工程力学课程介绍
《工程力学》课程教学大纲
《工程力学》课程教学大纲一、教学目标本课程是新能源科学与工程专业的学科教育平台课程。
工程力学是研究物体机械运动规律以及构件强度、刚度和稳定性等计算原理的科学。
本课程既具有基础性,即为后续课程的学习提供必要的力学知识与分析计算能力;又具有很强的工程应用性,即它为协调新能源技术类的风力发电设备以及光伏发电设备等的安全性和经济性矛盾提供了科学的解决方法。
它集理论与实践于一体,是工程技术人员必修的一门课程,该课程的开设符合应用型本科教育以就业为导向,以能力为本位的教学定位。
通过本课程的学习,学生会初步学会应用静力学的理论和方法去分析和处理力学模型,并应用强度、刚度、稳定性的知识,解决一些简单的工程实际问题;培养用力学的方法提出问题、分析问题、解决问题的能力。
分项教学目标如下(1)知识目标使学生能把简单的工程实际物体抽象为力学模型,并能从简单的物体系统中恰当地选取研究对象,熟练地画出受力图;能熟练运用截面法分析杆件的内力,并能画出内力图;掌握静定杆件在基本变形情况下的应力计算,能对杆件进行强度验算;能对压杆进行稳定性的校核和设计。
(2)能力目标具备对风力发电系统或者光伏发电系统中的具体构件进行简单设计的能力。
(3)素质目标具有良好的工程意识、质量意识与社会责任意识。
三、学时安排课程内容与学时分配表四、课程教学内容与基本要求第一章静力学公理和物体的受力分析教学目的与要求:通过本章的学习,使学生理解静力学所涉及的基本概念、公式及几种典型的约束及其约束性质和约束反力。
掌握物体受力分析,会画受力图。
主要知识点:1.力的基本概念2.力的基本运算3.约束与约束力4.物体的受力分析、受力图教学重点:各种约束反力的画法教学难点:物体的受力分析和受力图教学方法:举例、讲授、板演第二章平面力系教学目的与要求:通过本章学习,通过本章的学习,使学生掌握平面任意力系的简化及简化结果,深入理解平面力系的平衡条件及平衡方程;并能正确计算考虑摩擦时的平衡问题。
工程力学本科所学的课程
工程力学本科所学的课程工程力学是工程学科中的一门基础课程,主要研究物体的静力学和动力学性质,是工程设计与分析的重要基础。
本文将从静力学和动力学两个方面介绍工程力学本科所学的课程内容。
一、静力学静力学是研究物体处于静止状态下的力学性质的学科。
在静力学课程中,我们学习了以下几个重要的概念和原理。
1.力的平衡:力的平衡是静力学研究的核心内容。
我们学习了力的合成与分解、力的平行四边形法则等方法,能够分析和解决物体处于平衡状态下的力的关系问题。
2.支持反力:在静力学中,我们学习了支持反力的概念。
支持反力是物体在支撑点的反作用力,能够保持物体的平衡。
通过学习静力学,我们能够准确计算支持反力的大小和方向,为工程设计提供重要的依据。
3.摩擦力:摩擦力是物体之间相对运动时产生的一种阻碍力。
在静力学中,我们学习了静摩擦力和滑动摩擦力的计算方法,能够分析和解决物体在斜面上的平衡问题。
二、动力学动力学是研究物体运动状态的力学学科。
在动力学课程中,我们学习了以下几个重要的概念和原理。
1.牛顿运动定律:牛顿运动定律是动力学的基础。
我们学习了牛顿第一定律、牛顿第二定律和牛顿第三定律,能够分析和解决物体在受力作用下的运动问题。
2.加速度:加速度是物体在单位时间内速度变化的量度。
在动力学中,我们学习了如何计算物体的加速度,以及加速度与力的关系。
这对于工程设计中的运动学分析非常重要。
3.动量和动量守恒:动量是物体运动状态的重要量度。
在动力学中,我们学习了动量的概念、动量的计算方法,以及动量守恒定律。
动量守恒定律是工程设计中碰撞分析的重要原理。
工程力学本科所学的课程内容主要包括静力学和动力学两个方面。
