新课改人教版七(下)第五章相交线与平行线复习课件
合集下载
人教版初一数学7年级下册 第5章(相交线与平行线)相交线 课件(共20张PPT)
![人教版初一数学7年级下册 第5章(相交线与平行线)相交线 课件(共20张PPT)](https://img.taocdn.com/s3/m/6e14b00b2a160b4e767f5acfa1c7aa00b52a9dc3.png)
⑷ 研究⑴~⑶小题中直线条数与对顶角的对数之间的
关系,猜测:若有n条直线相交于一点,则可形成
n(n-1)对对顶角;
⑸ 若有10条直线相交于一点,则可形成 90 对对顶角.
如图,若∠1:∠2=2:7 ,求各角的度数。
解:设∠1=2x°,则∠2=7x °
根据邻补角的定义,得
a
2x+7x=180 x=20
如图,直线AB、CD、EF相交,若∠1 +∠5=180°, 找出图中与∠1 相等的角.
解:∵ ∠1= ∠3(对顶角相等)
∠5+∠8=180 °且∠1 +∠5=180°
∴∠8= ∠1 ∵ ∠8= ∠6(对顶角相等)A
∴∠6= ∠1.
C
2 13
4 56
87
F
如图,直线AB,CD相交于点O, ∠EOC=70°, OA平分∠EOC,求∠BOD的度数.
(1)两条直线相交,形成了几个角?
A
D
O
C
B
(2)将这些角两两配对,共能组成几对角,
各对角存在怎样的位置关系?根据这种位置关系
将它们分类.
邻补角
A
2
D
1
3
O4
C
B
如图,∠1与∠2有一条公共边OA,它们
的另一边互为反向延长线,具有这种关系的两
个角,互为邻补角.
一、邻补角的概念 邻补角:如果两个角有一条公共边,它们的另 一边互为_反__向__延__长__线___,那么这两个角互为邻 补角.图中∠1的邻补角有__∠__2_,_∠__3___.
解:∵OA平分∠EOC,
E
D
∴∠AOC= Leabharlann ∠EOC=35°,2A
关系,猜测:若有n条直线相交于一点,则可形成
n(n-1)对对顶角;
⑸ 若有10条直线相交于一点,则可形成 90 对对顶角.
如图,若∠1:∠2=2:7 ,求各角的度数。
解:设∠1=2x°,则∠2=7x °
根据邻补角的定义,得
a
2x+7x=180 x=20
如图,直线AB、CD、EF相交,若∠1 +∠5=180°, 找出图中与∠1 相等的角.
解:∵ ∠1= ∠3(对顶角相等)
∠5+∠8=180 °且∠1 +∠5=180°
∴∠8= ∠1 ∵ ∠8= ∠6(对顶角相等)A
∴∠6= ∠1.
C
2 13
4 56
87
F
如图,直线AB,CD相交于点O, ∠EOC=70°, OA平分∠EOC,求∠BOD的度数.
(1)两条直线相交,形成了几个角?
A
D
O
C
B
(2)将这些角两两配对,共能组成几对角,
各对角存在怎样的位置关系?根据这种位置关系
将它们分类.
邻补角
A
2
D
1
3
O4
C
B
如图,∠1与∠2有一条公共边OA,它们
的另一边互为反向延长线,具有这种关系的两
个角,互为邻补角.
一、邻补角的概念 邻补角:如果两个角有一条公共边,它们的另 一边互为_反__向__延__长__线___,那么这两个角互为邻 补角.图中∠1的邻补角有__∠__2_,_∠__3___.
解:∵OA平分∠EOC,
E
D
∴∠AOC= Leabharlann ∠EOC=35°,2A
人教版初一数学7年级下册 第5章(相交线与平行线)平行线 课件(共15张PPT)
![人教版初一数学7年级下册 第5章(相交线与平行线)平行线 课件(共15张PPT)](https://img.taocdn.com/s3/m/b32222ebdc3383c4bb4cf7ec4afe04a1b071b0d7.png)
如图:三条直线AB、CD、EF。如果AB//EF ,CD//EF, 那么直线AB与CD可能相交吗?假设AB与CD相交, A NhomakorabeaB
设AB与CD相交于P
C
P D
E
F
因为AB//EF,CD//EF
于是过点P就有两条直线AB
CD都与EF平行。
根据平行公理,这是不可能的
也就是说,AB与CD不能相交,
只能平行。
五、平行公理的推论
A、B、C三点 在同一直线上 ;
( 经过直线外一点,有且只有一条直线与这条直线平行)
A··B C·
D
E
随堂即练
(2)如图,因为AB // CD,CD // EF(已知), 所以___A_B____ // ____E_F____.
( 如果两条直线都和第三条直线平行,那么这两条直 线也互相平行)
A
B
C
1、下列说法正确的个数是( B ) (1)两条直线不相交就平行。 (2)在同一平面内,两条平行的直线有且只有一个交点 (3)过一点有且只有一条直线与已知直线平行 (4)平行于同一直线的两条直线互相平行 (5)两直线的位置关系只有相交与平行
A、0 B、1 C、2 D、4
2、下列推理正确的是( C )
(如果两条直线都与第三条直线平行,那么这 两条直线互相平行).
