三相分离器设计经验参数

合集下载

三相分离器计算公式

三相分离器计算公式

vmax K SB
L G G
Vmax 气体通过丝网最大允许流速(m/s) ; KSB 桑德斯-布朗系数,取 0.107m/s ρL 液体操作密度 ρG 气体操作密度 本工程ρL 取 815kg/m3,ρG 取 5kg/m3。计算后可得 Vmax=1.36 m/s,设计流速按最大允许流速的 75%,即 1.02 m/s, 因站内两台分离器同时运行,进站最大气量 90000Nm3/d,考虑波动系数 1.2,单台设备设备处理能力为 54000Nm3/d,即 Q=0.625m3/s。 根据以下公式
V
Q D 2 4
求得丝网捕雾器直径为 0.78m,因此本次设计选取丝网捕雾器直径为 0.9m。 5、 油室、水室液位计开口高度选取 高液位:根据教材,分离器的液位根据气液分离需求可设置在 0.5D-0.75D 之间,本次设计最大液位设置于 0.75D 处,即最大液位距罐底 2.2m。 低液位:根据教材,排液口处保持的最低液位应大于 3 倍排液口直径并大于 0.2m,本次设计最小液位设置
于距罐底 0.2m。 6、油室高低液位报警开口高度选取 每台设备处理油量 600×0.7=420m3/d, 即 0.29m3/min, 设高液位报警开口距罐底 1.9m, 设计最大液位 2.2m, 根据计算液位由 1.9m 上升到 2.2m 需要 26 分钟。满足现场处理要求;设低液位报警开口距罐底 0.5m,设 计最低液位 0.2m,根据计算液位由 0.5m 下降到 0.2m 需要 3.8 分钟,满足现场需求。 7、水室高低液位报警开口高度选取 每台设备处理油量 600×0.3=180m3/d, 即 0.125m3/min, 设高液位报警开口距罐底 1.9m, 设计最大液位 2.2m, 根据计算液位由 1.9m 上升到 2.2m 需要 5.3 分钟。满足现场处理要求;设低液位报警开口距罐底 0.5m,设 计最低液位 0.2m,根据计算液位由 0.5m 下降到 0.2m 需要 3.5 分钟,满足现场需求。 8、水淹板高度选取 水淹板高度与最大液位高度一致,以保证正常操作状态下油室内介质不会流入水室。

三相分离器工作原理、结构、工艺设计参数

三相分离器工作原理、结构、工艺设计参数

三相分离器工作原理、结构、工艺参数一、工作原理生产汇管来原油进入三相分离器,利用油、气、水密度的不同进行油、气、水三相初步分离。

1、预分离段从三相分离器进口来的油气由切向进入预分离器,利用离心力而不是机械的搅动来分离来液成为液体和气体,进行初步气、液两相旋流分离。

分离后的气体向上进入预分离器下伞和上伞,按折流方式先后与下伞、上伞壁碰撞,从而将气中带出的液体形成较大的液滴,重力使液滴进一步分离出来,经上、下伞碰撞分离后的气体则通过气连通管导入到三相生产分离器的分离沉降段上部。

分离后的液体通过预分离器向下导液管导入到三相分离器底部,经布液管从液面以下的水层向上喷出,进入到三相分离器预分离段进行油、水初步分离,主要分离出游离水。

布液管的作用:避免了气体对液体的扰动,保持了油水界面的稳定,有利于油水更好地分离。

2、分离沉降段经预分离段进行初步分离后的液体,沿水平方向向右移动进入分离沉降段。

这一段内有较大的沉降空间(分离沉降时间20分钟左右),其中部有两段聚结填料,有助于水中油滴和油中水滴的聚结,从而有促进油、水分离。

液体在水平移动过程中,密度较小的原油逐渐上浮,而密度较大的污水(主要是游离水)则向下沉入设备底部,同时使油气逐步分离开来。

气体则在分离沉降段上部空间内,沿水平方向向右运动进入到分气包,重力作用使气体中的液体沉降到三相分离器分离沉降段液面上。

3、集液段由于油、水密度的不同,使分离沉降段中的液体出现分层,水的密度较大在下层,油的密度较小在上层。

在下层的水则通过集液段底部的喇叭口,利用连通器原理向上溢流进入三相分离器水室,水室中的水通过出水口导出进入5000m3沉降罐。

在上层的油经集液段上部堰板溢流到导油汇管,进入到三相分离器的油室,油室中的油通过油出口导出进入热化学脱水器。

4、捕雾段气体经沉降分离段后进入到分气包,由于气体中仍夹有细小的液滴,在分气包中装有捕雾装置-丝网捕雾器,丝网捕雾器的丝网由圆形或扁形的耐腐蚀的金属丝编织而成,其脱除液沫工作原理是:夹带液沫的气体流经丝网时,与丝网相碰撞,液沫由于其表面张力,而在丝与丝的交叉接头处聚集。