通过学习静力学,我们能够分析和解决物体平衡状态下的力的关系问题;通过学习动力学,我们能够分析和解决物体在受力作用下的运动问题。
这些知识对于工程设计与分析有着重要的指导意义,为我们日后的工程实践奠定了坚实的基础。
《工程力学》课程的知识体系和内容结构
《工程力学》课程的知识体系和内容结构1、课程的知识体系《工程力学》是一门是既与工程又与力学密切相关的技术基础课程,在基础课程和专业课程之间起桥梁作用。
通过本课程的学习,使学生掌握工程力学的理论和方法,具备从力学角度对工程问题的思维能力和初步解决此类问题的实践能力,并且获得大量的工程背景知识,为学习后续课程、掌握机械等工程设计技术打下牢固的基础。
本课程涵盖了“静力学”和“材料力学”两部分的内容。
“静力学”主要研究刚体的受力和平衡的规律;“材料力学”主要研究构件强度、刚度和稳定性的问题,在保证构件既安全适用又经济的条件下,为合理设计和使用材料提供理论依据。
静力学主要研究的问题:物体的受力分析、力系的简化和力系的平衡条件。
材料力学主要研究的问题:杆件在发生拉伸或压缩、剪切、扭转和弯曲基本变形时内力、应力和变形的计算,在各种基本变形下的强度和刚度计算;应力状态的基本理论;材料在复杂应力作用下破坏或失效规律及其应用;压杆稳定性问题。
2、课程的内容结构第一章介绍静力学的基本概念,常见的几类典型约束及约束力的特征,物体的受力分析。
第二章介绍汇交力系的简化和平衡条件。
第三章介绍力偶的概念及其对刚体的作用效应,力偶系的合成与平衡条件。
第四章介绍平面任意力系的简化、平衡条件和平衡方程,刚体系的平衡问题求解。
第五章介绍空间任意力系的简化和平衡条件。
第六章静力学专题:桁架杆件内力的求解;滑动摩擦、摩擦角和自锁现象、以及滚动摩擦的概念。
第七章介绍材料力学的研究对象、基本假设、外力和内力、应力和应变的概念。
第八章介绍拉压杆的内力、应力、变形及材料在拉伸与压缩时的力学性能,拉压杆的强度和刚度问题,简单静不定问题,拉压杆连接部分的强度计算。
第九章介绍圆轴扭转的外力、内力、应力与变形,圆轴的强度和刚度计算,静不定轴的扭转问题。
第十章介绍梁的外力和内力(剪力与弯矩),内力图的绘制。
第十一章介绍对称弯曲时梁的正应力、切应力、强度计算和梁的合理强度设计。
工程力学《工程力学》(3学分)课程内容简介
《工程力学》课程简介
中文名称:工程力学
英文名称:Engineering Mechanics
开课学院:旅游与城市管理学院
课程代码:16C53
学分:3
开课学期:第三学期
预修课程:高等数学建筑制图等
课程类别:专业必修课程(专业选修课程)
内容简介:《工程力学》是工程管理专业技术平台中的一门技术基础课程。
其主要内容为理论力学、材料力学、结构力学的基础知识和初步计算方法和原理。
课程主要包括:理论力学中的静力学部分的相关理论和计算;材料力学中的变形及其强度、刚度、稳定性等相关理论和计算;结构力学中对静定结构的内力和位移计算等。
通过本课程的学习,使学生能利用静力学定理求解静定结构的支座反力,了解各变形杆截面上应力的分布规律并掌握其应力、变形量的求解方法,从而建立强度条件、变形条件,且利用该强度条件进行构件承载能力校核、强度验算等。
工程力学课程总结
工程力学课程总结工程力学作为理工科专业基础课程,对于培养学生的科学素养和解决实际工程问题具有重要意义。
本文将对工程力学课程进行全面的总结,梳理课程核心知识点,以帮助读者更好地掌握这门学科。
一、课程概述工程力学课程主要包括静力学、动力学和材料力学三个部分。
静力学研究在平衡状态下的物体受力情况,动力学研究物体运动与受力之间的关系,而材料力学则关注物体在受力作用下的变形与破坏规律。