因为 c∥d,所以 a ∥d
(如果两条直线都与第三条直线平行,那么这两 条直线互相平行).
本节课你的收获是什么?
(1) 平行线的定义; (2)平行线的表示方法; (3)平行线的画法。 (4)平行线公理 (5)平行线公理的推论。
温故而知新
如果两条直线都和第三条直线平行, 那么这两条直线也互相平行.
初中数学人教版七年级下册第五章 相交线与平行线5.1.1相交课件(共25张PPT)
![初中数学人教版七年级下册第五章 相交线与平行线5.1.1相交课件(共25张PPT)](https://img.taocdn.com/s3/m/d8e054633868011ca300a6c30c2259010302f373.png)
1.如图,直线AB,CD相交于点O,∠1+∠2=120°,∠3=
125°,则∠2的度数是(
D )
(第3题)
A.37.5°
B.75°
C.50°
D.65°
【点拨】
因为∠3=125°,所以∠1=180°-125°=55°,因为∠1
+∠2=120°,所以∠2=120°-55°=65°,故选D.
2.如图,已知直线AB,CD相交于点O,且OE平分∠BOC.
6.下列说法正确的是(
B )
A.相等的角是对顶角
B.邻补角一定互补
C.互补的两个角一定是邻补角
D.两个角不是对顶角,则这两个角不相等
利用邻补角的定义求角度
9.[母题:教材P8习题T2]如图,O是直线AB上一点,OD平分
∠AOC,OE平分∠BOC.
(1)图中∠BOD的邻补角为 ∠AOD
∠AOE的邻补角为 ∠BOE
【点拨】
因为∠AOD=∠1=80°,所以∠AOE=
∠AOD-∠2=80°-30°=50°.
故选B.
(第6题)
5.如图,直线AB,CD相交于点O,OE是∠BOD内的一条射线.
(1)∠DOE的邻补角是 ∠COE
的邻补角是 ∠BOD和∠AOC
,∠AOD
;
(2)写出图中的对顶角.
【解】对顶角有∠AOD和∠BOC,∠AOC和∠BOD.
于点O.
(1)写出∠COE的邻补角;
【解】∠COE的邻补角为∠COF和∠EOD.
(2)分别写出∠COE和∠BOE的对顶角;
【解】∠COE和∠BOE的对顶角分别为
∠DOF和∠AOF.
(3)如果∠BOD=60°,∠BOF=90°,求∠AOF和∠FOC的度
人教版数学七下第五章《相交线与平行线》ppt复习课件
![人教版数学七下第五章《相交线与平行线》ppt复习课件](https://img.taocdn.com/s3/m/5a32a1a2dd88d0d232d46a15.png)
垂线段的长度,叫做这点到这条直线的距离.
判断:
1、画出点A到直线BC的距离。( )
B
2、画出点A到直线BC的垂线段。( )
A DC
3、量出点A到直线BC的距离。 ( )
4、垂线最短。
()
(三)、三线八角:
A
同位角: ∠1与∠5; ∠4与∠8;
∠2与∠6; ∠3与∠7.
内错角: ∠4与∠6; ∠3与∠5. C
则∠3=
40º
A
B
1
32
C
D
2
11、如图:
∠CDF= 2
AB∥CD ,∠ABF= 3
∠CDE,则∠E︰∠F=
∠ABE, 3:2
3
(提示: ∠E=∠ABE+ ∠CDE C
D FE
∠F= ∠ABF+ ∠CDF)
A
B
ba
1
2
∴ ∠1=90 (垂直定义)
又∵ b∥c (已知)
∴ ∠2= ∠1=90 (两直线平行,同位角相等)
∴ a ⊥c. (垂直定义)
二、平行线
E
(一)、定义:
A
21
B
在同一平面内,不相交的两 条直线叫做平行线。
34 65
(二)、判定:
1、定义。
C7 8
D
F
2、同位角相等,两直线平行。
E
G
B
C1
D
6、下列命题正确的是(A )
A、垂直于同一条直线的两条直线平行(在同一平面内)
B、两条直线被第三条直线所截,同位角相等
C、相等的两个角是对顶角
D、点到直线间的距离,垂线段最短
7、三条直线相交一点,对顶角的对数是( B )
判断:
1、画出点A到直线BC的距离。( )
B
2、画出点A到直线BC的垂线段。( )
A DC
3、量出点A到直线BC的距离。 ( )
4、垂线最短。
()
(三)、三线八角:
A
同位角: ∠1与∠5; ∠4与∠8;
∠2与∠6; ∠3与∠7.