IC三相分离器计算书

IC三相分离器计算书

IC三相分离器设计一、IC基本尺寸:有效容积1080m³,直径=8m,底部面积50㎡,H=20m;二、三、IC上层三相分离器设计1、上层三相分离器参照UASB设计,外循环泵取水口放置于第二反应区,为保证第二反应区上升流速<1m/h(运行时控制在0.4-0.8);则最大(进水量+外循环量)≤50m³/h(运行时控制在20-40);2、上层三相分离器设计计算①沉淀区设计沉淀区表面负荷率:Q/S=12.5/50=0.25m³/㎡*h,符合要求②回流缝设计取h2=1.41,倾角为55°,计算b1=0.9875m,设单元三相分离器的宽度为2.6m,则b2=0.625m;即设置三组三相分离器下三角形集气罩之间面积S1=2*6*b2+8*b2=12.5㎡,计算该处污泥回流缝的上升流速v1=Q/S1=12.5/12.5=1m/h<2m/h满足要求;令上三角形集气罩回流缝的宽度为0.32m>0.2m,S2=(4*6+2*8)*0.32=12.8㎡计算上三角形集气罩与下三角形集气罩斜面之间的上升流速v2=Q/S2=0.98<v1<2m/h,满足要求。

③气液分离设计BC=c/sin35°=0.32/0.5736=0.56m,取AB=0.3,夹角为58.8°,计算上三角形集气罩高度为0.8m,取水深h1=1.2m,设沼气气泡直径为0.008cm,废水密度为1.01g/cm³,碰撞系数为0.95,沼气密度为0.0012g/cm³,计算Vb=6.01m/h经过校核Vb/Va=6.01/0.98=6.13>BC/AB=0.56/0.3=1.87,满足设计要求。

二、下层三相分离器设计设计IC去除率为70%,进水COD8000mg/L,出水COD2300mg/L;第一反应区占总去除率的85%,计算总去除1710kgCOD/d,沼气产率按0.4m³/kgCOD计算,总计产生684m³/d沼气,假设每方沼气提升1-2m³/d废水,计算总计提升液体为684-1368m³/d,即28.5-57m³/h;外循环泵+进水最大流量为40m³/h,内循环泵为90m³/h(取水管安置于下层三相分离器下);第一反应区最大流量为187.5m³/h,计算第一反应室最大升流速度为3.75m/h;通过下层三相分离器最大流量为40+57*15%=47.65m³/h,即通过三相分离器最大升流速度为0.95m/h;以最大升流速度设计IC下层三相分离器;三相分离器示意图见图1-1;①沉淀区设计沉淀区表面负荷率:Q/S=47.65/50=0.95m³/㎡*h,符合要求②回流缝设计设置一组三相分离器,d=8m,取AB为1.15m,下三角罩为52°,则下三角高为h=3.65m,下三角过水断面为S1=3.14*4*4-3.14*2.85*2.85=25.6㎡,则V1=Q/S1=47.65/25.6=1.86m/h<2m/h,符合要求;令上三角形集气罩回流缝的宽度为0.3m>0.2m,取上集气罩离下集气罩水平距离为1.2m,通过计算得出S2=37㎡,V2=1.29m/h<V1<v1,符合要求;③气液分离设计设沼气气泡直径为0.01cm,废水密度为1.03g/cm³,碰撞系数为0.95,沼气密度为0.0012g/cm³,净水运动粘滞系数v=0.0101c㎡/s计算Vb=9.58m/h Vb/va=9.58/1.29=7.4>BC/AB=1.54/0.3=5.1。

三相分离器现场工艺参数要求及故障原因判断浅析

三相分离器现场工艺参数要求及故障原因判断浅析

三相分离器现场工艺参数要求及故障原因判断浅析摘要:三相分离器是油田原油进行脱气、脱水、除砂的综合处理设备,该设备具有工艺简单、运行效率高、投资少、管理和维护方便的特点。

