煤自燃的原因及倾向性预测精选版

合集下载

煤层自燃发火预测预报及预防措施

煤层自燃发火预测预报及预防措施

煤层自燃发火预测预报及预防措施在煤矿生产中,煤层自燃是导致煤矿火灾的主要原因之一。

预测和预报煤层自燃的发生,采取相应的预防措施,对于保障煤矿生产安全具有重要意义。

本文将介绍煤层自燃的原因和途径、自燃发火的预测预报方法以及预防措施。

煤层自燃的原因和途径煤层自燃是指在煤矿采掘过程中,由于各种因素的影响,导致煤层内的发热物质自发氧化并生成大量热量,使煤层温度升高,进而引发火灾。

煤层自燃的原因有多种,主要包括以下因素:1.煤质因素:不同类型、不同质量的煤,其自燃性也不同。

其中在含硫量高、焦渣量、松散程度和露天氧化面积大的煤层中,自然裂隙多、通风条件差,容易自燃。

2.地质因素:含水炭层、潮湿炭层的自燃危险较小,而低透气性沉积物层与煤层接触的地层,容易吸附水分和吸氧条件差,自燃危险较大。

3.煤矿经营管理因素:采掘技术水平、通风与抽放系统、煤炭运输及存储方式等都会对煤层自燃产生影响。

自燃发火的预测预报方法对于煤层自燃的预测和预报,应结合采掘过程中各个环节的特点,不断收集有关数据,及时研究和判断,采取有效措施,预防和消除煤层自燃。

下面介绍常用的自燃发火预测预报方法:1.温差法:通过温度差别观察来进行预测。

利用感应电缆,探测传送到地面的煤层内部温度,与大气温度相比较,若温差在低于20℃以内,则预示煤层自燃的危险性较小;若温差在20℃-30℃之间,则预示煤层自燃的危险性较高;若温差超过30℃,则预示已开始发生自燃现象,须及时采取措施。

2.气体法:利用测点周围的瓦斯、氧气含量等指标,进行预测。

当瓦斯浓度超过0.5%时,将增大煤层自燃的危险程度;当氧气含量下降到16%时,也可能引发煤层自燃的爆发。

3.氧化性煤体含量法:通过测定煤体表面的可燃分含量、氧化性煤含量及煤体抗氧化指数等来进行预测。

4.煤层压力法:通过观测煤层压力变化、矸石压强、粉尘颗粒运动等指标来判断煤层的稳定性,并进行自燃预测。

5.煤质综合识别法:通过煤体成分分析、煤体物理力学参数测试等手段,综合判断煤层的自燃危险性。

煤仓自燃原因和对策

煤仓自燃原因和对策

煤仓自燃原因和对策自燃原因:由于煤在煤仓中持续发生氧化而造成热量积聚,不断升温而导致自燃。

一般自燃要经历水分蒸发、氧化、自燃三个阶段。

煤在常温下,产生热量的原因有很多,例如水与煤的润湿热,煤分子的水解热,煤中硫化物的水解、氧化热,煤对氧的物理吸附热、化学吸附热,煤与氧的化学反应热等等。

煤的氧化是放热反应,如果热量不能及时散发掉,使煤堆内部的温度升高,反过来又加速煤氧化,释放更多热量,产生自燃。

煤炭从氧化到自燃有个过程,氧化时间到自燃发火期才会自燃,气煤的发火期为4-6个月。

影响自燃的主要因素:1.水份:水份的含量及变化是影响煤自发热最主要的因素,理论上讲,含水量增加1%将使煤温上升17℃。

因此不能用水来冷却已经产生自发热的煤堆,这是因为冷却水很难将全部的煤浸透而只是让部份温度上升而已。

2.通风率:理论上在松散的煤堆中不流通的空气完全反应的话将使其温度上升2℃,实际上当高速流通的空气在提供煤以氧气的同时也会带走大量的热,而低速则恰好相反,尽管也提供相当数量的氧气但却不能带走其自发产生的热量。

长期置放的煤一定要压紧,防止煤堆松质化使煤炭与氧气发生氧化反应发热。

3.颗粒细度:与自发热成反比的关系,颗粒越小其表面积越大,与空气的接触越充分,更容易产生自热。

但出于堆置上的考量,使煤堆不致于容易坍塌,一般会将其细度控制在一定范围。

煤堆自燃分析煤炭分层,表层至1.5米属于冷却层,煤层松散与空气充分接触,虽发生氧化反应但是散热条件好,散发热大于氧化释放热,不会自燃。

冷却层以下到4米是氧化层,氧化层的煤具备自燃条件,达到自燃发火期就会自燃。

氧化层以下是窒息层,煤层相对压实,供氧不足且含水量高,氧化程度低,不宜自燃。

预防措施:1、制定预案,加强巡检。

及时制定煤仓自燃事故预案,加强巡检,发现局部煤堆温度升高、冒热气、测仓孔有大量烟雾冒出等现象及时汇报处理。

2、加强仓内CO气体浓度监测。

自燃伴随着CO 浓度升高,所以用CO浓度监测仪监测CO 浓度能提前发现自燃。

煤炭自燃火灾分析及采取的安全措施

煤炭自燃火灾分析及采取的安全措施

高温环境会加速煤炭的氧化反应,提高自 燃的风险。
积煤堆积
不当储存
长时间堆积的煤炭容易发生自燃,因为堆 积内部的煤炭与空气接触不充分,导致氧 化反应产生的热量不易散发。
如果煤炭储存环境潮湿、通风不良或者受 到阳光长时间暴晒,都有可能提高自燃的 风险。
02
煤炭自燃火灾分析
热力分析
热量积聚
煤炭自燃火灾通常起源于煤炭内 部热量的积聚。在适宜的条件下 ,煤炭内部的热量逐渐积累,达 到煤炭的自燃温度,引发火灾。
微生物分析
1. 控制煤炭堆存环境
保持良好的通风条件,减少热量积聚 ,降低自燃风险。
2. 合理配煤
控制煤炭的水分含量,通过合理配煤 ,降低自燃的可能性。
3. 微生物防控
定期检测煤炭中的微生物种类和数量 ,采取必要的防控措施,抑制微生物 的生长和活动。
4. 温度监控
定期对煤炭堆存区域进行温度监测, 及时发现潜在的自燃风险。
灭火器材配备
在储煤场、输送带等关键部位配 备适量的灭火器材,如灭火器、 灭火沙箱等,确保在发现火情时
能够迅速进行初期扑救。
消防设施
设立消防水池、消防泵房等消防 设施,确保在火灾发生时能够提
供足够的消防用水。
员工培训
定期对员工进行消防培训,提高 员工的火灾应对能力,确保在紧 急情况下能够迅速、有效地使用
后期处理与调查
火场清理:在灭火救援行动 结束后,对火场进行清理, 消除安全隐患,防止次生事 故的发生。
事故调查:成立事故调查组 ,对火灾事故进行深入调查 。调查内容包括火灾原因、 责任追究、改进措施等,为 后续防范类似事故提供经验 教训。
恢复生产:在确保安全的前 提下,逐步恢复生产活动。 对受损设备设施进行修复或 更换,确保生产线的正常运 行。