内错角: ∠4与∠6; ∠3与∠5. C
则∠3=
40º
A
B
1
32
C
D
2
11、如图:
∠CDF= 2
AB∥CD ,∠ABF= 3
∠CDE,则∠E︰∠F=
∠ABE, 3:2
3
(提示: ∠E=∠ABE+ ∠CDE C
D FE
∠F= ∠ABF+ ∠CDF)
A
B
ba
1
2
∴ ∠1=90 (垂直定义)
又∵ b∥c (已知)
∴ ∠2= ∠1=90 (两直线平行,同位角相等)
∴ a ⊥c. (垂直定义)
二、平行线
E
(一)、定义:
A
21
B
在同一平面内,不相交的两 条直线叫做平行线。
34 65
(二)、判定:
1、定义。
C7 8
D
F
2、同位角相等,两直线平行。
E
G
B
C1
D
6、下列命题正确的是(A )
A、垂直于同一条直线的两条直线平行(在同一平面内)
B、两条直线被第三条直线所截,同位角相等
C、相等的两个角是对顶角
D、点到直线间的距离,垂线段最短
7、三条直线相交一点,对顶角的对数是( B )
人教版七年级数学下册 第五章相交线与平行线单元复习 (共44张ppt)
![人教版七年级数学下册 第五章相交线与平行线单元复习 (共44张ppt)](https://img.taocdn.com/s3/m/2ed0b624dd3383c4ba4cd238.png)
四、平行线的判定与性质
平行线的性质: 1.两直线平行,同位角相等 . 2.两直线平行,内错角相等. 3.两直线平行,同旁内角互补.
平
条件
行
线
的 性 两直线平 行
质
性质
线的关系
平 行
同位角相等
线
的
内错角相等
判 定 同旁内角互补
判定
角的关系
结论 同位角相 等
内错角相等
同旁内角互补
角的关系
两直线平行
线的关系
C
H
D
F
F 形模式
同位角
Z 形模式
内错角
U 形模式
同旁内角
四、平行线的判定与性质
判定两条直线是否平行的方法有:
1.同位角相等, 两直线平行. 2.内错角相等, 两直线平行. 3.同旁内角互补, 两直线平行. 4.平行于同一直线的两直线平行. 5.同一平面内, 垂直于同一直线的两直线平行. 6.平行线的定义.
C
A
1
O
B
2D E
解: ∵∠1=35°,∠2=55°(已知)
∴ ∠AOE=180°-∠1-∠2 = 180°-35°-55° =90°
∴OE⊥AB (垂直的定义)
5.如图,直线AD、BE、CF相交于O,OG⊥AD, 且∠BOC = 35°,∠FOG = 30°,求DOE的度数。
∵OG⊥AD, ∴∠GOD=90°, ∵∠BOC=35°, ∴∠FOE=∠BOC=35°, 又∵∠GOD=∠GOF+∠FOE+∠DOE=90°, ∵∠FOG=30°, ∴∠DOE=∠GOD-∠FOE-∠GOF=90°-35°-30°=25°.
2. 垂线的性质 (1)在同一平面内,过一点有且只有一条直
人教版数学七年级下册第五章相交线与平行线 复习课件(共21张PPT)
![人教版数学七年级下册第五章相交线与平行线 复习课件(共21张PPT)](https://img.taocdn.com/s3/m/70ddb00faaea998fcc220e2b.png)
③ ②
A
①
C
B
④
D
学习了本节课你 有哪些收获?
教学反思:
1、本节课要注重板书重要知识点,不能因为 课件上有就不写。 2、比武擂台环节要控制好时间。 3、挑战一下环节注意知识点要讲透。
人教版七年级下册第五章
相交线与平行线 (复习课)
教学目标:
经历对本章的知识回顾与思考的过程,将 本章内容条理化,系统化,梳理本章的知 识结构。 通过对知识的梳理,进一步加深对所学概 念的理解,进一步熟悉和掌握几何语言, 能用语言说明几何图形。
知识框架图:
相交线 相交线与 平行线 对顶角邻补角 直线平行的判定 区别
∠1的邻补角是 ∠2 与∠4, 对顶角是∠3
F
若∠1与∠2的关系为内错角,∠1=40°, 则∠2等于( D ) A. 40° c B. 140° C. 40°或140° a D. 不确定 1
2
b
平行的大楼顶部各有一个射灯, 当光柱相交时,如图, 360 ∠1+∠2+∠3=___° .
C
1
A
4 2
5 3
B
D
用吸管吸易拉罐中的饮料时, 如图,∠1=110°, 则∠2= 70 ° (易拉罐的上下底面互相平行)
1
2
如图,将一副三角板的直角顶点 重合,摆放在桌面上,• 若 ∠AOD=145°,则 35 度. ∠BOC=_______
1
3
2
有一条直的等宽纸带,按如图所示折叠 时,∠1=30°则∠3=______. 75 °
E F
1
C
2 3
B
4
A
如图,如果AD∥BC, 则有①∠A+∠B=180°; ②∠B+∠C=180°; ③∠C+∠D=180°,上述结论中正 确的是( D ) (A)只有①; (B)只有②; (C)只有③; (D)只有①和③
A
①
C
B
④
D
学习了本节课你 有哪些收获?