但随着投运时间的增长,常出现分离油或水不达标、假液位、阀门失灵或卡死等故障,影响生产的正常运行。

本文就现场常见故障进行解析,从而确保三相分离器的正常使用。

关键词:三相分离器;工艺参数;故障原因一、三相分离器结构及工作原理三相分离器按外形分立式分离器和卧式分离器两种,油田常用的为卧式三相分离器。

卧式三相分离器外部由油气水混合物进口、天然气出口、油出口及水出口四部分组成。

内部结构如图1-1所示。

图1-1 三相分离器内部结构示意图工作原理:油、气、水混合物进入一级捕雾器进行液、气分离,首先将大部分气体分离出来,通过气体导管进入二级捕雾器,与后期分离出的气体经气出口一起流出。

油水混合液(含少量气体)经布液板均匀进入分离区,再经整流器缓冲整流后进入沉降室沉降,依靠重力差完成油水分离。

水集中在底部,油集中在上部。

通过液位调节器控制油水界面,以达到所要求的油水分离效果。

分离后的油、水分别进入油室和水室经出油阀、出水阀自动排出。

二、三相分离器相关工艺参数1、适用范围:油气田原油脱水、脱气、除砂;原油密度小于930kg/m3。

2、运行关键因素:日常运行过程中,影响三相分离器运行效果的因素主要有加药浓度、加热温度、来液平稳度、油水界面高度以及系统气压。

3、工艺技术指标:工作温度≤60℃;进口原油含水率在8-99%之间;出口油含水率<0.5%;出口气中带液率≤0.05g/m3;出口水含油率≤150mg/L。

4、日处理能力计算:以HXS3.0×12.4-0.6Y型三相分离器为例,容积为87m3。

根据有效容积和滞留时间推算,在综合含水为50%时可处理量为50m3/h,日处理能力为1200m3/d。

三、常见故障分析与处理措施1、油水室液位过高原因分析:(1)系统工作压力过低(2)浮球阀卡死(3)来液过大(4)电动调节阀工作不正常。

三相分离器工作原理结构工艺参数

三相分离器工作原理结构工艺参数

三相分离器工作原理结构工艺参数三相分离器(也称为三相离心机)是一种用于分离混合液体中的悬浮物、固体颗粒和液体的设备。

它广泛应用于化工、制药、食品、环保等领域,可以实现高效的固液分离和液液分离。

下面将详细介绍三相分离器的工作原理、结构以及工艺参数。

工作原理:结构:1.主机:主机是整个设备的基础,通常由钢材制成,具有足够的强度和刚性来支撑驱动装置和分离装置。

2.驱动装置:驱动装置通常由电机和传动装置组成,用于产生旋转力,并将其传递给分离器的碟片或圆柱体。

3.分离装置:分离装置可以是碟片或圆柱体。

碟片分离器内部由一系列碟片叠加而成,每个碟片上都有一组排出孔,用于排出固体颗粒。

圆柱体分离器内部由一个旋转的圆筒构成,内部有一层过滤介质,固体颗粒被这层过滤介质挡住,而液体则通过过滤介质排出。

4.进料和排料装置:进料装置用于将混合液体引入分离器,排料装置用于分别排出固体颗粒和液体。

5.控制系统:控制系统用于控制整个设备的运行和操作。

工艺参数:1.分离因素:分离因素是描述分离效果的重要参数,表示分离器在分离过程中所产生的离心力跟重力的比值。

分离因素越大,分离效果越好。

分离因素的计算公式为:分离因素=ω²r/g,其中ω是离心机的角速度,r是离心机半径,g是重力加速度。

2.分离效率:分离效率是指分离器在特定条件下分离的效果,通常用固液分离率和液液分离率表示。

固液分离率是指分离器在分离过程中固体颗粒的分离率,液液分离率是指分离器在分离过程中液体的分离率。

3.处理能力:处理能力是指分离器单位时间内处理混合液体的能力,通常以流量或排出物料的重量来表示。

4.操作压力:操作压力是指分离器在工作过程中的压力条件,可以通过调整进料和排料装置的开口来调节操作压力。

以上是三相分离器的工作原理、结构和工艺参数的介绍,希望能对您有所帮助。

卧式三相分离器工艺设计计算

卧式三相分离器工艺设计计算

