RLC串联电路地谐振特性研究 实验报告材料
RLC串联电路的谐振特性研究 实验报告
大学物理实验设计性实验实验报告实验题目:RLC串联电路谐振特性的研究班级:姓名:学号:指导教师:一.目的1.研究LRC 串联电路的幅频特性;2.通过实验认识LRC 串联电路的谐振特性. 二.仪器及用具DH4503RLC 电路实验仪 电阻箱 数字储存示波器 导线三.实验原理LRC 串联电路如图3.12-1所示.若交流电源U S 的电压为U ,角频率为ω,各元件的阻抗分别为则串联电路的总阻抗为串联电路的电流为式中电流有效值为电流与电压间的位相差为它是频率的函数,随频率的变化关系如图3.12-2所示.电路中各元件电压有效值分别为C j Z L j Z R Z C L R ωω1===)112.3()1(--+=C L j R Z ωω)212.3()1(-=-+==••ϕωωj Ie C L j R Z I UU )312.3()1(22--+==C L R U Z U I ωω)412.3(1arctan --=RC L ωωϕ)512.3()1(22--+==CL R R RI U R ωω)612.3()1(22--+==U C L R LLI U Lωωωω)712.3()1(1122--+==U CL R C I CU C ωωωω图3.12-1/π-/π图3.12-2(3.12-5)和(3.12-6),(3.12-7) 式可知,U R ,U L 和U C 随频率变化关系如图3.12-3所示.(3.12-5),(3.12-6)和(3.12-7)式反映元件R 、L 和C 的幅频特性,当时,ϕ=0,即电流与电压同位相,这种情况称为串联谐振,此时的角频率称为谐振角频率,并以ω0表示,则有从图3.12-2和图3.12-3可见,当发生谐振时,U R 和I 有极大值,而U L 和U C 的极大值都不出现在谐振点,它们极大值U LM 和U CM 对应的角频率分别为0(3.1211)C ωω==-式中Q 为谐振回路的品质因数.如果满足21>Q ,可得相应的极大值分别为电流随频率变化的曲线即电流频率响应曲线(如图3.12-5所示)也称谐振曲线.为了分析电路的频率特性.将(3.12-3)式作如下变换)912.3(10-=LCω)1012.3(2111220222--=-=ωωQ C R LC L )1312.3(411142222LM --=-=Q QL Q U Q U )1412.3(4112CM --=Q QUU 22)1()I(CL R Uωωω-+=)812.3(1-=L Cωω(a) 图3.12-3从而得到此式表明,电流比I /I 0由频率比ω/ω0及品质因数Q 决定.谐振时ω/ω0,I /I 0=1,而在失谐时ω/ω0≠1, I /I 0<1.由图3.12-5(b )可见,在L 、C 一定的情况下,R 越小,串联电路的Q 值越大,谐振曲线就越尖锐.Q 值较高时, ω稍偏离ω0.电抗就有很大增加,阻抗也随之很快增加,因而使电流从谐振时的最大值急剧地下降,所以Q 值越高,曲线越尖锐,称电路的选择性越好.为了定量地衡量电路的选择性,通常取曲线上两半功率点(即在210=I I 处)间的频率宽度为“通频带宽度”,简称带宽如图3.12-5所示,用来表明电路的频率选择性的优劣.由(3.12-17)式可知,当210=I I 时,Q 100±=-ωωωω,若令解(3.12-18)和(3.12-19)式,得200002)(CL R U ωωωωωω-+=20022)( ωωωωρ-+=R U2002)(1ωωωω-+=Q R U20020)(1 ωωωω-+=Q I 20020)(Q 11ωωωω-+=I I )1812.3(11001--=-Q ωωωω)1912.3(12002-=-Qωωωω(a) (b )图3.12-5所以带宽为 可见,Q 值越大,带宽∆ω越小,谐振曲线越尖锐,电路的频率选择性就好.四.实验内容与步骤 1.计算电路参数(1)根据自己选定的电感L 值,用(3.12-9)式计算谐振频率f 0=2kHz 时,RLC 串联电路的电容C 的值,然后根据(3.12-12)式计算品质因数Q =2和Q =5时电阻R 的值.2.实验步骤(1)按照实验电路如图3.12-6连接电路,r 为电感线圈的直流电阻,C 为电容箱,R 为电阻箱,U S 为音频信号发生器.(2)Q=5,调节好相应的R , 将数字储存示波器接在电阻R 两端,调节信号发生器的频率,由低逐渐变高(注意要维持信号发生器的输出幅度不变),读出示波器电压值,并记录。
r,l,c串联谐振电路的研究实验报告
r,l,c串联谐振电路的研究实验报告一、实验目的本次实验旨在研究r,l,c串联谐振电路的特性,通过实际操作和数据分析,深入理解串联谐振电路的工作原理和实际应用。
二、实验原理串联谐振电路是由电阻(r)、电感(l)和电容(c)串联而成的电路。
当电路的阻抗等于感抗和容抗之和时,电路达到谐振状态。
此时,电路的电流最大,电压最小,能量在r,l,c之间高效转换。
三、实验步骤1.搭建r,l,c串联谐振电路,确保连接正确无误。
2.使用信号发生器产生交流信号,并调整频率至谐振频率。
3.使用示波器和万用表测量电路的电压、电流和阻抗等参数。
4.记录数据,并分析结果。
四、实验结果实验数据显示,当频率达到谐振频率时,电路的阻抗最小,电流最大。
同时,电压在谐振时达到最小值。
此外,我们还观察到了电路的品质因数(Q值)的变化,Q值在谐振时达到最大值。
五、问题与解决方案在实验过程中,我们发现当改变信号源的频率时,电路的阻抗和电流会发生明显变化。
为了更准确地测量阻抗和电流,我们采用了数字化测量设备,提高了测量精度。
此外,我们还通过改变电路元件的参数(如电阻、电感和电容),研究了它们对串联谐振电路特性的影响。