教学反思:
1、本节课要注重板书重要知识点,不能因为 课件上有就不写。 2、比武擂台环节要控制好时间。 3、挑战一下环节注意知识点要讲透。
人教版七年级下册第五章
相交线与平行线 (复习课)
教学目标:
经历对本章的知识回顾与思考的过程,将 本章内容条理化,系统化,梳理本章的知 识结构。 通过对知识的梳理,进一步加深对所学概 念的理解,进一步熟悉和掌握几何语言, 能用语言说明几何图形。
知识框架图:
相交线 相交线与 平行线 对顶角邻补角 直线平行的判定 区别
∠1的邻补角是 ∠2 与∠4, 对顶角是∠3
F
若∠1与∠2的关系为内错角,∠1=40°, 则∠2等于( D ) A. 40° c B. 140° C. 40°或140° a D. 不确定 1
2
b
平行的大楼顶部各有一个射灯, 当光柱相交时,如图, 360 ∠1+∠2+∠3=___° .
C
1
A
4 2
5 3
B
D
用吸管吸易拉罐中的饮料时, 如图,∠1=110°, 则∠2= 70 ° (易拉罐的上下底面互相平行)
1
2
如图,将一副三角板的直角顶点 重合,摆放在桌面上,• 若 ∠AOD=145°,则 35 度. ∠BOC=_______
1
3
2
有一条直的等宽纸带,按如图所示折叠 时,∠1=30°则∠3=______. 75 °
E F
1
C
2 3
B
4
A
如图,如果AD∥BC, 则有①∠A+∠B=180°; ②∠B+∠C=180°; ③∠C+∠D=180°,上述结论中正 确的是( D ) (A)只有①; (B)只有②; (C)只有③; (D)只有①和③
人教版初一数学7年级下册 第5章(相交线与平行线)平行线 课件(共42张ppt)
![人教版初一数学7年级下册 第5章(相交线与平行线)平行线 课件(共42张ppt)](https://img.taocdn.com/s3/m/f99268ae6394dd88d0d233d4b14e852458fb39d6.png)
③百米直跑道的两边.
A.3个
B.2个
C.1个
D.0个
2 下列说法中,正确的有( B ) ①在同一平面内不相交的两条线段必平行; ②在同一平面内不相交的两条直线必平行; ③在同一平面内不平行的两条线段必相交; ④在同一平面内不平行的两条直线必相交. A.1个 B.2个 C.3个 D.4个
3 a,b,c是平面内任意三条直线,交点可以有 ( B) A.1个或2个或3个 B.0个或1个或2个或3个 C.1个或2个 D.以上都不对
例6 如图,P是三角形ABC内部的任意一点. (1)过P点向左画射线PM∥BC交AB于点M,过 P点向右画射线PN∥BC交AC于点N; (2)在(1)中画出的图形中,∠MPN的度数一定等 于180°,你能说明其中的道理吗?
导引:在(1)中,按照过直线外一点画已知直线的平行线 的方法画图即可.在(2)中,要说明∠MPN=180°, 可转化为说明点M, P, N在同一条直线上.
(来自《教材》)
解:(1)如图(1)所示. (2)如图(2)所示. (1)
(来自《教材》)
(2)
2 在如图所示的各图形中,过点M画PQ∥AB. 解:略.
知识点 3 平行线的基本事实1:确定性
(1) 经过点C可以画几条直 a
线与直线AB平行? A
(2) 过点D画一条直线与
AB平行.
b
C
B D
(3) 通过画图,你发
解:与棱AD平行的棱有A′D′,B′C′,BC, 记作AD∥A′D′,AD∥B′C′,AD∥BC. 与棱D′C′平行的棱有DC,AB,A′B′, 记作D′C′∥DC, D′C′∥AB, D′C′∥A′B′.
总结
找平行线要注意两点: (1)在同一平面内; (2)不相交(无限延伸).
人教版七年级数学下册第五章《相交线与平行线》复习课件ppt精品课件
![人教版七年级数学下册第五章《相交线与平行线》复习课件ppt精品课件](https://img.taocdn.com/s3/m/87791270bcd126fff6050b4d.png)
D
E
1
A
B2 C
F
5、探索与思考:
1.有一条直的等宽纸带,按如图所源自折叠时, ∠1=30°求纸带重叠部分中∠CAB的度数。
E
1C
B
2 34
F
A
2.已知:AB∥CD。试探索 ①∠A、∠C与∠AEC之间的关系; ②∠B、∠D与∠BFD之间的关系。
A
几何
1E
2
之旅
C
B
3F
l
4
D
编后语
• 常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分 钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?
遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。 • 三、课后“静思2分钟”大有学问 • 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的 课后复习30分钟。
AB
AC∥BD, AE ∥BF
∠A=∠DOE
∠B=∠DOE
∠A=∠B
平移
• 在平面内,将一个图形沿某个方向移动一定的距离,这样的图形 动叫做平移变换,简称平移.