二、核心知识点1.静力学(1)力的分解与合成:掌握力的分解与合成方法,能够解决复杂受力问题。
(2)受力分析:学会对物体进行受力分析,确定受力大小、方向和作用点。
(3)平衡方程:了解平衡方程的推导过程,熟练运用平衡方程解决静力学问题。
2.动力学(1)牛顿运动定律:掌握牛顿运动定律的基本原理,能够运用其解决实际问题。
(2)运动方程:了解运动方程的建立过程,能够求解物体在受力作用下的运动规律。
(3)动量定理与动量守恒:理解动量定理和动量守恒定律,并能应用于碰撞、爆炸等实际问题。
3.材料力学(1)应力与应变:掌握应力与应变的概念,了解其计算方法。
(2)弹性力学:了解弹性力学的基本理论,能够求解弹性体的受力与变形问题。
(3)强度理论与破坏准则:了解材料的强度理论和破坏准则,能够预测材料的破坏行为。
三、课程总结通过学习工程力学课程,我们掌握了以下技能:1.能够对物体进行受力分析,解决静力学问题。
2.能够运用牛顿运动定律和运动方程解决动力学问题。
3.能够求解弹性体的受力与变形问题,预测材料的破坏行为。
4.提高了解决实际工程问题的能力,为后续专业课程学习打下坚实基础。
《工程力学》课程教学大纲
《工程力学》Engineermechanics一、课程基本信息学时:40学分:2.5考核方式:考试,平时成绩占总成绩的百分比30%,考试占总成绩的百分比70%.中文简介:工程力学作为高等工科学校的一门课程,是其最基础的部分,它含盖了工程静力学和弹性静力学两门课程的主要内容。
工程静力学是工程构件静力设计的基础。
弹性静力学主要涉及力和变形之间的物性关系,以及弹性体的失效、与失效有关的设计准则。
同时,随着时代的发展,也增加了新的内容。
工程力学不仅与力学密切相关,而且紧密联系广泛的工程实际,在人民的实际生活也离不开工程力学的运用。
二、教学目的与要求刚体静力学部分第一章工程静力学的基本概念•物体受力分析目的与要求1 .学会受力分析2 .了解力系的等效与简化3 .力系的平衡条件与应用第二章力系的等效与简化目的与要求1 .会求力系的主矢和主矩2 .学会力系的等效与简化3 .力偶的性质与应用第三章力系的平衡目的与要求1 .求力系一般情况下的平衡方程2 .力系的平衡方程用于各种特殊情形3 .平面的力系平衡方程的应用第四章刚体静力学专题目的与要求1 .学会平面静定桁架的静力分析2 .会求有摩擦的问题,掌握库仑定律的应用弹性静力学部分第五章静力学基本原理方法应用于弹性体目的与要求1 .掌握弹性变形的内力变化2 .将刚体静力学的等效,简化以及平衡的概念和方法应用与弹性体3 .掌握弹性体的应力分析第六章弹性静力学的基本概念目的与要求1 .学习弹性静力学的基本概念,研究方法2 .了解弹性静力学对于工程设计的重要意义第七章简单的弹性静力学问题目的与要求1 .会求拉伸、压缩杆件的基本受力与变形情况2 .会求拉伸、压缩杆件的内力与应力3 .材料在拉伸、压缩时的强度设计第八章弹性杆横截面上的正应力分析目的与要求1 .了解材料受力与变形之间的关系2 .得出横截面上的内力分布规律的特征3 .计算横截面上的内力分布第九章弹性杆横截面上的切应力分析目的与要求1 .学习材料扭矩和剪力对应的切应力方法的不同点2 .得出横截面上的切应力分布规律的特征3 .计算横截面上的切应力分布第十章压杆的平衡稳定性与压杆设计目的与要求1 .学习弹性体平衡构件稳定性的基本概念2 .微弯的屈曲平衡构形下得出的平衡条件和小挠度微分方程3 .确定不同刚性支承条件下弹性压杆的临界力三、教学方法与手段本门课的教学方法与手段主要是运用课堂教学,课堂讨论的方法,通过举例,讲解习题,检查作业,发现问题,解决问题,回答学生的难点和疑点。
《工程力学》课程教学大纲精选全文