煤堆自燃原因分析与防治措施

煤堆自燃原因分析与防治措施

煤堆自燃原因分析与防治措施煤堆自燃原因分析煤堆自燃是由于煤堆内部温度升高达到点火温度,引发燃烧而产生的一种火灾。

在煤炭储存过程中,自燃是一种常见的火灾形式,由多种因素引起。

煤堆自然发热煤本身具有一定的自燃特性,当煤存放在封闭的情况下,由于内部氧气和外部的空气难以交换,温度逐渐升高,达到一定温度后便会自发地发生燃烧,从而引起火灾。

煤堆内自然发热的原因包括氧化、吸放热、化热、压力效应、生物作用等,其中氧化是主要原因。

外界环境因素外界环境因素也会影响煤堆自燃,如高温、干燥的天气容易使煤体温度升高,从而导致自燃。

此外,强风、高温、干燥等因素还会使得火灾扩散速度加快。

煤堆堆积方式不同的煤堆堆积方式也会影响煤堆自燃的发生。

比如,煤堆的高度、形状、密度等都会对煤堆内部的温度、氧气、空气流动等因素产生影响,从而影响煤堆的自燃概率。

煤炭质量煤炭质量是影响煤堆自燃的重要因素之一。

含挥发分高、易吸潮、颗粒细小、杂质含量高的煤炭容易自燃。

此外,煤炭质量不良可能增加煤堆内部的氧化速度,从而促进煤堆的自燃。

煤堆自燃防治措施为有效预防和控制煤堆自燃的发生,需要采取下列防治措施:加强监测加强对煤堆温度和烟气的监测,一旦监测到超过规定温度或者出现异常的烟气,应立即采取措施进行管控。

监测措施可以包括使用自动报警装置、摄像头监控和卫星监测等。

堆积方式合理布局合理的煤堆布局和堆积方式,可以有效控制煤堆自燃。

一般而言,应注意煤堆的高度不要过高,煤堆的形状要有利于空气流通,密度要适宜。

定期施工维护煤堆的施工维护是预防煤堆自燃的重要手段之一。

定期的维护可以包括测量煤堆内部温度、改变煤堆的密度、对煤堆内部进行通风换气等。

使用防护材料可在煤堆表面、挡墙和地面覆盖一定厚度的耐高温的防护材料,能够有效防止煤堆与周围物品相互在一定温度下燃烧,从而预防煤堆自燃的发生。

加强员工培训对工人进行安全生产和防火培训,提高员工的防范意识和火灾应急处理能力,有助于有效预防煤堆自燃的发生。

煤场煤堆自燃原因及治理措施

煤场煤堆自燃原因及治理措施

煤场煤堆自燃原因及治理措施煤在无需外火源加热,而受其自身氧化作用所产生的积蓄热引起的着火就称为煤的自燃。

煤是在常温下会发生缓慢氧化的物料,它受空气中氧的作用而被氧化产生的热量聚集在煤堆内部,而温度的升高又会加速煤的氧化,当温度升高到60℃后,煤堆温度会加速上升,若不及时采取措施,就会发生煤堆自燃。

影响煤堆自燃的因素很多,主要包括煤的性质、组堆工艺过程、气候条件等。

(1)煤的性质煤的变质程度对煤的氧化和自燃具有决定意义。

一般变质程度低的煤,其氧化自燃倾向大。

在电煤日常煤质检测项目中,一般含硫量和挥发分高的煤比较容易自燃。

煤中水分对其氧化速度也有相当大的影响,煤堆中水分蒸发生成大量汽化热,热量在煤堆较高部位出现聚积,这样就更加剧了煤的氧化和自燃。

(2)组堆的工艺过程在组堆时,煤块与煤末有偏析现象,在煤堆底部内形成大量空洞,空气可自由透入。

当煤开始氧化放热时,这些空洞给热量聚积创造了有利条件,从而也促进了煤堆温度的迅速提高,因此自燃也大多发生在这个部位。

(3)气候条件大气温度、大气压力波动、风力风向、雨雪量等因素,都会影响自燃的发生。

秋冬过渡时期是煤堆自燃高发时期,尤其是气温骤降(特别是下降10℃及以上),由于气压和风力的作用,使煤堆内外空气对流加速,容易发生自燃。

煤场的自燃重在预防,一旦发生自燃,根据不同阶段和不同程度,处理方式有所不同。

(1)当发热冒烟、自燃发生在煤堆浅层,或煤堆不大,那么可以用推土机或铲车将发热自燃的煤与主煤堆分离或推散开来,充分浇水降温、灭火。

(2)当发热冒烟、自燃发生在大煤堆深处,又无法倒堆,那么首选用推土机反复压实,窒息灭火。

而此时,浇水是不可取的,由于很难对自燃点及附近区域进行全面有效地降温,加湿煤堆反而会加速和扩大自燃。

当然,推土机无法操作的地方,或有明火产生时还是需要先浇水灭火。

(3)清场是处理自燃最有效最彻底的方法。

根据不同的煤质和季节,合理安排各块煤场清场。

取清场煤时,一旦打开发热煤堆,由于大量空气进入,很有可能会冒烟甚至发生明火,在上煤仓前必须首先灭火。

煤炭自燃机理及防治措施

煤炭自燃机理及防治措施

煤炭自燃机理及防治措施1. 煤炭自燃机理煤炭在长期堆放或运输过程中,由于各种原因会发生自燃。

煤炭自燃是指煤炭在空气中氧化产热,炭渣在热的作用下又反过来氧化,从而释放出更多的热,不断形成自蒸自燃的链式反应,最终导致整个煤堆自燃。

1.1 自燃的原因自燃的原因很复杂,主要有以下几个方面: 1. 煤本身所含的杂质会使氧化反应更加迅速; 2. 煤的结构特性,例如表面积、孔隙率、含水率等都对煤的自燃性质有影响; 3. 煤的存储和运输中遇到的气候和环境变化会产生影响; 4. 存储堆放方式不合理,破坏了煤堆的组织结构、增加了煤堆的密度和湿度等也是影响因素之一; 5. 存放时间过长,不适当的处理方式等也会导致自燃。