• 平移特征:平移不改变物体的形状和大小;平移只改变物体的位置 • 图形上对应点的连线平行且相等.对应角相等. • 图形上每个点都向同一个方向移动了相同的距离.
人教版初一数学7年级下册 第5章(相交线与平行线)复习 课件(41张ppt)
![人教版初一数学7年级下册 第5章(相交线与平行线)复习 课件(41张ppt)](https://img.taocdn.com/s3/m/e9d139a94bfe04a1b0717fd5360cba1aa8118cb2.png)
问题4 已知:如图,AB和CD相交于点O, ∠C=∠COA,∠D=∠BOD. 求证:AC∥BD .
例题讲解
思考:证明两条直线互相平行 的方法有哪些?
例题讲解
证明两条直线互相平行
两直线平行
同位角相等
内错角相等
同旁内角互补
平行公理的推论
例题讲解
例题讲解
对顶角相等
∠C=∠D
A
∠C=∠COA
∠D=∠BOD
AC∥BD
分析:
例题讲解
证明:∵∠C=∠COA,∠D=∠BOD, ∠COA=∠BOD, ∴∠C=∠D. ∴ AC∥BD.
A
问题4 已知:如图,AB和CD相交于点O, ∠C=∠COA,∠D=∠BOD. 求证:AC∥BD .
∠1与∠BOE互为邻补角
∠1与∠3相等
∠1与∠BOE互补
∠1与∠2互余
C
F
B
A
D
E
O
1
2
3
问题1 如图,直线AB⊥CD,垂足为O, 直线EF经过点O,∠1=26°, 求∠2,∠3,∠BOE的度数.
例题讲解
解:∵ AB⊥CD , ∴ ∠COB=90° . ∵ ∠1=26°, ∴ ∠2=∠COB -∠1=64° , ∠3=∠1=26°, ∠BOE=180°-∠1=180°-26°=154° ..
例题讲解
AB⊥CD
直线AB与直线EF交于点O
∠1与∠3互为对顶角
∠1与∠2互余
∠1与∠3相等
C
F
B
A
D
E
O
1
2
3
问题1 如图,直线AB⊥CD,垂足为O, 直线EF经过点O,∠1=26°, 求∠2,∠3,∠BOE的度数.
例题讲解
思考:证明两条直线互相平行 的方法有哪些?
例题讲解
证明两条直线互相平行
两直线平行
同位角相等
内错角相等
同旁内角互补
平行公理的推论
例题讲解
例题讲解
对顶角相等
∠C=∠D
A
∠C=∠COA
∠D=∠BOD
AC∥BD
分析:
例题讲解
证明:∵∠C=∠COA,∠D=∠BOD, ∠COA=∠BOD, ∴∠C=∠D. ∴ AC∥BD.
A
问题4 已知:如图,AB和CD相交于点O, ∠C=∠COA,∠D=∠BOD. 求证:AC∥BD .
∠1与∠BOE互为邻补角
∠1与∠3相等
∠1与∠BOE互补
∠1与∠2互余
C
F
B
A
D
E
O
1
2
3
问题1 如图,直线AB⊥CD,垂足为O, 直线EF经过点O,∠1=26°, 求∠2,∠3,∠BOE的度数.
例题讲解
解:∵ AB⊥CD , ∴ ∠COB=90° . ∵ ∠1=26°, ∴ ∠2=∠COB -∠1=64° , ∠3=∠1=26°, ∠BOE=180°-∠1=180°-26°=154° ..
例题讲解
AB⊥CD
直线AB与直线EF交于点O
∠1与∠3互为对顶角
∠1与∠2互余
∠1与∠3相等
C
F
B
A
D
E
O
1
2
3
问题1 如图,直线AB⊥CD,垂足为O, 直线EF经过点O,∠1=26°, 求∠2,∠3,∠BOE的度数.
人教版七年级下册数学第五章《相交线与平行线》复习课课件
![人教版七年级下册数学第五章《相交线与平行线》复习课课件](https://img.taocdn.com/s3/m/4c067a3103020740be1e650e52ea551810a6c905.png)
(1)你能得到∠F与∠1+∠3的关系吗?
(2)你能得到∠ABE+∠CDE的值吗? (3)由BF和DF分别平分∠ABE和∠CDE,你能得到
∠1+∠3 与∠ABE+∠CDE的关系吗?
解∵AB∥CD ∴∠F=∠1+∠3
∠ABE+∠E+∠CDE=360° ∵∠E=140°
∴∠ABE+∠CDE=360°-140°=220°
C
D
F
E
分别在下列图形中,探究∠E 与∠B、∠D之间的数 量关系:
A
B
A
B
C
D
E E
A
B
C
D
E
E
A
B
C
D
C
D
模型三:‘外错’ 型
规律总结:
当“拐点”在平行线的外部时, “拐角”等于两个边角之差.