精选全文完整版(可编辑修改)工程力学课程教学大纲课程名称:工程力学英文名称:Engineering Mechanics课程编码:x4041351学时数:32其中实践学时数:0课外学时数:0学分数:2.0适用专业:环境工程一、课程简介工程力学既是各门后续力学课程的理论基础,又是一门具有完整体系并继续发展着的独立学科,而且在工程中有着广泛的应用。
其教学内容分为两部分:静力学和材料力学。
静力学研究物体在力系作用下的平衡条件,主要包括物体的受力分析、力系的等效替换(或简化)、各种力系的平衡条件及其应用;材料力学研究杆件的强度、刚度和稳定性问题,主要包括应力、应变、变形等基本概念,杆件强度、刚度和稳定性校核所必要的基础知识和计算方法等。
二、课程的性质和教学目标工程力学是环境工程专业的一门专业选修课,该课程的学习可以帮助学生理解力学的基本概念和基本定律,掌握工程力学的基础知识和基本理论以及处理工程力学问题的基本方法,同时可以有效培养学生逻辑思维能力,促进学生综合素质的全面提高。
三、教学目标与毕业要求关系表四、课程教学内容、基本要求、重点和难点静力学部分:(一)静力学的基本概念、受力图了解力和刚体的概念,掌握静力学公理;熟练进行物体的受力分析,画受力图。
重点:物体的受力分析;难点:画受力图。
(二)平面汇交力系了解工程中的平面汇交力系,掌握平面汇交力系平衡方程,平面汇交力系合成。
重点和难点:列平面汇交力系平衡方程。
(三)力矩平面力偶系理解力对点之矩、力偶对力偶矩,平面力偶的合成与平衡问题;掌握力偶的等效。
重点:平面力偶的合成与平衡问题;难点:列平衡方程。
(四)平面一般力系了解工程中的一般力系问题;理解力线平移定理,平面一般力系向一点简化,主矢和主矩,掌握利用平衡方程进行计算的方法。
重点:列平衡方程;难点:物体系平衡问题。
(五)空间力系了解工程中的空间力系问题;理解力在空间坐标轴上的投影,力对轴之矩;掌握列空间力系的平衡方程求解未知的约束反力方法。
《工程力学》课程标准
《工程力学》课程标准一、课程简介《工程力学》是一门重要的工程学科,旨在培养学生掌握力学基本理论、基本知识和基本技能,为解决工程实际问题提供理论基础。
本课程涵盖了静力学和材料力学两大部分,旨在帮助学生建立正确的力学观念,掌握常用的力学分析方法,提高解决实际工程问题的能力。
二、课程目标1.知识目标:学生能够掌握静力学和材料力学的基本概念、基本原理和基本定律,能够运用力学理论分析工程实际问题。
2.能力目标:学生能够运用所学力学知识解决工程实际问题,具备一定的创新能力和实践能力,能够参与相关科研项目和实践活动。
3.素质目标:学生能够树立正确的力学观念,具备严谨的科学态度和团队协作精神,能够正确处理工程中的人际关系和利益关系。
三、教学内容与要求1.静力学部分:要求学生掌握静力学基本概念、受力分析、力系简化、平衡方程及应用。
2.材料力学部分:要求学生掌握拉伸与压缩、弯曲、剪切与挤压、疲劳破坏等基本概念和基本原理,能够运用材料力学分析工程实际问题。
3.教学内容要求:注重理论与实践相结合,加强案例教学和实验教学,培养学生解决实际问题的能力。
四、教学方法与手段1.采用多媒体教学,通过图片、视频等形式展示工程实例,增强学生的感性认识。
2.组织课堂讨论,鼓励学生发表自己的见解,培养学生的创新思维和表达能力。
3.开展实验教学,通过实际操作和观察实验现象,加深学生对力学理论的理解。
4.定期组织专题讲座和学术报告,拓宽学生的知识面,增强学生的学术素养。
五、考核方式与标准1.考试成绩:占总成绩的70%,包括选择题、填空题、计算题等题型,重点考察学生对力学知识的掌握程度和应用能力。
2.平时成绩:占总成绩的30%,包括出勤率、作业完成情况、课堂表现等,重点考察学生的学习态度和学习能力。