六、总结与收获通过本次实验,我们深入了解了r,l,c串联谐振电路的特性和工作原理。
我们不仅观察到了电路在谐振时的电流最大、电压最小的现象,还研究了不同元件参数对电路特性的影响。
此外,我们还学会了如何使用示波器和万用表等测量设备来分析电路特性。
这次实验让我们更加直观地理解了理论知识,并锻炼了我们的动手能力和问题解决能力。
七、不足与建议在实验过程中,我们也发现了一些不足之处。
首先,我们在搭建电路时可能存在一些连接不牢固的问题,导致实验结果出现偏差。
其次,我们在测量阻抗和电流时可能受到外界干扰的影响,导致测量结果不够准确。
为了改进实验效果,我们可以采取以下措施:1.确保电路连接牢固,以减少实验误差。
2.使用屏蔽罩等措施减少外界干扰对测量结果的影响。
RLC串联谐振电路的研究报告
电路品质因数Q值的两种测量方法
1/
2
fO f2 f1
UL UC Uo Uo
一是根据公式Q= 测定,Uc与UL分别为谐振时电容器C和电感线圈L上的电 压;另一方法是通过测量谐振曲线的通频带宽度△f=f2-f1,再根据Q= 求 出Q值。式中fo为谐振频率,f2和f1是失谐时, 亦即输出电压的幅度下降到 最大值的 (=0.707)倍时的上、下频率点。Q值越大,曲线越尖锐,通频带 越窄,电路的选择性越好。 在恒压源供电时,电路的品质因数、选择性与通 频带只决定于电路本身的参数,而与信号源无关。
1. 图1所示的R、L、C串联电路中,当正弦交流信号源Ui的频率 f改变时,电路中的 感抗、容抗随之而变,电路中的电流也随f而变。 取电阻R上的电压UO作为响应,当 输入电压Ui的幅值维持不变时, 在不同频率的信号激励下,测出UO之值,然后以f为 横坐标,以UO/Ui为纵坐标(因Ui不变,故也可直接以UO为纵坐标),绘出光滑的 曲线,此即为幅频特性曲线,亦称谐振曲线,如图2所示。
2. 找出电路的谐振频率f0,其方法是,将万用表接在R(200Ω)两端,令信号 源的频率由小逐渐变大(注意要维持信号源的输出幅度不变),当Uo的读数 为最大时,读得频率计上的频率值即为电路的谐振频率f0,并测量UC与UL之 值(注意及时更换万用表的量限)。 3. 在谐振点两侧,按频率递增或递减500Hz或1KHz,依次各取8 个测量点, 逐点测出UO,UL,UC之值,记入数据表格1中。 表1 4.选C1=0.01μF,R2=1KΩ,重复步骤2,3的测量过程,将数据记入表2中。 表2
谢谢
电路品质因数Q值的两种测量方法
三、实验设备 四、实验内容 1. 组成“R、L、C串联谐振电路”,按照下图组成监视、 测量电路。选C1=0.1μF。用万用表交流电压档测电压, 用示波器监视信号源输出。令信号源输出电压 Ui=3VP-P,并保持不变。R=200Ω 图3. R、L、C串联谐振及测量电路
RLC串联电路的谐振特性研究实验报告
RLC串联电路的谐振特性研究实验报告摘要本研究讨论了RLC串联电路的谐振特性。
串联电路的最大谐振频率和最小谐振频率通过实验测量,通过电路计算来验证。
特性曲线的形状是理论测量的结果一致的,说明实验结果可靠。
结果表明,当阻抗器的电阻值增加时,最大和最小谐振频率比较稳定。
关键词:RLC串联电路;谐振特性;实验测量;计算验证;特性曲线1 引言RLC串联电路是电力系统中常见的高阻抗电源和测量电路,它由电阻R、电感L及电容C三个元件组成,是用于测量谐振特性最常见的电路之一。
由于谐振特性及其相关特性与RLC串联电路的参数密切相关,所以要准确测量谐振特性,就必须对这三个基本元件的各种特性进行准确的测试和验证。
本文将对RLC串联电路的谐振特性进行测量和验证,以分析其特性表现,以作为进一步的基础研究。
2 电路实验RLC串联电路的实验图如图1所示,由电阻R、电感L和电容C三个元件组成。
示波器用来测量RLC串联电路中交流电压的波形变化,正弦波发生器用来产生一定的输出电压,可改变频率来测量最大、最小谐振频率的值,而变阻器用来改变RLC串联电路的电阻R的电阻值,可分析子图形1中电感L、电容C外部给定的谐振频率。
实验采用正弦波发生器输出不同频率信号,对RLC串联电路中U-V示波器测量输出电压波形,当变阻器的电阻值一定时,随着输出电压频率变化而变化。
当输出电压频率与RLC电路谐振频率相符时,其输出电压有更显著的波动,电源从高频到低频,以及由低频到高频,都能够找到一个共振的频率值,这个值分别是最大谐振频率和最小谐振频率。
3 结果分析本次实验结果显示,随着阻抗器电阻值的改变,最大谐振频率和最小谐振频率也有所变化,而在不同的电阻值上,谐振频率的变化幅度都很小。
比较理论计算和实验测量的结果,证明了实验测量的准确性。
可以发现,实验测量和理论计算的特性曲线基本构成一致,并且越靠近频率值越接近,证明了谐振特性的实验测量结果的可靠性。
RLC串联电路的谐振特性研究实验报告.doc
RLC串联电路的谐振特性研究实验报告.doc 实验目的:1. 了解RLC串联电路的工作原理及其谐振特性;2. 掌握测量RLC串联电路谐振频率和谐振带宽的方法。
实验仪器:1. RLC串联电路实验箱;2. 信号源;3. 示波器。
实验原理:RLC串联电路是由电阻、电感和电容串联形成的电路,它可以产生共振现象。
当其频率为共振频率时,电路中流过电流的大小取决于电路中的电感和电容。
此时,电路呈现出很高的阻抗,电流最大。
谐振频率 f0 由以下公式给出:f0 = 1 / (2π√LC)其中,L 为电路中的电感,C 为电路中的电容。
Z0 = R + j(XL - XC)谐振带宽 BW 的计算公式为:BW = Δf = f2 - f1其中,f1 和 f2 分别为电路总阻抗等于Z0/√2 时的频率。
实验步骤:1. 连接实验电路:将电阻、电感和电容串联起来,组成 RLC 串联电路,并连接信号源和示波器。
2. 设置信号源:将信号源的频率调节旋钮设置到最小值,同时将信号源电压调节旋钮调整到最大值。
3. 测量谐振频率:将示波器调节到 X-Y 模式,然后调节信号源频率调节旋钮,逐渐增大频率,直到示波器屏幕上显示出一个正弦波。
此时,记录下示波器显示的频率值,即为电路的谐振频率 f0。
实验结果:1. 在本次实验中,使用的电阻、电感和电容的值分别为:R = 1kΩ,L = 10mH,C = 0.1μF。
2. 在逐渐增大信号源频率的过程中,当频率达到 2231 Hz 时,电路中开始出现正弦波,此时记录下的频率值即为电路的谐振频率 f0。
3. 继续增大信号源频率,当频率达到 2358 Hz 时,电路总阻抗等于Z0/√2 时,记录下此时信号源频率调节旋钮的读数。
5. 通过计算,得到电路的谐振带宽为 157 Hz。
1. RLC串联电路可以产生共振现象,其频率为谐振频率 f0。
2. 对于给定的 RLC 串联电路,谐振频率 f0 取决于电路中的电感和电容的值。
rlc串联电路的谐振实验报告
rlc串联电路的谐振实验报告一、实验目的二、实验原理1. RLC串联电路的基本概念2. 谐振现象及其特点三、实验器材和仪器1. 实验器材清单2. 实验仪器清单四、实验步骤1. 实验前准备工作2. 测量电路中各元件的参数值3. 测量谐振频率和带宽五、实验数据处理与分析1. 计算电路品质因数Q和谐振频率f0的理论值2. 绘制电路的幅频特性曲线和相频特性曲线,并分析其特点。
六、实验结论与思考七、参考文献一、实验目的本次实验主要是通过对RLC串联电路进行谐振实验,掌握测量RLC串联电路中各元件参数值以及谐振频率和带宽的方法,了解谐振现象及其特点,掌握计算电路品质因数Q和谐振频率f0理论值的方法,并绘制出幅频特性曲线和相频特性曲线。
二、实验原理1. RLC串联电路的基本概念RLC串联电路是由电阻R、电感L和电容C三种元件串联而成的电路。
当交流电源接入这个电路时,由于电感和电容的存在,会产生阻抗,从而影响电路中的电流和电压。
在RLC串联电路中,当交流信号频率等于某一特定值时,会出现谐振现象。
2. 谐振现象及其特点谐振是指在某一特定频率下,RLC串联电路的阻抗达到最小值或最大值的现象。
当交流信号频率等于谐振频率f0时,RLC串联电路中的阻抗为纯阻抗,即只有R存在。
此时,如果在该频率下加入一个外加信号,则可以得到最大幅度的响应。
谐振现象具有以下特点:(1)在谐振频率f0处,RLC串联电路中的阻抗为纯阻抗。
(2)在谐振频率f0处,输入信号与输出信号之间相位差为0。
(3)当输入信号频率偏离f0时,输出信号幅度将随着频率增加而降低。
三、实验器材和仪器1. 实验器材清单:电阻箱、电容箱、电感箱、万用表、示波器等。
2. 实验仪器清单:Tektronix TDS2002C数字示波器等。
四、实验步骤1. 实验前准备工作(1)检查实验仪器是否正常工作。
(2)连接RLC串联电路,调整各元件的参数,使其符合实验要求。
(3)将示波器连接到电路中,以便观察信号的变化情况。
rlc串联谐振电路研究实验报告
rlc串联谐振电路研究实验报告RLC串联谐振电路研究实验报告引言:本文旨在研究RLC串联谐振电路的特性和性能。
RLC串联谐振电路是一种常见的电路结构,它由电阻(R)、电感(L)和电容(C)组成。
在特定频率下,RLC串联谐振电路能够表现出共振现象,这对于电子工程领域的应用具有重要意义。
实验目的:1. 研究RLC串联谐振电路的频率响应特性;2. 探究电阻、电感和电容对谐振频率和带宽的影响;3. 分析RLC串联谐振电路的相位差和频率之间的关系;4. 理解RLC串联谐振电路的功率传输和能量转换机制。
实验步骤:1. 搭建RLC串联谐振电路实验装置,包括电源、电阻、电感和电容等元件;2. 测量不同频率下电压和电流的数值;3. 绘制电压-频率和相位差-频率曲线,并找出谐振频率和带宽;4. 分析实验数据,总结RLC串联谐振电路的性能特点。
实验结果:通过实验测量和数据处理,我们得到了以下结果:在RLC串联谐振电路中,当输入信号频率等于谐振频率时,电路中的电流和电压达到最大值。
此时,电容的电压和电感的电流互相抵消,只有电阻消耗能量。
在谐振频率附近,电路的带宽较小,能够保持较高的品质因数。
而当频率远离谐振频率时,电路的电流和电压将会衰减。
讨论:通过实验数据和分析,我们可以得出以下结论:RLC串联谐振电路具有选择性放大特性,在谐振频率附近,电路能够对特定频率的信号进行放大,而对其他频率的信号进行衰减。
这种特性使得RLC串联谐振电路在无线通信、音频放大和滤波等领域有着广泛的应用。
实验结果还显示,电阻、电感和电容对RLC串联谐振电路的性能有着重要影响。
电阻的增加会减小电路的品质因数,降低谐振频率和带宽;电感值的增加会提高电路的品质因数,增大谐振频率和带宽;而电容的变化则会对谐振频率产生较大影响。
结论:通过本次实验,我们深入了解了RLC串联谐振电路的特性和性能。
该电路在电子工程领域具有重要应用,能够对特定频率的信号进行放大和滤波。
RLC串联交流谐振电路实验报告
RLC串联交流谐振电路实验报告RLC串联交流谐振电路实验报告引言:RLC串联交流谐振电路是电路中常见的一种形式,通过对其进行实验研究,可以更好地理解电路中的谐振现象和相关理论。
本文将介绍我们进行的RLC串联交流谐振电路实验,并对实验结果进行分析和讨论。
实验目的:本次实验的主要目的是研究RLC串联交流谐振电路的特性,包括共振频率、电压相位差、电流幅值等。
通过实验,我们将探索电路中的谐振现象,加深对谐振电路的理解。
实验原理:RLC串联交流谐振电路由电感L、电阻R和电容C组成。
在交流电源的作用下,电路中的电感、电阻和电容会发生相互作用,从而导致电路中的电流和电压发生变化。
当电路达到谐振状态时,电路中的电流幅值最大,电压相位差为零。
实验步骤:1. 首先,我们将电感L、电阻R和电容C按照串联的方式连接起来,形成RLC串联交流谐振电路。
2. 然后,我们将交流电源连接到电路上,并通过示波器观察电路中的电流和电压波形。
3. 调节交流电源的频率,观察电路中的电流和电压的变化情况。
4. 记录不同频率下电流和电压的数值,并计算电压相位差和电流幅值。
5. 根据实验数据,绘制电流和电压随频率变化的图表。
实验结果:通过实验观察和数据记录,我们得到了RLC串联交流谐振电路的一些特性。
首先,我们发现在特定的频率下,电路中的电流幅值最大。
这个频率被称为共振频率,用f0表示。
同时,我们还观察到在共振频率下,电压和电流的相位差为零,即电压和电流完全同相。
除此之外,在共振频率附近,电压和电流的相位差会发生变化,并且电流幅值也会随着频率的变化而变化。
讨论与分析:通过对实验结果的分析,我们可以得出一些结论和认识。
首先,RLC串联交流谐振电路的共振频率与电感、电阻和电容的数值有关。
当电感、电阻和电容的数值发生变化时,共振频率也会相应地发生变化。
其次,电压和电流的相位差为零说明电压和电流在时间上是完全同步的,这是因为在共振频率下,电路中的电感、电阻和电容之间的相互作用达到了平衡状态。
rlc串联电路的谐振实验报告
rlc串联电路的谐振实验报告RLC串联电路的谐振实验报告引言在电路学中,RLC串联电路是一种非常重要的电路结构。
它由电阻(R)、电感(L)和电容(C)三个基本元件组成。
本实验旨在研究RLC串联电路的谐振现象,并通过实验数据分析和计算验证理论公式。
实验目的1. 了解RLC串联电路的基本原理和谐振现象;2. 掌握测量RLC串联电路的频率、电压和电流的方法;3. 验证理论公式与实验数据的一致性。
实验仪器和材料1. RLC串联电路实验箱;2. 示波器;3. 函数发生器;4. 电阻箱;5. 电感箱;6. 电容箱。
实验步骤1. 搭建RLC串联电路:根据实验箱中提供的电阻箱、电感箱和电容箱,按照电路图搭建RLC串联电路。
2. 连接示波器:将示波器的探头连接到电路的输出端,以便观察电路的电压波形。
3. 连接函数发生器:将函数发生器的输出端与电路的输入端相连,用于提供激励信号。
4. 调节函数发生器:通过调节函数发生器的频率,使得电路产生谐振现象。
5. 观察示波器波形:调节示波器的参数,观察电路的电压波形,并记录下谐振频率。
6. 测量电压和电流:使用万用表测量电路中的电压和电流,并记录下相关数据。
7. 分析数据:根据实验数据,计算并绘制电压-频率和电流-频率的曲线图。
8. 验证理论公式:将实验数据与理论公式进行比较,验证其一致性。
实验结果与分析通过实验数据的记录和分析,我们得到了以下结果:1. 谐振频率:根据示波器观察到的波形,我们确定了RLC串联电路的谐振频率为f0。
2. 电压-频率曲线:根据测量得到的电压数据,我们绘制了电压-频率曲线图。
曲线在谐振频率附近呈现出峰值,验证了谐振现象的存在。
3. 电流-频率曲线:根据测量得到的电流数据,我们绘制了电流-频率曲线图。
曲线在谐振频率附近同样呈现出峰值,与理论公式相符。
结论通过本次实验,我们验证了RLC串联电路的谐振现象,并得到了以下结论:1. RLC串联电路在谐振频率附近会出现电压和电流的峰值;2. 谐振频率可以通过观察示波器波形或测量电压和电流得到;3. 实验数据与理论公式相符,验证了理论公式的准确性。
rlc串联谐振电路的实验报告
rlc串联谐振电路的实验报告实验报告:RLC串联谐振电路引言:RLC串联谐振电路是电工学中常见的一种电路,它由电感器(L)、电容器(C)和电阻器(R)组成。
在特定的频率下,串联谐振电路能够表现出一系列特殊的性质和行为。
本实验旨在通过搭建RLC串联谐振电路并进行实验,进一步研究和探索其特性和应用。
一、实验装置与原理1. 实验装置:本实验所需的装置包括:信号发生器、电感器、电容器、电阻器、示波器、万用表等。
2. 实验原理:RLC串联谐振电路是由电感器、电容器和电阻器依次连接而成。
当电路中的电感、电容和电阻分别为L、C和R时,串联谐振电路的共振频率f0可由以下公式计算得出:f0 = 1 / (2π√(LC))二、实验步骤1. 搭建电路:根据实验要求,按照串联谐振电路的连接方式,将电感器、电容器和电阻器依次连接起来。
2. 调节信号发生器:将信号发生器连接到电路中,调节信号发生器的频率,使之逐渐接近共振频率f0。
3. 观察示波器波形:将示波器连接到电路中,调节示波器的设置,观察电路中的电压波形。
当信号发生器的频率接近共振频率f0时,示波器上的波形将出现明显的共振现象。
4. 测量电压和电流:使用万用表等测量工具,分别测量电感器、电容器和电阻器上的电压和电流数值。
三、实验结果与分析通过实验,我们得到了一系列数据,并进行了进一步的分析和研究。
1. 共振频率:根据实验测量的数据,我们计算得到了串联谐振电路的共振频率f0。
与理论计算值进行对比,可以评估实验的准确性和可靠性。
2. 波形分析:观察示波器上的波形,我们可以看到在共振频率f0附近,电压波形呈现出明显的共振现象。
这是因为在共振频率下,电感器和电容器的阻抗相互抵消,电路中的电流达到最大值。
3. 电压和电流的关系:通过测量电路中电压和电流的数值,我们可以进一步分析电压和电流之间的关系。
根据欧姆定律和基尔霍夫电压定律,我们可以推导出电流与电压的相位差等相关参数。
四、实验应用与展望RLC串联谐振电路在实际应用中具有广泛的用途,例如:1. 滤波器:串联谐振电路可以用作滤波器,通过调节频率可以选择性地滤除或通过特定频率的信号。
RLC串联谐振实验报告
RLC串联谐振实验报告一、实验目的通过实验测量并分析串联RLC电路的谐振现象,掌握串联RLC电路的谐振特性。
二、实验原理RLC串联谐振电路是由电阻、电感和电容三种元件按照串联关系构成的电路,当电路中的电感、电容以及电阻三者的数值均满足一定的条件时,电路的总阻抗将会呈现为一个纯阻抗。
此时,电路中的谐振频率就是电路的固有频率,电路的振荡呈现出明显的谐振特性。
三、实验器材和材料1. 指示电压表、万用表2. 电感L、电容C、电阻R3. 信号发生器、示波器四、实验步骤1. 将电感L串联于电容C和电阻R后,构成一个串联RLC电路。
2. 将信号发生器接入串联RLC电路中,调节信号发生器输出频率,找到串联RLC电路的谐振频率。
3. 记录下电容、电感和电阻的数值,并使用万用表和示波器测量信号发生器输出电压,分别绘制输出电压随频率变化的曲线,以及电阻、电感、电容中的电压随频率变化的曲线。
五、实验结果分析1. 绘制输出电压随频率变化的曲线。
从图中可以看出,串联RLC电路的输出电压在谐振频率处达到最大值,谐振频率为45kHz,随着频率的增加或减少,电压值逐渐降低。
当频率的增大或减小,使电路频率与谐振频率無しおいて差距时,电路输出将下降,并呈现出较大的相位差,因此随着频率的变化,输出电压在谐振频率附近具有较大的衰减。
2. 绘制电阻、电感以及电容中的电压随频率变化的曲线。
从图中可以看出,在串联RLC电路的谐振频率处,电感和电容中的电压分别为83.7mV和8.9mV,而电阻中的电压为8.7V,电路中的电阻值为1000Ω,电感值为10mH,电容值为0.01μF。
在谐振频率处,电路中的总电流最大,且电压波形是完全相位同步的,不同元件之间的相位差为0度。
六、实验结论本次实验通过串联RLC电路的谐振现象,测量出了电路的谐振频率,并分析了电路中的电阻、电感和电容之间的相对变化关系。
实验结果表明,在串联RLC 电路的谐振频率处,电路的总阻抗为纯阻抗,电路的输出电压最大,电路中的总电流最大,且电压波形是完全相位同步的。
RLC串联谐振电路的实验报告
RLC串联谐振电路的实验报告实验报告:RLC串联谐振电路引言:RLC串联谐振电路是由电阻(R)、电感(L)和电容(C)元件串联构成的电路。
当电路中的电感和电容元件的参数满足一定条件时,电路中的电流会发生强烈的共振现象,此时谐振频率可以达到最大值。
本实验旨在通过调整电路中的元件参数,观察电路对不同频率的电源信号的响应情况,并测量该电路的谐振频率和谐振峰值。
实验器材:1.RLC串联谐振电路实验板2.函数发生器3.示波器4.电压表5.电流表6.数字万用表7.电阻箱8.电感箱9.电容箱实验步骤:1.将RLC串联谐振电路实验板连接好,保证电路连接正确并无误。
2.将例程中提供的代码烧录到函数发生器中,设置函数发生器的频率范围在100Hz-10kHz。
3.调整函数发生器的输出电压为正弦波,大小可适当缩小。
4.将函数发生器的输出端与电路的输入端(红色探针连接)连接。
5.用示波器观察电路中的电压和电流波形,调节函数发生器的频率,当读数最大时,记录下此时的频率值。
6.分别测量电路中的电流和电压大小,并记录下来。
7.重复步骤6,分别取不同频率的信号,记录相应的频率、电流、电压值。
8.关闭电路,断开电路连接。
实验数据记录与分析:根据实验步骤所得到的数据,绘制频率与电流、电压的关系曲线。
通过曲线图可以找到电路的谐振频率。
实验结果与讨论:根据实验数据分析,我们可以得到电路的谐振频率值,并与理论值进行对比。
比较两个值的接近程度以及可能存在的误差。
同时,可以根据电流和电压的波形观察,研究电路的谐振特性,并对谐振电路进行深入分析。
结论:通过本次实验,我们成功地测量了RLC串联谐振电路的谐振频率和谐振峰值,并通过数据分析得到了实验结果与理论值的相对误差。
在实验过程中,我们还观察了电路中的电流和电压的波形,并对谐振电路的工作原理有了进一步的了解。
实验结果显示,RLC串联谐振电路在谐振频率处具有很高的增益,因此在实际电路中有着广泛的应用。
rlc串联谐振电路研究实验报告
rlc串联谐振电路研究实验报告RLC串联谐振电路研究实验报告引言:RLC串联谐振电路是电路中常见的一种电路结构,其具有频率选择性。
在该电路中,电感、电阻和电容依次串联,形成一个振荡回路。
在特定的频率下,电路的阻抗会达到最小值,从而使电流达到最大值。
本实验旨在研究RLC串联谐振电路的特性,并通过实验验证理论计算结果。
实验目的:1. 研究RLC串联谐振电路中电感、电阻和电容的作用;2. 测量RLC串联谐振电路的频率响应曲线;3. 验证理论计算结果与实验结果的一致性。
实验仪器与材料:1. RLC串联谐振电路实验箱;2. 可调频函数信号发生器;3. 数字存储示波器;4. 电压表;5. 电流表;6. 电感、电阻和电容器。
实验步骤:1. 按照电路图连接RLC串联谐振电路实验箱,确保电路连接正确并稳定;2. 调节可调频函数信号发生器的频率范围,并设定初始频率;3. 调节函数信号发生器的输出电压,保持稳定;4. 通过示波器观察电路中电压波形,并测量电压的幅值;5. 测量电路中电流的幅值;6. 依次改变函数信号发生器的频率,记录电压和电流的测量值;7. 绘制RLC串联谐振电路的频率响应曲线。
实验结果与分析:根据实验测量数据,绘制了RLC串联谐振电路的频率响应曲线。
从曲线上可以看出,在某一特定频率下,电路的阻抗达到最小值,电流达到峰值。
这个特定的频率就是电路的共振频率。
在共振频率附近,电路的阻抗较小,电流较大,电路呈现出谐振的特性。
实验结果与理论计算结果的比较表明,在实验误差范围内,测量结果与理论计算结果吻合良好。
这验证了RLC串联谐振电路的特性以及理论模型的准确性。
同时,实验还发现,改变电感、电阻或电容的数值,会导致共振频率的变化,从而改变电路的谐振特性。
这进一步说明了电感、电阻和电容在RLC串联谐振电路中的作用。
结论:通过本实验,我们深入研究了RLC串联谐振电路的特性,并通过实验验证了理论计算结果的准确性。
实验结果表明,RLC串联谐振电路在特定频率下具有最小阻抗和最大电流的特性。
rlc电路谐振特性的实验报告
rlc电路谐振特性的实验报告一、实验目的本次实验旨在深入探究 RLC 电路的谐振特性,理解其在不同频率下的电流、电压变化规律,以及品质因数对电路性能的影响。
二、实验原理RLC 电路由电阻(R)、电感(L)和电容(C)组成。
在交流电源的作用下,电路中的电流和电压会随频率发生变化。
当电路的感抗(ωL)等于容抗(1/ωC)时,电路发生谐振。
此时,电路中的阻抗最小,电流达到最大值,而电感和电容上的电压可能远大于电源电压。
谐振频率ω0 可以通过公式ω0 =1/√(LC) 计算得出。
品质因数 Q 则表示电路的储能与耗能之比,Q =ω0L/R。
三、实验仪器与设备1、函数信号发生器2、示波器3、电阻、电感、电容元件4、数字万用表四、实验步骤1、按照电路图连接好 RLC 串联电路,选择合适的电阻值、电感值和电容值。
2、将函数信号发生器的输出频率设置为较低值,逐渐增加频率,同时用示波器观察电路中的电流和电压波形,并记录相关数据。
3、测量在不同频率下电阻、电感和电容两端的电压值,以及电路中的电流值。
4、找到电流达到最大值时的频率,即为谐振频率,记录此时的各项参数。
5、改变电阻值,重复上述实验步骤,观察品质因数的变化对谐振特性的影响。
五、实验数据与分析以下是一组实验数据示例:|频率(Hz)|电阻电压(V)|电感电压(V)|电容电压(V)|电流(A)|||||||| 500 | 20 | 150 | 180 | 02 || 1000 | 30 | 120 | 140 | 03 || 1500 | 40 | 90 | 100 | 04 || 2000 | 50 | 60 | 70 | 05 || 2500 | 60 | 30 | 40 | 06 || 3000 | 70 | 10 | 20 | 07 |通过分析数据,可以发现当频率接近谐振频率时,电流逐渐增大,电感和电容上的电压也逐渐增大。
在谐振频率处,电流达到最大值,而电感和电容上的电压相等且远大于电源电压。
rlc串联电路的谐振实验报告
RLC串联电路的谐振实验报告一、引言在电磁振荡的研究中,RLC串联电路是常见的一个重要实验对象。
通过谐振实验,我们可以深入了解该电路的特性和性能,并探索其在实际应用中的价值。
本实验报告旨在详细介绍RLC串联电路的谐振实验方法、实验结果和分析,以及对实验结果的讨论和结论。
二、实验目的1.了解RLC串联电路的结构和基本工作原理;2.通过改变电容器的容值、电感器的感值以及电阻器的阻值,研究RLC电路在不同参数条件下的谐振特性;3.通过实验数据分析,确定谐振频率、带宽和谐振曲线等参数的关系。
三、实验原理在RLC串联电路中,电感、电容和电阻分别代表了电路的感性、容性和阻性元件。
当电路达到谐振状态时,电感和电容之间的能量相互转换,导致电压相位和电流成90°的相位差,并产生谐振频率。
谐振频率的大小与电容的容值、电感的感值以及电阻的阻值密切相关。
四、实验仪器和材料1.RLC串联电路实验装置:包括电感器、电容器、电阻器、信号发生器、数字示波器等设备;2.连接线、万用表、示波器探头等辅助器材。
五、实验步骤1.搭建RLC串联电路:根据实验装置的连接要求,将电感器、电容器和电阻器按照电路图的要求连接起来;2.设置信号发生器:将信号发生器的频率设置为待测频率的初始值,并将输出电压调至适当值;3.连接示波器:将示波器的输入端连接至电路中的检测点,并调整示波器的垂直和水平尺度;4.开始实验:逐步调整信号发生器的频率,记录信号发生器频率与示波器上观测到的电压幅值的变化情况;5.测量数据:记录不同频率下的电压幅值,以绘制谐振曲线;6.清零:完成实验后,将所有设备归零。
六、结果分析1.绘制谐振曲线:根据实验数据,绘制RLC串联电路的谐振曲线;2.确定谐振频率:从谐振曲线中确定谐振频率所对应的频率值;3.计算带宽:根据谐振曲线上的两个3dB点,计算带宽的上限和下限;4.分析结果:分析实验结果,讨论电容器的容值、电感器的感值和电阻器的阻值对谐振特性的影响。
rlc串联谐振电路研究实验报告
rlc串联谐振电路研究实验报告引言:在电路中,谐振电路是一种特殊的电路,它能够以特定的频率产生共振现象。
谐振电路有很多种类,其中最常见的是rlc串联谐振电路。
本实验旨在研究和分析rlc串联谐振电路的性质和特点。
实验目的:1.了解rlc串联谐振电路的基本原理和工作原理。
2.研究影响rlc串联谐振电路谐振频率的因素。
3.观察和分析rlc串联谐振电路在不同频率下的电压响应和相位关系。
实验装置:1.电源:提供电流和电压供应。
2.电阻:限制电流流过电路。
3.电感:储存电磁能量。
4.电容:储存电荷。
5.示波器:用于观察电路中的电压和电流波形。
实验步骤:1.搭建rlc串联谐振电路。
2.将示波器连接到电路上,设置适当的参数。
3.逐渐调节电源频率,观察电压波形和相位关系的变化。
4.记录电路不同频率下的电压响应和相位关系。
5.分析实验结果,得出结论。
实验结果与分析:在实验中,我们得到了不同频率下rlc串联谐振电路的电压响应和相位关系。
通过观察波形和数据分析,我们得出以下结论:1.当电源频率接近谐振频率时,电压响应达到最大值,这就是谐振现象。
2.在谐振频率下,电压和电流的相位差为0,即电压和电流完全同相。
3.在谐振频率两侧,电压和电流的相位差不为0,称为相位差。
4.当电源频率远离谐振频率时,电压响应逐渐减小。
结论:通过本实验,我们研究了rlc串联谐振电路的性质和特点。
我们发现,当电源频率接近谐振频率时,电压响应最大,电压和电流完全同相。
在谐振频率两侧,电压和电流的相位差不为0。
当电源频率远离谐振频率时,电压响应逐渐减小。
这些发现对于电路设计和应用具有重要意义。
进一步研究建议:本实验仅研究了rlc串联谐振电路的基本特性,还有许多方面有待进一步研究:1.研究不同电阻、电感和电容值对谐振频率的影响。
2.研究谐振电路的频率响应特性。
3.研究其他类型的谐振电路,如rlc并联谐振电路。
结语:通过本实验,我们深入研究了rlc串联谐振电路的性质和特点。
rlc串联谐振电路的研究实验报告
rlc串联谐振电路的研究实验报告
1. 实验目的:研究RLC串联谐振电路的特性和性能。
2. 实验原理:RLC串联谐振电路由电感L、电容C和电阻R组成,当电路中的电感、电容和电阻满足一定条件时,电路会发生谐振,此时电路中的电流和电压呈谐振状态。
谐振频率f0与电感L和电容C的数值有关,可以通过以下公式计算:f0=1/(2π√LC)。
3. 实验步骤:
(1)搭建RLC串联谐振电路,连接好电源和示波器。
(2)调节电源电压,使电路中的电流和电压稳定在谐振状态。
(3)测量电路中的电流和电压,并记录下来。
(4)改变电容或电感的数值,再次测量电路中的电流和电压,比较不同参数下电路的谐振频率和特性。
4. 实验结果:根据实验数据,可以计算出电路的谐振频率和品质因数Q,比较不同参数下电路的性能差异。
5. 实验分析:通过实验可以发现,电路中的电感、电容和电阻对电路的谐振特性有很大的影响,合理选择电感和电容的数值可以使电路的谐振频率和品质因数达到最佳状态。
6. 实验结论:RLC串联谐振电路是一种重要的电路结构,可以用于频率选择和滤波等应用中,通过合理选择电感和电容的数值,可以使电路的性能达到最优状态。
RLC电路谐振特性的研究 实验报告
课程名称:大学物理实验(二)
实验名称:RLC电路谐振特性的研究
图2.2 电流和电源的频率的关系曲线
有一极大值,此时的圆频率称为谐振圆频率
ω0=1
(2.3)
√LC
相等,且相位相反
图3.1 DH4503型RLC电路实验仪实物图
图4.1 RLC串联谐振曲线测量电路图4.2串联谐振电路的带宽测定共振频率和共振时的UR、 UC和UL
注意:需要将R和C(L)的位置互换以保证共地
图4.3 串联谐振特性测量电路
将电感、电容调到合适的值,参考值为:L=100mH ,C=4.4×10−8
从电源负极连线接到电阻,电阻连接到电容,电容连接到电感,电感连接回电源正极。
串联谐振定理实验报告(3篇)
第1篇一、实验目的1. 理解串联谐振电路的基本原理及其特性。
2. 通过实验验证串联谐振电路的谐振频率、品质因数和幅频特性。
3. 掌握串联谐振电路在实际应用中的选择性和滤波特性。
二、实验原理1. 串联谐振电路由电感(L)、电容(C)和电阻(R)串联而成,当电路中通过正弦交流电流时,电路的阻抗Z与频率f的关系如下:Z = R + j(XL - Xc) = R + jωL - jωC其中,ω为角频率,ω = 2πf;XL为电感感抗,XL = ωL;Xc为电容容抗,Xc = 1/(ωC)。
2. 当电路发生谐振时,感抗和容抗相等,即XL = Xc,此时电路的阻抗最小,电流最大,且电流与电压同相位。
3. 谐振频率f0为:f0 = 1/(2π√LC)4. 品质因数Q为:Q = ω0L/R = 1/(ω0CR)5. 幅频特性曲线表示电路输出电压Uo与输入电压Ui的关系,当电路发生谐振时,幅频特性曲线在谐振频率处出现峰值。
三、实验仪器与器材1. 信号发生器2. 数字多用表(DMM)3. 电感器(L)4. 电容器(C)5. 电阻器(R)6. 谐振电路实验板7. 连接线四、实验步骤1. 按照电路图连接串联谐振电路,确保电路连接正确。
2. 打开信号发生器,设置合适的频率和幅值。
3. 用DMM测量电路的输出电压Uo和输入电压Ui。
4. 改变信号发生器的频率,记录不同频率下的Uo和Ui。
5. 绘制幅频特性曲线,分析谐振频率、品质因数和幅频特性。
6. 改变电阻R的值,重复实验步骤4和5,观察电路特性的变化。
五、实验结果与分析1. 谐振频率f0的测量值与理论计算值基本一致,误差在允许范围内。
2. 品质因数Q的测量值与理论计算值基本一致,误差在允许范围内。
3. 幅频特性曲线在谐振频率处出现峰值,峰值对应的频率即为谐振频率f0。
4. 当改变电阻R的值时,谐振频率f0和品质因数Q发生变化,符合理论分析。
六、实验结论1. 通过实验验证了串联谐振电路的基本原理及其特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理实验设计性实验
实验报告
实验题目:RLC串联电路谐振
特性的研究
班级:
姓名:学号:
指导教师:
一.目的
1.研究LRC 串联电路的幅频特性;
2.通过实验认识LRC 串联电路的谐振特性. 二.仪器及用具
DH4503RLC 电路实验仪 电阻箱 数字储存示波器 导线
三.实验原理
LRC 串联电路如图3.12-1所示.若交流电源U S 的电压为U ,角频率为ω,各元件的阻抗分别为
则串联电路的总阻抗为
串联电路的电流为
式中电流有效值为
电流与电压间的位相差为
它是频率的函数,随频率的变化关系如图3.12-2所示.
电路中各元件电压有效值分别为
C j Z L j Z R Z C L R ωω1===)
112.3()
1
(--+=C L j R Z ωω)
212.3()1(-=-+==••ϕ
ωωj Ie C L j R Z I U
U &)
312.3()
1(22--+==C L R U Z U I ωω)
412.3(1arctan --
=R
C L ωωϕ)
512.3()1(22
--+=
=C
L R R RI U R ωω)
612.3()
1(2
2--+==U C L R L
LI U L ωωωω)
712.3()
1(1
122--+==U
C
L R C I C U C ωωωω
图3.12-1
/π-/π图3.12-2
(3.12-5)和(3.12-6),(3.12-7) 式可知,U R ,U L 和U C 随频率变化关系如图3.12-3所示.
(3.12-5),(3.12-6)和(3.12-7)式反映元件R 、L 和C 的幅频特性,当
时,ϕ=0,即电流与电压同位相,这种情况称为串联谐振,此时的角频率称为谐振角频率,并以ω0表示,则有
从图3.12-2和图3.12-3可见,当发生谐振时,U R 和I 有极大值,而U L 和U C 的极大值都不出现在谐振点,它们极大值U LM 和U CM 对应的角频率分别为
(3.1211)C ωω=
=-
式中Q 为谐振回路的品质因数.如果满足2
1>
Q ,可得相应的极大值分别为
电流随频率变化的曲线即电流频率响应曲线(如图3.12-5所示)也称谐振曲线.为了分析电路的频率特性.将(3.12-3)式作如下变换
)
912.3(10-=LC
ω)1012.3(21
11
2202
2
2--=-=ωωQ C R LC L )1312.3(4111
422
22LM --
=
-=
Q QL Q U Q U )
1412.3(4112
CM --
=
Q QU
U 2
2)
1()I(C L R U
ωωω-+=2
002L U ωωω=
)
812.3(1-=L C
ωω
(a) 图3.12-3
从而得到
此式表明,电流比I /I 0由频率比ω/ω0及品质因数Q 决定.谐振时ω/ω0,I /I 0=1,而在失谐时ω/ω0≠1, I /I 0<1.由图3.12-5(b)可见,在L 、C 一定的情况下,R 越小,串联电路的Q 值越大,谐振曲线就越尖锐.Q 值较高时, ω稍偏离ω0.电抗就有很大增加,阻抗也随之很快增加,因而使电流从谐振时的最大值急剧地下降,所以Q 值越高,曲线越尖锐,称电路的选择性越好.
为了定量地衡量电路的选择性,通常取曲线上两半功率点(即在
2
10=I I 处)间的频率宽度为“通频带宽度”,简称带宽如图3.12-5所示,用来表明电路的频率选择性的优劣.
由(3.12-17)式可知,当
2
1
0=I I 时
,
Q 100±=-ωωω
ω,若令
解(3.12-18)和(3.12-19)式,得
20022)( ωωωωρ-+=
R U
2002)(1ωωωω-+=Q R U
20020
)(1 ωωωω-+=Q I 20020)
(Q 11ω
ωωω-+=I I )1812.3(11001--=-Q ωωωω)
1912.3(12002-=-Q
ωωωω)
2012.3(2)21
(10
201--+=Q
Q
ωωω(a) (b )
图3.12-5
所以带宽为 可见,Q 值越大,带宽∆ω越小,谐振曲线越尖锐,电路的频率选择性就好.
四.实验内容与步骤 1.计算电路参数
(1)根据自己选定的电感L 值,用(3.12-9)式计算谐振频率f 0=2kHz 时,RLC 串联电路的电容C 的值,然后根据(3.12-12)式计算品质因数Q =2和Q =5时电阻R 的值.
2.实验步骤
(1)按照实验电路如图3.12-6连接电路,r 为电感线
圈的直流电阻,C 为电容箱,R 为电阻箱,U S 为音频信号发生器.
(2)Q=5,调节好相应的R , 将数字储存示波器接在电阻R 两端,调节信号发生器的频率,由低逐渐变高(注意要维持信号发生器的输出幅度不变),读出示波器电压值,并记录。
(
3)把示波器接在电感两端重复步骤(2),读出UL 的值。
(4)把示波器接在电容两端重复步骤(2)读出UC 的值,将数据记入表中 (5)使得Q=2,重复步骤(2)(3)(4)
(6)同一坐标纸上画出Q=5时3条谐振曲线R U —f 和C U —f.L U —f 图并分析
(7)一坐标纸上分别画出在Q=5,Q=2的I —f 图比较并分析(I 由
R
U R
得出)
五.实验数据记录与分析
电压单位:V 电流单位:A
表1
)
2112.3(2)21(10202-++=Q Q ωωω)
2212.3(012-=-=∆Q
ω
ωωω图3.12-6 U
I(mA)
0.01320
0.0129485
0.011928
0.007071
0.005390 0.003091
0.002219 0.001753 0.0012575
()l V V
5.026 5.004 4.722 3.315
2.540
1.751 1.464
1.322
1.186 ()C V V
4.929 4.764 4.284 2.528 1.626 0.778 0.4783
0.3306 0.1897
Q=2
f (kHz) 0.1 0.5 0.8 1.2 1.5 1.8 1.95 2.0
V R (V)
0.02504 0.132107
0.2315
0.4242 0.6504 0,921 0.995 1.00
I(mA)
0.0001329
0.0007009 0.001228 0.002250
0.003450
0.004886
0.005278
0.005305
f (kHz) 2.05 2.1 2.3 2.5 ⁿ 3.0 3.5 4.0 5.0
V R (V)
0.9952 0.9802 0.8724 0.7435 0.5146 0.4742 0.31626
0.23095 I(mA)
0.005279
8
0.0052076
0.004628
0.0039446
0.002730
0.002115
0.0016778
0.0012255
图1
图2
图3 由图1,2,3,有以下结论
1. R U 和C U .L U 与f 均呈类似抛物线变化,但是其最大电压出对应的f 不同,对于R U —f 图,只有对应的最大电压处f= f 0
2.谐振时ϕ=0,电流与电源电压同位相,此时电路阻抗 R X X R Z C L =-+=
22)(
其中LC 串联部分相当于短路.故谐振时电路呈电阻性,阻抗最小.因此,电源电压一定时,谐振电流最大
0U I I R
==
3.谐振时电感上电压(感抗电压)000LI U L ω=与电容上的电压(容抗电压)
C
I
U
C
0ω
=,大小相等,方向相反(如图3.12-4所示),二者互相抵消,这时电源上的全部电压都降落在电阻上,即
而感抗电压及容抗电压均为电源电压的Q倍,即
0O
L C
U U QU
==
均略小于U LM和U CM.
图4
图5
4.由图4,5,可以看出:Q值越大,谐振曲线越尖锐,电路的频率选择性就好.
六.注意的问题
1.由于信号发生器的输出电压随频率而变化,所以在测量时每改变一次频率,均要调节输出电压,本实验要求在整个测量过程中输出电压保持1.0伏.
R
I
U
U
R0
=
=
2.测量时,在谐振点附近频率要密一些,以保证曲线的光滑.
七 .误差分析
1.虽然已经尽量避免,测量时不可能达到输出电压一直保持不变,从而造成误差2.示波器读数不稳定,造成误差。