(即:拐角=大角-小角)
知识再现
4.已知AB∥CD,∠ABE和∠CDE的平分线相交于
F,∠E = 140º,则 ∠F =____ 。
①点在两平行线之间
A
B
A
B
E
E
C
D
C
图1
②点在两平行线之外
E
A
B
A
B
A
C 图3
C
D
C
图4 E
图2
D
E A
B
D 图5
C
图6
B
D E
平行线中的折线成角问题模型:
一、内凹型:
归纳
数学建模
二、外凸型:
三、外错型:
E
A
B
C
D
(二) 合作探究 模型一:“内凹” 型
(2)你能得到∠ABE+∠CDE的值吗? (3)由BF和DF分别平分∠ABE和∠CDE,你能得到
∠1+∠3 与∠ABE+∠CDE的关系吗?
解∵AB∥CD ∴∠F=∠1+∠3
∠ABE+∠E+∠CDE=360° ∵∠E=140°
∴∠ABE+∠CDE=360°-140°=220°
C
D
F
E
分别在下列图形中,探究∠E 与∠B、∠D之间的数 量关系:
A
B
A
B
C
D
E E
A
B
C
D
E
E
A
B
C
D
C
D
模型三:‘外错’ 型
规律总结:
当“拐点”在平行线的外部时, “拐角”等于两个边角之差.
(即:拐角=大角-小角)
知识再现
4.已知AB∥CD,∠ABE和∠CDE的平分线相交于
F,∠E = 140º,则 ∠F =____ 。
①点在两平行线之间
A
B
A
B
E
E
C
D
C
图1
②点在两平行线之外
E
A
B
A
B
A
C 图3
C
D
C
图4 E
图2
D
E A
B
D 图5
C
图6
B
D E
平行线中的折线成角问题模型:
一、内凹型:
归纳
数学建模
二、外凸型:
三、外错型:
E
A
B
C
D
(二) 合作探究 模型一:“内凹” 型
人教版七年级数学-下册-第五章相交线与平行线-复习课件-(共32张PPT)
![人教版七年级数学-下册-第五章相交线与平行线-复习课件-(共32张PPT)](https://img.taocdn.com/s3/m/f7f07fccdc88d0d233d4b14e852458fb770b3822.png)
且DOE 5COE。求AOD的度数。
CE
┓
AO
B
D 此题需要正确地
应用、对顶角、
邻补角、垂直的
概念和性质。
解 :由邻补角的定义知: COE+DOE=1800, 又由DOE 5COE COE 5COE 1800 COE 300 又 OE AB BOE 900 BOC BOE COE 1200 由对顶角相等得: AOD=BOC=1200
x=30°
∴∠AOC=∠DOB=60°
• 7、如图,在长方形ABCD中,∠ADB=20°,
• 现将这一长方形纸片沿AF折叠,若使AB’ ∥BD,
• 则折痕AF与AB的夹角∠BAF应为多少度?
B' A
解:长方形ABCD中, ∠BAD=90° D ∵AB'//BD, ∠ADB=20°
∴∠B'AD=∠ADB=20°
第5章 相交线与平行线复习课
一、学习目标
1、进一步巩固邻补角、对顶角的概念和性质 2、理解垂线、垂线段的概念和性质 3、掌握两条直线平行的判定和性质 4、通过平移,理解图形平移变换的性质 5、能区分命题的题设和结论以及命题的真假
二、重点和难点
重点:垂线的性质和平行线的判定和性质。
难点:平行线的判定和性质。
例3. 2.已知OA OC,OB OD,AOB : BOC 32 :13,
求COD的度数。
CB
解.由OA OC知 : AOC 900 即AOB BOC 900
D O
由AOB : BOC 32 :13,
A 设AOB 32x,则BOC=13x 列方程:32x+13x=900
由垂直先找到 900 的
C
E
人教版七年级数学下册 第五章 相交线与平行线复习(共70张ppt)
![人教版七年级数学下册 第五章 相交线与平行线复习(共70张ppt)](https://img.taocdn.com/s3/m/3d33da8cba1aa8114531d962.png)
CD吗?
M
A
EBG来自CDF
N
H
变式1:若∠AEM= ∠DGN,EF、GH分别平分∠AEG和 ∠CGN,则图中还有平行线吗?
变式2:若∠AEM= ∠DGN,∠1=∠2,则图中还有平行线吗?
练习:
⒈ 如图⑴,已知 AB∥CD, ∠1=30°, ∠2=90°,则 ∠3=______°
A
B
130°
2
3?
C 图1
(√ )
1、如右图直线AB、CD交于点O,OE为射线,那么(C) A。∠AOC和∠BOE是对顶角;
B。∠COE和∠AOD是对顶角; C。∠BOC和∠AOD是对顶角;
A
D
D。∠AOE和∠DOE是对顶角。
O
2、如右图中直线AB、CD交于O,
OE是∠BOC的平分线且∠BOE=50度, C 那么∠AOE=( )度
m∥n
读作: “AB 平行于 CD”
m
n
读作: “ m平行于n ”
在同一平面内,两条直线有几
种位置关系呢?
