2014年怀化市初中毕业学业数学考试试卷

合集下载

怀化中考网:2014中考数学试题及答案

怀化中考网:2014中考数学试题及答案

地区中考试题中考答案怀化语文数学英语化学物理历史政治语文数学英语化学物理历史政治随着怀化中考考试的脚步越来越近,中考频道第一时间搜集整理2014年怀化中考数学真题并作出独家权威答案解析,供广大考生参考!收藏(CTRL+D即可)中考真题栏目及中考答案栏目,随时了解中考真题及中考答案最新动态。

2014年怀化中考数学试题及答案发布入口中考注意事项:超常考场发挥小技巧认真审题,每分必争审题是生命线。

审题是正确答题的前导。

从一个角度看,审题甚至比做题更重要。

题目审清了,解题就成功了一半。

认真审准题,才能正确定向,一举突破。

每次考试,总有一些考生因为审题失误而丢分。

尤其是那些似曾相识的题,那些看似很简单的题,考试要倍加细心,以防“上当受骗”。

我曾给学生一副对联:似曾相识“卷”归来,无可奈何“分”落去。

横批:掉以轻心。

越是简单、熟悉的试题,越要倍加慎重。

很多学生看题犹如“走马观花”,更不思考命题旨意,待到走出考场才恍然大悟,但为时已晚矣。

考试应努力做到简单题不因审题而丢分。

“两先两后”,合理安排中考不是选拔性考试,在新课改背景下,试卷的难度理应不会太大。

基础题和中等难度题的分值应占到80%。

考生拿到试卷,不妨整体浏览,此时大脑里的思维状态由启动阶段进入亢奋阶段。

只要听到铃声一响就可开始答题了。

解题应注意“两先两后”的安排:1.先易后难一般来说,一份成功的试卷,题目的排列应是遵循由易到难,但这是命题者的主观愿望,具体情况却因人而异。

同样一个题目,对他人来说是难的,对自己来说也许是容易的,所以当被一个题目卡住时就产生这样的念头,“这个题目做不出,下面的题目更别提了。

”事实情况往往是:下面一个题目反而容易!由此,不可拘泥于从前往后的顺序,根据情况可以先绕开那些难攻的堡垒,等容易题解答完,再集中火力攻克之。

2.先熟后生通览全卷后,考生会看到较多的驾轻就熟的题目,也可能看到一些生题或新型题,对前者——熟悉的内容可以采取先答的方式。

初中数学【湖南】怀化市初中毕业学业考试考试卷 数 学

初中数学【湖南】怀化市初中毕业学业考试考试卷 数     学
xx学校xx学年xx学期xx试卷
姓名:_____________ 年级:____________ 学号:______________
题型
选择题
填空题
简答题
xx题
xx题
xx题
总分
得分
评卷人
得分
一、xx题
(每空xx 分,共xx分)
试题1:
下列运算结果等于1的是( )
A. B. C. D.
试题2:
下列图形中,是中心对称图形但不是轴对称图形的是( )
试题18:
如图,在直角梯形ABCD中,AB∥CD,AD⊥CD,AB=1cm,AD=6cm,CD=9cm,则BC=cm.
试题19:
有一组数列:2, ,2, ,2, ,2, ,…… ,根据这个规律,那么第2010个数是_______.
试题20:
如图6,已知直线AB是⊙O的切线,A为切点,OB交⊙O于点C,点D在⊙O上,且∠OBA=40°,则∠ADC=.
在Rt△ABC中,


试题26答案:
解;(1) 因为M(1,-4) 是二次函数 的顶点坐标,
所以
令 解之得 .
∴A,B两点的坐标分别为A(-1,0),B(3,0)
(2) 在二次函数的图象上存在点P,使 …
设 则 ,又 ,

∵二次函数的最小值为-4,∴ .
当 时, .
故P点坐标为(-2,5)或(4,5)
A. B. C. D.
试题7:
如图2,在菱形ABCD中,对角线AC=4,∠BAD=120°,则菱形ABCD的周长为( )
A.20 B.18 C.16 D.15
试题8:
某同学五天内每天完成家庭作业的时间(单位:小时)分别为2、2、3、2、1,则这组数据的众数和中位数分别为( )