3.评分标准:根据学生的答题情况、解题思路和表述能力等进行评分,注重评价学生的综合素质和能力。
六、课程资源与支持1.提供课件、教学视频、案例分析等教学资源,方便学生预习和复习。
(完整)《工程力学》课程
课程标准专业层次:课程性质:必修课计划学时: 72单位:机电汽车工程学院安徽文达信息工程学院二○一七年六月工程力学二、课程概述(一)课程性质地位该课程是四年制本科专业基础课程。
工程力学涵盖了原有理论力学和材料力学两门课程的主要经典内容.通过对《工程力学》的学习,学生可以掌握如何对处于静定平衡状态的物体进行静力分析和对构件进行强度、刚度和稳定性的分析。
这门课以《高等数学》、《大学物理》为基础,也是进一步学习《机械原理》、《机械设计》等其它专业课程的基础。
《工程力学》课程在机械设计专业人才培养计划中占有举足轻重的地位,是衔接基础课程与专业课程的纽带。
(二)课程基本理念1、指导思想以学院“人才培养方案"为依据,以培养“基础扎实、专业面宽、重应用、强素质”的应用型人才为出发点,遵循技术应用型本科生成才规律,树立专业指向、能力本位、个性发展理念,突出学生主体地位,运用所学的工程力学知识来发现、分析和处理实际问题。
2、基本原则以机械设计专业就业岗位需求为目标,遵循认知规律,采用理论和实践相结合的教学方式,深入浅出,发挥学生主体意识,提高教学效果,在获得机械设计专业所需要的工程力学知识的同时,增强能力、提高素质。
(三)课程设计思路1、框架设计以本课程的基本理念为指导,按照专业基础实用的原则进行课程设计,以工程力学的基本概念和基本公理为基础,对工程构件进行受力分析和强度校核,通过实验操作巩固理论知识。
2、内容安排本课程共分三大模块:静力学;材料力学;运动学与动力学.第一模块分两大任务:静力学基本概念和力系。
第二模块设一大任务,两条线索,一是载荷作用方式,二是外力-内力-内力图—应力—强度条件及应用。
本模块设有3个实验,安排六个课时,通过实验引出相关内容.第三模块主要引导学生自学。
3、学时分配本课程教学课时共72学时,4.5学分,其中理论教学66学时,实践教学6学时,教学安排在第3学期。
4、教学实施课堂教学要确保教学大纲的教学要求和教学内容的完成.为了加强基础知识的教学,必须在教学中突出重点、抓住关键,解决难点。
工程力学教案
工程力学教案《工程力学》主要讲授静力学的基本内容和轴向拉压、扭转、弯曲、应力状态理论、强度理论、压杆稳定、组合变形等主要内容,该课程是电气工程,安全工程、测绘工程等专业的一门重要的专业基础课程,是相关专业的学生学习后续课程、掌握本专业技术所必备的理论基础。
以下是工程力学教案,欢迎阅读。
一、课程目的与任务掌握力系的简化与平衡的基本理论,构筑作为工程技术根基的知识结构;通过揭示杆件强度、刚度等知识发生过程,培养学生分析解决问题的能力;以理论分析为基础,培养学生的实验动手能力;发挥其它课程不可替代的综合素质教育作用。
二、教学基本要求1.掌握工程对象中力、力矩、力偶等基本概念及其性质;能熟练地计算力的投影、力对点之矩。
2.掌握约束的概念和各种常见约束力的性质;能熟练地画出单个刚体及刚体系的受力图。
3.掌握各种类型力系的简化方法和简化结果;掌握力系的主矢和主矩的基本概念及其性质;能熟练地计算各类力系的主矢和主矩。
4.掌握各种类型力系的平衡条件;能熟练利用平衡方程求解单个刚体和刚体系的平衡问题。
5.理解材料力学的任务、变形固体的基本假设和基本变形的特征;掌握正应力和切应力、正应变和切应变的概念。
6.掌握截面法;熟练运用截面法求解杆件(一维杆件)各种变形的内力(轴力、扭矩、剪力和弯矩)及内力方程;掌握弯曲时的载荷集度、剪力和弯矩的微分关系及其应用;熟练绘制内力图。