同一平面内的两条不重合的直 线的位置关系只有两种:
相交或平行
3、平行线的画法:
一放
二靠
·
三移(推) 四画
动手实践
过直线AB外一点P作直线AB的平行线, 看看你能作出吗?能作出几条?
·P
通过画图,你
65
D
C 78
D
F
斜交
垂直
三线八角
C
2
B
1
3
O4 A
D
如图,直线AB与CD相交,∠1和∠2有一
条公共边,它们的另一条边互为反向延长
线,具有这种关系的两个角叫做互为邻补
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
1 4
B 6 C
5
2
E
D
∴
∵ ∴
AF BE ——∥—— ( 同位角相等,两直线平行。 )
∠5= ∠6 (已知)
BC EF ——∥—— ( ) 内错角相等,两直线平行。
∵ ∠5+ ∠AFE=180 (已知)
AF BE ∴ ——∥—— (同旁内角互补,两直线平行。)
∵ AB ∥FC,
ED ∥FC (已知)
2
1 4
n
3 5
a b a
n
m
l
4
2 3
b
1
平 条件 行 线 的 两直线平行 性 质 平 行 线 的 判 定 条件
同位角相等 内错角相等 同旁内角互补
结论
同位角相等 内错角相等 同旁内角互补
结论
两直线平行
间夹 的在 距两 离平 。行 线 间 的 垂 线 段 的 长 度 叫 做 两 平 行 线 ,
A
2. 对顶角: (1)两条直线相交所构成的四个角中, 有公共顶点但没有公共边的两个角是对顶角。 如图(2). 1与2, 3与4是对顶角。 (2)一个角的两边分别是另一个角的两边的 反向延长线,这两个角是对顶角。 3. 邻补角的性质: 同角的补角相等。
2 1
(1)
3
1 4 2
(2)
1与3互补,2与3互补 1 2(同角的补角相等)
B
E
例1. 如图 已知:∠1+∠2=180°, 求证:AB∥CD。
证明:由:∠1+∠2=180°(已知), E ∠1=∠3(对顶角相等). A B 1 3 ∠2=∠4(对顶角相等) 4 C 根据:等量代换 2 F 得:∠3+∠4=180°. 根据:同旁内角互补,两直线平行 得:AB//CD .
D
例2. 如图,已知:AC∥DE, ∠1=∠2,试证明AB∥CD。
求BOE、BOC的度数。
解. AOB是直线
E O A C F B D
AOE与BOE是互为邻补角 AOE BOE 1800 又 AOE 360 BOE 1800 360 1440 又 DOE 900 AOD AOE DOE 1260 又 BOC与AOD是对顶角 BOC AOD 1260
综合应用:
1、填空: (1)、∵ ∠4 ∠A=____, (已知)
判定
F E
4 2 1 3
5
同位角相等,两直线平行。 ∴ AC∥ED ,(_____________________)
DF (2)、 ∵AB ∥______, (已知)
B
D
性质
C
两直线平行, 内错角相等。 ∴ ∠2= ∠4,(______________________)
1.垂线的定义: 两条直线相交,所构成的四个角中,有一个角 是 90 0 时,就说这两条直线互相垂直。其中一条直线叫做另一 条直线的垂线。它们的交点叫垂足。 2. 垂线的性质: (1)过一点有且只有一条直线与已知直线垂直。 性质(2): 直线外一点与直线上各点连结的所有线段中,垂线 段最短。简称:垂线段最短。 3.点到直线的距离: 从直线外一点到这条直线的垂线段的长度, 叫做点到直线的距离。
D O A
设AOB 32 x,则BOC=13x 列方程:32x+13x=900 x 20 BOC 13 2 26
0 0
由垂直先找到 90 0 的 角,再根据角之间 的关系求解。
又 OB OD BOD 900 COD 900 260 640
D
A C
B
.
P
E
F
B
练 一 练
如图中的∠1和∠2是同位角吗? 为什么?
2 1 1 2
∠1和∠2不是同位角,
∠1和∠2是同位角,
∵∠1和∠2无一边共线。 ∵∠1和∠2有一边共线、同向 且不共顶点。
如图:直线a、b被直线 l 截的8个角中
l
1
a
2
同位角: ∠1与∠5 , ∠2与∠6 , ∠3与∠7 , ∠4与∠8.
D 此题需要正确地 应用、对顶角、 邻补角、垂直的
概念和性质。
例2.已知OA OC,OB OD,AOB : BOC 32 :13, 求COD的度数。
C B
解由OA OC知 : AOC 900 . 即AOB BOC 90
0
由AOB : BOC 32 :13,
例1.
∠1与哪个角是内错角? 答:∠ DAB
∠1与哪个角是同旁内角?答:∠ BAC,∠BAE , ∠2
∠2与哪个角是内错角?