1.2 自燃的过程煤的自燃过程发生在空气中。

煤堆中的空气和煤堆表面的空气形成煤堆空气层。

在运动的空气的作用下,煤堆表面的水分开始蒸发,导致煤堆表面温度升高。

随着温度的升高,煤中的水分挥发,煤内部局部升温。

当局部温度达到煤的自燃点时,就会引起自燃。

同时,煤中还可能存在化学反应,例如氧化、聚合等反应,加速了自燃的过程。

1.3 自燃的类型自燃可分为三类:微观自燃(微小的火花、电火花等导致)、局部自燃(局部温度升高、氧化反应开始时产生)、全面自燃(煤堆内多处同时发生火灾,煤炭质量严重下降)。

2. 煤炭自燃防治措施为了预防煤堆自燃,要采取一系列防治措施,包括: 1. 煤堆的布放和运输要注意放置、通风和排水,保证煤质的稳定。

2. 在堆放和运输中,要注意煤堆的密度和高度,堆放时间不宜过长,防止煤的自然风化和氧化。

3. 堆放地的基础要坚实,同时要注意煤堆的密实度和排水,确保煤堆安全。

4. 监测煤堆的温度,及时检测异常情况,采取相应防止措施,避免煤的自燃。

5. 对煤堆的管理要循环利用,减少浪费,以便提高效益,节约资源。

6. 加强对科研和技术的投资,提高煤堆的安全性,有选择地适当地提高煤的自燃点,减轻煤的自然风化和氧化过程。

煤层自燃发火的原因及治理

煤层自燃发火的原因及治理

煤层自燃发火的原因及治理煤层自燃发火是指煤矿内煤层自身产生高温,然后由于氧气接触,引发火灾的现象。

自燃发火是煤矿安全生产的一个重要隐患,它不仅会造成人员伤亡和矿井设施损毁,还会释放有害气体和会破坏环境。

下面将从原因和治理两个方面进行详细探讨。

首先,了解煤层自燃发火的原因是解决这个问题的关键。

煤层自燃发火的主要原因如下:1.煤炭成分:一般来说,煤中含有的氧化性物质越高,易发生自燃发火。

例如,含有较高硫和较低灰分的煤比别的煤更容易发生自燃。

2.煤层温度:煤层内部的温度过高也是煤层自燃发火的原因之一、当温度超过一定范围时,煤与空气中的氧气反应产生燃烧,最终引发火灾。

3.煤层中的气体:煤层中包含的甲烷气体也是自燃发火的一种重要原因。

因为甲烷是易燃气体,一旦气体泄漏并遇到点火源,就会引发火灾。

治理煤层自燃发火的方法主要包括预防、监测和灭火等措施。

具体而言,可以采取以下方法:1.预防措施:在开采煤矿前,在煤岩构造存在自燃隐患的地方进行预探。

对具有自燃倾向的煤岩要及时探明其隐秘火源,采取相应的防治措施,避免煤层发生自燃。

此外,采取煤层注氮等方法降低煤层温度,减少自燃的可能性。

2.监测措施:对煤炭矿井进行定期监测,以便早期发现自燃发火的迹象。

通过盗风、微风和典型气体等监测方法对煤矿进行监测,及时发现异常情况,防止火灾的发生。

3.灭火措施:一旦发现煤层自燃发火,应立即采取灭火措施。

常见的灭火方法包括喷洒水、压缩空气泡沫灭火剂等。

此外,也可以采用加汽止热、盖板平压等措施,将煤炭进行深埋或覆盖,降低氧气的接触,使之停止燃烧。

总之,煤层自燃发火是煤炭矿井中的一个严重问题,但通过预防、监测和灭火等措施,可以有效地减少自燃发火的概率,并及时处理火灾,减少人员伤亡和财产损失。

然而,为了更好地解决这一问题,煤矿企业和相关部门应该加强科学研究,开发出更有效的治理方法和技术,提高煤矿安全生产的水平。

同时,也需要加强对员工的安全培训,提高他们的安全意识,共同维护煤矿的安全。

煤堆自燃原因及预防措施3篇

煤堆自燃原因及预防措施3篇

煤堆自燃原因及预防措施3篇煤堆自燃原因及预防措施篇一煤大体上由有机物和无机物组成,主要可燃元素是碳(约占65%~95%),其次是氢(约占1%~2%),并含少量氧(约占3%~5%,有时高达25%)、硫(约占10%),上述元素一起构成可燃化合物,称为煤的可燃质。