7.掌握直杆在轴向拉伸与压缩时横截面的应力计算;了解安全因数及许用应力的确定,熟练进行强度校核、截面设计和许用载荷的计算。
8.掌握胡克定律,了解泊松比,掌握直杆在轴向拉伸与压缩时的变形计算。
9.掌握剪切和挤压(工程)实用计算。
10.掌握扭转时外力偶矩的换算;掌握圆轴扭转时的切应力与变形计算;熟练进行扭转的强度和刚度计算。
11.掌握纯弯曲、平面弯曲、对称弯曲和横力弯曲的概念;掌握弯曲正应力公式;熟练进行弯曲强度计算;掌握杆件的斜弯曲、弯拉(压)组合变形的应力与强度计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程介绍>什么是力学什么是力学(mechanics)?力学(mechanics)力学是研究物质机械运动规律的科学。
自然界物质有多种层次,从宇观的宇宙体系、宏观的天体和常规物体、细观的颗粒、纤维、晶体、到微观的分子、原子、基本粒子。
通常理解的力学以研究天然的或人工的宏观对象为主。
但由于学科的互相渗透,有时也涉及宇观或细观甚至微观各层次中的对象以及有关的规律。
机械运动亦即力学运动是物质在时间、空间中的位置变化,包括移动、转动、流动、变形、振动、波动、扩散等,而平衡或静止,则是其中的一种特殊情况。
机械运动是物质运动的最基本的形式。
物质运动的其他形式还有热运动、电磁运动、原子及其内部的运动和化学运动等。
机械运动并不能脱离其他运动形式独立存在,只是在研究力学问题时突出地考虑机械运动这种形式罢了;如果其他运动形式对机械运动有较大影响,或者需要考虑它们之间的相互作用,便会在力学同其他学科之间形成交叉学科或边缘学科。
力是物质间的一种相互作用,机械运动状态的变化是由这种相互作用引起的。
静止和运动状态不变,都意味着各作用力在某种意义上的平衡。
力学,可以说是力和(机械)运动的科学。
力学在汉语中的意思是力的科学。
汉语"力"字最初表示的是手臂使劲,后来虽又含有他义,但都同机械或运动没有直接联系。
"力学"一词译自英语mechanics(源于希腊语──机械)。
在英语中,mechanics是一个多义词,既可释作"力学",也可释作"机械学"、"结构"等。
在欧洲其他语种中,此词的语源和语义都与英语相同。
汉语中没有同它对等的多义词。
mechanics在19世纪50年代作为研究力的作用的学科名词传入中国时,译作"重学",后来改译作"力学",一直使用至今。
"力学的"和"机械的" 在英语中同为mechanical,而现代汉语中"机械的"又可理解为"刻板的"。
这种不同语种中词义包容范围的差异,有时引起国际学术交流中的周折。
例如机械的(mechanical)自然观,其实指用力学解释自然的观点,而英语mechanist是指机械师,不是指力学家。
发展简史力学知识最早起源于对自然现象的观察和在生产劳动中的经验。
人们在建筑、灌溉等劳动中使用杠杆、斜面、汲水器具,逐渐积累起对平衡物体受力情况的认识。
古希腊的阿基米德对杠杆平衡、物体重心位置、物体在水中受到的浮力等作了系统研究,确定它们的基本规律,初步奠定了静力学即平衡理论的基础。
古代人还从对日、月运行的观察和弓箭、车轮等的使用中了解一些简单的运动规律,如匀速的移动和转动。
但是对力和运动之间的关系,只是在欧洲文艺复兴时期以后才逐渐有了正确的认识。
伽利略在实验研究和理论分析的基础上,最早阐明自由落体运动的规律,提出加速度的概念。
牛顿继承和发展前人的研究成果(特别是开普勒的行星运动三定律),提出物体运动三定律。
伽利略、牛顿奠定了动力学的基础。
牛顿运动定律的建立标志着力学开始成为一门科学。