D
A E
答:∠ EAC
1
B
2
C
随堂练习
1、观察右图并填空: ∠4 (1) ∠1 与 是同位角; ∠3 (2) ∠5 与 是同旁内角; (3) ∠1 与 是内错角; ∠2 2、 指出图中的同位角、内错 角、同旁内角 同位角:∠4与∠1 内错角:∠4与∠2 同旁内角:∠3与∠1 m
第五章相交线与平行线 复习
知识结构
两条
邻补角、对顶角
垂线及其性质
对顶角相等
直线
相 交 线
相交 两条
点到直线的距离
直线
被第 三条 直线 判定 性质 同位角、内错角、同旁内角
平 行 线
所截 平行公理 平移
1. 互为邻补角:两条直线相交所构成的四了角中,有公共顶点且 有一条公共边的两个角是邻补角。如图(1) 1与2是邻补角。
C 5 6 8 7 B
(3)∠4和 ∠6是由直线 CD 、 EF 被直线 AB 所截成的 同旁内 角 ; (4)由直线AB、CD被直线EF 所截成的同位角有 ;
∠1 和∠9、 ∠4和 ∠12、∠2和 ∠10、 ∠3 和∠11 (5)∠7和 ∠12是 同旁内 角 ;
在判断两个角时一 定要先知道由哪两 条直线被哪条直线 所截呦!
同位角的位置特征是: (1)在截线的同旁,(2)被截两直线的同方向。
内错角的位置特征是: (1)在截线的两旁,(2)在被截两直线之间。
同旁内角的位置特征是: (1)在截线的同旁,(2)在被截两直线之间。 判定两直线平行的方法有三种: (1)定义法;在同一平面内不相交的两条直线是平行线。 (2)传递法;两条直线都和第三条直线平行,这两条直线也平行。 (3)三种角判定(3种方法): 同位角相等,两直线平行。
D A O B C
解.设AOC 2 X 0,则AOD=3X 0 根据邻补角的定义可得方程: 2X+3X=180 解得X=36
0 0 0
AOC 2 X 72
在解 答 : BOD的度数为720 决与角的计算有关 的问题时,经常用 到代数方法。
BOD AOC 720
例2.已知直线AB、CD、EF相交于点O,DOE 900,AOE 360
2.直线AB、CD、EF相交与于O,图中 有几对对顶角? ∠BOD ∠AOC的对顶角是_______ ∠DOE ∠COF的对顶角是________ ∠COB, ∠AOD 。 ∠AOC的邻补角是____ ∠DOF, ∠EOD的邻补角是_______ ∠COE。
例1.直线AB与CD相交于O,AOC : AOD 2 : 3 求BOD的度数。
θ
3
4
O'
β
1. 命题的概念: 判断一件事情的句子,叫做命题。 命题必须是一个完整的句子; 这个句子必须对某件事情做出肯 定或者否定的判断。两者缺一不可。 2. 命题的组成: 每个命是由题设、结论两部分组成。
A
G
F
C
例4. 两块平面镜的夹角应为多少度?
如图,两平面镜а、β的夹角为θ,入射光线AO平行于β入
射到а上,经两次反射后的反射光线 O ' B 平行于а,则角
θ=_____度 60
0
分析 : 依题意有OA // ,O ' B // ,
B
A
а
O 1 2 5
且1 2,3 4, 由OA // 得1 由O ' B // 得4 ,5 2 于是3=4=5= 由于3+4+5=1800 3 600,即 =600
证明: ∵由AC∥DE (已知) A ∴ ∠ACD= ∠2 1 (两直线平行,内错角相等) B ∵ ∠1=∠2(已知) ∴ ∠1=∠ACD(等量代换) ∴AB ∥ CD
(内错角相等,两直线平行)
D 2 E
C
例3.已知 EF⊥AB,CD⊥AB,∠EFB=∠GDC, 求证:∠AGD=∠ACB。
证明: ∵ EF⊥AB,CD⊥AB (已知) ∴ AD∥BC (垂直于同一条直线的两条直线互相平行) ∴ ∠EFB= ∠DCB D (两直线平行,同位角相等) E ∵ ∠EFB=∠GDC (已知) B ∴ ∠DCB=∠GDC (等量代换) ∴ DG∥BC (内错角相等,两直线平行) ∴ ∠AGD=∠ACB (两直线平行,同位角相等)
AB ED ∴ ——∥——( 平行于同直线的两条直线互相平行。 )
例2. 已知∠DAC= ∠ACB, ∠D+∠DFE=1800,求 证:EF//BC D F
C
证明: ∵ ∠DAC= ∠ACB (已知) ∴ AD// BC (内错角相等,两直线平行) ∵ ∠D+∠DFE=1800(已知) A ∴ AD// EF (同旁内角互补,两直线平行) ∴ EF// BC (平行于同一条直线的两条直线互相平行)
AB DF (3)、∵ ___ ∥___, ∴ ∠B= ∠3.
(已知)
两直线平行, 同位角相等. (___________ ___________)
性质
试一试,你准行!
模仿上题自己编题。(考查平行线的性质或判定)
平行线的判定应用练习: