现代分子生物学 第七章 真核生物基因表达调控

合集下载

真核生物基因表达的调控

真核生物基因表达的调控

真核生物基因表达的调控09中西七年制2班内容摘要:真核生物细胞结构比原核生物复杂,转录和翻译在时空上都被分隔开,分别在细胞核和细胞质中先后进行,并且基因组和染色体结构复杂,蕴藏大量的调控信息,因此真核生物基因表达的调控要比原核生物要复杂的多。

真核生物可以从多个层次调控基因表达。

一、真核生物基因表达调控的种类(一)根据其性质可分为两大类:一是瞬时调控或称为可逆性调控,它相当于原核细胞对环境条件变化所做出的反应。

瞬时调控包括某种底物或激素水平升降时,及细胞周期不同阶段中酶活性和浓度的调节。

二是发育调控或称不可逆调控,是真核基因调控的精髓部分,它决定了真核细胞生长、分化、发育的全部进程。

(二)根据基因调控在同一事件中发生的先后次序又可分为:DNA水平调控--转录水平调控--转录后水平调控--翻译水平调控——翻译后水平调控二、真核生物基因表达的调控的多层次性真核生物基因表达可以随细胞内外环境条件的改变以及生长发育的不同阶段而在不同表达水平加以精确地调控。

主要体现在以下几个水平上:(一)DNA 水平:主要包括:染色质丢失、基因扩增、基因重排、染色体DNA的修饰和异染色质化等,这些变化都是永久性的,会随着细胞分裂传递给子代细胞,使这类细胞具有特定的表型,成为某种特定的分化细胞。

1:基因的丢失、扩增与重排1)基因丢失:只存在于一些低等生物体细胞中。

在细胞分化时,当需要消除某些基因活性时才发生。

采用基因丢失的方式调控是不可逆的。

体现了真核细胞全能性。

例如小麦瘿蚊的染色体丢失,瘿蚊卵跟果蝇相似(始核分裂胞质不分裂),其卵的后端含有特殊的细胞质,极细胞质核→保持了全部40条染色体→生殖细胞→其他细胞质区域核→丢失32条、留8条→体细胞;2)基因扩增:是指某些基因的拷贝数专一性增大的现象,它使得细胞在短期内产生大量的基因产物以满足生长发育的需要,是基因活性调控的一种方式。

如非洲爪蟾的基因扩增,是两栖类和昆虫卵母细胞rRNA基因的扩增。

原核、真核生物基因及表达调控

原核、真核生物基因及表达调控

原核、真核生物基因及表达调控引言现代生物学中“基因”一词甚为流行,细胞学、遗传学、生物化学等,以及各种生物学课本中,都涉及到“基因”一词。

甚至象典型的宏观生物学科——生态学,也把一片森林称为一个“基因库”[1]。

现代生物学已经完全证明,DNA 分子是由称为核普酸的有机分子线性聚合而成。

基因就是核普酸按一定顺序排列而成的DNA分子片段,它携带着遗传信息。

基因表达(gene expression)是指细胞在生命过程中,把储存在DNA顺序中遗传信息经过转录和翻译,转变成具有生物活性的蛋白质分子。

其实质就是遗传信息的转录和翻译。

在个体生长发育过程中,生物遗传信息的表达按一定的时序发生变化(时序调节),并随着内外环境的变化而不断加以修正(环境调控)[2]。

原核生物和真核生物的基因及表达过程有着差异。

随着世界分子生物学研究不断深入,基因表达技术有了很大的提高。

迄今为止,人们已经研究开发出多种原核和真核表达系统用以生产重组蛋白[3]。

一.原核、真核生物基因结构原核生物基因分为编码区与非编码区,所谓的编码区就是能转录为相应的信使RNA,进而指导蛋白质的合成,非编码区位于编码区的上游及下游。

[4]在调控遗传信息表达的核苷酸序列中最重要的是位于编码区上游的RNA聚合酶结合位点。

RNA聚合酶是催化DNA转录为RNA,能识别调控序列中的结合位点,并与其结合。

真核生物基因结构见图1:图1 真核生物基因结构二.原核、真核生物基因结构的区别最主要的在于真核基因是不连续的,而原核基因是连续的。

所谓真核基因的不连续,即一个基因的编码序列也叫外显子,被一个或多个非编码序列,又叫内含子所间隔。

[5]这些内含子和外显子同属一个转录单位,转录形成前体。

经过转录的加工,即切去内含子,重新连按外显子,从而得到成熟。

而绝大多数的原核基因是连续的,没有内含子的间隔,转录产生成熟。

不仅如此,而且凡在代谢途径上功能有关的多个基因可能紧密相联,与它们的调控基因一起组成一个操纵子,转录到一条链。

分子生物学智慧树知到课后章节答案2023年下山东农业大学

分子生物学智慧树知到课后章节答案2023年下山东农业大学

分子生物学智慧树知到课后章节答案2023年下山东农业大学山东农业大学第一章测试1.格里菲斯转型实验得出了什么结论()答案:DNA是生命的遗传物质,蛋白质不是遗传物质2.现代遗传工程之父Paul Berg建立了什么技术()答案:重组DNA技术3.下列哪种技术可以用于测定DNA的序列()答案:双脱氧终止法4.RNA干扰是指由单链RNA诱发的基因沉默现象,其机制是通过阻碍特定基因的翻译或转录来抑制基因表达。

()答案:错第二章测试1.比较基因组学是基于基因组图谱和测序基础上,对已知的基因和基因组结构进行比较,来了解基因的功能、表达机理和物种进化的学科。

()答案:对2.以下哪项是原核生物基因组的结构特点()答案:操纵子结构3.细菌基因组是()答案:环状双链DNA4.下列关于基因组表述错误的是()答案:真核细胞基因组中大部分序列均编码蛋白质产物5.原核生物的结构基因多为单顺反子,真核生物的结构基因多为多顺反子。

( )答案:错6.病毒基因组可以由DNA组成,也可以由RNA组成。

( )答案:对第三章测试1.在原核生物复制子中以下哪种酶除去 RNA 引发体并加入脱氧核糖核苷酸?()答案:DNA 聚合酶 I2.使 DNA 超螺旋结构松驰的酶是()。

答案:拓扑异构酶3.从一个复制起点可分出几个复制叉?()答案:24.所谓半保留复制就是以 DNA 亲本链作为合成新子链 DNA 的模板,这样产生的新的双链 DNA 分子由一条旧链和一条新链组成。

( )答案:对5.DNA 的5′→3′合成意味着当在裸露3′→OH 的基团中添加 dNTP 时,除去无机焦磷酸 DNA链就会伸长。

( )答案:对第四章测试1.对RNA聚合酶的叙述不正确的是()。

答案:全酶不包括ρ因子2.原核生物RNA聚合酶识别启动子位于()。

答案:转录起始位点上游3.增强子与启动子的不同在于()。

答案:增强子与转录启动无直接关系4.启动子总是位于转录起始位点的上游。

分子生物学复习总结题-第七章-基因表达调控

分子生物学复习总结题-第七章-基因表达调控

第七章基因表达调控一、选择单选:1. 关于“基因表达”的概念叙述错误的是A. 其过程总是经历基因转录及翻译的过程B. 某些基因表达产物是蛋白质分子C. 某些基因表达经历基因转录及翻译等过程D. 某些基因表达产物是RNA分子E. 某些基因表达产物不是蛋白质分子2. 关于管家基因叙述错误的是A. 在生物个体的几乎各生长阶段持续表达B. 在生物个体的几乎所有细胞中持续表达C. 在生物个体全生命过程的几乎所有细胞中表达D. 在生物个体的某一生长阶段持续表达E. 在一个物种的几乎所有个体中持续表达3. 目前认为基因表达调控的主要环节是A. 翻译后加工B. 转录起始C. 翻译起始D. 转录后加工E. 基因活化4. 顺式作用元件是指A. 基因的5’、3’侧翼序列B. 具有转录调节功能的特异DNA序列C. 基因的5’侧翼序列D. 基因5’、3’侧翼序列以外的序列E. 基因的3’侧翼序列5. 一个操纵子(元)通常含有A. 数个启动序列和一个编码基因B. 一个启动序列和数个编码基因C. 一个启动序列和一个编码基因D. 两个启动序列和数个编码基因E. 数个启动序列和数个编码基因6. 反式作用因子是指A. 对自身基因具有激活功能的调节蛋白B. 对另一基因具有激活功能的调节蛋白C. 具有激活功能的调节蛋白D. 具有抑制功能的调节蛋白E. 对另一基因具有功能的调节蛋白7. 乳糖操纵子(元)的直接诱导剂是A. 葡萄糖B. 乳糖酶C. β一半乳糖苷酶D. 透酶E. 别乳糖8. Lac阻遏蛋白结合乳糖操纵子(元)的A. CAP结合位点B. O序列C. P序列D. Z基因E. I某因9. cAMP与CAP结合、CAP介导正性调节发生在A. 葡萄糖及cAMP浓度极高时B. 没有葡萄糖及cAMP较低时C. 没有葡萄糖及cAMP较高时D. 有葡萄糖及cAMP较低时E. 有葡萄糖及CAMP较高时10. Lac阻遏蛋白由A. Z基因编码B. Y基因编码C. A基因编码D. I互基因编码E. 以上都不是11. 色氨酸操纵子(元)调节过程涉及A. 转录水平调节B. 转录延长调节C. 转录激活调节D. 翻译水平调节E. 转录/翻译调节12.基因表达的产物不包括A.蛋白质B. mRNAC. rRNAD. SnRNAE. tRNA13.真核基因调控中最重要的环节是A. 基因重排B. 基因转录C. DNA的甲基化与去甲基化D. mRNA的衰减E. 翻译速度14.RNA聚合酶结合于操纵子的A. 结构基因起始区B. 阻遏物基因C. 诱导物D. 阻遏物E. 启动子15. cAMP对转录的调控作用是通过A. cAMP转变为CAPB. CAP转变为CampC. 形成cAMP-CAP复合物D. 葡萄糖分解活跃,使cAMP增加,促进乳糖利用来扩充能源E. cAMP是激素作用的第二信使,与转录无关16. 原核生物与DNA结合并阻止转录进行的蛋白质称为A. 正调控蛋白B. 阻遏物C. 诱导物D. 反式作用因子E. 分解代谢基因激活蛋白17.增强子A. 是特异性高的转录调控因子B. 是真核生物细胞内的组蛋白C. 原核生物的启动子在真核生物中就称为增强子D. 是增强启动子转录活性的DNA序列E. 是在结构基因的5'-端的DNA序列18.关于色氨酸操纵子的错误叙述是:A.trpR参与阻抑调控B.色氨酸阻抑结构基因转录C.前导序列参与色氨酸操纵子的衰减调控D.色氨酰tRNA参与色氨酸操纵子的衰减调控E.前导序列的序列3和序列4形成衰减子结构多选:1、基因表达调控环节包括A.DNA复制B.转录起始C.转录后加工D. mRNA降解E.翻译2、关于原核生物基因表达A.每个原核细胞的一切代谢活动都是为了适应环境而更好地生存和繁殖B.操纵子是原核生物绝大多数基因的表达单位C.原核生物基因表达的特异性由 因子决定D.原核生物基因表达既存在正调控,又存在负调控E.转录起始是原核生物基因表达主要的调控环节3、原核生物基因的调控序列包括A.启动子B.终止子C.操纵基因D.增强子E.衰减子4、原核生物基因的调控蛋白包括A.特异因子B.起始因子C.延长因子D.激活蛋白E.阻抑蛋白5、乳糖操纵子包含以下哪些结构?cZB. lacAC. lacOD. lacPE. lacI6、关于乳糖操纵子的错误叙述是:A.乳糖操纵子编码催化乳糖代谢的3种酶cI促进乳糖操纵子转录C.别乳糖促进乳糖操纵子转录D.CAP促进乳糖操纵子转录E.cAMP抑制CAP的激活效应7、色氨酸操纵子的结构A.含trpYB.含trpAC.含trpOD.含trpPE.含前导序列8、与RNA聚合酶活性调控有关的成分有A.tRNAB.核糖体C.严谨因子D.鸟苷五磷酸E.鸟苷四磷酸9、以下关于cAMP对原核基因转录的调控作用的叙述,正确的A. 葡萄糖与乳糖并存时,细菌优先利用乳糖B. cAMP-CAP复合物结合于启动子上游C. 葡萄糖充足时,cAMP水平不高D. cAMP可与CAP结合成复合物E. 葡萄糖和乳糖并存时,细菌优先利用葡萄糖10、原核生物基因表达在翻译水平上的调控与那些因素有关?A.mRNA前体后加工B. mRNA稳定性C. SD序列D.翻译阻抑E.反义RNA11、以下哪些环节存在真核生物的基因表达调控A.DNA和染色质水平B.转录水平C. 转录后加工水平D. 翻译水平E. 翻译后加工水平12、与原核生物相比,真核生物的基因表达调控的特点是A.转录的激活与转录区染色质结构的变化有关B.转录和翻译分隔进行,具有时空差别C.转录后加工更复杂D.既有瞬时调控又有发育调控E.转录调控以正调控为主13、在真核生物基因表达调控过程中,DNA水平的调控包括哪些内容A.染色质结构改变B. DNA甲基化C. 基因重排D. 基因扩增E.染色质丢失14、关于真核生物基因表达转录水平的调控A.转录水平的调控实际上是对RNA聚合酶活性的调控B.RNA聚合酶Ⅱ是转录调控的核心C.转录水平的调控主要通过RNA聚合酶、调控序列和调控蛋白的相互作用来实现D.真核生物的调控序列又称顺式作用元件E.真核生物基因表达的调控蛋白即转录因子,又称为反式作用因子15、真核生物的调控序列有哪些?A.启动子B.终止子C.增强子D.沉默子E.衰减子16、哪些属于真核生物基因表达的调控蛋白A.转录因子B.反式作用因子C.通用转录因子D. 反式激活因子E.共激活因子17、哪些是真核生物调控蛋白所含的DNA结合域A.螺旋-转角-螺旋B.锌指C.富含脯氨酸域D.亮氨酸拉链E.螺旋-环-螺旋。

分子生物学复习7-9

分子生物学复习7-9

第七章基因的表达与调控(上)——原核基因表达调控模式(一)基本概念1.基因表达:细胞在生命过程中,把蕴藏在DNA中的遗传信息经过转录和翻译,转变成为蛋白质或功能RNA分子的过程称为基因表达。

2.基因表达调控:围绕基因表达过程中发生的各种各样的调节方式都统称为基因表达调控。

rRNA或tRNA的基因经转录和转录后加工产生成熟的rRNA或tRNA,也是rRNA或tRNA 的基因表达,因为rRNA或tRNA就具有在蛋白质翻译方面的功能。

3.组成型表达:指不大受环境变动而变化的一类基因表达。

如DNA聚合酶,RNA聚合酶等代谢过程中十分必需的酶或蛋白质的表达。

管家基因:某些基因在一个个体的几乎所有细胞中持续表达,通常被称为管家基因。

管家基因无论表达水平高低,较少受到环境因素的影响。

在基因表达研究中,常作为对照基因适应型表达:指环境的变化容易使其表达水平变动的一类基因表达。

应环境条件变化基因表达水平增高或从无到有的现象称为诱导,这类基因被称为可诱导的基因;相反,随环境条件变化而基因表达水平降低或变为不表达的现象称为阻遏,相应的基因被称为可阻遏的基因。

4.结构基因:编码蛋白质或功能性RNA的任何基因。

所编码的蛋白质主要是组成细胞和组织基本成分的结构蛋白、具有催化活性的酶和调节蛋白等。

原核生物的结构基因一般成簇排列,真核生物独立存在。

结构基因簇由单一启动子共同调控。

调节基因:参与其他基因表达调控的RNA或蛋白质的编码基因。

①调节基因编码的调节物质通过与DNA上的特定位点结合控制转录是调控的关键。

②调节物与DNA特定位点的相互作用能以正调控的方式(启动或增强基因表达活性调节靶基因,也能以负调控的方式(关闭或降低基因表达活性)调节靶基因。

操纵子:由操纵基因以及相邻的若干结构基因所组成的功能单位,其中结构基因的转录受操纵基因的控制。

(二)原核基因调控的分类和主要特点一、原核生物的基因调控特点:(1)基因调控主要发生在转录水平上,形式主要是操纵子调控.(2)有时也从DNA水平对基因表达进行调控,实质是基因重排。

现代分子生物学研究内容

现代分子生物学研究内容


• • • • • • • • • •

• • • • •
1590年 詹森制作了第一台复合显微镜 1624年 伽利略制作了和他的望远镜同样类型的显微镜 1625年 塞律蒂出版了从显微镜观察制作的第一本蜜蜂图谱 1625年 Feber第一个杜撰了"显微镜"(microscopio)这个词 1653年 Borel出版了《Historiarum et Observationum Medicophysicarum Centuria》,这是第一本将医学与显微镜联系的著作 1658年 Kircher用一台放大倍数为32的显微镜描述鼠疫病人身体内的"虫子" (据后来的科学家考证,"虫子"可能是红细胞和白细胞)是引起疾病的一种原因 1658年 Swammerdam利用显微镜观察精确地描述了红细胞的结构和功能 1665年 胡克出版了《Micrographia》,其中包括了最早的细胞结构图谱,因 此产生了"细胞"这个词 1674年 Van Leeuwenhoek制作了200多台显微镜和400多个镜头,他用 其中一些来报道了他对池塘水中找到的"原虫"的发现 1757年 Dolland制作了最初的无色玻璃,因此后来的显微镜专家就不用再把闪 光和具有虹样差的物体置于有色玻璃镜头下 1791年 beeldsnijder制作了第一台无色复合显微镜 1911年 荧光显微镜问世 1926年 Busch发现磁场和静电场可以作为透镜聚光以产生超微图象 1931年 Knoll和Ruska研制出一台原型传导电镜
金相显微镜 数码显微镜
普 通 光 学 显 微 镜

3、生化与遗传学
19世纪中叶--20世纪初:20种AA发现 孟德尔:分离规律:性状3:1分离 自由组合规律:F2代性状发生 9:3:3:1的分离

7第七章:真核生物的克隆载体

7第七章:真核生物的克隆载体
TRP1和复制起点。
特定克隆实验中三种酵母克隆载体选择 哪一种,从下面3个因素考虑:
• 1、转化效率(transformation frequency) :即用每微 克的质粒DNA可以获得的转化体的数目。
YEp:10,000-100,000个(转化的细胞/每微克质粒DNA) YRp:1000-10,000个 YIp: 小于1000个
7.1.6
7.1.6 其他酵母和真菌的载体
除酿酒酵母外,其他酵母和真菌的基础分子生物学
研究还需要其他相应的克隆载体。目前在丝状真菌
基因工程中广泛使用的载体系统主要是整合型质粒
和自主复制型质粒两大类。
在多数情况下,整合型质粒(相当于YIp)能够更好
地满足生物技术领域的需要,它们可以提供稳定的
重组体,可以在生物反应器中长时间地生长。
酵母游离型质粒,YEp13
为什么人们要构建这样一种穿梭载体?
• 原因之一是很难完整地把重组DNA从转化后的酵母 菌落中取出来。而对YEp来说不存在问题,因为 YEp在酵母细胞中主要以质粒形式存在;但是对一 些把自己整合到酵母染色体上的载体来说,要想从 酵母细胞中提纯重组的DNA简直是不可能的。可是, 在有些克隆实验中,必须提纯重组后的DNA,进行 测序,以判断重组体是否已经正确构建。
3) 复制起始位点:与质粒的复制起点功能一样,是染色 体DNA复制的起始位置。
染色体结构确定后,可以通过重组DNA技术将染 色体的每一个组成部分分离开来,然后再连接在一 起,创造人工染色体。自然存在的酵母染色体有几 百个kb的长度,利用人工染色体可以携带比其他 质粒载体携带的更大的DNA分子。
YAC载体的结构和用途
质粒与C.S LEU2基因间的重组可以将YEp13整合进酵母

真核生物DNA水平上的基因表达调控

真核生物DNA水平上的基因表达调控
(1)多层次; (2)无操纵子和衰减子; (3)个体发育复杂; (4)受环境影响较小;
研究基因调控主要应回答3个问题:
① 什么是诱发基因转录的信号? ② 基因调控主要是在哪一步(模板DNA的转录、mRNA
的成熟或蛋白质合成)实现的? ③ 不同水平基因调控的分子机制是什么?
第一节:真核生物的基因结构与转录活性
概述
目录
第一节:真核生物的基因结构与转录活性
第二节:真核基因的转录
第三节:反式作用因子
第四节:真核基因转录调控的主要模式
第五节:其他水平上的基因调控
概述
真核生物和原核生物由于基本生活方式不同所决定基因表达调控上 的巨大差别。
原核生物的调控系统就是要在一个特定的环境中为细胞创造高速生 长的条件,或使细胞在受到损伤时,尽快得到修复,所以,原核生 物基因表达的开关经常是通过控制转录的起始来调节的。
酶,另一种是从头合成型甲基转移酶,前者主要在甲基化母链(模板链) 指导下使处于半甲基化的DNA双链分子上与甲基胞嘧啶相对应的胞嘧啶甲 基化。该酶催化特异性极强,对半甲基化的DNA有较高的亲和力,使新生 的半甲基化DNA迅速甲基化,从而保证DNA复制及细胞分裂后甲基化模式 不变。后者催化未甲基化的CpG成为mCpG,它不需要母链指导,但速度 很慢。
1.“开放”型活性染色质(active chromatin) 结构对转录的影响
真核基因的活跃转录是在常染色质上进行的。转录发生之 前,染色质常常会在特定的区域被解旋松弛,形成自由DNA。 这种变化可能包括核小体结构的消除或改变,DNA本身局部结 构的变化等,这些变化可导致结构基因暴露,促进转录因子与 启动区DNA的结合,诱发基因转录。
一、基因家族 二、真核基因的断裂结构 三、真核生物DNA水平上的基因表达调控 四、DNA 甲基化与基因活性的调控

分子生物学考试大纲

分子生物学考试大纲

第一部分课程性质与目标一、课程性质和特点《分子生物学》课程是我省高等教育自学考试生物工程专业(独立本科段)的一门重要的专业必修课程,通过本课程的学习要求学生熟知核酸(尤其是DNA)的基本生物化学特性,生物信息的储存、传递与表达过程,特别是基因的一般结构与生物功能,基因表达的调控原理。

掌握分子克隆与DNA重组的基本技术与原理,了解现代分子生物学基本研究方法,了解基因治疗与人类基因组计划、克隆技术的新成果和新进展。

激发学生对生命本质探索的热情,培养具备生命科学的基本知识和较系统的生物技术及其产业化的科学原理和工艺技术过程的基本理论和基本技能,能在生物产业领域的公司、工厂等企业单位从事生物工程及其高新技术产品生产、开发研究和企业经营管理工作的高级应用人才。

本课程在内容上共分十章,第一章介绍了分子生物学研究的主要内容及发展简况。

第二章是染色质、染色体、基因和基因组,重点介绍了遗传物质的分子结构、性质和功能,重点介绍了核酸的结构、功能、变性、复性和杂交等基本概念,也介绍了病毒核酸的相关知识和反义技术特点。

染色质和染色体的形态、组成和功能,基因的概念、功能和基本特征,基因组的概念、结构特点及有关基因组研究中基本理论和内容。

DNA的复制、突变、损伤和修复,主要介绍了DNA复制的过程、基因突变损伤和修复功能转座子结构特征和转座机制、以及遗传重组的机制。

第三、四章主要从动态角度探讨了遗传物质的运动的基本规律。

第三章是转录,重点介绍了转录的基本原理、转录过程及转录后加工过程和机制。

第四章是蛋白质的翻译,内容包括遗传密码、蛋白质合成、蛋白质的运转及蛋白质合成后的折叠和修饰加工,最后从应用的角度介绍了功能蛋白质研究的最新进展。

第五章介绍了分子生物学目前常用的基本研究方法。

第六、七章是基因表达的调控,分别从原核生物和真核生物两方面介绍了基因表达在转录和翻译水平上调控的机制。

第八章主要介绍了一些人类疾病的分子机制,以及基因治疗的概念。

真核基因表达调控

真核基因表达调控

子遗传学的奠基石。
Gregor Mendel (1822-1884).
The Father of Genetics
在孟德尔遗传学基础上, Morgan 又提出了 基因学说。 1910年,Morgan和他的助手们发现了第一只 白眼雄果蝇,称为突变型。正常情况下,果蝇
都是红眼的,称为野生型。Morgan将白眼雄果
Actually, they had. That morning, Watson and
Crick
had
figured
out
the
structure
of
deoxyribonucleic acid, DNA. And that structure —
a "double helix" that can "unzip" to make copies
控制遗传信息流动的基本机制——RNA干扰 方面的杰出贡献而获得诺贝尔生理医学奖。
1928 年,英国科学家 Griffith 等人发现,具有
光滑外表的S型肺炎链球菌能使小鼠发病,具有 粗糙外表的R型细菌没有致病力。荚膜多糖能保
护细菌免受动物白细胞的攻击。
美国著名的微生物学家 Avery首先用实验证明 基因就是DNA分子。他将光滑型致病菌(S型) 烧煮杀灭活性以后再侵染小鼠,发现这些死细 菌自然丧失了致病能力。
• 1993 年,美国科学家 Roberts 和 Sharp 因发
现 断 裂 基 因 ( introns ) 而 获 得 Nobel 奖 ; Mullis 由 于 发 明 PCR 方 法 而 与 加 拿 大 学 者 Smith ( 第 一 个 设 计 基 因 定 点 突 变 ) 共 享 Nobel化学奖。

分子生物学第七章原核生物基因表达调控

分子生物学第七章原核生物基因表达调控
31
(三)、阻遏物 lac I 基因产物及功能
Lac 操纵子阻遏物 mRNA 是由弱启动子控制下组 成型合成的,该阻遏蛋白具有4个相同的亚基,每个亚 基均含347个氨基酸残基。
lacI 基因为组成型,通过启动子的上升突变体可获 得较多的阻遏蛋白;
阻遏物 2022/10/18
β-半乳糖苷酶 透过酶 转乙酰3酶2
2022/10/18
16
调节机理:
细胞中某一氨基酸或嘧啶的浓度发生改变
氨酰 – tRNA的浓度变化
核糖体在转录产物RNA上的结合位置不 同,使得RNA形成特定的二级结构 由RNA的二级结构判断基因能否继续转录
2022/10/18
17
3、降解物对基因活性的调节P252
葡萄糖效应或降解物抑制作用:细菌培养基中在 葡萄糖存在的情况下,即使加入乳糖、半乳糖等 诱导物,与其对应的操纵子也不会启动,这种现 象称为葡萄糖效应或降解物抑制作用。
这是通过阻止乳糖操纵子表达来完成的,这种 效应称为降解物抑制(catabolite repression)。
2022/10/18
35
(五)、cAMP与代谢物激活蛋白
葡萄糖
葡萄糖-6-磷酸
甘油 某些代谢产物抑制活性
腺苷酸环化酶
ATP
cAMP
编码
cAMP-CAP
Crp基因
代谢物激活蛋白 CAP
葡萄糖对其它糖的代谢抑制,是通过对 cAMP的抑制完成的。
2022/10/18
22
一、酶的诱导 ——
lac 体系受调控的证据
两种含硫的乳糖类似物:
异丙基巯基半乳糖苷
(IPTG)
巯甲基半乳糖苷(TMG)
E. coli 在不含乳糖的培养基生 长时,β-半乳糖苷酶含量极低;

(完整word版)现代分子生物学(第4版)_课后思考题答案

(完整word版)现代分子生物学(第4版)_课后思考题答案

第一章绪论1.染色体具有哪些作为遗传物质的特征?答:①分子结构相对稳定;②能够自我复制,使亲子代之间保持连续性;③能够指导蛋白质的合成,从而控制整个生命过程;④能够产生可遗传的变异。

2。

什么是核小体?简述其形成过程。

答:由DNA和组蛋白组成的染色质纤维细丝是许多核小体连成的念珠状结构.核小体是由H2A,H2B,H3,H4各两个分子生成的八聚体和由大约200bp的DNA组成的.八聚体在中间,DNA分子盘绕在外,而H1则在核小体外面核小体的形成是染色体中DNA压缩的第一阶段。

在核小体中DNA盘绕组蛋白八聚体核心,从而使分子收缩至原尺寸的1/7。

200bpDNA完全舒展时长约68nm,却被压缩在10nm的核小体中.核小体只是DNA压缩的第一步。

核小体长链200bp→核酸酶初步处理→核小体单体200bp→核酸酶继续处理→核心颗粒146bp3简述真核生物染色体的组成及组装过程答:组成:蛋白质+核酸.组装过程:1,首先组蛋白组成盘装八聚体,DNA缠绕其上,成为核小体颗粒,两个颗粒之间经过DNA连接,形成外径10nm的纤维状串珠,称为核小体串珠纤维;2,核小体串珠纤维在酶的作用下形成每圈6个核小体,外径30nm的螺线管结构;3,螺线管结构再次螺旋化,形成超螺旋结构;4,超螺线管,形成绊环,即线性的螺线管形成的放射状环。

绊环在非组蛋白上缠绕即形成了显微镜下可见的染色体结构。

4. 简述DNA的一,二,三级结构的特征答:DNA一级结构:4种核苷酸的的连接及排列顺序,表示了该DNA分子的化学结构DNA二级结构:指两条多核苷酸链反向平行盘绕所生成的双螺旋结构DNA三级结构:指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构6简述DNA双螺旋结构及其在现代分子生物学发展中的意义(1)DNA双螺旋是由两条互相平行的脱氧核苷酸长链盘绕而成的,多核苷酸的方向由核苷酸间的磷酸二酯键的走向决定,一条是5--—3,另一条是3-—-——5。

分子生物学基础第七章真核基因表达的调控第三节真核基因表达转录水平的调控

分子生物学基础第七章真核基因表达的调控第三节真核基因表达转录水平的调控
分子生物学基础
第七章 真核基因表达的调控
第三节 真核基因表达转录水平的调控
一、真核基因转录与染色质结构变化的关系 DNA绝大部分都在细胞核内与组蛋白等结合成染色质, 染色质的结构影响转录,至少有以下现象: 1.染色质结构影响基因转录 在真核细胞中以核小体为基本单位的染色质是真核基 因组DNA的主要存在方式。DNA盘绕组蛋白核心形成核小体, 妨碍了与转录因子及RNA聚合酶的靠近和结合,使基因的 活性受到抑制。 2.组蛋白的作用 组蛋白H1及核心组蛋白共同参与核小体的组装与凝聚。 在特殊氨基酸残基上的乙酰化、甲基化或磷酸化等修饰, 可改变蛋白质分子表面的电荷,影响核小体的结构,从而 调节基因的活性。
第三节 真核基因表达转录水平的调控
图7-6 碱性螺旋-环-螺旋结构图
第三节 真核基因表达转录水平的调控
螺旋-转角-螺旋结构域是最早发现于原核生物中的一个关键因子, 该结构域长约20个aa,主要是两个α-螺旋区和将其隔开的β转角。 其中的一个被称为识别螺旋区,因为它常常带有数个直接与DNA序列 相识别的氨基酸。其结构如图7-3所示。
图7-3 螺旋-转角-螺旋结构及其与 DNA的结合
第三节 真核基因表达转录水平的调控
2.增强子 增强子是指能使基因转录频率明显增加的DNA序列。增强子的作 用有以下特点。 ①增强效应十分明显。一般能使基因转录频率增加10~200倍,有 的可以增加上千倍, ②增强效应与其位置和取向无关。 ③大多为重复序列。 ④增强效应有严密的组织和细胞特异性。说明只有特定的蛋白质 (转录因子)参与才能发挥其功能。 ⑤没有基因专一性,可以在不同的基因组合上表现增强效应。 ⑥许多增强子还受外部信号的调控,如金属硫蛋白的基因启动区 上游所带的增强子,就可以对环境中的锌、镉浓度做出反应。 ⑦增强子要有启动子才能控
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

பைடு நூலகம்


此外,真核细胞中还会发生基因扩增,即基因组 中的特定段落在某些情况下会复制产生许多拷贝。 最早发现的是蛙的成熟卵细胞在受精后的发育过 程中其rRNA基因(可称为rDNA)可扩增2000倍, 以后发现其他动物的卵细胞也有同样的情况,这 很显然适合了受精后迅速发育分裂要合成大量蛋 白质,需要有大量核糖体。又如MTX是叶酸的结 构类似物,一些哺乳类细胞会对含有利用叶酸所 必需的二氢叶酸还原酶(DHFR)基因的DNA区段 扩增4000倍,使DHFR的表达量显著增加,从而 提高对MTX的抗性。基因的扩增无疑能够大幅度 提高基因表达产物的量,但这种调控机理至今还 不清楚。

②复杂多基因家族
复杂多基因家族由几个基因家族构成,其 间由间隔序列隔开。 ● 组蛋白基因家族 5个基因组成串联单位且重复1000多次 串联单位中每个基因分别转录成单顺反 子RNA,这些的RNA都无内含子,在一条 DNA一按同一方向转录。

③发育控制的复杂多基因家族


珠蛋白基因家族 人类发育阶段中血红蛋白组成的变化: 所有动物血红蛋白基因的基本结构相同,但在个 体发育不同时期却出现不同形式的亚基。


由于甲基化胞嘧啶极易在进化中丢失,所以,高 等真核生物中CG序列远远低于其理论值。哺乳类 基因组中约存在4万个CG 序列,大多位于转录单 元的5'区。 没有甲基化的胞嘧啶发生脱氨基作用,就可能被 氧化成为U,被DNA修复系统所识别和切除,恢 复成C。已经甲基化的胞嘧啶发生脱氨基作用, 它 就变为T, 无法被区分。因此, CpG序列极易丢失。
研究基因调控主要应回答的3个问题:

① 什么是诱发基因转录的信号? ② 基因调控主要是在哪一步(模板DNA的 转录、mRNA的成熟或蛋白质合成)实现 的? ③ 不同水平基因调控的分子机制是什么?
一、 真核基因组的一般构造特点




1、真核基因组的复杂性 ▲真核基因组比原核基因组大得多,大肠杆 菌基因组约4×106bp,哺乳类基因组在109bp 数量级,比细菌大千倍;大肠杆菌约有4000个基 因,人则约有10万个基因。 ▲真核生物主要的遗传物质与组蛋白等构成 染色质,被包裹在核膜内,核外还有遗传成分(如 线粒体DNA等),这就增加了基因表达调控的层次 和复杂性。 ▲原核生物的基因组基本上是单倍体,而真核 基因组是二倍体。
酵母细胞的“交配型转换”(基因转换) (P249图)

7、DNA甲基化与基因表达




DNA甲基化是最早发现的修饰途径之一, 可能存在于所有高等生物中。DNA甲基化 能关闭某些基因的活性,去甲基化则诱导了 基因的重新活化和表达。 DNA甲基化的主要形式 5-甲基胞嘧啶,N6-甲基腺嘌呤和7-甲基鸟 嘌呤。在真核生物中,5-甲基胞嘧啶主要出 现在CpG和CpXpG中。 原核生物中CCA/TGG和GATC也常被 甲基化。
外显子与内含子连接区:外显子与内含子的交界或边界序列,特征:
内含子两端序列不能互补,其上游和下游序列不能形成发卡结构,连 接区序列很短,但却高度保守,可能是RNA剪切的信号序列。
外显子与内含子的可变调控: 组成性剪接:基因转录产物精确剪接成一种mRNA 选择性剪接:同一基因的转录产物由于不同的剪接方式形 成不同的mRNA
2、真核基因组的一般构造特点

① 在真核细胞中,一条成熟的mRNA链只能 翻译出一条多肽链,不存在原核生物中常见的多 基因操纵子形式。 ② 真核细胞DNA都与组蛋白和大量非组蛋白 相结合,只有一小部分DNA是裸露的。 ③ 高等真核细胞DNA中很大部分是不转录的, 大部分真核细胞的基因中间还存在不被翻译的内 含子。 ④ 真核生物能够有序地根据生长发育阶段的 需要进行DNA片段重排,还能在需要时增加细胞 内某些基因的拷贝数。


4.DNA拓扑结构变化:天然双链DNA的构象大多 是负性超螺旋。当基因活跃转录时,RNA聚合酶 转录方向前方DNA的构象是正性超螺旋,其后面 的DNA为负性超螺旋。正性超螺旋会拆散核小体, 有利于RNA聚合酶向前移动转录;而负性超螺旋 则有利于核小体的再形成。 5.DNA碱基修饰变化:真核DNA中的胞嘧啶约有 5%被甲基化为5-甲基胞嘧啶,这种甲基化最常 发生在某些基因5′侧区的CpG序列中,这段序列 甲基化可使其后的基因不能转录,甲基化可能阻 碍转录因子与DNA特定部位的结合从而影响转录。 如果用基因打靶的方法除去主要的DNA甲基化酶, 小鼠的胚胎就不能正常发育而死亡,可见DNA的 甲基化对基因表达调控是重要的。
第 七 讲
真核基因表达调控
本章主要内容


绪论 一、 真核基因组的一般构造特点 二、 真核基因的转录 三、 反式作用因子对转录的影响 四、 真核基因表达调控的主要模式 五、其它水平上的基因调控
绪论


真核生物(除酵母、藻类和原生动物等单细胞类 之外)主要由多细胞组成,每个真核细胞所携带 的基因数量及总基因组中蕴藏的遗传信息量都大 大高于原核生物。人类细胞单倍体基因组就包含 有3×109bp总DNA,约为大肠杆菌总DNA的 1000倍,是噬菌体总DNA的10万倍左右! 真核基因表达调控的最显著特征是能在特定时间 和特定的细胞中激活特定的基因,从而实现"预定 "的、有序的、不可逆转的分化、发育过程,并使 生物的组织和器官在一定的环境条件范围内保持 正常功能。
4、真核生物基因家族


①简单多基因家族 ● rRNA基因家族
原核生物中16S、23S、5S的rRNA基因联合为一 个转录单位,细菌所有rRNA和部分tRNA都来自 30S的前体rRNA 真核生物中18S、28S、5.8S的rRNA包括在45S 的前体rRNA分子中,经甲基化后被特异的RNA切 割酶切割而成。
6、真核生物DNA水平上的基因表达调控

1、开放型活性染色质结构对转录的影响 转录前染色质在特定区域发生核小体结构的消除 或改变、DNA本身局部结构变化、DNA从右旋到左 旋转变等,促使结构基因暴露而诱发基因转录.
处于活跃状态的基因的在染色质上有一个或数个 DNA酶I敏感位点(多位于5‘端启动区)比非活跃 态基因易被DNA酶I所降解。 DNA酶I敏感位点的 产生是染色质结构规律变化的结果,该变化使DNA 易与RNA聚合酶和其它转录调控因子结合,从而启 动基因表达,也易被DNA酶I所降解。

2、基因扩增
卵母细细胞形成发育过程中,基因(如 rDNA)大量扩增以满足大量蛋白质的需要。 例:非洲爪蟾及果蝇卵母细细胞发育

3、基因重排与变换 将一个基因从远离启动子处移到距它很 近的位点从而启动转录。 例:免疫球蛋白结构基因和T-细胞受体 基因的表达


在所有物种中,胚系Ig基因的构成基本上相 同。Ig重链和轻链(λ和κ链)基因座都由多个 编码V区(可变区)和C区(恒定区)蛋白质 的基因组成,并被非编码的DNA(连接区, J区)所分隔。 V、C、J区在胚胎期细胞中相距较远,细胞 发育分化时,免疫球蛋白重链基因DNA重排, 大量间隔序列被切除,使位于J-Cμ之间的增 强子序列得以发挥作用,增强基因转录。


▲细菌多数基因按功能相关成串排列,组成操纵元的基 因表达调控的单元,共同开启或关闭,转录出多顺反子的 mRNA;真核生物则是一个结构基因转录生成一条 mRNA,即mRNA是单顺反子,基本上没有操纵元的结 构,而真核细胞的许多活性蛋白是由相同和不同的多肽形 成的亚基构成的,这就涉及到多个基因协调表达的问题。 ▲原核基因组的大部分序列都为基因编码,而核酸杂 交等实验表明:哺乳类基因组中仅约10%的序列为蛋白 质、rRNA、tRNA等编码,其余约90%的序列功能至今 还不清楚。 ▲原核生物的基因为蛋白质编码的序列绝大多数是连 续的,而真核生物为蛋白质编码的基因绝大多数是不连续 的,即有外显子(exon)和内含子(intron),转录后需经 剪接(splicing)去除内含子,才能翻译获得完整的蛋白质, 这就增加了基因表达调控的环节。
(2)真核基因的转录与染色质的结构变化相关



1.染色质结构影响基因转录:松散的常染色质中 的基因可以转录。紧凑折叠结构的异染色质从未 见有基因转录表达,可见紧密的染色质结构阻止 基因表达。 2.组蛋白的作用:组蛋白是碱性蛋白质,带正电 荷,可与DNA链上带负电荷的磷酸基相结合,从 而遮蔽了DNA分子,妨碍了转录,可能扮演了非 特异性阻遏蛋白的作用。 3.转录活跃区域对核酸酶作用敏感度增加:高敏 感点常出现在转录基因的5′侧区、3′末端或在基 因上,多在调控蛋白结合位点的附近,分析该区 域核小体的结构发生变化,可能有利于调控蛋白 结合而促进转录。



真核生物细胞内存在两种甲基化酶活性: 一种被称为日常型甲基转移酶,另一种是 从头 合成型甲基转移酶。 前者主要在甲基化母链(模板链)指导下 使处于半甲基化的DNA双链分子上与甲基胞嘧 啶相对应的胞嘧啶甲基化。后者催化未甲基化 的CpG成为m CpG,速度很慢。 日常型甲基转移酶常常与DNA内切酶活性 相耦联,有3种类型。II类酶活性包括内切酶和 甲基化酶两种成分,而I类和III类都是双功能酶, 既能将半甲基化DNA甲基化,又能降解外源无 甲基化DNA。

⑤ 在真核生物中,基因转录的调节区相对较 大,它们可能远离启动子达几百个甚至上千个碱 基对,这些调节区一般通过改变整个所控制基因 5‘上游区DNA构型来影响它与RNA聚合酶的结合 能力。在原核生物中,转录的调节区都很小,大 都位于启动子上游不远处,调控蛋白结合到调节 位点上可直接促进或抑RNA聚合酶与它的结合。 ⑥ 真核生物的RNA在细胞核中合成,只有经 转运穿过核膜,到达细胞质后,才能被翻译成蛋 白质,原核生物中不存在这样严格的空间间隔。 ⑦ 许多真核生物的基因只有经过复杂的成熟 和剪接过程,才能顺利地翻译成蛋白质
(3)真核基因表达以正性调控为主
相关文档
最新文档