除此之外,煤中还含有一些不可燃的矿物质灰分(5%~15%,也有高达50%)和水分(一般在2%~20%之间变化),这些物质称为煤的惰性质。

煤被空气中的氧气氧化是煤自燃的根本原因。

煤中的碳、氢等元素在常温下就会发生反应,生成可燃物co、ch4及其他烷烃物质。

煤的氧化又是放热反应,如果热量不能及时散发掉,将使煤的堆积温度升高,反过来又加速煤的氧化,放出更多的可燃质和热量。

当热量聚集,温度上升到一定值时,即会引起可燃物质燃烧而自燃。

煤堆发生自燃要同时具备以下4个条件:(1)具有自燃倾向性。

煤的自燃倾向性是煤的一种自然属性,反映了煤的变质程度,水分、灰分、含硫量、粒度、孔隙度、导热性,是煤自燃的基本条件。

煤在常温下的氧化能力主要取决于挥发分的含量,挥发分含量越高,自燃倾向性越强,而且自燃时间也会相应缩短。

根据煤的氧化程度与着火点之间的关系,利用原煤样的着火点和氧化煤样的着火点的差值Δt 来推测煤的自燃倾向。

一般,原煤样着火点低,而且Δt大的煤容易自燃;Δt40℃的煤为易自燃煤;Δt20℃的煤(褐煤和长焰煤除外)是不易自燃煤。

从表1可看出,从褐煤到无烟煤,其着火点越来越高,自燃倾向性越来越弱。

(2)供氧条件。

煤堆暴露于空气中,表面与空气充分接触,而且空气通过煤块之间的间隙渗透到煤堆内部,给煤堆内部氧化创造了条件。

煤的块度越大,煤块之间的间隙越大,其供氧条件越好。

(3)氧化时间。

煤从氧化发展到自燃有一个过程,氧化时间达到自燃发火期才能自燃。

如长焰煤的自然发火期为1~3个月,气煤为4~6个月。

(4)储热条件。

煤在氧化的过程中放出热量,只有当放出的热量大于散发掉的热量时,才能使热量聚集,温度上升,达到煤的着火点就会自燃。

自然倾向性分析预测

自然倾向性分析预测

安全工程师:煤炭自燃预测与预报1.煤炭自燃的早期识别和预报(1)人的直接感觉1)浅部开采时,冬季在地面钻孔口或塌陷区,有时发现冒出水蒸气或冰雪融化现象。

井下两股温度不同的风流交汇处,过饱和的水蒸气凝聚也会出现雾气。

因此,在发现这种现象时,应结合具体条件分析。

2)煤从自热到自燃过程中,氧化产物中有各种碳氢化合物,所以,在井下可以闻到煤油、汽油或松节油味。

如闻到焦油气味则表明自燃已经发展到相当的程度。

3)从煤炭自热或自燃地点流出的水或空气,其温度较平常为高。

4)人有不舒适感,如头痛、闷热、精神疲乏等,这与空气中有害气体(如CO、CO2)的浓度增加有关。

由于人的感觉总带有相当大的主观性和弱敏感性,人的直接感觉不能作为识别早期煤炭自热过程的可靠方法。

(2)测定矿内空气成分的变化根据应用原理不同,预测的方法可分为气体分析法和煤炭氧化速度测定法,这是及时发现和预报煤炭自燃的主要手段。

(3)测定空气和围岩的温度测温法有时可以作为一种补充手段。

空气温度用普通温度计或电阻温度计测定。

围岩温度要在一定深度的钻孔中测定。

为掌握采空区和密闭区内自燃发展情况,可以用远距离电阻温度计测定其温度变化。

2.煤炭自燃倾向性的鉴定《煤矿安全规程》要求生产矿井将煤样送到有关单位进行煤的自燃倾向性鉴定,依据鉴定分类拟定正确的开采方法和经济有效的防火措施。

影响煤炭自燃的因素:(1)煤炭自身特性1)煤的炭化程度。

炭化程度越高,氧流离基的含量越少,其自燃倾向性越小,反之则大。

炭化程度相同的煤的自燃倾向性由大到小的顺序是褐煤、烟煤、贫煤和无烟煤。

在烟煤中又以长焰煤的自燃危险性较大。

2)煤的岩石学成分。

煤的岩石学成分有丝煤、暗煤、亮煤和镜煤。

它们具有不同的氧化性。

丝煤在常温下吸氧能力特别强,煤中含丝煤越多,自燃倾向越大。

相反,含暗煤多的煤,一般是不易自燃的。

3)煤的水分。

煤层的自燃危险性往往和煤的湿润程度,甚至空气中的相对湿度有关。

煤孔隙内水分的存在,将降低煤吸附氧气的能力,减小煤的自燃性倾向。

2024版煤堆自燃原因及预防措施

2024版煤堆自燃原因及预防措施

煤堆自燃原因及预防措施•煤堆自燃现象概述•煤堆自燃原因分析•煤堆自燃预防措施探讨•国内外先进经验借鉴与案例分析•未来发展趋势预测与挑战应对煤堆自燃现象概述01自燃定义与特点自燃定义煤堆自燃是指煤炭在没有外部火源的情况下,由于内部物理化学反应导致温度逐渐升高,最终达到煤的着火点而发生的燃烧现象。

自燃特点煤堆自燃往往发生在煤堆内部,初期不易察觉,一旦自燃发展起来,火源位置难以确定,灭火难度大。

煤堆自燃会造成大量煤炭资源的浪费,给企业带来巨大经济损失。

经济损失环境污染安全隐患自燃过程中产生的有毒有害气体和烟尘会对周围环境造成污染,影响居民生活。

自燃可能引发煤堆爆炸、坍塌等事故,威胁人员和设备安全。

030201煤堆自燃危害程度国内外煤堆自燃现状国内现状我国煤炭资源丰富,但煤堆自燃现象也较为普遍,尤其在露天煤矿和煤炭储运场所。

近年来,随着煤炭行业的快速发展,煤堆自燃问题日益突出。

国外现状世界上许多国家和地区都面临着煤堆自燃的问题。

一些发达国家通过采用先进的监测技术和管理措施,有效地降低了煤堆自燃的发生率。

然而,在一些发展中国家和地区,由于技术和管理水平相对落后,煤堆自燃现象仍然比较严重。

煤堆自燃原因分析02煤的化学成分煤中含有硫、磷等易燃元素,这些元素在适宜的条件下容易与空气中的氧气发生化学反应,产生热量并引发自燃。

煤的氧化反应煤与空气中的氧气接触后,会发生缓慢的氧化反应,释放热量。

当热量积累到一定程度时,煤堆温度逐渐升高,最终导致自燃。

煤的粒度细粒煤具有较大的比表面积,与空气接触更充分,氧化反应速度更快,因此更容易发生自燃。

高温环境会加速煤的氧化反应速度,增加自燃风险。

环境温度良好的通风条件为煤堆提供了充足的氧气供应,但同时也加速了煤的氧化反应过程,增加了自燃的可能性。

通风条件煤堆储存时间过长,热量积累越多,自燃风险越高。

储存时间煤堆附近的明火、电焊等作业产生的火花以及雷电等自然因素都可能引发煤堆自燃。

煤堆自燃原因分析与防治措施

煤堆自燃原因分析与防治措施

煤堆自燃原因分析与防治措施概述煤炭是我国主要的能源资源之一,但长期以来煤炭的储存和运输却面临着不安全和高消耗的问题。

其中,煤堆自燃是煤炭储运中的一个重要问题。

煤堆自燃往往是因为煤堆中的煤质过差,储存条件不当以及储存时间较长等因素导致。

本文将针对煤堆自燃的原因进行分析,并给出相应的防治措施。

原因分析煤堆自燃的原因可以从以下四个方面进行分析:煤质过差煤的品质是影响燃烧性能的重要指标。

如果煤中含有过多的杂质和水分,就容易导致自燃。

同时,如果煤中含有硫、磷等物质,还会在燃烧时产生大量的硫酸和磷酸等化合物,严重威胁着环境和人体健康。

储存条件不当煤的储存条件也是影响自燃的重要因素。

煤堆的堆积过高或密度不当,会导致煤堆内部的通风不良,难以散发热量,从而引发煤堆自燃。

此外,如果储存场地地面陡峭,自然排水不畅,也会给自燃造成隐患。

储存时间较长煤的反应性在某种程度上与其储存时间有关。

长时间的储存,容易使煤质老化、降低燃点,从而增加了自燃的危险性。

外来因素某些情况下,煤堆自燃的原因也可能与外来因素有关。

例如,局部天气情况异常,暴雨等气候灾害造成的关门堵塞等。

此外,如果煤堆附近存在高热源或者火源,也会给煤堆自燃带来隐患。

防治措施针对煤堆自燃的原因,制定相应的防治措施可以有效地预防和遏制煤堆自燃的发生。

煤质控制煤堆内部的煤质控制是预防煤堆自燃的重要措施之一。

首先,采购优质煤炭,防止煤质低劣的煤炭影响整个堆场的品质。

其次,在储存期间,要经常检查煤堆的温度和湿度,及时发现问题并采取有效措施。

环境控制储存环境的控制也是防治煤堆自燃的重要措施之一。

煤堆的堆积要避免过于密集,保证煤堆内部的通风良好。

同时要保持储存地面的平整,以免堆积高地点产生自然排水不良的问题。

对于堆场排水系统,应当具备良好的排水能力,并且要采取有效的防风措施。

安全管理煤堆自燃的预防和治理需要加强安全管理,完善各项安全措施。

例如,加强安全巡检,及时发现隐患,加大检查力度;设置避雷装置,减少雷击等外部因素造成的损失;强化消防设施,及时出动消防车辆和人员开展抢救。

煤自燃趋势

煤自燃趋势

煤自燃趋势煤自燃是指煤在无外界驱使下自行燃烧的现象。

它是由于煤中的可燃物质在缺乏氧气的环境下发生氧化反应,产生大量热量,进而引发自燃现象。

煤自燃趋势在近年来呈现出不容忽视的增长态势。

首先,煤自燃事故频繁发生。

由于煤的自燃具有突然性和难以控制性,一旦发生自燃,会引发火灾和煤矿事故,威胁到人身安全和财产安全。

据统计,我国每年因煤自燃事故而导致的人员伤亡和煤矿损失严重。

其次,煤自燃对环境造成污染。

煤的自燃会释放出大量的有害气体和烟尘,不仅严重影响大气质量,还会影响土壤和水质,威胁到人类的健康和生存环境。

造成煤自燃趋势增加的主要原因有以下几个方面。

首先,煤质恶化。

随着煤炭资源的开采和利用,低品位煤和贫煤的比例逐渐增加,煤的水分、挥发分等可燃成分含量增加,使得煤的自燃性增强。

其次,煤矿采掘方式不当。

一些煤矿为了提高采煤效率和降低生产成本,采用了不规范、粗放的开采方式,导致煤体受损、风流强度不均匀,易引发自燃。

再者,煤矿管理不严格。

一些煤矿在安全、消防等方面的管理不到位,无人值守、监测设备不完备等问题,使煤矿火灾和自燃事故的发生率增加。

最后,气候变化。

全球气候变暖使得煤自燃的可能性增加。

气候变暖会导致煤矿内部的温度升高,进而促使煤的自燃过程加快。

针对煤自燃的趋势增加,我们应采取一系列的措施进行预防和控制。

首先,加强煤的质量管理。

对煤炭的开采、加工、存储和运输过程中,严格控制煤的温度、湿度和氧气浓度等参数,减少煤的自燃可能性。

其次,改进煤矿采掘方法。

采用现代化的采煤机械和先进的采掘技术,提高煤矿的采掘效率和煤体的稳定性,降低自燃的风险。

再者,加强煤矿安全管理。

严格执行矿山安全规程,加强煤矿的监测和报警系统,确保及时掌握自燃的迹象,及时采取灭火和疏散措施,保障矿工的人身安全。

最后,加强环境监测和治理。

加强对煤矿燃烧过程中产生的有害气体和烟尘的监测和排放控制,减少对环境的污染。

煤自燃趋势的增长对我们的生产生活和环境造成了重大的危害。

煤堆自燃原因分析与防治措施

煤堆自燃原因分析与防治措施

煤堆自燃原因分析与防治措施汇报人:2023-11-21CATALOGUE目录•煤堆自燃现象概述•煤堆自燃原因分析•煤堆自燃的防治措施•未来展望与持续改进措施煤堆自燃现象概述01•定义描述:煤堆自燃是指煤堆在无外部火源的情况下,由于内部自热或受到外部因素影响而自发燃烧的现象。

煤堆自燃会产生大量的有害气体和烟尘,对环境和大气造成严重污染。

环境污染资源浪费安全隐患自燃导致煤炭燃烧损失,直接造成资源的浪费。

煤堆自燃可能引发火灾,对周边设备和人员安全带来威胁。

030201某煤矿堆场由于管理不善,煤堆发生自燃,火势迅速蔓延,造成巨大经济损失。

案例一某电厂煤堆存放时间过长,内部自热引发自燃,严重影响电厂正常运行。

案例二一港口煤炭堆场由于气候条件及不当堆放方式,导致煤堆自燃,火灾持续多日,造成严重环境污染。

案例三煤堆自燃的典型案例煤堆自燃原因分析02煤中含有一定量的硫分、挥发分等易燃物质,当煤堆存放时间过长,这些物质与氧气发生反应,产生热量,可能导致自燃。

煤的自燃倾向性当煤的水分含量过高时,煤堆内部的热量不易散发,易造成温度升高,从而引发自燃。

水分含量粒度越小的煤,比表面积越大,与空气接触充分,容易发生氧化反应,导致自燃。

煤的粒度环境温度高温环境下,煤堆内部热量积累加速,易引发自燃。

煤堆与空气接触充分,氧气供应充足,促进了煤的氧化反应。

煤堆的堆积方式影响空气流通和热量散发,如堆积过于紧密,可能导致热量积累引发自燃。

降低煤堆的存放时间、控制煤的水分含量、减小煤的粒度、降低环境温度、限制氧气供应、改善煤堆的堆积方式等。

通过这些措施,可有效降低煤堆自燃的风险。

氧气供应堆积方式为防治煤堆自燃,可采取以下措施煤堆自燃的防治措03施氧化抑制剂的使用在煤堆表面喷洒氧化抑制剂,可以有效抑制煤的自燃。

煤堆压实通过压实煤堆,减少煤与氧气的接触面积,降低自燃风险。

控制煤堆温度和湿度通过定期监测煤堆温度和湿度,并进行合理调节,以防止煤的自热和自燃。

煤层自燃安全防治措施

煤层自燃安全防治措施

煤层自燃安全防治措施概述煤炭是一种广泛使用的化石燃料,煤炭资源的开发利用对于国家经济的发展有着至关重要的作用。

然而,由于煤炭的化学组成特性,煤层自燃的风险也相对较高。

一旦发生煤层自燃,不仅会造成人员伤亡和设备损坏,还会对环境造成严重影响。

因此,煤炭生产中必须采取一系列安全防治措施,以确保煤炭生产过程的安全稳定。

本文将介绍煤层自燃的原因及其安全防治措施。

煤层自燃的原因煤层自燃是由于煤在长期存放过程中,与空气等物质接触,发生氧化反应,释放热能,达到自燃点而自燃。

主要原因包括以下几个方面:1.含水量:煤的含水量对于煤的自燃性有着很大的影响。

当煤的含水量较大时,不容易发生自燃。

2.煤的化学成分:煤中的S、Fe、Mn、Cu等元素能够在一定条件下催化煤的氧化反应,促进其自燃。

3.煤质:煤的组分及其分布与煤的自燃性密切相关,如高挥发份、高粘度、低灰分等均是煤的自燃性好的因素。

4.存放环境:空气流通、湿度等环境条件也会影响煤的自燃。

防治措施1. 煤炭采取保温处理对于长期堆放的煤炭进行保温处理是预防煤层自燃的有效措施。

将煤炭堆放在封闭的煤仓中,加热热风或加热电器将煤的温度升高到70℃以上,并且保持在这个温度范围内,使煤的水分蒸发,切断煤层自燃可能发生的温度支持,实现有效地控制煤层自燃。

2. 排放废气煤炭中的氧气是煤层自燃产生的基础条件,通过排放废气可以有效地切断煤层自燃的氧气供应。

在煤矿开采过程中,废气控制非常重要,必须专业设计和设备来控制废气的排放。

利用高效过滤设备可以最大限度地避免废气对大气环境的污染。

3. 加强煤层监测通过设立煤层自燃监控系统,可以及时地发现煤层自燃的迹象,为采取措施提供依据。

现代煤矿往往配备了煤层自燃检测、报警、监管装置。

通过精准的煤层监测,早期发现自燃隐患,可以采取相应的对策控制煤层自燃的发生。

4. 保持通风在爆炸危险较大的地方设置通风设备,通过激流管、皮斯道夫等方法,保证煤矿的通风畅通,降低煤矿爆炸的风险。

煤炭自燃火灾分析及采取的安全措施

煤炭自燃火灾分析及采取的安全措施

煤炭自燃火灾分析及采取的安全措施煤炭在运输、储存和使用过程中,存在着自燃的危险性。

煤炭自燃火灾的产生与多种因素有关,主要包括煤炭质量、储存环境、温度、湿度、气流、微生物、发热自燃物等因素。

下面我们将对煤炭自燃火灾进行分析,并介绍采取的安全措施。

一、煤炭自燃火灾的成因1.煤炭自身属性煤炭是一种复杂的有机物体,其中含有一定数量的挥发分、水分和氧化物。

这些物质在空气的存在下,通过氧化反应会产生热量,若处理不当会导致煤炭质量下降和引发自燃。

2.储存环境煤炭在储存时将收到一系列的环境影响,如空气中的氧气含量、湿度、温度等。

湿煤的水分与煤的内在热能反应相结合,造成了进一步的热量释放。

若存放环境通风不良,氧气供应不足,煤炭内的氧气也会过度消耗,因此难以维持内部平衡。

当煤堆内温度升高时,煤炭内的水分将开始蒸发,进一步加剧煤体内温度升高,从而导致自燃火灾的产生。

3.微生物煤堆中会存在大量微生物,它们对煤炭的分解产物活跃和生长需要大量的水和茁壮的煤。

微生物分解的成分包括仍未分解的有机分子、代谢产物和微生物的生物物质。

当煤堆处于适温和适湿度的情境下,会给微生物提供一个适宜的生长环境,这将产生进一步热能,造成煤的自燃。

二、采取的安全措施1.定期检查煤堆的评价和检查将有助于预防煤炭自燃火灾的产生。

为了避免自燃火灾,需要通过视察、观察、有针对性的检测,进行煤堆的检查。

如发现发热的煤,应及时清理和处理。

2.加强通风通过对煤堆进行通风,有助于煤堆内外环境空气的交换,促进水分和紫外线的清除,平衡煤堆内部环境。

应适当调节通风风量,控制通风时间,保证煤堆内部空气流动,消除堆内吸附的湿气和挥发物。

3.储存温湿度控制煤温度过高,湿度过大,都将影响煤的自燃。

应保持储存地点通风,环境干燥,温度控制在20℃以下。

在储存煤炭过程中,必须将煤质分界、保持检定数据、记录储存时间等信息。

4.消防设施煤炭自燃火灾的应急处理必须是消防和安全管理的责任所在。

论述煤发生自燃原因及影响的因素 -回复

论述煤发生自燃原因及影响的因素 -回复

论述煤发生自燃原因及影响的因素-回复
煤自燃的原因可以归纳为以下几点:
1.煤本身的物化性质,煤是一种易自燃的材料,这是煤炭发生自燃的最主要原因。

煤中富含硫、铁、钙等元素,并且其中还有一些化学性质不稳定的成分,煤中的质量失衡会促进煤的自燃。

2.煤质的品质和煤堆的存放方式,煤质的品质和煤堆的存放方式也会影响煤的自燃。

煤的硬度、密度、吸湿度等因素会影响煤的自燃,存放方式的不当会造成煤的密度增大,同时会影响空气的流通,促进煤的自燃。

3.氧气的含量和湿度,氧气是促进煤自燃的重要因素之一,湿度会影响氧气的供应和煤的吸湿性质,进而影响煤的自燃。

4.周围环境的温度、火源和风力等,这些因素也会影响煤的自燃,火源是最主要的因素之一,其次是气象条件。

煤的自燃对环境和生产有很大的影响,煤的自燃会产生大量的有害气体和有毒物质,其中包括一氧化碳、硫化物和氮化物等,对人类健康产生极大的危害。

此外,自燃还会引起火灾和煤矿事故,对人员安全和环境造成严重的损害。

因此,必须采取有效措施来控制和预防煤的自燃。

煤炭自燃火灾分析及采取的安全措施

煤炭自燃火灾分析及采取的安全措施

煤炭自燃火灾分析及采取的安全措施煤层自燃火灾是指在有自燃倾向的煤层内,在适宜的供氧储热条件下而氧化发热、升温,当温度超过其着火点时而发生的燃烧现象。

煤自燃火灾的形成必须具备三个基本条件:具有自燃倾向的煤呈破裂状态堆积存在;透空气供氧维持煤的氧化过程不间断地发展;在氧化过程中生成的氧化热量大量蓄积,难以及时放散。