此后力学的进展在于它所考虑的对象由单个的自由质点转向受约束的质点和受约束的质点系;这方面的标志是达朗伯提出的达朗伯原理和拉格朗日建立的分析力学。
欧拉又进一步把牛顿运动定律推广用于刚体和理想流体的运动方程。
欧拉建立理想流体的力学方程可看作是连续介质力学的肇端。
在此以前,有关固体的弹性、流体的粘性、气体的可压缩性等的物质属性方程已经陆续建立。
运动定律和物性定律这两者的结合,促使弹性固体力学基本理论和粘性流体力学基本理论孪生于世,在这方面做出贡献的是纳维、柯西、泊松、斯托克斯等人。
弹性力学和流体力学基本方程的建立,使得力学逐渐脱离物理学而成为独立学科。
另一方面,从拉格朗日分析力学基础上发展起来的哈密顿体系,继续在物理学中起作用。
从牛顿到哈密顿的理论体系组成物理学中的经典力学或牛顿力学。
在弹性和流体基本方程建立后,所给出的方程一时难于求解,工程技术中许多应用力学问题还须依靠经验或半经验的方法解决。
这使得19世纪后半叶在材料力学、结构力学同弹性力学之间,水力学和水动力学之间一直存在着风格上的显著差别。
到20世纪初,在流体力学和固体力学中,实际应用同数学理论的上述两个方面开始结合,此后力学便蓬勃发展起来,创立了许多新的理论,同时也解决了工程技术中大量的关键性问题,如航空工程中的声障问题和航天工程中的热障问题。
这种理论和实际密切结合的力学的先导者是普朗特和卡门。
他们在力学研究工作中善于从复杂的现象中洞察事物本质,又能寻找合适的解决问题的数学途径,逐渐形成一套特有的方法。
从60年代起,电子计算机应用日广,力学无论在应用上或理论上都有了新的进展。
力学继承它过去同航空和航天工程技术结合的传统,在同其他各种工程技术以及同自然科学的其他学科的结合中,开拓自己新的应用领域。
力学在中国的发展经历了一个特殊的过程。
与古希腊几乎同时,中国古代对平衡和简单的运动形式就已具备相当水平的力学知识,所不同的是未建立起像阿基米德那样的理论系统。
在文艺复兴前的约一千年时间内,整个欧洲的科学技术进展缓慢,而中国科学技术的综合性成果堪称卓著,其中有些在当时世界居于领先地位。
这些成果反映出丰富的力学知识,但终未形成系统的力学理论。
到明末清初,中国科学技术已显著落后于欧洲。
经过曲折的过程,到19世纪中叶,牛顿力学才由欧洲传入中国。
以后,中国力学的发展便随同世界潮流前进。
学科性质力学原是物理学的一个分支。
物理科学的建立则是从力学开始的。
在物理科学中,人们曾用纯粹力学理论解释机械运动以外的各种形式的运动,如热、电磁、光、分子和原子内的运动等。
当物理学摆脱了这种机械(力学)的自然观而获得健康发展时,力学则在工程技术的推动下按自身逻辑进一步演化,逐渐从物理学中独立出来。
20世纪初,相对论指出牛顿力学不适用于速度接近光速或者宇宙尺度内的物体运动;20年代,量子论指出牛顿力学不适用于微观世界。
这反映人们对力学认识的深化,即认识到物质在不同层次上的机械运动规律是不同的。
通常理解的力学只以研究宏观的机械运动为主,因而有许多带"力学"名称的学科如热力学、统计力学、相对论力学、电动力学、量子力学等在习惯上被认为是物理学的分支,而不属于力学的范围。
但由于历史上的原因,力学和物理学仍有着特殊的亲缘关系,特别是在以上各"力学"分支和牛顿力学之间,许多概念、方法、理论都有不少相似之处。
力学与数学在发展中始终相互推动,相互促进。
一种力学理论往往和相应的一个数学分支相伴产生,如运动基本定律和微积分,运动方程的求解和常微分方程,弹性力学及流体力学的基本方程和数学分析理论,天体力学中运动稳定性和微分方程定性理论等。
有人甚至认为力学是一门应用数学。
但是力学和物理学一样,还有需要实验基础的一面,而数学寻求的是比力学更带普遍性的数学关系,两者有各自的研究对象。
