用.教学难点:对等式性质的理解.教学过程:问题1:等式具有什么样的性质呢我们不妨做一个实验,请同学们认真观察,然后用“>、<、=”填空: 5=55+65+6;-7=-7-7-5-7-5;a =b a +5b+5 a =b a -2b-2;x =yx +m y +m a =b a +(m+n )b+(m+n )问题2:我们再看一个实验,请同学们认真观察后然后用“>、<、=”填空: 6=66×56×5;-3=-3-3×(-2)-3×(-2);a =b6a 6b8=88÷28÷2;-10=-10-10÷(-5)-10÷(-5);m=nmn归纳:2333152315m n n m x x x x y +=++=⨯+=⨯+=, , , 这样的式子叫等式. 问题3:通过以上观察,你能说说等式有什么性质么等式性质1:等式两边都加(或减)同一个数(或式子),结果仍相等;等式性质2:等式两边乘同一个数,或除以同一个不等于0的数,结果仍相等;追问1:根据等式的两条性质,对等式进行变形需要注意什么1.必须等式两边同时进行,即:•同时加或减,同时乘或除,不能漏掉一边;2.等式变形时,两边加、减、乘、除的数或式必须相同;3.利用性质2进行等式变形时,须注意除以的同一个数不能是0.如果b a =,那么=±c a 如果b a =,那么=ac ;如果b a =,0≠c 那么=c a。
追问2:(1)从a+b=b+c ,能否得到a=c (2)从a -b=c -b ,能否得到a=c(3)从ab=bc 能否得到a=c (4)从a b =c b ,能否得到a=c(5)从xy=1,能否得到x=1y例1.用等式的性质解方程.(1)6315x x =+(2)7332+-=-x x练习:1.下列等式变形错误的是()A.由a =b 得a +5=b +5B.由a =b 得99a b =--C.由x +2=y +2得x =yD.由-3x =-3y 得x =-y2.运用等式性质进行的变形,正确的是()A.若a =b ,则a +c=b -c;B.若a b c c =,则a =b;C.若a =b ,则a b c c =;D.若a 2=3a ,则a =33.用适当的数或式子填空,使所得结果仍是等式,并说明是根据等式的哪一条性质以及怎样变形的:(1)如果x +8=10,那么x =10_________;()(2)如果4x =3x +7,那么4x -_______=7;()(3)如果-3x =8,那么x =________;()4.用等式的性质解方程⑴2x -6=14⑵8y =4y +1⑶-35x -1=4⑷2x +3=x -1小结:课后反思:授课章节:第三章一元一次方程授课日期:课题:解一元一次方程(一)合并同类项与移项教学目标知识:1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.2.掌握移项和合并,理解其数学本质,会解“ax +bx=c ”类型的一元一次方程.能力:能够找出简单实际问题中的已知量和未知量,分析它们之间的数量关系,列出方程.情感、态度、价值观:初步体会一元一次方程的应用价值,感受数学文化. 教学重点:合并同类项和移项法则.教学难点:合并同类项和移项,系数化为1等步骤的数学本质.教学过程:问题1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,•今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机题目中的相等关系为:_____________________列方程:_____________问题2:回顾解决这个问题的过程,你发现其中哪些步骤和以前所学的哪些知识有联系例1解方程(1)86252-=-x x ;(2)364155.135.27⨯-⨯-=-+-x x x x 例2有一列数,按一定规律排列成1,-3,9,-27,81,-243,…其中某三个相邻数的和是-1701,这三个数各是多少追问1:知道了三个数中的某一个,是不是就可以知道另外两个数了追问2:你是否能找到不同的设置未知数的办法来解决这个问题问题3:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生分析:设这个班有x名学生,根据第一种分法,分析已知量和未知量间的关系;(1)每人分3本,那么共分出______本;共分出3x本和剩余的20本,可知道这批书共有________本;根据第二种分法,分析已知量与未知量之间的关系.(2)每人分4本,那么需要分出_______本;需要分出4x本和还缺少25本那么这批书共有________本;列方程:__________________;问题4:怎样才能使它转化为x=a(常数)的形式呢例3解方程(1)3x+7=32-2x(2)x-3=32x+1小结:解方程的步骤:例4:某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t;如用新工艺,则废水排量比环保限制的最大量少100t.新、旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少课堂练习1.解方程:(1)6x-7=4x-5(2)12x-6=34x(3)3x+5=4x+1(4)9-3y=5y+52.解下列方程:(1)529x x-=(2)3722x x+=(3)30.510x x-+=(4)7 4.5 2.535x x-=⨯-3.某工厂的产值连续增长,去年是前年的倍,今年是去年的2倍,这三年的总产值为550万元.前年的产值是多少4.某班学生共60人,外出参加种树活动,根据任务的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.小结:课后反思:授课章节:第三章一元一次方程授课日期:课题:解一元一次方程(二)去括号教学目标知识:掌握解方程过程中“去括号”的步骤,进一步理解去括号法则的数学本质. 能力:准确、熟练地解含有括号的一元一次方程,培养整式的计算能力.情感、态度、价值观:增强自信心和意志力,激发学习兴趣.教学重点:解方程的去括号法则.教学难点:去括号法则的数学本质.教学过程:问题1:请大家回忆去括号法则,化简下列各式:(1))2(24-+x x =___________;(2))1(73--x x =___________;问题2:某工厂加强节能措施,去年下半年与今年上半年相比,月平均用电量减少2000kwh(千瓦时),全年用电15万kwh (千瓦时),这个工厂去年上半年每月平均用电是多少例1解方程(1)2x-(x+10)=5x+2(x-1)(2))3(23)1(73+-=--x x x .注意:1.当括号前是“-”号,去括号时,各项都要___________.2.括号前有数字,则要乘遍括号内___________,不能漏乘并注意___________.3.去括号的的本质是______________________.归纳:解一元一次方程的步骤:___________→___________→___________→___________.例2一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了小时.已知水流的速度是3km/h ,求船在静水中的平均速度.分析:一般情况下可以认为这艘船往返的路程相等,由此可填空:顺流速度________顺流时间________逆流速度_________逆流时间解:练习1.方程3x +2(3x -1)-4(x -1)=0,去括号正确的是()A .3x +6x -2-4x +1=0B .3x +6x +2-4x -4=0C .3x +6x +2+4x +4=0D .3x +6x -2-4x +4=02.若x =2是方程k (2x -1)=kx +7的解,则k 的值为()A .1B .-1C .7D .-73.方程2(x -3)=6-x 的解是x =___________4.解方程⑴2(x+3)=5x(2)4-3(20-x )=3(3)4x +3(2x –3)=12-(x +4)⑷2(10-=-(+2)(5))131(72)421(6--=+-x x x(6)2-3(x+1)=1-2(1+小结:课后反思:授课章节:第三章一元一次方程授课日期:课题:解一元一次方程(二)去分母 教学目标知识:掌握解方程过程中“去分母”的步骤,理解去分母的数学本质. 能力:准确、熟练地解含有分母的一元一次方程,进一步提高运算能力.情感、态度、价值观:通过将未知问题转化为已知问题,体会方程的同解变换和数学的转化思想.教学重点:准确、熟练地解含有分母的一元一次方程. 教学难点:去掉分母后记得给分子添加括号. 教学过程:问题1:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,求这个数. 问题2:解方程:53210232213+--=-+x x x 小结:解一元一次方程的步骤: 例1:解方程:(1)422121x x -+=-+(2)3123213--=-+x x x归纳:去分母应注意:① 程两边应乘以各分母的公倍数;②不要漏乘的项;③分数线有括号作用,去掉分母后,若分子是一个多项式,要加,视多项式为一个整体. 练习1.小明是个“小马虎”下面是他做的题目,我们看看对不对如果不对,请帮他改正.(1)方程1024x x --=去分母,得214x x -+=; (2)方程1136x x-+=去分母,得122x x +-=;(3)方程11263x x --=去分母,得312x x --=;(4)方程1123xx -=+去分母,得3261x x -=+.2.解方程312148x x -+-=,去分母正确的是()A .2(x -3)-(1+2x )=1B .(x -3)-(1+2x )=8C .2x -3-1-2x =8D .2(x -3)-(1+2x )=83.解方程:(1)32213415x x x --+=-;(2)5124121223+--=-+x x x ; (3)53210232213+--=-+x x x (4)32116110412x x x --=+++ (5)632141+-=+-x x ;(6)223131x x --=--; 小结: 课后反思:授课章节:第三章一元一次方程 授课日期:课题:一元一次方程的解法(习题课) 教学目标知识:了解一元一次方程的一般形式,掌握解一元一次方程过程一般步骤,及其理论依据、数学本质.理解并会解简单的含参方程.能力:准确地解具有一定难度的一元一次方程,进一步提高运算能力.情感、态度、价值观:通过将未知问题转化为已知问题,体会一元一次方程的同解变换;通过对含参方程的学习,进一步体会分类讨论的数学思想. 教学重点:准确、熟练地解一元一次方程.教学难点:含参方程的学习. 教学方法:探究与讲解相结合. 教学过程:问题1:解方程:432151413121=⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛-x问题2:解方程:3.006.003.04.072.05.1-+=x 问题3:解关于x 的方程:1ax x b +=+提问:(1)这是什么方程为什么(2)你打算如何解这个方程 问题4:解关于x 的方程:1ax bx b +=+问题5:(1)在解决问题3和问题4的过程中,你遇到了什么问题是如何解决的(2)为什么要这样解决解决问题的依据是什么练习: 解方程:(1)01121314151=+⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-x (2)3.01.04.05.03.07.0-=-x x 小结: 课后反思:授课章节:第三章一元一次方程 授课日期:课题:实际问题与一元一次方程. 教学目标知识:用一元一次方程解决实际问题,及解决实际问题的步骤. 能力:感受探究的过程,培养创新思维和能力,逐步建立方程思想.情感、态度、价值观:在探究性活动的学习过程中,形成良好的学习方式和学习态度,借助生活中熟悉的例子认识数学的应用价值.教学重点:用一元一次方程解决实际问题教学难点:将实际问题转化为数学问题,通过列方程解决问题教学过程:探究1.生产调度规划分工问题某车间有22名工人,每人每天可生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉与螺母刚好配套,应安排生产螺钉和螺母的人各多少名分析:本题的相等关系是.归纳:用一元一次方程解决实际问题的基本过程:练习:1.一套仪器由一个A部件和三个B部件构成,用1m3钢材可以做40个A部件或240个B部件,现要用6m3钢材制造这种仪器,应用多少钢材制造A部件,多少钢材制造B部件,恰好配成这种仪器多少套2.某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出土及时运走3.某某车间每天能生产甲种零件120个,或者乙种零件100个.甲、乙两种零件分别取3个、2个才能配成一套,要在18天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数探究2.工程问题整理一批图书,由一个人做需要40h 完成,现规划由一部分人先做4h ,然后增加2人与他们一起做8h ,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作分析:如果把总工作量设为1,则人均效率(一个人一小时完成的工作量)为 工作量、人均效率、人数、时间四个量之间的关系式是 练习1.一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线2.一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程有乙队完成,问乙队还需几天才能完成3、一件工作由一个人做要500小时完成,现在计划由一部分人先做5小时,再增加8人和他们一起做10小时,完成了这项工作,问:先安排多少人工作 探究3.销售中的盈亏问题一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损或是不盈不亏. 练习:1、两件商品都卖84元,其中一件亏本20%,另一件赢利40%,则两件商品卖后().A .赢利元B .亏本3元C .赢利3元D .不赢不亏2、一批校服按八折出售,每件为x 元,则这批校服每件的原价为() %χ元元%80χ元D .元%20χ3、一家三人(父、母、女儿)准备参加旅行团外出旅游,甲旅行社告知:“父母买全票,女儿按半价优惠”,乙旅行社告知:“家庭旅游可按团体票计价,即每人均按8折优惠收费.”若这两家旅行社每人的原票价相同,那么优惠条件是()A.甲比乙更优惠B.乙比甲更优惠;C.甲与乙相同D.与原票价有关4.某商店有两种书包,每个小书包比大书包的进价少10元,而它们的售后利润额相同,其中每个小书包的盈利率为30%,每个大书包的盈利率为20%,试求两种书包的进价.注:盈利率=(售价-进价)÷进价5.我们的身边有一些股民,某股民将甲、乙两种股票卖出,甲种股票卖出1500元,盈利20%,乙种股票卖出1600元,但亏损20%,该股民在这次交易中是盈利还是亏损,盈利或亏损多少元探究4.球赛积分问题某次篮球联赛积分榜(1)根据表中信息,胜一场得分,负一场得分.(2)探究某球队总积分与胜、负场数之间的数量关系:若某球队总积分为M,胜场为n,则用含n的式子表示M:M=_____________(3)有人说:在这个联赛中,有一个队的胜场总积分等于它的负场总积分.你认为这个说法正确吗请说明理由.追问:我们检验实际问题方程的解的时候,需要检验几个方面用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合实际意义.练习:1.在一次有12支球队参加的足球循环赛中(每两队必须赛一场),规定胜一场3分,平一场1分,负一场0分,某队在这次循环赛中所胜场数比所负的场数多两场,结果得18分,那么该队胜了几场2.初一级进行法律知识竞赛,共有30题,答对一题得4分,不答或答错一题倒扣2分.(1)小明同学参加了竞赛,成绩是96分.请问小明在竞赛中答对了多少题(2)小王也参加了竞赛,考完后他说:“这次竞赛我一定能拿到100分.”请问小王有没有可能拿到100分试用方程的知识来说明理由.3、在一次数学竞赛中,共有60题选择题,答对一题得2分.答错一题扣1分,不答题不得分也不扣分.(1)小华在竞赛中有2题忘记回答,结果他得了92分.问小华答对了多少题(2)小胡放言:“我就算有3题没做也能拿100分.”请问小胡这个说法正不正确说明理由探究5.电话计费问题下表中有两种电话计费方式:考虑下列问题:(1)设一个月内用移动电话主叫为tmin(t是正整数),根据上表,列表说明:当t在不同时间范围内取值时,按方式一与方式二如何计费.(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗通过计算验证你的看法.分析:计费与主叫时间相关,计费时首先要看主叫是否超过限定时间,因此,考虑t的取值时,时间范围的划分点是与.当t在不同范围内取值时,方式一与方式二的计费列表:练习:用A4纸在某誊印社复印文件,复印页数不超过20时,每页收费元;复印页数超过20时,超过部分每页收费降为元.在某图书馆复印同样的文件时,不论复印多少页,每页收费元,复印张数为多少时,两处收费相同小结:课后反思:。