1.决定煤自燃倾向性的因素(1)煤的炭化变质程度。

煤的炭化程序越高,其自燃倾向性越小;褐煤矿井自燃发火次数低于烟煤矿井;烟煤矿井中长焰煤和气煤自燃危险性大,而贫煤则较小。

(2)煤中水分。

一定含量的水分有利于煤的自燃(小于4%),而湿度过大(小于4%),则会抑制煤的自燃。

(3)煤岩成分。

煤岩成分中,含丝煤越多,自燃倾向越大,因为具有纤维构造而表面吸附能力又高的丝煤在常温下吸氧能力特别强。

(4)煤中含硫量。

在同牌号煤中,含硫化物越多,越易自燃。

因为煤中所含黄铁矿在低温氧化时生成硫酸铁和硫酸亚铁,使煤体膨胀而变松软,增大了氧化表面积;黄铁矿氧化热也促进煤的自燃。

(5)煤的粒度、孔隙度、瓦斯含量及导热能力也是影响自燃倾向的因素。

2.影响煤自燃的地质、采矿因素(1)煤层厚度。

据统计,80%的自燃火灾是发生在原煤层开采中。

厚煤层容易发火的原因,一是难于全部采出,遗留大量浮煤和残柱;二是采区回采时间过长,大大超过煤层的自燃发火期。

(2)煤层倾角。

煤层倾斜越大,自燃危险性越大,急倾斜煤层发火次数多。

(3)地质构造。

在断层、褶曲、破碎带、岩浆入侵地区,其自燃火灾频繁。

这是因为煤体碎裂吸氧条件好,氧化性能高所致。

(4)开拓采煤条件。

用石门、岩石大巷开拓,切割煤层较少,煤柱也留得少.自燃发火的危险性小;使用回收率高的采煤方法,采空区残煤少,也不易发火。

回采速度慢,拖的时间长,地压增大、氧化面积大,时间长于自燃发火期,很容易产生自燃火灾。

(5)通风条件。

漏风大不仅有效风量低,而且向采空区、煤柱区渗漏供氧,促进了煤的自燃发火。

煤场煤堆自燃原因分析与防治措施

煤场煤堆自燃原因分析与防治措施

煤场煤堆自燃原因分析与防治措施摘要:煤矿企业是推动中国经济社会发展的重点企业之一,也是人民日常生活所不能缺乏的一种主要资源。

目前,由于煤层自燃发火事件的持续出现,不但对公司经济效益造成了冲击,同时对公司职工的人身安全也产生了一定程度的危害。

关键词:煤场煤堆;自燃原因;防治措施引言近年来,煤炭价格持续走高,许多火力发电厂本着节约经济成本、降耗节能的原则,燃煤锅炉逐渐开始燃烧热值低、稳定性较差、价格相对低廉的褐煤。

然而,由于褐煤的煤化程度较低,极易氧化和自燃,造成热值损失,这对褐煤的存储提出极大的挑战。

为此,本文主要从以下方面进行探索研究:研究煤堆自燃成因,剖析影响煤场自燃的因素,尽可能减少因煤场煤堆自燃导致的热量损耗,优化煤场管理。

1 煤场自然的原因煤场自然爆炸的主要成因是由于煤本身可燃的特性,再加上其他的环境因素。

因为煤长期地在煤场里储存,必须继续地与周围的环境物质磨损,而在不断的磨损过程中,煤又开始进行氧化反应并释放大量热能,并且由于时间的不断增长,煤场的温度也在不断增加,从而发生了煤场的自燃过程。

从物理化学方面解析煤自燃过程可以指出,在煤自然爆炸中的煤炭氧化的过程中,即在煤不断接触气体的过程中,随着煤氧化物的状态不断增大,就造成了煤场的环境温度不断上升,而煤场温度的上升又推动着煤的氧化进程。

煤炭氧化程度的不同,对火力发电的效果也会产生较大的差异。

所以,人们应该对煤炭的氧化过程有更准确的认识,以便寻找最合理的办法减缓煤炭氧化的过程。

煤炭氧化的过程和煤炭的自燃,都会导致气候环境的改变,所以人们需要找出了造成煤炭氧化过程和煤炭自燃事故的主要因素,并进行了对这些主要因素的管理,以便于减轻了煤炭氧化的过程,进而减少了煤炭自燃事故的产生。

煤炭自燃一般都发生在煤炭堆的中下部,但是在发生了煤炭的自燃事故以后,要避免煤炭自燃的范围继续扩大或者减小这一发生,将存在极大的难度。

所以,人们应该做好对煤炭自然爆炸的预防工作。

煤炭自燃

煤炭自燃

煤炭自燃机理及防治措施1 煤的自燃机理1.1 概述关于煤的自燃问题,长期以来,一般都认为煤中黄铁矿的存在是自燃的原因,由于黄铁矿氧化成为三氧化二铁及三氧化硫时能放出热量,在有水分参加的情况下,可以形成硫酸,它是很强的氧化剂,更加速煤的氧化,促进煤的自燃。

需要指出,有的含有黄铁矿的煤,虽然经过长斯放置,并不一定发生燃,而不含或少含黄铁矿的煤也有自燃现象。

因此,煤的自燃并非完全因含有黄铁矿而引起。

其主要原因是由于吸收了空气中的氧气,使煤的组成物质氧化产生热量,再被水湿润,就放出更多的湿润热,也会加速煤的自燃。

此外,煤的自燃还与煤本身的性质有关。

如煤的品级;煤的显微组分、水分、矿物质、节理和裂隙;煤层埋藏深度和煤层厚度;开采方法和通风方式等。

煤的自燃从本质上来说是煤的氧化过程。

1.2 煤自燃的不同阶段(1)水吸附阶段。

与其他阶段不同,这个阶段只是个物理过程,煤与氧不会发生反应,煤吸附水虽不是煤自燃的根本原因,但他对煤自热,特别是低品级的煤自热有重要影响。

当水被煤吸附时会放出大量热,即润湿热。

所以,多数情况下该阶段对煤的自燃都起着关键作用。

(2)化学吸附阶段。

煤自燃过程首先在这个阶段发生化学反应。

该阶段的反应温度为环境温度至70℃。

这伸过程中煤吸附氧气会产生过氧化物,因而叫做化学吸附阶段。

化学吸附阶段煤重略有增加,并产生气体,其中的CO可作为标准气体,通过监测CO浓度可对煤的自燃进行早期预报,化学吸附阶段需要少量水参加反应。

根据煤的品级和类型不同,化学吸附的放热量在5.04~6.72J/g 之间变化。

若煤温达到70℃时会分解,煤重随之在幅度下降,甚至比原始煤重还要轻。

煤中水汾的蒸发可带走一些热量,该过程产热量晨16.8~75.6J/g间变化。

若煤氧化进行到这个阶段,想使其不自燃是非常困难的。

(3)煤氧复合物生成阶段。

该阶段生成一种稳定的化合物,即煤氧复合物。

其反应温度范围为150~230℃。

产生的热量25.2~003.4J/g。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

煤自燃的原因及倾向性
预测
Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】
煤自燃的原因及倾向性预测
作者:贾淑洁
来源:《科技传播》2013年第10期
摘要一直以来,煤自燃都是煤炭开采中比较普遍现象。