力学同物理学、数学等学科一样,是一门基础科学,它所阐明的规律带有普遍的性质。
力学又是一门技术科学,它是许多工程技术的理论基础,又在广泛的应用过程中不断得到发展。
当工程学还只分民用工程学(即土木工程学)和军事工程学两大分支时,力学在这两个分支中已起着举足轻重的作用。
工程学越分越细,各个分支中许多关键性的进展都有赖于力学中有关运动规律、强度、刚度等问题的解决。
力学和工程学的结合促使工程力学各个分支的形成和发展。
现在,无论是历史较久的土木工程、建筑工程、水利工程、机械工程、船舶工程等,还是后起的航空工程、航天工程、核技术工程、生物医学工程等,都或多或少有工程力学的活动场地。
力学作为一门技术科学,并不能代替工程学,只指出工程技术中解决力学问题的途径,而工程学则从更综合的角度考虑具体任务的完成。
同样地,工程力学也不能代替力学,因为力学还有探索自然界一般规律的任务。
力学既是基础科学又是技术科学这种二重性,有时难免会引起侧重基础研究一面和侧重应用研究一面的力学家之间的不同看法。
但这种二重性也使力学家感到自豪,他们为沟通人类认识自然和改造自然两个方面做出了贡献。
研究方法力学研究方法遵循认识论的基本法则:实践-理论-实践。
力学作为基础科学和作为技术科学从不同侧面反映这个法则。
力学家们根据对自然现象的观察,特别是定量观测的结果,根据生产过程中积累的经验和数据,或者根据为特定目的而设计的科学实验的结果,提炼出量与量之间的定性的或数量的关系。
为了使这种关系反映事物的本质,力学家要善于抓住起主要作用的因素,摒弃或暂时摒弃一些次要因素。
力学中把这种过程称为建立模型。
质点、质点系、刚体、弹性固体、粘性流体、连续介质等是各种不同的模型。
在模型的基础上可以运用已知的力学的或物理学的规律(必要时作一些假设)以及合适的数学工具进行理论上的演绎工作,导出新的结论。
在理论演绎中,为了使理论具有更高的概括性和更广泛的适用性,往往采用一些无量纲参数如雷诺数、马赫数、泊松比等。
这些参数既反映物理本质,又是单纯的数字,不受尺寸、单位制、工程性质、实验装置类型的牵制。
依据第一个实践环节所得理论结论建立的模型是否合理,有待于新的观测、工程实践或者科学实验等第二个实践环节加以验证。
采用上述无量纲参数以及通过有关的量纲分析使得这种验证能在更广泛的范围内进行。
对一个单独的力学课题或研究任务来说,这种实践和理论环节不一定能分得很清,也可能和其他课题或任务的某个环节相互交叉,相互影响。
课题或任务中每一项具体工作又可能只涉及一个环节或者一个环节的一部分。
因此,从局部看来,力学研究工作方式是多样的:有些只是纯数学的推理,甚至着眼于理论体系在逻辑上的完善化;有些着重数值方法和近似计算;有些着重实验技术;有些着重在天文观测和考察自然现象中积累数据;而更大量的则是着重在运用现有力学知识来解决工程技术中或探索自然界奥秘中提出的具体问题。
每一项工程又都需要具备自身有关的知识和其他学科的配合。
数学推理需要各种现代数学知识,包括一些抽象数学分支的知识。
数值方法和近似计算要了解计算技术、计算方法和计算数学。
现代的力学实验设备,诸如大型的风洞、水洞,它们的建立和使用本身就是一个综合性的科学技术项目,需要多工种、多学科的协作。
应用研究更需要对应用对象的工艺过程、材料性质、技术关键等有清楚的了解。
在力学研究中既有细致的、独立的分工,又有综合的、全面的协作。
从力学研究和对力学规律认识的整体来说,实践是检验理论正确与否的唯一标准。
以上各种工作都是力学研究不可缺少的部分。
学科分类力学可粗分为静力学、运动学和动力学三部分,静力学研究力的平衡或物体的静止问题;运动学只考虑物体怎样运动,不讨论它与所受力的关系;动力学讨论物体运动和所受力的关系。