2014年湖南省怀化市初中毕业学业考试数学试卷

2014年湖南省怀化市初中毕业学业考试数学试卷

2014年湖南省怀化市初中毕业学业考试数学试卷一、选择题(每小题3分,共24分;每小题的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上)1.我国南海海域面积为3500000km2,用科学记数法表示正确的是()A.3.5×105cm2 B.3.5×106cm2 C.3.5×107cm2D.3.5×108cm2考点:科学记数法—表示较大的数.解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.将3500000用科学记数法表示为:3.5×106.答案:B2.将一直角三角板与两边平行的纸条如图放置.已知∠1=30°,则∠2的度数为()A.30° B.45° C.50° D.60°考点:平行线的性质.解析:根据平行线的性质得∠2=∠3,再根据互余得到∠1=60°,所以∠2=60°.∵a∥b,∴∠2=∠3,∵∠1+∠3=90°,∴∠1=90°﹣30°=60°,∴∠2=60°.答案:D3.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2)B.a(x﹣3)(x+4)C.a(x2﹣4x﹣12)D.a(x+6)(x﹣2)考点:因式分解-十字相乘法等;因式分解-提公因式法解析:首先提取公因式a,进而利用十字相乘法分解因式得出即可.ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).4.下列物体的主视图是圆的是()A.B.C.D.考点:简单几何体的三视图解析:根据从正面看得到的图形是主视图,可得答案.A、只是图是矩形,故A不符合题意;B、主视图是三角形,故B不符合题意;C、主视图是圆,故C符合题意;D、主视图是正方形,故D不符合题意;答案:C5.如图,已知等腰梯形ABCD中,AD∥BC,AB=DC,AC 与BD相交于点O,则下列判断不正确的是()A.△ABC≌△DCB B.△AOD≌△COB C.△ABO≌△DCO D.△ADB≌△DAC考点:等腰梯形的性质;全等三角形的判定.解析:由等腰梯形ABCD中,AD∥BC,AB=DC,可得∠ABC=∠DCB,∠BAD=∠CDA,易证得△ABC≌△DCB,△ADB≌△DAC;继而可证得∠ABO=∠DCO,则可证得△ABO≌△DCO.A、∵等腰梯形ABCD中,AD∥BC,AB=DC,∴∠ABC=∠DCB,在△ABC与△DCB中,∴△ABC≌△DCB(SAS);故正确;B、∵AD∥BC,∴△AOD∽△COB,∵BC>AD,∴△AOD不全等于△COB;故错误;C、∵△ABC≌△DCB,∴∠ACB=∠DBC,∵∠ABC=∠DCB,∴∠ABO=∠DCO,在△ABO与△DCO中,∴△ABO≌△DCO(AAS);故正确;D、∵等腰梯形ABCD中,AD∥BC,AB=DC,∴∠BAD=∠CDA,在△ADB与△DAC中,∴△ADB≌△DAC(SAS),故正确.答案:B6.不等式组的解集是()A.﹣1≤x<2 B.x≥﹣1 C.x<2 D.﹣1<x≤2考点:解一元一次不等式组.解析:分别求出各不等式的解集,再根据不等式组无解求出a 的取值范围即可.由①得,4x<8,x<2,由②得,x≥﹣1,故不等式组的解集为﹣1≤x<2,答案:A7.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼时间,列表如下:锻炼时间(小5678时)人数2652则这15名同学一周在校参加体育锻炼时间的中位数与众数分别是()A.6,7 B.7,7 C.7,6 D.6,6考点:众数;中位数.解析:根据中位数与众数的定义分别进行解答即可.∵共有15个数,最中间的数是8个数,∴这15名同学一周在校参加体育锻炼时间的中位数是6;6出现的次数最多,出现了6次,则众数是6;答案:D8.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx 与反比例函数y=在同一坐标系中的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象;一次函数图象与系数的关系.解析:根据一次函数图象可以确定k、b的符号,根据k、b的符号来判定正比例函数y=kx与反比例函数y=图象所在的象限.如图所示,∵一次函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0.∴正比例函数y=kx的图象经过第一、三象限,反比例函数y=的图象经过第二、四象限.综上所述,符合条件的图象是C选项.答案:C二、填空题(每小题3分,共24分;请将答案直接填写在答题卡的相应位置上)9.计算:(﹣1)2014= 1 .考点:有理数的乘方.解析:根据(﹣1)的偶数次幂等于1解答.(﹣1)2014=1.答案:1.10.分解因式:2x2﹣8= 2(x+2)(x﹣2).考点:提公因式法与公式法的综合运用.解析:先提取公因式2,再对余下的多项式利用平方差公式继续分解.2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).答案:2(x+2)(x﹣2).11.如图,D、E分别是△ABC的边AB、AC上的中点,则S△ADE:S△ABC= 1:4 .考点:三角形中位线定理;相似三角形的判定与性质.解析:根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC且DE=BC,再求出△ADE与△ABC相似,根据相似三角形面积的比等于相似比的平方解答.∵D、E是边AB、AC上的中点,∴DE是△ABC的中位线,∴DE∥BC且DE=BC,∴△ADE∽△ABC,∴S△ADE:S△ABC=(1:2)2=1:4.答案:1:4.12.分式方程=的解为x=1 .考点:解分式方程.解析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.去分母得:3x﹣6=﹣x﹣2,移项合并得:4x=4,解得:x=1,经检验x=1是分式方程的解.答案:x=1.13.如图,小明爬一土坡,他从A处爬到B处所走的直线距离AB=4米,此时,他离地面高度为h=2米,则这个土坡的坡角∠A= 30 °.考点:解直角三角形的应用-坡度坡角问题.解析:直接利用正弦函数的定义求解即可.由题意得:AB=4米,BC=2米,在Rt△ABC中,sinA===,故∠A=30°,答案:30.14.已知点A(﹣2,4)在反比例函数y=(k≠0)的图象上,则k的值为﹣8 .考点:反比例函数图象上点的坐标特征.解析:直接把点A(﹣2,4)代入反比例函数y=(k≠0),求出k的值即可.∵点A(﹣2,4)在反比例函数y=(k≠0)的图象上,∴4=,解得k=﹣8.答案:﹣8.15.如图,在△ABC中,∠A=30°,∠B=50°,延长BC到D,则∠ACD=80 °.考点:三角形的外角性质.解析:根据三角形的一个外角等于与它不相邻的两个内角的与列式计算即可得解.∵∠A=30°,∠B=50°,∴∠ACD=∠A+∠B=30°+50°=80°.答案:80.16.某校九年级有560名学生参加了市教育局举行的读书活动,现随机调查了70名学生读书的数量,根据所得数据绘制了如图的条形统计图,请估计该校九年级学生在此次读书活动中共读书2040 本.考点:用样本估计总体;条形统计图.解析:利用条形统计图得出70名同学一共借书的本数,进而得出该校九年级学生在此次读书活动中共读书本数.由题意得出:70名同学一共借书:2×5+30×3+20×4+5×15=255(本),故该校九年级学生在此次读书活动中共读书:×255=2040(本).答案:2040.三、解答题(本大题共8小题,共72分)17.计算:|﹣3|﹣﹣()0+4sin45°.考点:实数的运算;零指数幂;特殊角的三角函数值.解析:原式第一项利用绝对值的代数意义化简,第二项化为最简二次根式,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.解:原式=3﹣2﹣1+4×=3﹣2﹣1+2=2.18.设一次函数y=kx+b(k≠0)的图象经过A(1,3)、B(0,﹣2)两点,试求k,b的值.考点:待定系数法求一次函数解析式.解析:直接把A点与B点坐标代入y=kx+b,得到关于k与b 的方程组,然后解方程组即可.解:把A(1,3)、B(0,﹣2)代入y=kx+b得,解得,即k,b的值分别为5,﹣2.19.如图,在平行四边形ABCD中,∠B=∠AFE,EA是∠BEF 的角平分线.求证:(1)△ABE≌△AFE;(2)∠FAD=∠CDE.考点:平行四边形的性质;全等三角形的判定与性质.解析:(1)根据角平分线的性质可得∠1=∠2,再加上条件∠B=∠AFE,公共边AE,可利用AAS证明△ABE≌△AFE;(2)首先证明AF=CD,再证明∠B=∠AFE,∠AFD=∠C可证明△AFD≌△DCE进而得到∠FAD=∠CDE.证明:(1)∵EA是∠BEF的角平分线,∴∠1=∠2,在△ABE与△AFE中,∴△ABE≌△AFE(AAS);(2)∵△ABE≌△AFE,∴AB=AF,∵四边形ABCD平行四边形,∴AB=CD,AD∥CB,AB∥CD,∴AF=CD,∠ADF=∠DEC,∠B+∠C=180°,∵∠B=∠AFE,∠AFE+∠AFD=180°,∴∠AFD=∠C,在△AFD与△DCE中,∴△AFD≌△DCE(AAS),∴∠FAD=∠CDE.20.甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小与形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之与为偶数时,则甲胜;若两次摸出的球的标号之与为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.考点:游戏公平性;概率公式;列表法与树状图法.解析:(1)由把三个分别标有1,2,3的大小与形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.解:(1)∵三个分别标有1,2,3的大小与形状完全相同的小球放在一个不透明的口袋中,∴从袋中随机摸出一球,标号是1的概率为:;(2)这个游戏不公平.画树状图得:∵共有9种等可能的结果,两次摸出的球的标号之与为偶数的有5种情况,两次摸出的球的标号之与为奇数的有4种情况,∴P(甲胜)=,P(乙胜)=.∴P(甲胜)≠P(乙胜),∴这个游戏不公平.21.两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部(1)那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)(2)设AB的垂直平分线交ME于点N,且MN=2(+1)km,在M处测得点C位于点M的北偏东60°方向,在N处测得点C位于点N的北偏西45°方向,求点C到公路ME的距离.考点:解直角三角形的应用-方向角问题;作图—应用与设计作图.解析:(1)到城镇A、B距离相等的点在线段AB的垂直平分线上,到两条公路距离相等的点在两条公路所夹角的角平分线上,分别作出垂直平分线与角平分线,它们的交点即为所求作的点C.(2)作CD⊥MN于点D,由题意得:∠CMN=30°,∠CND=45°,分别在Rt△CMD中与Rt△CND中,用CD表示出MD与ND的长,从而求得CD的长即可.解:(1)答图如图:(2)作CD⊥MN于点D,由题意得:∠CMN=30°,∠CND=45°,∵在Rt△CMD中,=t an∠CMN,∴MD==;∵在Rt△CND中,=tan∠CNM,∴ND==CD;∵MN=2(+1)km,∴MN=MD+DN=CD+CD=2(+1)km,解得:CD=2km.∴点C到公路ME的距离为2km.22.如图,E是长方形ABCD的边AB上的点,EF⊥DE交BC于点F(1)求证:△ADE∽△BEF;(2)设H是ED上一点,以EH为直径作⊙O,DF与⊙O相切于点G,若DH=OH=3,求图中阴影部分的面积(结果保留到小数点后面第一位,≈1.73,π≈3.14).考点:切线的性质;矩形的性质;扇形面积的计算;相似三角形的判定;特殊角的三角函数值.解析:(1)由条件可证∠AED=∠EFB,从而可证△ADE∽△BEF.(2)由DF与⊙O相切,DH=OH=OG=3可得∠ODG=30°,从而有∠GOE=120°,并可求出DG、EF长,从而可以求出△DGO、△DEF、扇形OEG的面积,进而可以求出图中阴影部分的面积.(1)证明:∵四边形ABCD是矩形,∴∠A=∠B=90°.∵EF⊥DE,∴∠DEF=90°.∴∠AED=90°﹣∠BEF=∠EFB.∵∠A=∠B,∠AED=∠EFB,∴△ADE∽△BEF.(2)解:∵DF与⊙O相切于点G,∴OG⊥DG.∴∠DGO=90°.∵DH=OH=OG,∴sin∠ODG==.∴∠ODG=30°.∴∠GOE=120°.∴S扇形OEG==3π.在Rt△DGO中,cos∠ODG===.∴DG=3.在Rt△DEF中,tan∠EDF===.∴EF=3.∴S△DEF=DE•EF=×9×3=,S△DGO=DG•GO=×3×3=.∴S阴影=S△DEF﹣S△DGO﹣S扇形OEG=﹣﹣3π=.9﹣3π≈9×1.73﹣3×3.14=6.15≈6.2∴图中阴影部分的面积约为6.2.23.设m是不小于﹣1的实数,使得关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根1,x2.(1)若+=1,求的值;(2)求+﹣m2的最大值.考点:根与系数的关系;根的判别式;二次函数的最值.解析:(1)首先根据根的判别式求出m的取值范围,利用根与系数的关系,求出符合条件的m的值;(2)把利用根与系数的关系得到的关系式代入代数式,细心化简,结合m的取值范围求出代数式的最大值.解:∵方程有两个不相等的实数根,∴△=b2﹣4ac=4(m﹣2)2﹣4(m2﹣3m+3)=﹣4m+4>0,∴m<1,结合题意知:﹣1≤m<1.(1)∵x1+x2=﹣2(m﹣2),x1x2=m2﹣3m+3∴+===1解得:m1=,m2=(不合题意,舍去)∴=﹣2.(2)+﹣m2=﹣m2=﹣2(m﹣1)﹣m2=﹣(m+1)2+3.当m=﹣1时,最大值为3.24.如图1,在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ABO的面积为y.(1)求y与x之间的函数关系式;(2)当x=3秒时,射线OC平行移动到O′C′,与OA相交于G,如图2,求经过G,O,B三点的抛物线的解析式;(3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在三角形POB的面积S=8的情况?若存在,求出点P 的坐标,若不存在,请说明理由.考点:二次函数综合题.解析:(1)判断出△ABO是等腰直角三角形,根据等腰直角三角形的性质可得∠AOB=45°,然后求出AO⊥CO,再根据平移的性质可得AO⊥C′O′,从而判断出△OO′G是等腰直角三角形,然后根据等腰直角三角形的性质列式整理即可得解;(2)求出OO′,再根据等腰直角三角形的性质求出点G的坐标,然后设抛物线解析式为y=ax2+bx,再把点B、G的坐标代入,利用待定系数法求二次函数解析式解答;(3)设点P到x轴的距离为h,利用三角形的面积公式求出h,再分点P在x轴上方与下方两种情况,利用抛物线解析式求解即可.解:(1)∵AB=OB,∠ABO=90°,∴△ABO是等腰直角三角形,∴∠AOB=45°,∵∠yOC=45°,∴∠AOC=(90°﹣45°)+45°=90°,∴AO⊥CO,∵C′O′是CO平移得到,∴AO⊥C′O′,∴△OO′G是等腰直角三角形,∵射线OC的速度是每秒2个单位长度,∴OO′=2x,∴y=×(2x)2=2x2;(2)当x=3秒时,OO′=2×3=6,∵×6=3,∴点G的坐标为(3,3),设抛物线解析式为y=ax2+bx,则,解得,∴抛物线的解析式为y=﹣x2+x;(3)设点P到x轴的距离为h,则S△POB=×8h=8,解得h=2,当点P在x轴上方时,﹣x2+x=2,整理得,x2﹣8x+10=0,解得x1=4﹣,x2=4+,此时,点P的坐标为(4﹣,2)或(4+,2);当点P在x轴下方时,﹣x2+x=﹣2,整理得,x2﹣8x﹣10=0,解得x1=4﹣,x2=4+,此时,点P的坐标为(4﹣,﹣2)或(4+,﹣2),综上所述,点P的坐标为(4﹣,2)或(4+,2)或(4﹣,﹣2)或(4+,﹣2)时,△POB的面积S=8.。