因此,许多相关人士都致力于研究煤自然原因,结合这些原因实施倾向性预测,确保露天开采的安全性。

本文就是笔者依据多年经验,探析煤自然原因以及倾向性预测。

关键词倾向性预测;煤自燃;原因
中图分类号TD82 文献标识码A 文章编号 1674-6708(2013)91-0086-02
0 引言
2012年,山西某露天选煤厂发生煤自燃,给该企业造成严重的经济损失。

事实上对于煤矿企业中的原煤场时常发生自燃现象,不仅仅给煤矿企业造成洗选困难,还会带来不必要损失。

因此,探究煤自燃原因以及倾向性预测具有现实意义。

1煤自燃原因探析
事实上造成煤自然因素比较多,关系到煤堆特性、煤质特性及气象环境等影响。

具体体现在如下几个方面。

1.1 煤化的程度
在低温状态下煤会发生氧化,主要取决煤炭种类。

从分析发现煤质较高煤炭,长时间储存就会发生氧化而降低了煤质,一般是不会发生自燃现象;但是煤化程度较低煤炭,比如褐煤,伴随中煤化程度减小而增加了氧化作用,极易发生自燃。

事实上煤化的程度越高其含氧量就越低,低温环境下也就极难氧化。

所以只要煤化程度加深了,煤自燃就会逐渐减低。

1.2 煤炭中含有大量硫铁矿
煤炭中所含硫铁矿就会从地下还原态逐渐成为地上氧化态,因为空气中存在氧与水分,就能够发生化学反应:
1)FeS2+3O2→FeSO4+SO2+热量;
2)FeS2+2H2O+7O2→FeSO4+ 2H2SO4+热量;
3)FeS2+3O2→2Fe2O3+8S+热量;4)S+O2→SO2+热量
在这些反应之中都会放出热量,产生出硫酸加快了黄铁矿进一步分解。

在加快黄铁矿氧化同时也会产生出大量热量,这些热量不断聚集在煤炭上,最终达到着火点而自然。

1.3煤岩与煤质组分
煤自然的倾向性主要和分子结构具有密切关系,即是煤炭分子结构单元所含的活性基团数量与种类,以及分子空间结构。

处于低温氧化时,分子结构中的芳香环构成的结构单元侧链就被氧化,包含了亚甲基、甲基、羟基与芳香醚氧键等,尤其是醚氧键氧化的速度最快,甲基或者亚甲基次之。

残殖煤、腐泥煤与腐殖煤中,尤其是腐殖煤很容易进行风化与自燃,特别是褐煤最严重,伴随着煤化逐渐升高,也就提升了腐殖煤着火点,自燃和风华趋势降低。

在实验之时因方法与样品存在差异,各种煤炭的自燃倾向性不同,研究发现:煤岩各个显微组分氧化活性的顺序是:镜质组 > 壳质组 > 丝质组,但是丝质组内表面比较大,在低温环境下吸附氧能力比较强,所含FeS2发生氧化之时会散发出大量热量,故此有丝碳积累地方,就会造成温度升高,极大促进了煤炭自身氧化。

1.4环境温度因素
如果储存着大量煤炭极可能引发自然。

事实上煤炭内部和表面温度存在一个逆向变化过程,也就是环境稳定和煤堆表面温度成正比关系,但是却和煤堆内部稳定成反比关系。

白天环境温度升高时,煤炭体表面因吸热而不断升高温度,加之煤炭具有不良导热性,这些温度极难传递到内部,可煤体中水分却是良好导热介质,一旦受热升高了温度,一部分水分就会蒸发吸收内部的热量,导致发生放热降温,属于动态过程。

水分一散失必然增大煤体的空隙度,更容易传递热量。

此时外界环境降温之时,就降低了水分的蒸发量,煤体内部就进行缓慢氧化而升高温度,最终达到相对稳定状态。

这种交替动态过程必然增加煤体内部的孔隙,加大了气体的流通和煤炭氧化反应,进而造成煤堆自燃自热。

2 煤自燃倾向性预测
从煤自燃原因来看,造成煤自燃因素比较多,就必须要针对这些因素进行倾向性预测,尽可能将煤自燃降到极限。

2.1早期识别与预报
平直觉进行感知:
其一开采浅部时,冬天在钻孔口或者坍陷区时常冒出一些水蒸气或者冰雪融化现象。

这是井下有两股温度不一样的风交汇,因过饱和造成水蒸气凝聚而产生雾气,一旦发生这种现象就要具体情况具体分析;
其二如井下能够闻出汽油、煤油或者松节油味,一旦闻到了焦油气味说明自燃达到了一定程度;
其三煤炭自燃或者自热地点流出空气或者水,温度都比平常高了;
其四人感觉到不舒适感觉,比如闷热、头痛及精神贫乏等等,这些都是因空气之中有害气体浓度加重了。

2)其他测量方法
人感觉上总是带有极大主观性与弱敏感性,因此仅仅依靠人直觉并不能够完全识别煤炭自热的过程,还必须要采用其他可靠方法。

首先是对旷内空气成分进行测定,依据测定原理差别预测方法有煤炭氧化速度测定法与分析气体法。

其次是测定围岩和空气中温度,其实测温法属于一种补充手段,测量空气温度使用普通的温度计或者电阻温度计即可,而测围岩温度就需要钻到一定深度测定。

2.2倾向性预测法
自燃倾向测试法
这种方法主要是以煤炭氧化性作为指导思想,严密考察煤炭吸附氧以及消耗量,进而评估煤炭自燃发火期,比较常见方法就是化学试剂法与吸氧法这两种预测方法。

化学试剂法主要是针对人因素而加剧了煤炭氧化速度,在煤炭着火点的温度数据基础上去推算出煤炭自燃发火期。

这种方法有下面几种:
而吸氧法主要在某温度下每1g干煤,干煤吸氧量划分出煤炭自燃的发火期,主要有两种情况:
2)预测煤堆内部的温度
从一些研究中发现,媒体内的稳定θ随着时间t依照幂的指数规律进行变化,也就是有:
θ=39.82477×1.003436t×e-0.009134d。

该式子中的t表示时间,而h,d表示测点和热源之间的间距。

通过这个式子就能够预测出媒体中不同点温度变化情况,对煤炭自燃倾向性预测具有真正实用价值。

3结论
总之,影响煤自燃因素比较复杂,相应煤炭企业必须要高度重视自燃原因,进而在原因基础上采取可行的倾向性预测方法,将煤自燃降到极限。

参考文献
[1]牛会永,张辛亥.煤的自燃机理及防治技术分类研究[J].工业安全与环境,2010(10):45-48.
[2]邓军,徐精彩,陈晓坤.煤自燃机理及预测理论研究进展[J].辽宁工程技术大学学报,2008,22(4):455-459.
[3]陈文敏,刘淑云.煤质及化验知识问答[M].北京:化学工业出版社,2008.。

相关文档
最新文档