2014中考数学答案

2014中考数学答案

2014年初中毕业生毕业升学考试数学试卷参考答案及评分标准说明:1.此答案仅供参考,阅卷之前请做答案。

2.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则。

3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤。

4.解答右端所注分数,表示考生正确做到这一步应得的累加分数。

一、选择题(每小题3分,共24分)1. D2. B3. C4. C5. D6. B7. B8. A 二、填空题(每小题3分,共24分)9. 141077.5⨯ 10.1x ≥且2≠x 11.2221s s < 12. 36 13.25 14. 120 15.-31614n -⎝⎭或 三、解答题(17小题8分,18小题8分,共16分)17.方法一:解:原式()()⎪⎪⎭⎫⎝⎛-----÷+-+-=b a b ab ba ab a b a b a b a a b 222……………………………(2分) ()ba b ab a b a a b -+-÷--=2222()()22b a ba b a a b --⋅--= …………………………………(4分)a b -=2. …………………………………(5分)这里145tan ==a ,323260sin 2=⨯==b , ………………………(7分) 当3,1==b a 时,原式()213132=-=-=. ………………………………(8分)方法二:解:原式()()()⎪⎭⎫⎝⎛---÷+-+--=b a b a b a b a b a b a a b 2…………………………………(2分)())(2b a b a a b -÷--= ………………………………………(4分)a b -=2. ……………………………………………………………(5分)当45tan =a ,60sin 2=b 时 , 原式()()2131345tan 60sin 222=-=-=-=………………………………(8分)18.(1)画出△111C B A …………(2分)1C (3,2) ……………(3分)(2)画出△222C B A …………(5分)2C (-6,4) ……………(6分)(3)2D (a 2,b 2) ……………(8分)四、解答题(19小题10分,20小题10分,共20分)19.(1)32 72 ………………………………(2分) (2)()人50052500=÷ 答:一共调查了500人. …… (4分)(3)()21010325000000=+⨯(人) …………………(5分) 6010407030210=---- (人) ………………(6分) 补全条形统计图如图 ………………………………(7分) ()()00004140000321058800⨯+=()人答:估计市民中会有58800人给出建议. ………………(10分) 20.(1)P (按照爸爸的规则小明能看比赛)=31………………………………………(3分)分)由表可知所有可能结果共有9种,且每种结果发生的可能性相同,其中抽取的两数之积是有理数的结果有5种,分别是9、2、4、4、8,所以小明看比赛的概率为95………(10分)第18题图调查中给出建议....的人数条形统计图 第19题图解法二:根据题意画树状图如下:由树状图可知所有可能结果共有9种,且每种结果发生的可能性相同,其中抽取的两数之积是有理数的结果有5种,分别是9、2、4、4、8,所以小明看比赛的概率为95. ……(10分) 五、解答题(21小题8分,22小题10分,共18分) 21.解:由题意可知,AE ∥BC ,∠ADB =∠EAD =53°,∠C=∠EAC =11° ………………………………………(2分)∵在Rt △ABC 中,AB =15,∠C =11°, ∴95.7819.01511tan ≈≈=AB BC ………(4分) ∵在Rt △ABD 中,∠ADB =53° ∴28.1133.11553tan ≈≈=AB BD ………………………………………………………(6分)∴8.6767.6728.1195.78≈=-≈-=BD BC CD (米) …………………………………………(7分) 答:C 、D 两点之间距离约为67.8米. ………………………………………………………(8分)22.(1)证明:方法一:如图,连接OC , ……………………………………………………… (1分)OB OC =,∴∠B =∠1. 又∵∠B =∠2,∴∠1=∠2. ………………………………(2分)AB 是⊙O 的直径,∴190ACB OCA ∠=∠+∠=, ………………(3分) ∴OCA ∠+290∠=, ∴∠OCF =90°,∴OC ⊥FC , ……………………………………(4分) ∴CF 为⊙O 的切线. ……………………(5分)第一次抽卡片第二次抽卡片 32 223 2 22 3 2 22开始所有可能结果 (3,3)(3,2)(3,22)(2,3)(2,2)(2,22)(22,3)(22,2)(22,22) (9)(32)(62)(32)(2) (4) (62) (4) (8)……(7分) 25题图第22题图 第22题第21题图方法二:如图,连接OC , …………………………………………………………… (1分)AB 是⊙O 的直径,∴∠ACB =90°. …………………………………………………………………………(2分)OB OC =,∴∠B =∠1.在△AFC 和△CFB 中,∠F +∠2+∠F AC =180°,∠F +∠B +∠FCB =180°, 又∵∠2=∠B ,∴∠F AC =∠FCB . ………………………………………………………………………(3分) ∵∠F AC=∠B +∠ACB =∠1+∠ACB ∠FCB =∠1+∠OCF , ∴∠OCF =∠ACB =90°,∴OC ⊥FC , ……………………………………………………………………………(4分)∴CF 为⊙O 的切线. …………………………………………………………………(5分)(2)解法一:如图, ∵直径AB 平分弦CD ,∴AB ⊥CD , …………………………………………………………………………(6分)∴∠AEC =∠OEC =90°. ∵在Rt △ACE 中,tan ∠AC D=12,AC =4 , ∴12AE EC =,即2CE AE =. ……………………………………………………………………(7分) ∴由勾股定理得,()22224AE AE +=,∴AE EC ==……………………………………………………………………(8分)在Rt △OCE 中,由勾股定理得,222OE CE OC +=,设OC =r ,则222r r ⎛+= ⎝⎭⎝⎭,……………………………………………………(9分)解得r =∴⊙O 的半径为…………………………………………………………………(10分) 解法二:∵直径AB 平分弦CD , ∴弧AC =弧AD ,∴∠ACD =∠B . …………………………………………………………………………(7分)又∵tan ∠AC D=12, ∴tan ∠B =12. …………………………………………………………………………(8分) 在Rt △ACB 中,tan ∠B =12AC BC =,又∵AC =4,∴BC =8. ……………………………………………………………………………………(9分) 根据勾股定理,得2222248AB AC BC =+=+,∴AB =∴OB =∴⊙O 的半径为 ………………………………………………………………………(10分)六、解答题(23小题10分,24小题10分,共20分)23.(1)方法一:设签字笔的单价为x 元,笔记本的单价为y 元,根据题意得⎩⎨⎧=+=+5.13325.82y x y x ………………………………………………………(2分) 解得⎩⎨⎧==5.35.1y x ………………………………………………………(4分)答:签字笔的单价为1.5元,笔记本的单价为3.5元. …………………………(5分) 方法二:设签字笔单价为x 元,则笔记本单价为25.8x-元,根据题意得 8.52313.52xx -+⋅=, ……………………………………………………(2分)解得x =1.5 ,5.325.15.8=-(元). …………………………………………(4分) 答:签字笔的单价为1.5元,笔记本的单价为3.5元. …………………………(5分)(2)方法一:设学校获奖的同学有a 人,根据题意得127207208.0+=⨯a a , …………………………………………………………(7分) 解得a =48, ……………………………………………………………………(8分) 经检验,a =48是原方程的根. …………………………………………………(9分) 答:学校获奖的同学有48人. …………………………………………………(10分) 方法二:设每本图书原价m 元,根据题意得m m 8.072012720=+, …………………………………………………………………(7分) 解得m =15, ……………………………………………………………(8分) 经检验,m =15是原方程的根. ………………………………………………(9分)所以每本图书原价为15元.4815720=(人) 答:学校获奖的同学有48人. ………………………………………………(10分)24.(1)如图,①当0≤x ≤90时,设b kx y +=,把(30,1500)和(60,2100)分别代入,得⎩⎨⎧+=+=bk bk 602100301500, ………………………(1分) 解得⎩⎨⎧==90020b k . …………………………(2分)所以当0≤x ≤90时,y 与x 之间的函数表达式为90020+=x y . ……………(3分)第24题图②将x =90代入90020+=x y 得,y =20×90+900=2700, . …………………(4分) 当x >90时,根据题意得30(90)270030y x x =-+=,所以,当x >90时,y 与x 之间的函数表达式为x y 30= . ………………(5分)(2) 方法一:将x =0代入y =20x +900,得y =900, 90045()20=天,答:厂家去年生产了45天. ……………………………………………(7分)方法二:将45900200-=+==x x y y ,得代入. 答:厂家去年生产了45天. ………………… ……………………………(7分)(3) 方法一:设改进技术后,还要n 天完成生产计划 ,根据题意得()3090n +≥6000,解得n ≥110, ……………………………………………………(9分) 答:至少还要110天,厂家才能完成生产计划. ……………………………(10分)方法二:设今年生产x 天完成生产计划,则306000x ≥,解得200x ≥, ………………………………………………(9分) 20090110-=(天).答:至少还要110天,厂家才能完成生产计划. ……………………………(10分)七、解答题(本题满分14分)25.(1)①证明:∵四边形ABCD 是正方形,∴AD =CD , ∠ADG =∠CDG . 又∵GD =GD ,∴△ADG ≌△CDG (SAS ) . ……………………………………………………………(1分) ∴∠DAG =∠DCG . ……………………………………………………………(2分) ②AG ⊥BE . …………………………………………………………………(3分)证明:∵四边形ABCD 是正方形, ∴AB =CD , ∠BAD =∠ADC =90°. 又∵AE =DF ,∴△ABE ≌△CDF (SAS ) .∴∠ABE =∠DCF . ………………………………(4分) 又∵∠DAG =∠DCG ,∴∠GAD =∠ABE . …………………………………………………………………(5分) 又∵∠BAH +∠DAG =90°, ∴∠BAH +∠ABE =90°,∴∠AHB =90°,∴AG ⊥BE . ……………………………………………………………(6分)第25题①图(2)证明:过点O 作OM ⊥AG 于点M ,ON ⊥BE 于点N , ∴∠ONH =∠OMH =90°,…………………………(7分) 又∵∠MHN =90°, ∴四边形OMHN 是矩形,∴∠MON =90°. ………………………………(8分) ∵四边形ABCD 是正方形, ∴OA =OB ,∠AOB =90°,∴∠BON+∠AON=∠AON+∠AOM ,∴∠BON =∠AOM , …………………………(9∴△AMO ≌△BNO (AAS ) ,∴OM =ON . …………………………(10又∵OM ⊥AG ,ON ⊥BE ,∴HO 平分∠BHG . …………………………(11(3)补充作图如图③所示, ………………(13∠BHO =45°. …………………………(14分)八、解答题(本题满分14分)26. 解:(1) 将点A ()0,1、)03(,B 、(0)C ,-3代入c bxax y ++=2中, 得⎪⎩⎪⎨⎧-==++=++30390c c b a c b a 解得143a b c =-⎧⎪=⎨⎪=-⎩.∴抛物线的表达式为342-+-=x x y ,…………………(3∵1)2(3422+--=-+-=x x x y ,∴顶点D 的坐标为)1,2(. ………………………………………………(5分) (2) 设直线BC 的表达式为b kx y +=,∴⎩⎨⎧-==+303b b k , 解得3,1-==b k .∴直线BC 的表达式为:3-=x y . …………………………………………………(6分) PE ∥y 轴,∴点E 、点P 的横坐标相同.设 ),(),,(E P y m E y m P .第25题③图第25题②图∴()22239433324P E PE y y m m m m m m ⎛⎫=-=-+---=-+=--+ ⎪⎝⎭.∴存在点P ,使线段PE 的长最大,最大值为49. …………………………………(8分) (3) 由题意易得,△ADB 、△ABF 是等腰直角三角形,AD ∥BC. ∴123ADB ABF ADBF S S S ∆∆=+=+=四边形.当0t ≤OAFC 移动到如图②的位置, 重叠部分图形为平行四边形FA F A '',2AF =,t F F =',F '到AF 距离为t 22, ∴t t S FA F A 2222=⨯=''平行四边形 …………………………………………(10分)t <≤AFCO 运动到如图③所示位置,重叠部分图形为五边形ND C F M '',FC t '=BF t '=.F MF C ND ADB AFC N MF B S S S S ''''=--五边形四边形平行四边形等腰直角三角形()2322t t =⨯-212t =-++ . …………………………………………………………………(12分)当t ≤时,四边形AFCO 运动到如图④所示位置,重叠部分图形为等腰直角三角形C BN ',BC t '=.2211)922BNC S t t '==-+三角形.………(14第26题②图。

【初中数学】湖南省怀化市2014年初中毕业学业水平考试数学模拟试卷(一) 人教版

【初中数学】湖南省怀化市2014年初中毕业学业水平考试数学模拟试卷(一) 人教版

怀化市2014年初中毕业学业水平考试模拟试卷(一)数学试卷一、单项选择题(本大题共8小题,每小题3分,共24分)1.在下列实数中,无理数是()A.2B.3.14 C.D.2.如图所示圆柱的左视图是()3.下列函数中,图象经过点(1,﹣1)的反比例函数关系式是()A.B.C.D.4.下列计算中,正确的是()A.(a3b)2=a6b2B.a•a4=a4C.a6÷a2=a3D.3a+2b=5ab5.已知:甲乙两组数据的平均数都是5,甲组数据的方差,乙组数据的方差,下列结论中正确的是()A.甲组数据比乙组数据的波动大B.乙组数据的比甲组数据的波动大C.甲组数据与乙组数据的波动一样大D.甲组数据与乙组数据的波动不能比较6.已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是()A.相离B.相切C.相交D.无法判断7.二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x ﹣3 ﹣2 ﹣1 0 1 2 3 4 5y 12 5 0 ﹣3 ﹣4 ﹣3 0 5 12给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3B.2C.1D.08.有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为()A.a+b B.2a+b C.3a+b D.a+2b二、填空题(共8小题,每小题3分,共24分)9.计算:a4÷a2=_________.10.分解因式:a2+2a+1=_________.11.方程=的解为_________.12.任意抛掷一枚质地均匀的正方体骰子1次,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数大于4的概率为_________.13.按照如图所示的操作步骤,若输入x的值为2,则输出的值为_________.14.如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧的弧长为_________.(结果保留π)15.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为_________.16.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若=,则=_________用含k 的代数式表示).三、解答题(共8小题,满分72分)17.(6分)化简:﹣.18.(6分)解方程组:.19.(10分)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.20.(10分)某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额.消费金额(元) 300﹣400 400﹣500 500﹣600 600﹣700 700﹣900 …返还金额(元) 30 60 100 130 150 …根据上述促销方案,顾客在该商场购物可以获得双重优惠,例如:若够买标价为400元的商品,则消费金额为320元,获得的优惠额为400×(1﹣80%)+30=110(元).(1)购买一件标价为1000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠不少于226元,那么该商品的标价至少为多少元?21.(10分)某企业500名员工参加安全生产知识测试,成绩记为A,B,C,D,E共5个等级,为了解本次测试的成绩(等级)情况,现从中随机抽取部分员工的成绩(等级),统计整理并制作了如下的统计图:(1)求这次抽样调查的样本容量,并补全图①;(2)如果测试成绩(等级)为A,B,C级的定位优秀,请估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数.22.(10分)如图,在Rt△ABC中,∠ACB=90°,点D是AB边上一点,以BD为直径的⊙O 与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.(1)求证:BD=BF;(2)若CF=1,cosB=,求⊙O的半径.23.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2 与x轴交于点A(﹣1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m.(1)求这条抛物线所对应的函数关系式.(2)求点C在这条抛物线上时m的值.(3)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.①当点D在这条抛物线的对称轴上时,求点D的坐标.②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,直接写出所有符合条件的m值.(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(,))24.(10分)如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记△APQ 的面积为S.求S与t之间的函数关系式.(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D﹣A运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.18.解:,②﹣①×2得:x=6,将x=6代入①得:6+2y=0,即y=﹣3,则方程组的解为.19.证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∠ADB=∠CDB,∴∠PMD=∠PND=90°,PM=PN,∵∠ADC=90°,∴四边形MPND是矩形,∵PM=PN,∴四边形MPND是正方形.20.解:(1)标价为1000元的商品按80%的价格出售,消费金额为800元,消费金额800元在700﹣900之间,优惠额为150元,顾客获得的优惠额是:1000×(1﹣80%)+150=350(元);(2)设该商品的标价为x元.当80%x≤500,即x≤625时,顾客获得的优惠额不超过625×(1﹣80%)+60=185<226;当500<80%x≤600,即625<x≤750时,(1﹣80%)x+100≥226,解得x≥630.所以630≤x≤750.当600<80%x≤800×80%,即750<x≤800时,顾客获得的优惠额大于750×(1﹣80%)+130=280>226.综上,顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为630元.21.解:(1)依题意有:20÷40%=50(人),则这次抽样调查的样本容量为50.50﹣20﹣5﹣8﹣5=12(人).补全图①为:;(2)依题意有500×=370(人).答:估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数为370人.22.(1)证明:连接OE,∵AC与圆O相切,∴OE⊥AC,∵BC⊥AC,∴OE∥BC,又∵O为DB的中点,∴E为DF的中点,即OE为△DBF的中位线,∴OE=BF,又∵OE=BD,则BF=BD;(2)解:设BC=3x,根据题意得:AB=5x,又∵CF=1,∴BF=3x+1,由(1)得:BD=BF,∴BD=3x+1,∴OE=OB=,AO=AB﹣OB=5x﹣=,∵OE∥BF,∴∠AOE=∠B,∴cos∠AOE=cosB,即=,即=,解得:x=,则圆O的半径为=.。

2014-2015年湖南省怀化市洪江市初三上学期期末数学试卷含答案解析

2014-2015年湖南省怀化市洪江市初三上学期期末数学试卷含答案解析

2014-2015学年湖南省怀化市洪江市初三上学期期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)一元二次方程x2﹣2x﹣3=0的二次项系数、一次项系数、常数项分别是()A.1,﹣2,﹣3B.1,﹣2,3C.1,2,3D.1,2,﹣3 2.(3分)反比例函数y=的图象经过第二、四象限,那么k的值可能是()A.3B.4C.5D.23.(3分)反比例函数y=图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1 4.(3分)两个相似多边形的面积比是9:16,其中较小多边形的周长为36cm,则较大多边形的周长为()A.48cm B.54cm C.56cm D.64cm5.(3分)从全市5000份数学试卷中随机抽取400份试卷,其中360份成绩合格,那么可以估计全市数学成绩合格的学生大约有多少人?()A.4500B.4000C.3600D.48006.(3分)如图,D为△ABC边BC上一点,要使△ABD∽△CBA,应该具备下列条件中的()A.=B.=C.=D.=7.(3分)如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m8.(3分)关于x的方程x2+2kx+k﹣1=0的根的情况描述正确的是()A.无论k为任何实数,方程都没有实数根B.无论k为任何实数,方程都有两个相等的实数根C.无论k为任何实数,方程都有两个不相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和两个相等实数根三种9.(3分)在Rt△ABC中,∠C=90°,当∠A=60°,a=3时,c的值是()A.c=4B.c=5C.c=6D.c=710.(3分)学校评选出30名优秀学生,要选5名代表参加全市优秀学生表彰会,已经确定了1名代表,则剩余学生参加全市优秀学生表彰会的概率是()A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)11.(3分)在△ABC中,AB=AC,∠A=36°,以点A为位似中心,把△ABC放大3倍后得到△AEF,则∠E=.12.(3分)反比例函数y=的图象经过点(2,1),则m的值是.13.(3分)若=,则=.14.(3分)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=3,AC=4,则sinB的值是.15.(3分)2014年1月,“教学点数字教育资源”进入某县农村中小学,2014年该县投入该项工程的经费为3500万元,预计2016年投入4600万元.设这两年投入这项工程的经费的年平均增长率为x,则可列方程:.16.(3分)河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为.17.(3分)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.18.(3分)设x1,x2为一元二次方程ax2+bx+c=0(a≠0)的两根,则有如下关系:x1+x2=﹣,x1•x2=,根据材料,若x1,x2是方程x2+8x+4=0的两根,则+的值.三、解答题(共8小题,满分66分)19.(6分)解方程:x2﹣10x+9=0.20.(6分)计算:2cos30°﹣tan45°﹣|1﹣tan60°|.21.(8分)某中学开展“八荣八耻”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.(1)根据如图,分别求出两班复赛的平均成绩和方差;(2)根据(1)的计算结果,分析哪个班级的复赛成绩较好?22.(8分)如图,在直角坐标系xOy中,一次函数y=k1x+b的图象与反比例函数y=的图象交于A(1,4)、B(3,m)两点.(1)求一次函数的解析式;(2)求△AOB的面积.23.(8分)已知关于x的一元二次方程x2﹣3x﹣k=0有两个不相等的实数根.(1)求k的取值范围.(2)求k的负整数值,并选择一个k的负整数值,求出方程的根.24.(10分)如图①是矗立的文峰塔,喜爱数学实践活动的小明查资料得知:文峰塔始建于明万历十二年(1584它是洪江市现存最高大、最古老的宝塔.小明决定用自己所学习的知识测量大观楼文峰塔的高度,如图②,他利用测角仪站在B处测得文峰塔最高点P的仰角为45°,又前进了12米到达A处,在A处测得P的仰角为60°.请你帮助小明算算文峰塔的高度.(结果保留根号).25.(10分)如图,已知△ABC中,∠ABC=135°,过B作AB的垂线交AC于点P,若,PB=2,求BC的长.26.(10分)如图,在矩形ABCD中,AB=3,AD=10,将∠MPN的顶点P在矩形ABCD的边AD上滑动,在滑动过程中,始终保持∠MPN=90°,射线PN经过点C,射线PM交直线AB于点E,交直线BC于点F.(1)求证:△AEP∽△DPC;(2)在点P的运动过程中,点E与点B能重合吗?如果能重合,求DP的长;(3)是否存在这样的点P使△DPC的面积等于△AEP面积的4倍?若存在,求出AP的长;若不存在,请证明理由.2014-2015学年湖南省怀化市洪江市初三上学期期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)一元二次方程x2﹣2x﹣3=0的二次项系数、一次项系数、常数项分别是()A.1,﹣2,﹣3B.1,﹣2,3C.1,2,3D.1,2,﹣3【解答】解:一元二次方程x2﹣2x﹣3=0的二次项系数、一次项系数、常数项分别是1,﹣2,﹣3.故选:A.2.(3分)反比例函数y=的图象经过第二、四象限,那么k的值可能是()A.3B.4C.5D.2【解答】解:∵反比例函数的图象在二、四象限,∴k﹣3<0,即k<3.∴D符合,故选:D.3.(3分)反比例函数y=图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1【解答】解:∵反比例函数y=中,k=6>0,∴此反比例函数图象的两个分支在一、三象限;∵x3>0,∴点(x3,y3)在第一象限,y3>0;∵x1<x2<0,∴点(x1,y1),(x2,y2)在第三象限,y随x的增大而减小,故y2<y1,由于x1<0<x3,则(x3,y3)在第一象限,(x1,y1)在第三象限,所以y1<0,y2>0,y1<y2,于是y2<y1<y3.故选:B.4.(3分)两个相似多边形的面积比是9:16,其中较小多边形的周长为36cm,则较大多边形的周长为()A.48cm B.54cm C.56cm D.64cm【解答】解:两个相似多边形的面积比是9:16,面积比是周长比的平方,∴大多边形与小多边形的相似比是4:3.∴相似多边形周长的比是4:3.设大多边形的周长为x,则有=,解得:x=48.即大多边形的周长为48cm.故选:A.5.(3分)从全市5000份数学试卷中随机抽取400份试卷,其中360份成绩合格,那么可以估计全市数学成绩合格的学生大约有多少人?()A.4500B.4000C.3600D.4800【解答】解:5000×=4500(人).故选:A.6.(3分)如图,D为△ABC边BC上一点,要使△ABD∽△CBA,应该具备下列条件中的()A.=B.=C.=D.=【解答】解:当=时,又∵∠B=∠B,∴△ABD∽△CBA.故选:C.7.(3分)如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m【解答】解:∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴∵BE=20m,CE=10m,CD=20m,∴解得:AB=40,故选:B.8.(3分)关于x的方程x2+2kx+k﹣1=0的根的情况描述正确的是()A.无论k为任何实数,方程都没有实数根B.无论k为任何实数,方程都有两个相等的实数根C.无论k为任何实数,方程都有两个不相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和两个相等实数根三种【解答】解:x2+2kx+k﹣1=0,△=(2k)2﹣4(k﹣1)=4k2﹣4k+4=4(k﹣)2+3,不论k为何值,△>0,即一元二次方程有两个不相等的实数根,故选:C.9.(3分)在Rt△ABC中,∠C=90°,当∠A=60°,a=3时,c的值是()A.c=4B.c=5C.c=6D.c=7【解答】解:在Rt△ABC中,∠C=90°,∵sinA=,∴c===6.故选:C.10.(3分)学校评选出30名优秀学生,要选5名代表参加全市优秀学生表彰会,已经确定了1名代表,则剩余学生参加全市优秀学生表彰会的概率是()A.B.C.D.【解答】解:因为有30名优秀学生已经确定了1名代表,所以还有29名学生,再从中选5﹣1=4名有29种可能,符合条件的有4种,故其概率为:.故选:D.二、填空题(共8小题,每小题3分,满分24分)11.(3分)在△ABC中,AB=AC,∠A=36°,以点A为位似中心,把△ABC放大3倍后得到△AEF,则∠E=72°.【解答】解:∵AB=AC,∠A=36°,∴∠B=∠C=72°∵△ABC∽△AEF∴∠E=∠B=72°.故答案为:72°.12.(3分)反比例函数y=的图象经过点(2,1),则m的值是1.【解答】解:将点(2,1)代入解析式y=可得:m+1=2,所以m=1.故答案为:1.13.(3分)若=,则=.【解答】解:根据=得3a=5b,则=.故答案为:.14.(3分)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=3,AC=4,则sinB的值是.【解答】解:∵在Rt△ABC中,CD是斜边AB上的中线,CD=3,∴AB=2CD=6,∵AC=4,∴sinB===,故答案为:.15.(3分)2014年1月,“教学点数字教育资源”进入某县农村中小学,2014年该县投入该项工程的经费为3500万元,预计2016年投入4600万元.设这两年投入这项工程的经费的年平均增长率为x,则可列方程:3500×(1+x)2=4600.【解答】解:设增长率为x,根据题意得3500×(1+x)2=4600,故答案为:3500×(1+x)2=4600.16.(3分)河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为12米.【解答】解:∵Rt△ABC中,BC=6米,迎水坡AB的坡比为1:,∴BC:AC=1:,∴AC=•BC=6(米),∴AB===12(米)故答案为12米.17.(3分)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为5米.【解答】解:根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知=,即=,解得AM=5m.则小明的影长为5米.18.(3分)设x1,x2为一元二次方程ax2+bx+c=0(a≠0)的两根,则有如下关系:x1+x2=﹣,x1•x2=,根据材料,若x1,x2是方程x2+8x+4=0的两根,则+的值﹣2.【解答】解:根据题意得x1+x2=﹣8,x1•x2=4,所以+===﹣2.故答案为﹣2.三、解答题(共8小题,满分66分)19.(6分)解方程:x2﹣10x+9=0.【解答】解:x2﹣10x+9=0,(x﹣1)(x﹣9)=0,x﹣1=0,x﹣9=0,x1=1,x2=9.20.(6分)计算:2cos30°﹣tan45°﹣|1﹣tan60°|.【解答】解:原式=2×﹣1﹣+1=0.21.(8分)某中学开展“八荣八耻”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.(1)根据如图,分别求出两班复赛的平均成绩和方差;(2)根据(1)的计算结果,分析哪个班级的复赛成绩较好?【解答】解:(1)九(1)班的选手的得分分别为85,75,80,85,100,∴九(1)班成绩的平均数=(85+75+80+85+100)÷5=85,九(1)班的方差S12=[(85﹣85)2+(75﹣85)2+(80﹣85)2+(85﹣85)2+(100﹣85)2]÷5=70;九(2)班的选手的得分分别为70,100,100,75,80,九(2)班成绩的平均数=(70+100+100+75+80)÷5=85,九(2)班的方差S22=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]÷5=160;(2)平均数一样的情况下,九(1)班方差小,成绩比较稳定.22.(8分)如图,在直角坐标系xOy中,一次函数y=k1x+b的图象与反比例函数y=的图象交于A(1,4)、B(3,m)两点.(1)求一次函数的解析式;(2)求△AOB的面积.【解答】解:(1)点A(1,4)在反比例函数y=的图象上,所以k2=xy=1×4=4,故有y=因为B(3,m)也在y=的图象上,所以m=,即点B的坐标为B(3,),一次函数y=k1x+b过A(1,4)、B(3,)两点,所以解得所以所求一次函数的解析式为y=﹣x+(2)过点A分别作x轴、y轴的垂线,垂足分别为A′、A〞,过点B作x轴的垂线,垂足为B′,=S矩形OA′AA″+S梯形A′ABB′﹣S△OAA″﹣S△OBB′则S△AOB=1×4+×(4+)×(3﹣1)﹣×1×4﹣×3×=,∴△AOB的面积为.23.(8分)已知关于x的一元二次方程x2﹣3x﹣k=0有两个不相等的实数根.(1)求k的取值范围.(2)求k的负整数值,并选择一个k的负整数值,求出方程的根.【解答】解:(1)∵关于x的一元二次方程x2﹣3x﹣k=0有两个不相等的实数根,∴△=(﹣3)2+4k>0,解得:k>﹣;(2)假设k=﹣2,则x2﹣3x+2=0,解得:x1=1,x2=2,.24.(10分)如图①是矗立的文峰塔,喜爱数学实践活动的小明查资料得知:文峰塔始建于明万历十二年(1584它是洪江市现存最高大、最古老的宝塔.小明决定用自己所学习的知识测量大观楼文峰塔的高度,如图②,他利用测角仪站在B处测得文峰塔最高点P的仰角为45°,又前进了12米到达A处,在A处测得P的仰角为60°.请你帮助小明算算文峰塔的高度.(结果保留根号).【解答】解:由题意得,∠PAO=60°,∠B=45°,设塔高为x米,在Rt△AOP中,∵∠PAO=60°,∴OA=x,在Rt△BOP中,∵∠B=45°,∴OB=x,则x﹣x=12,解得:x=18+6.答:文峰塔的高度为(18+6)米.25.(10分)如图,已知△ABC中,∠ABC=135°,过B作AB的垂线交AC于点P,若,PB=2,求BC的长.【解答】解:过C作CD⊥AB交AB的延长线于D,∵PB⊥AB,CD⊥AB,∴PB∥CD,∴△APB∽△ACD,∴=,∵=,∴=,∵PB=2,∴CD=3,∵∠ABC=135°,∴∠DBC=45°,∵CD⊥BD,∴BD=CD=3,由勾股定理得:BC==3.26.(10分)如图,在矩形ABCD中,AB=3,AD=10,将∠MPN的顶点P在矩形ABCD的边AD上滑动,在滑动过程中,始终保持∠MPN=90°,射线PN经过点C,射线PM交直线AB于点E,交直线BC于点F.(1)求证:△AEP∽△DPC;(2)在点P的运动过程中,点E与点B能重合吗?如果能重合,求DP的长;(3)是否存在这样的点P使△DPC的面积等于△AEP面积的4倍?若存在,求出AP的长;若不存在,请证明理由.【解答】(1)证明:∵四边形ABCD是矩形,∴∠D=∠A=90°,CD=AB=6,∴∠PCD+∠DPC=90°,又∵∠CPE=90°,∴∠EPA+∠DPC=90°,∴∠PCD=∠EPA,∴△AEP∽△DPC.(2)假设在点P的运动过程中,点E能与点B重合,当B,E重合时,∵∠BPC=90°,∴∠APB+∠DPC=90°,∵∠DPC+∠DCP=90°,∴∠DCP=∠APB,∵∠A=∠D,∴△ABP∽DPC,∴=,即:=,解得:DP=1或9,∴B,E重合时DP的长为1或9;(3)存在满足条件的点P,∵△CDP∽△PAE,根据使△DPC的面积等于△AEP面积的4倍,得到两三角形的相似比为2,∴=2, 即=2,解得AP=1.5;附加:初中数学几何模型【模型一】“一线三等角”模型:图形特征: 60°60°60° 45°45°45°运用举例: 1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标; x yB C AO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .l s 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D作∠ADE =45°,DE 交AC 于E .(1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

2014湖南省怀化市初中毕业学业考试试卷数学试题

2014湖南省怀化市初中毕业学业考试试卷数学试题

2014湖南省怀化市初中毕业学业考试试卷数学(满分120分,考试时间120分钟)一、选择题(每小题3分,共24分;每小题的四个选项中只有一个选项是正确的,请将正确选项的代号填涂在答题卡的相应位置上)1.(2014湖南省怀化市,1,3分)我国南海海域面积约为3500000km2,用科学记数法表示正确的是()A. 3.5×105km2B. 3.5×106km2C. 3.5×107km2D. 3.5×108km2【答案】B.2.(2014湖南省怀化市,2,3分)将一直角三角板与两边平行的纸条如图所示放置,已知∠1=30°,则∠2的度数为()A. 30°B. 45°C. 50°D. 60°21第2题图【答案】D.3.(2014湖南省怀化市,3,3分)多项式ax2-4ax-12a因式分解正确的是()A. a(x-6)(x+2)B. a(x-3)(x+4)C. a(x 2-4x-12)D. a(x+6)(x-2)【答案】A.4.(2014湖南省怀化市,4,3分)下列物体的主视图是圆的是()圆柱圆锥球正方体A B C D第4题图【答案】C.5.(2014湖南省怀化市,5,3分)如图,已知等腰梯形ABCD中,AD//BC,AC与BD相交于点O,则下列判断不正确的是()A. △ABC ≌△DCBB. △AOD ≌△COBC. △ABO ≌△DCOD. △ADB ≌△DACB第5题图【答案】B .6.(2014湖南省怀化市,6,3分)不等式417231x x -<⎧⎨+⎩≥的解集是( )A. -1≤x <2B. x ≥-1C. x <2D. -1<x ≤2【答案】A . 7.(2014湖南省怀化市,7,3分)某中学随机调查了15名学生,了解他们一周在校参加体则这15 ) A. 6,7 B. 7,7 C. 7,6 D.6,6 【答案】D . 8.(2014湖南省怀化市,8,3分)已知一次函数y =kx+b 的图象如下所示,那么正比例函数y =kx 和反比例函数by x=在同一平面直角坐标系中的图象大致是( )【答案】C .二、填空题(每小题3分,共24分;请将答案直接填写在答题卡的相应位置上) 9.(2014湖南省怀化市,9,3分)计算:(-1)2014=______. 【答案】1.8题图A B C D10.(2014湖南省怀化市,10,3分)分解因式:2x 2-8=______. 【答案】2(x +2)(x -2). 11.(2014湖南省怀化市,11,3分)如图,D 、E 分别是△ABC 的AB 、AC 上的中点,则S △ADE :S △ABC =______.第11题图【答案】1:4(或14).12.(2014湖南省怀化市,12,3分)分式方程3122x x -=+-的解为______. 【答案】x =1. 13.(2014湖南省怀化市,13,3分)如图,小明爬一土坡,他从A 处到B 处所走的直线距离AB =4米,此时,他距离地面高度为h =2米,则这个土坡的坡角∠A =______°.A第13题图【答案】30.14.(2014湖南省怀化市,14,3分)已知点A (-2,4)在反比例函数(0)ky k x=≠的图象上,则k 的值为______. 【答案】-8. 15.(2014湖南省怀化市,15,3分)如图,△ABC 中,∠A =30°,∠B =50°,延长BC 到D ,则∠ACD =______°.。

2014中考数学试题及答案

2014中考数学试题及答案

2014中考数学试题及答案(提醒:以下文中所有数据和题目均为虚构,与现实中的2014年中考试题无关)2014中考数学试题及答案一、选择题1. 下列方程组中,有无穷多组解的是:A) 2x + 3y = 74x + 6y = 14B) x + 2y = 33x + 6y = 9C) x + y = 52x + 2y = 10D) 3x + 2y = 86x + 4y = 16答案:A)2. 若a:b = 3:5,b:c = 2:7,求a:c的值。

A) 3:7B) 5:14C) 6:35D) 3:14答案:C)3. 在平面直角坐标系中,点P(a, b)关于x轴的对称点为P'(-a, b),点Q(2, 4)关于y轴的对称点为Q'(2, -4),求PQ:P'Q'的值。

A) 1:1B) 1:2C) 2:1D) 2:3答案:B)二、解答题1. 一项工程需要两台挖掘机和三台运输车共同作业。

第一天共出动了10台挖掘机和15台运输车,完成了2/5的工作量。

如果每台挖掘机和每台运输车的工作效率都是相同的,那么完成这项工程需要多少台挖掘机和多少台运输车?解答:设每台挖掘机和每台运输车的效率为x。

根据题意,可以列出方程:10x + 15x = 2/525x = 2/5x = (2/5)/25 = 2/125完成该工程需要的挖掘机数为:2/5 / (2/125) = (2/5) * (125/2) = 25完成该工程需要的运输车数为:3 * 25 = 75答:该工程需要25台挖掘机和75台运输车。

2. 已知函数f(x) = 2x^2 - 3x + 1,求f(3) - f(1)的值。

解答:将x分别代入函数f(x)中,可得:f(3) = 2(3)^2 - 3(3) + 1 = 2(9) - 9 + 1 = 9 + 1 = 10f(1) = 2(1)^2 - 3(1) + 1 = 2(1) - 3 + 1 = 2 - 3 + 1 = 0所以,f(3) - f(1) = 10 - 0 = 10答:f(3) - f(1)的值为10。

专题 压轴题--湖南省2014-2017年中考数学试题分项解析(解析版)

专题 压轴题--湖南省2014-2017年中考数学试题分项解析(解析版)

一、选择题1.(2014年,湖南省长沙市,3分)函数y=ax与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是()【考点】1.二次函数的图象;2.反比例函数的图象.2.(2014年湖南省株洲市,3分)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)3.(2016年湖南省娄底市,3分)如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A.不变B.增大C.减小D.先变大再变小【答案】C.考点:锐角三角函数的增减性.4.(2016年湖南省永州市,4分)我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:3根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 2=﹣1.其中正确的是( ) A .①② B .①③ C .②③ D .①②③ 【答案】B. 【解析】试题分析:根据表格中的规律可得:①因为24=16,此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1=21,所以此选项正确;故答案选B . 考点:实数的运算.5. (2016年湖南省岳阳市,3分)对于实数a ,b ,我们定义符号max{a ,b}的意义为:当a ≥b 时,max{a ,b}=a ;当a <b 时,max{a ,b]=b ;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y=max{x+3,﹣x+1},则该函数的最小值是( ) A .0B .2C .3D .4【答案】B 【解析】考点:分段函数6.(2016年湖南省长沙市,3分)已知抛物线y=ax 2+bx+c (b >a >0)与x 轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y 轴左侧; ②关于x 的方程ax 2+bx+c+2=0无实数根; ③a ﹣b+c ≥0; ④的最小值为3.其中,正确结论的个数为( ) A .1个 B .2个 C .3个 D .4个 【答案】D .考点:二次函数的图象与系数的关系.1.(2014年,湖南省衡阳市,3分)如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2014的长度为▲ .2.(2015·湖南常德)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1。

怀化市初中毕业学业考试试卷数学

怀化市初中毕业学业考试试卷数学

2008年怀化市初中毕业学业考试试卷数 学三道大题,28道小题,满分100分,考试时量120分钟. 一、选择题(每小题2分,共20分)1.北京2008年第29届奥运会火炬接力活动历时130天,传递总里程13.7万千米,传递总里程用科学记数法表示为( )(A )1.37×105千米 (B )1.37×104千米 (C )1.37×103千米 (D )1.37×102千米 2.下列运算中,结果正确的是 ( )(A )844a a a =+ (B )523a a a =∙ (C )428a a a =÷ (D )()63262a a -=-3.不等式53-x <x +3的正整数解有( )(A )1个 (B )2个 (C )3个 (D )4个4.方程04142=----xxx 的解是 ( )(A )3-=x (B )3=x (C )4=x (D )3=x 或4=x 5.如图1,是张老师晚上出门散步时离家的距离y 与时间x 之间的函数图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是( )6.如图2,AB//CD , 1051=∠,E EAB ∠=∠则,65 的度数是 ( )(A ) 30 (B ) 40 (C ) 50 (D ) 607.如图3,是小玲在5月11日“母亲节”送给她妈妈的礼盒,图中所示礼盒的主视图是 ( )8.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是 ( )9.随机掷一枚质地均匀的硬币两次,落地后至多有一次正面朝下的概率为 ( )(A )43 (B )32 (C )21 (D ) 4110.设反比例函数)0(≠-=k xky 中,y 随x 的增大而增大,则一次函数k kx y -=的图象不经过( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 二、填空题(每小题2分,共20分)11.分解因式:=-2282b a .12.方程组⎩⎨⎧=-=+3,5y x y x 的解是 ___.13.已知数据2,3,4,5,6,x 的平均数是4,则x 的值是 .14.如图4,直线b a 、被直线c 所截,若b a //, 1201=∠,则2∠的度数等于 .15.如图5,△ABC 内接于⊙O ,点P 是C A上任意一点(不与CA 、重合),POCABC ∠=∠则,55的取值范围是 .16.已知△ABC 中, 90=∠C ,3cosB=2,AC=52, 则AB= .17.师生做游戏,杨老师要随机将2名男生和2 名女生排队,两名女生排在一起的概率是 .18.如图6,在平行四边形ABCD 中, DB=DC 、 65=∠A ,CE ⊥BD 于E ,则=∠BCE .19.某厂接到为汶川地震灾区赶制无底帐篷的任务,帐篷表面由防水隔热的环保面料制成.样式如图7所示,则赶制这样的帐篷3000顶,大约需要用防水隔热的环保面料(拼接处面料不计) m 2.2.2π3.1≈≈,)20.某市出租车公司收费标准如图8所示,如果小明乘此出租 车最远能到达13千米处,那末他最多只有 元钱.三.解答题(本大题8个小题,满分60分) 21.(本题满分7分)先化简,再求值:()()3211123x x x x x --=---+,其中. 22.(本题满分7分)袋中装有红、黄、绿三种颜色的球若干个,每个球只有颜色不同.现从中任意摸出一个球,得到红球的概率为31,得到黄球的概率为21.已知绿球有3个,问袋中原有红球、黄球各多少个? 23.(本题满分7分)如图9,已知正比例函数x y =与反比例函数xy 1=的图象交于B A 、两点.(1)求出B A 、两点的坐标;(2)根据图象求使正比例函数值大于反比例函数值的x 的范围; 24.(本题满分7分)如图10,四边形ABCD 、DEFG 都是正方形,连接AE 、CG,AE 与CG 相交于点M ,CG 与AD 相交于点N .求证:(1)CG AE =;(2).MN CN DN AN ∙=∙25.(本题满分7分)如图11,已知△ABC 的面积为3,且AB=AC ,现将△ABC 沿CA 方向平移CA 长度得到△EFA .(1)求四边形CEFB 的面积;(2)试判断AF 与BE 的位置关系,并说明理由;(3)若 15=∠BEC ,求AC 的长.26. (本题满分7分)某校教学楼后面紧邻一个土坡,坡上面是一块平地,如图12所示,AD BC //,斜坡AB 长m 10625,坡度5:9=i .为了防止山体滑坡,保障安全,学校决定对该土坡进行改造,地质人员勘测,当坡角不超过 45时,可确保山体不滑坡.(1)求改造前坡B 到地面的垂直距离BE 的长; (2)为确保安全,学校计划改造时保持坡脚A 不动,坡顶B 沿BC 削进到F 处,问BF 至少是多少米? 27.(本题满分8分)5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作. 拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1)设租用甲种汽车x 辆,请你设计所有可能的租车方案;(2)如果甲、乙两种汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案. 28.(本题满分10分)如图13,在平面直角坐标系中,圆M 经过原点O ,且与x 轴、y 轴分别相交于()()8006A B --,、,两点. (1)求出直线AB 的函数解析式;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在⊙M 上,开口向下,且经过点B ,求此抛物线的函数解析式; (3)设(2)中的抛物线交x 轴于D 、E 两点,在抛物线上是否存在点P ,使得ABC PDE S S ∆∆=101?若存在,请求出点P 的坐标;若不存在,请说明理由.2008年怀化市初中毕业学业考试试卷参考答案及评分标准数 学一、选择题(每小题2分,共20分) 二、填空题(每小题2分,共20分)三、解答题 21.解:()()()()()()()23123111212x x x x x x x x x x +---+--=--+-+ ······ 2分 12x =+ ····························· 5分 21323423x ∴=-=-+当时,原式的值为················ 7分 22. 解:摸到绿球的概率为:6121311=-- ············· 1分则袋中原有三种球共 18613=÷ (个) ··············· 3分所以袋中原有红球 61831=⨯ (个)··············· 5分 袋中原有黄球 91821=⨯ (个)················· 7分 23.解:(1)解方程组⎪⎩⎪⎨⎧==x y x y 1,得,⎩⎨⎧-=-=⎩⎨⎧==11,112211y x y x · 2分 所以A 、B 两点的坐标分别为:A (1,1)、B (-1,-1) 4分 (2)根据图象知,当01<<-x 或1>x 时,正比例函数值大于反比例函数值 ················· 7分 24. 证明:(1) 四边形ABCD 和四边形DEFG 都是正方形,ADE CDG ADE CDG ∴∠=∠∴△≌△, ···· 3分AE CG ∴= ··············· 4分(2)由(1)得 ,又CND ANM DCG DAE CDG ADE ∠=∠∠=∠∴∆≅∆,,AN MNAN DN CN MN CN DN∴=∙=∙,即 ··········· 7分∴∆AMN∽∆CDN ······················ 6分 25.解:(1)由平移的性质得9EFBC ∴四边形的面积为. ···················· 3分(2)AF BE ⊥.证明如下:由(1)知四边形AFBC 为平行四边形EFBA BE AF ∴∴⊥平行四边形为菱形, ··············· 5分()()()()()222222926.:195590.....................................25595922.5.2222.5....................BE i BE k AE k k AE Rt ABE BEA AB AB BE AE k k k BE m BE ==∴==∆∠===+=+=∴=⨯=解,设,为正数,则在中,,,分即,解得,故改造前坡顶与地面的距离的长为米()()................................................42112.5,,,tan ,22.5tan 45,10.12.510,...........................................................FHAE BF xm FH AD H FAH AHx x B BC m ==⊥=∠≤≥+∴分由得设作于则由题意得即坡顶沿至少削进才能确保安全..............7分27.解: (1)因为租用甲种汽车为x 辆,则租用乙种汽车()x -8辆.由题意,得()()42830,38820.x x x x +-⎧⎪⎨+-⎪⎩≥≥ ················· 2分解之,得.5447≤≤x ····················· 3分 即共有两种租车方案:第一种是租用甲种汽车7辆,乙种汽车1辆;第二种是全部租用甲种汽车8辆 ················ 5分 (2)第一种租车方案的费用为780001600062000⨯+⨯=元 ····· 6分 第二种租车方案的费用为8800064000⨯=元 ············ 7分 所以第一种租车方案最省钱 ··················· 8分 28.解:(1)设AB 的函数表达式为.b kx y +=∵()(),6,0,0,8--B A ∴⎩⎨⎧=-+-=.6,80b b k ∴⎪⎩⎪⎨⎧-=-=.6,43b k∴直线AB 的函数表达式为364y x =--. ·············· 3分(2)设抛物线的对称轴与⊙M 相交于一点,依题意知这一点就是抛物线的顶点C 。

湖南省怀化市初中毕业学业考试数学试卷

湖南省怀化市初中毕业学业考试数学试卷

湖南省怀化市2007年初中毕业学业考试数学试卷亲爱的同学,请你仔细审题,细心答题,相信你一定会有出色的表现,本学科试题共三道大题,时量120分钟,满分100分.一、选择题(考生注意,本大题共10个小题,每题2分,共20分,在每个小题给出的四个选项中只有一项是符合题目要求的,请将正确答案的代号填在下表内)1.下列计算正确的是( ) A.0(2)0-=B.239-=-3==2.2008年8月第29届奥运会将在北京开幕,5个城市的国标标准时间(单位:时)在数轴上表示如图所示,那么北京时间2008年8月8日20时应是( )A.伦敦时间2008年8月8日11时 B.巴黎时间2008年8月8日13时 C.纽约时间2008年8月8日5时 D.汉城时间2008年8月8日19时3.下列交通标志中既是中心对称图形,又是轴对称图形的是( ) 4.怀化市2006年的国民生产总值约为333.9亿元,预计2007年比上一年增长10%,用科学计数法表示2007年怀化市的国民生产总值应是(结果保留3个有效数字)( ) A.103.6710⨯元 B.103.67310⨯元 C.113.6710⨯元D.83.6710⨯元5.已知点(23)P -,关于y 轴的对称点为()Q a b ,,则a b +的值是()A.1 B.1- C.5 D.5- 6.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多..可由多少个这样的正方体组成?( )A.12个 B.13个C.14个 D.18个7.圆的半径为13cm,两弦AB CD ∥,24cm AB =,10cm CD =,则两弦AB CD ,的距离是( )A.7cm B.17cm C.12cm D.7cm 或17cm8.均匀地向一个如图所示的容器中注水,最后把容器注满,在注水过程中水面高度h 随时间t 变化的函数图象大致是( )A. B. C. D.北京 汉城 巴黎 伦敦 纽约 5-089主视图 左视图9.如图,菱形ABCD 的周长为40cm ,DE AB ⊥,垂足为E ,3sin 5A =,则下列结论正确的有( )①6cm DE = ②2cm BE =③菱形面积为260cm④BD =A.1个B.2个C.3个D.4个10.已知甲乙两组数据的平均数都是5,甲组数据的方差2112S =甲,乙组数据的方差2110S=乙则( )A.甲组数据比乙组数据的波动大 B.乙组数据比甲组数据的波动大 C.甲组数据与乙组数据的波动一样大 D.甲乙两组数据的波动大小不能比较 二、填空题(本大题共10个小题,每小题2个,共20分) 11.函数13y x =-中,自变量x 的取值范围是 .12.分解因式:2a ab -=.13.如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指钝角)是 度.14.方程组3520x y x y +=⎧⎨-=⎩的解是.15.两圆有多种位置关系,图中不存在的位置关系是.16.已知方程230x x k -+=有两个相等的实数根,则k =.17.如图,将一张等腰直角三角形纸片沿中位线剪开可以拼成不同形状的四边形,请写出其中一种四边形的名称 .18.为响应国家要求中小学生每天锻练1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的图1和图2,请在A. B. C. D. DCBEA第13题图第15题图第17题图图1中将“乒乓球”部分的图形补充完整.19.如图:111A B C ,,分别是BC AC AB ,,的中点,2A ,2B ,2C 分别是11B C ,11A C ,11A B 的中点这样延续下去.已知ABC △的周长是1,111A B C △的周长是1L ,222A B C △的周长是2n n n L A B C 的周长是n L ,则n L =.20.如图所示的圆柱体中底面圆的半径是2π,高为2,若一只小虫从A 点出发沿着圆柱体的侧面爬行到C 点,则小虫爬行的最短路程是 (结果保留根号)三、解答题(本大题8个小题,满分60分) 21.先化简,再求值.(本题满分7分)3(2)(2)()a b a b ab ab -++÷-,其中a =1b =-22.(本题满分7分)如图,AB AD =,AC AE =,12∠=∠, 求证:BC DE =BE兴趣爱好图1 图2…^ABC2A1C1B1A2B2C第19题图C第20题图23.(本题满分7分) 解方程25231x x x x +=++ 24.(本题满分7分)九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度3m CD =,标杆与旗杆的水平距离15m BD =,人的眼睛与地面的高度1.6m EF =,人与标杆CD 的水平距离2m DF =,求旗杆AB 的高度.25.(本题满分7分)2007年我市某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A B ,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆. (1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来. (2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元? 26.(本题满分7分)“六一”儿童节前夕,我市某县“关心下一代工作委员会”决定对品学兼优的“留守儿童”进行表彰,某校八年级8个班中只能选两个班级参加这项活动,且8(1)班必须参加,另外再从其他班级中选一个班参加活动.8(5)班有学生建议采用如下的方法:将一个带着指针的圆形转盘分成面积相等的4个扇形,并在每个扇形上分别标上1,2,3,4四个数字,转动转盘两次,将两次指针所指的数字相加,(当指针指在某一条等分线上时视为无效,重新转动)和为几就选哪个班参加,你认为这种方法公平吗?请说明理由. 27.(本题满分8分) 如图,在平面直角坐标系xoy 中,M 是x 轴正半轴上一点,M 与x 轴的正半轴交于A B ,两点,A 在B 的左侧,且OA OB ,的长是方程212270x x -+=的两根,ON 是M 的切线,N 为切点,N 在第四象限. (1)求M 的直径.(2)求直线ON 的解析式.(3)在x 轴上是否存在一点T ,使OTN △是等腰三角形,若存在请在图2中标出T 点所在位置,并画出OTN △(要求尺规作图,保留作图痕迹,不写作法,不证明,不求T 的坐标)若不存在,请说明理由.AH28.(本题满分10分)两个直角边为6的全等的等腰直角三角形Rt AOB △和Rt CED △按图1所示的位置放置A 与C 重合,O 与E 重合. (1)求图1中,A B D ,,三点的坐标.(2)Rt AOB △固定不动,Rt CED△沿x 轴以每秒2个单位长的速度向右运动,当D 点运动到与B 点重合时停止,设运动x 秒后Rt CED △和Rt AOB △重叠部分面积为y ,求y 与x 之间的函数关系式.(3)当Rt CED △以(2)中的速度和方向运动,运动时间4x 秒时Rt CED △运动到如图2所示的位置,求经过A G C ,,三点的抛物线的解析式.(4)现有一半径为2,圆心P 在(3)中的抛物线上运动的动圆,试问P 在运动过程中是否存在P 与x 轴或y 轴相切的情况,若存在请求出P 的坐标,若不存在请说明理由.图1图2 图1图2[参考答案] http://二、填空题3x ≠ (1)(1)a b b +- 12012x y =⎧⎨=⎩ 内切94平行四边形、矩形、等腰梯形(三种中任选一种均给满分) 补全的条形图的高与5对应12n21.解:3(2)(2)()a b a b ab ab -++÷-2224()a b b =-+- ····························· 4分(答对22(2)(2)4a b a b a b -+=-给2分,答对32()ab ab b ÷-=-给2分)225a b =- ································ 5分当a =1b =-时,原式225(1)=-⨯-3=-··································· 7分 22.证明:12=∠∠ 12DAC DAC ∴+=+∠∠∠∠即:BAC DAE =∠∠ ··························· 2分 又AB AD =,AC AE = ABC ADE ∴△≌△ ···························· 5分 BC DE ∴= ······························· 7分 23.解:原方程可化为:523(1)1x x x x +=++ ··················· 1分去分母得:523x x += ··························· 4分 解得:1x =- ······························· 5分 经检验可知,1x =-是原方程的增根 ····················· 6分 ∴原方程无解 ······························· 7分 24.解:CD FB ⊥,AB FB ⊥ CD AB ∴∥ CGE AHE ∴△∽△ ···························· 3分CG EGAH EH ∴= ······························· 4分 即:CD EF FDAH FD BD-=+3 1.62215AH -∴=+ ····························· 5分 11.9AH ∴= ······························· 6分11.9 1.613.5(m)AB AH HB AH EF ∴=+=+=+= ············· 7分25.解:设搭配A 种造型x 个,则B 种造型为(50)x -个,依题意,得:8050(50)34904090(50)2950x x x x +-⎧⎨+-⎩≤≤ ··················· 2分解这个不等式组,得:3331x x ⎧⎨⎩≤≥,3133x ∴≤≤ ··············· 3分x 是整数,x ∴可取313233,,,∴可设计三种搭配方案:①A 种园艺造型31个 B 种园艺造型19个 ②A 种园艺造型32个 B 种园艺造型18个③A 种园艺造型33个 B 种园艺造型17个. ················· 4分 (2)方法一:由于B 种造型的造价成本高于A 种造型成本.所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元) ··· 7分 方法二:方案①需成本:318001996043040⨯+⨯=(元) 方案②需成本:328001896042880⨯+⨯=(元) 方案③需成本:338001796042720⨯+⨯=元 ················· 6分 ∴应选择方案③,成本最低,最低成本为42720元 ··············· 7分26.解:方法不公平 ···························· 2分 说理方法1:(用表格说明)·············· 4分所以,八(2)班被选中的概率为:116,八(3)班被选中的概率为:21168=, 八(4)班被选中的概率为:316,八(5)班被选中的概率为:41164=, 八(6)班被选中的概率为:316,八(7)班被选中的概率为:21168=,八(8)班被选中的概率为:116,所以这种方法不公平·········· 7分说理方法2(用树状图说明)··········· 4分所以,八(2)班被选中的概率为:116,八(3)班被选中的概率为:21168=,八(4)班被选中的概率为:316,八(5)班被选中的概率为:41164=,八(6)班被选中的概率为:316,八(7)班被选中的概率为:21168=,八(8)班被选中的概率为:116,所以这种方法不公平·········· 7分27.解:(1)解方程212270x x-+=,得19x=,23x=A在B的左侧3OA∴=,9OB=6AB OB OA∴=-=OM∴的直径为6····························· 1分(2)过N作NC OM⊥,垂足为C,连结MN,则MN ON⊥31sin62MNMONOM===∠30MON∴=∠又cosONMONOM=∠cos3033ON OM∴=⨯=在Rt OCN△中9cos303322OC ON===1sin30332CN ON===1234开始1 22 33 44 51 32 43 54 61 42 53 6471 52 63748和N ∴的坐标为922⎛- ⎝⎭, ························· 3分 (用其它方法求N 的坐标,只要方法合理,结论正确,均可给分.) 设直线ON 的解析式为y kx =922x ∴-=3k ∴=- ∴直线ON的解析式为3y x =-······················ 4分 (3)如图2,1T ,2T ,3T ,4T 为所求作的点,1OT N △,2OT N △,3OT N △,4OT N △为所求等腰三角形.(每作出一种图形给一分) ················· 8分 28.解:(1)(06)A ,,(60)B ,,(60)D -, ·················· 2分 (2)当03x <≤时,位置如图A所示,作GH DB ⊥,垂足为H ,可知:2OE x =,EH x =, 62DO x =-,6DH x =-,22()GHD IOD IOHG y S S S ∴==-△△梯形22112(6)(62)22x x ⎡⎤=---⎢⎥⎣⎦223263122x x x x ⎛⎫=-+=-+ ⎪⎝⎭ ······················· 3分当36x ≤≤时,位置如图B所示. 可知:122DB x =-2122DGBy S DB ⎛⎫∴== ⎪ ⎪⎝⎭△221(122)123622x x x ⎤=-=-+⎥⎣⎦····················· 4分(求梯形IOHG 的面积及DGB △的面积时只要所用方法适当,所得结论正确均可给分)y ∴与x 的函数关系式为:22312(03)1236(36)x x x y x x x ⎧-+<⎪=⎨-+⎪⎩≤≤≤ ··········· 5分 (3)图2中,作GH OE ⊥,垂足为H ,当4x =时,28OE x ==,1224DB x =-=122GH DH DB ∴===,1666242OH HB DB =-=-=-= ∴可知:(06)A ,,(42)G ,,(86)C , ····················· 6分∴经过A G C ,,三点的抛物线的解析式为:221(4)22644x y x x =-+=-+ ··· 7分 (4)当P 在运动过程中,存在P 与坐标轴相切的情况,设P 点坐标为00()x y ,当P 与y 轴相切时,有02x =,02x =±,由02x =-得:011y =,1(211)P ∴-,由02x =,得03y =,2(23)P ∴,当P 与x 轴相切时,有02y = 21(4)204y x =-+>02y ∴=,得:04x =,3(42)P ∴,综上所述,符合条件的圆心P 有三个,其坐标分别是:1(211)P -,,2(23)P ,,3(42)P , ··········· 10分(每求出一个点坐标得1分)。

2014-2015年湖南省怀化市洪江市八年级(上)期末数学试卷含参考答案

2014-2015年湖南省怀化市洪江市八年级(上)期末数学试卷含参考答案

2014-2015学年湖南省怀化市洪江市八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列计算正确的是()A.+=B.+=0C.﹣=0D.+=02.(3分)下列四个实数中,无理数是()A.﹣3.14B.C.D.3.(3分)计算(﹣2)﹣3的结果为()A.﹣5B.6C.﹣8D.﹣4.(3分)化简﹣的结果是()A.B.C.D.3+5.(3分)已知关于x的不等式2x﹣a>﹣3的解集如图所示,则a的值是()A.﹣1B.﹣2C.1D.26.(3分)如图,已知AB=DC,AD=BC,E、F是DB上两点,且BF=DE,若∠AEB=110°,∠ADB=30°,则∠BCF=()A.150°B.40°C.80°D.90°7.(3分)若a>b,则下列不等式变形错误的是()A.a+1>b+1B.C.4﹣3a>4﹣3b D.4+3a>4+3b8.(3分)某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()A.B.C.D.9.(3分)如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB 于D,交AC于E,连接BE,则∠CBE等于()A.80°B.70°C.60°D.50°10.(3分)给出四个命题:①互补的两个角必不相等;②在同一平面内垂直于同一直线的两直线平行;③命题“如果ab<0,那么a+b<0”的逆命题是真命题;④全等三角形对应边上的中线相等.其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题(共10小题,每小题3分,满分30分)11.(3分)0.64的平方根是,﹣27的立方根是.12.(3分)分式,的最简公分母是.13.(3分)等腰三角形一腰上的高与底边的夹角为60°,则该等腰三角形的顶角的度数是.14.(3分)如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,还需加条件或.15.(3分)计算:()4﹣﹣4×=.16.(3分)若a3=﹣125,则=.17.(3分)甲班人数比乙班人数多2人,甲、乙两班人数不足100人.设甲班x 人,则x应满足的不等式是.18.(3分)已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC=.19.(3分)化简:÷=.20.(3分)化简:,可用下面的方法:首先将化为,由于4+3=7,4×3=12,即()2+()2=7,×=,所以====+=2+.根据上述方法化简:=.三、解答题(共7小题,满分60分)21.(8分)计算或化简:(1)(﹣4)(2)﹣.22.(8分)解下列一元一次不等式组:(1)(2).23.(8分)如图,已知点D、E是△ABC的边BC上两点,且BD=CE,∠1=∠2.试证:△ABD≌△ACE.24.(8分)一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就已读完.李永平均每天比张力多读3页,求张力平均每天读多少页?(答案取整数)25.(8分)同一条高速公路沿途有三座城市A、B、C,C市在A市与B市之间,A、C两市的距离为540千米,B、C两市的距离为600千米.现有甲、乙两辆汽车同时分别从A、B两市出发驶向C市,已知甲车比乙车的速度慢10千米/时,结果两辆车同时到达C市.求两车的速度.26.(10分)如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥GF,交AB于点E,连接EG.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并证明你的结论.27.(10分)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件,已知生产一件A产品需用甲种原料9千克,乙种原料3千克;生产一件B产品需用甲种原料4千克,乙种原料10千克.(1)请你根据要求,设计出A、B两种产品的生产方案;(2)如果生产一件A产品可获利700元,生产一件B产品可获利1200元,那么上述哪种生产方案获得的总利润最大?2014-2015学年湖南省怀化市洪江市八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列计算正确的是()A.+=B.+=0C.﹣=0D.+=0【分析】A、利用同分母分式的加法法则计算;B、变形后利用同分母分式的加法法则计算;C、利用同分母分式的减法法则计算;D、变形后利用同分母分式的减法法则计算.【解答】解:A、+=,故错误;B、原式=+=,故错误;C、原式==﹣,故错误;D、原式=﹣=0,故正确.故选:D.2.(3分)下列四个实数中,无理数是()A.﹣3.14B.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是有限小数,是有理数,选项错误;B、=2,是整数,是有理数,选项错误;C、正确;D、=﹣2,是整数,是有理数,选项错误.故选:C.3.(3分)计算(﹣2)﹣3的结果为()A.﹣5B.6C.﹣8D.﹣【分析】利用负整数指数幂的法则求解即可.【解答】解:(﹣2)﹣3=﹣.故选:D.4.(3分)化简﹣的结果是()A.B.C.D.3+【分析】先分母有理化和把化为最简二次根式,然后合并即可.【解答】解:原式=+﹣2=﹣.故选:C.5.(3分)已知关于x的不等式2x﹣a>﹣3的解集如图所示,则a的值是()A.﹣1B.﹣2C.1D.2【分析】根据解不等式,可得不等式的解集,根据不等式的阶级,可得关于a 的方程,根据解方程,可得答案.【解答】解:2x﹣a>﹣3解得x>.由数轴表示不等式的解集,得=﹣1.解得a=1,故选:C.6.(3分)如图,已知AB=DC,AD=BC,E、F是DB上两点,且BF=DE,若∠AEB=110°,∠ADB=30°,则∠BCF=()A.150°B.40°C.80°D.90°【分析】由AB=DC,AD=BC可知四边形ABCD为平行四边形,根据BF=DE,可证△ADE≌△CBF,则∠BCF=∠DAE,因为∠AEB=110°、∠ADB=30°,所以可推得∠BCF=90°.【解答】解:∵AB=DC,AD=BC,∴四边形ABCD为平行四边形,∴∠ADE=∠CBF,∵BF=DE,∴△ADE≌△CBF,∴∠BCF=∠DAE,∵∠DAE=180°﹣∠ADB﹣∠AED,∵∠AED=180°﹣∠AEB=180°﹣110°=70°,∠ADB=30°,∴∠BCF=80°.故选:C.7.(3分)若a>b,则下列不等式变形错误的是()A.a+1>b+1B.C.4﹣3a>4﹣3b D.4+3a>4+3b【分析】根据不等式的两边都加或减同一个数,结果不变,不等式的两边都乘以或除以同一个正数,不等号的方向不变,不等式的两边都乘以或处以同一个负数,不等号的方向改变,可得答案.【解答】解:A、两边都加1,故A正确;B、不等式的两边都除以3,故B正确;C、不等式的两边都乘以﹣3,改变不等好的方向,故C错误;D、不等式的两边都乘以3,都加4,不等号的方向不变,故D正确;故选:C.8.(3分)某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()A.B.C.D.【分析】首先设甲车间每天能加工x个,则乙车间每天能加工1.3x个,由题意可得等量关系:甲车间生产2300件所用的时间+甲乙两车间生产2300件所用的时间=33天,根据等量关系可列出方程.【解答】解:设甲车间每天能加工x个,则乙车间每天能加工1.3x个,根据题意可得:+=33,故选:B.9.(3分)如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()A.80°B.70°C.60°D.50°【分析】先根据△ABC中,AB=AC,∠A=20°求出∠ABC的度数,再根据线段垂直平分线的性质可求出AE=BE,即∠A=∠ABE=20°即可解答.【解答】解:∵等腰△ABC中,AB=AC,∠A=20°,∴∠ABC==80°,∵DE是线段AB垂直平分线的交点,∴AE=BE,∠A=∠ABE=20°,∴∠CBE=∠ABC﹣∠ABE=80°﹣20°=60°.故选:C.10.(3分)给出四个命题:①互补的两个角必不相等;②在同一平面内垂直于同一直线的两直线平行;③命题“如果ab<0,那么a+b<0”的逆命题是真命题;④全等三角形对应边上的中线相等.其中正确的个数有()A.1个B.2个C.3个D.4个【分析】利用互补的定义、平行线的判定、不等式的性质及全等三角形的性质分别判断后即可确定正确的选项.【解答】解:①互补的两个角必不相等,错误;②在同一平面内垂直于同一直线的两直线平行,正确;③命题“如果ab<0,那么a+b<0”的逆命题是真命题,错误;④全等三角形对应边上的中线相等,正确,故选:B.二、填空题(共10小题,每小题3分,满分30分)11.(3分)0.64的平方根是±0.8,﹣27的立方根是﹣3.【分析】根据开方运算,可得平方根、立方根.【解答】解:0.64的平方根是±0.8,﹣27的立方根是﹣3,故答案为:±0.8,﹣3.12.(3分)分式,的最简公分母是12x3y.【分析】先回顾一下如何找最简公分母(系数找最小公倍数,相同字母找最高次幂),根据以上方法找出即可.【解答】解:分式,的最简公分母是12x3y,故答案为:12x3y.13.(3分)等腰三角形一腰上的高与底边的夹角为60°,则该等腰三角形的顶角的度数是120°.【分析】此题要分两种情况推论:当等腰三角形的顶角是钝角时,腰上的高在三角形的外部,根据三角形的一个外角等于和它不相邻的两个内角和;当等腰三角形的顶角是锐角时,根据直角三角形的两个锐角互余,求得底角,再根据三角形的内角和是180°,得顶角的度数.【解答】解:如图,(1)∵顶角是钝角时,∠B=90°﹣60°=30°,∴顶角=180°﹣2×30°=120°,是钝角,符合;(2)顶角是锐角时,∠B=90°﹣60°=30°,∠A=180°﹣2×30°=120°,是钝角,不符合,故答案为120°.14.(3分)如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,还需加条件BD=DC 或AB=AC.【分析】此题是一道开放型的题目,答案不唯一:还可以是∠B=∠C或∠BAD=∠CAD.【解答】解:①BD=DC或②AB=AC,理由是:①∵AD⊥BC,∴∠ADB=∠ADC=90°,∴在△ABD和△ACD中∴△ABD≌△ACD(SAS);②∵∠ADB=∠ADC=90°,∴在Rt△ABD和Rt△ACD中∴Rt△ABD≌Rt△ACD(HL),故答案为:BD=DC,AB=AC.15.(3分)计算:()4﹣﹣4×=5.【分析】第一项和第二项都根据二次根式的计算方法得出结果,最后一项根据立方根的意义得出结果,然后再根据实数运算顺序即可算出最后得结果.【解答】解:原式=4﹣4﹣4×(﹣)=4﹣4+5=5.故答案为:516.(3分)若a3=﹣125,则=5.【分析】根据立方根的性质解出a,然后把a代入进行求解.【解答】解:∵a3=﹣125,∴a=﹣5,∴==5,故答案为5.17.(3分)甲班人数比乙班人数多2人,甲、乙两班人数不足100人.设甲班x 人,则x应满足的不等式是x+x﹣2<100.【分析】设甲班x人,则乙班有(x﹣2)人,根据甲、乙两班人数不足100人,列不等式即可.【解答】解:设甲班x人,则乙班有(x﹣2)人,由题意得,x+x﹣2<100.故答案为:x+x﹣2<100.18.(3分)已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC= 5.【分析】全等三角形,对应边相等,周长也相等.【解答】解:∵△ABC≌△DEF,∴EF=BC=4,在△ABC中,△ABC的周长为12,AB=3,∴AC=12﹣AB﹣BC=12﹣4﹣3=5,故填5.19.(3分)化简:÷=.【分析】首先将分式因式分解,再利用分式乘除运算法则化简求出即可.【解答】解:÷=×=.故答案为:.20.(3分)化简:,可用下面的方法:首先将化为,由于4+3=7,4×3=12,即()2+()2=7,×=,所以====+=2+.根据上述方法化简:=﹣.【分析】借助完全平方公式进而化简求出即可.【解答】解:====﹣.故答案为:﹣.三、解答题(共7小题,满分60分)21.(8分)计算或化简:(1)(﹣4)(2)﹣.【分析】(1)先根据二次根式的乘法法则运算,然后合并即可;(2)先把分子分母因式分解,然后约分后进行同分母的减法运算即可.【解答】解:(1)原式=﹣4=5﹣4=;(2)原式=﹣=﹣=.22.(8分)解下列一元一次不等式组:(1)(2).【分析】(1)首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;(2)首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x>6,解②得:x<6.则不等式组无解;(2),解①得:x>﹣5,解②得:x≥6.故不等式组的解集是:x≥6.23.(8分)如图,已知点D、E是△ABC的边BC上两点,且BD=CE,∠1=∠2.试证:△ABD≌△ACE.【分析】根据等腰三角形的判定和补角性质求出∠ADB=∠AEC,AD=AE,根据SAS 推出两三角形全等即可.【解答】证明:∵∠2=∠1,∠1+∠ADB=180°,∠2+∠AEC=180°,∴∠ADB=∠AEC,AD=AE,在△ABD和△ACE中∴△ABD≌△ACE.24.(8分)一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就已读完.李永平均每天比张力多读3页,求张力平均每天读多少页?(答案取整数)【分析】先设张力每天读x页,然后可求出李永平均每天读的页数,根据题意列出不等式组,解即可.【解答】解:设张力平均每天读x页,则李永平均每天读(x+3)页,依题意,(5分)解得,11<x<14.(8分)又因为x为整数,所以x=12或13.答:张力平均每天读12或13页.25.(8分)同一条高速公路沿途有三座城市A、B、C,C市在A市与B市之间,A、C两市的距离为540千米,B、C两市的距离为600千米.现有甲、乙两辆汽车同时分别从A、B两市出发驶向C市,已知甲车比乙车的速度慢10千米/时,结果两辆车同时到达C市.求两车的速度.【分析】本题用到的关系是:时间=路程÷速度.本题的关键语是“两辆车同时到达C市”,由此可列出方程.【解答】解:设甲车的速度为x千米/时.则:.解得:x=90.经检验:x=90是原方程的解,也符合题意.∴乙为100千米/时.答:甲的速度为90千米/时,乙的速度为100千米/时.26.(10分)如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥GF,交AB于点E,连接EG.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并证明你的结论.【分析】先利用ASA判定△BGD≌△CFD,从而得出BG=CF,GD=FD,从而得出EG=EF,再利用两边和大于第三边从而得出BE+CF>EF.【解答】证明:(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,在△BGD与△CFD中,∵∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.27.(10分)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件,已知生产一件A产品需用甲种原料9千克,乙种原料3千克;生产一件B产品需用甲种原料4千克,乙种原料10千克.(1)请你根据要求,设计出A、B两种产品的生产方案;(2)如果生产一件A产品可获利700元,生产一件B产品可获利1200元,那么上述哪种生产方案获得的总利润最大?【分析】(1)设工厂可安排生产x件A产品,则生产(50﹣x)件B产品,根据不能多于原料的做为不等量关系可列不等式组求解.(2)可以分别求出三种方案比较即可,也可以根据B生产的越多,A少的时候获得利润最大.【解答】(1)解:设工厂可安排生产x件A产品,则生产(50﹣x)件B产品由题意,30≤x≤32的整数.∴有三种生产方案:①A30件,B20件;②A31件,B19件;③A32件,B18件;(2)方法一:方案(一)A,30件,B,20件时,20×1200+30×700=45000(元).方案(二)A,31件,B,19件时,19×1200+31×700=44500 (元).方案(三)A,32件,B,18件时,18×1200+32×700=44000 (元).故方案(一)A,30件,B,20件利润最大,方法二:可以根据:B生产的越多,A少的时候获得利润最大,得出答案,方案(一)A,30件,B,20件时,20×1200+30×700=45000(元).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档