一、工艺委托参数:工作压力P'w:1.8Mpa 工作温度:18℃处理气量:20000m 3/d原油密度:535kg/m 3油处理量:155m 3/d 停留时间:30min 含水率: 3.2%水的密度:1087kg/m 3液体加热温度:℃ 入口:20 进口:55天然气组分:(Vi%) C 1C 2 C 3 iC 4 nC 4 iC 50.2850.1410.1580.0530.141 4.49 nC 5C 6 C 7 N 2 CO 2 H 2O 0.03440.07030.053000.065二、基本参数的确定:3.6603563.天然气相对密度△g:0.1263764.临界压力Pc:0.280427Mpa5.临界温度T'c:9.274789 ℃ =282.2748K 6.工作温度:t=18℃三相分离器工艺计算书M=∑y i m i =△g=M/28.964=Pc=∑Pc i y i =T'c=∑y i Tc i =Tw= t+273=291K7.工作压力Pw:P'w= 1.8MPaPw=P'w+0.1= 1.9Mpa(绝)8.对比压力Pr:Pr=Pw/Pc= 6.7753759.对比温度Tr:Tr=Tw/T'c= 1.0309110.压缩因子Z:(0≤Pr≤2;1.25≤Tr≤1.6)Z=1+(0.34Tr-0.6)Pr=-0.6903911.1大气压下定压比热C0p:C0p i=∑y i Cp i=0.021887(卡/克.℃)C0p=C0p i M=0.080113(卡/克.℃)12.标准状态下大气压Ps:Ps=0.1MPa13.标准状态下温度Ts:(To= 20℃ 或 0℃)To=0℃Ts=To+273=273K14.标准状态下空气密度ρa(Ts=20 ℃时取1.205;Ts=0 ℃时取1.293):ρa= 1.293kg/m315.标准状态下气体密度ρgs:ρgs=ρa△g=0.163404kg/m316.分离条件下气体密度ρg:ρg=ρgs PwT s/(P S TwZ)=-4.21882kg/m317.分离条件下气体动力粘度μg:x=2.57+0.2781△g+1063.6/Tw= 6.260128y=1.11+0.04x= 1.360405c=2.415(7.77+0.1844△g)Tw1.5x10-4/(122.4+377.58△g+1.8Tw)=0.01346389μg=cexp[x(ρg/1000)y]=#NUM!mPa.s18.原油20℃时的密度ρ20:ρ20=535kg/m319.原油工作温度下的密度ρo:(0~50℃)§=1.828-0.00132ρ20= 1.1218ρo=ρ20-§(t-20)=537.2436kg/m320.原油15℃时的密度ρ15:ρ15=ρ20-§(t-20)=540.609kg/m321.阿基米德准数Ar:Ar=d3(ρo-ρg)gρg/μg2=#NUM!22.油滴沉降状态处于过渡区,雷诺数Re:Re=0.153Ar0.714=#NUM!23.液相截面高度与容器直径之比η:η=h/D=0.624.油滴匀速沉降速度ω0:ω0=μg Re/dρg=#NUM!m/s25.容器长度与直径之比L/D:3~526.分离器允许气体流速ωgh:ωgh=0.49(3~5)ω0/(1-η)=#NUM!~#NUM!m/s三、分离器外形尺寸的确定:1.油处理量Qo:155m3/d2.原油含水率ηi:3.2%3.水的密度ρw:ρw=1087kg/m34.液体综合密度ρl:ρl=ρwηi+ρo(1-ηi)=554.8358kg/m35.液体处理量Q:Q=Q oρ20/(1000(1-ηi))=85.66632(t/d) /ρl=154.3994m3/d6.水处理量Qw:Q w=ηiQ=2.741322(t/d)/ ρw= 2.521916m3/d7.载荷波动系数β: 1.28.液相所占截面积与分离器横截面积之比n2:n2=[(2η-1)(1-(2η-1)2)1/2+arcsin(2η-1)]/π+1/2=0.626479.出油口高度与分离器直径之比η1:η1=0.110.出油口以下弓形截面积与分离器横截面积之比n1:n1=[(2η1-1)(1-(2η1-1)2)1/2+arcsin(2η1-1)]/π+1/2=0.0520440111.液体在分离器中的停留时间t: t=30min12.分离器直径D:D=[(Qtβ)/(360π(L/D)(n2-n1))]1/3= 1.418122~ 1.19609013m13.分离器实际外形尺寸:直径D= 1.4m长度L= 5.6m四、气体处理量核算:1.容器长度与直径之比K1:K1= L/D=42.分离器允许气体流速ωgh:0.49K1ω0/(1-η)=#NUM!ωgh=3.分离器实际处理能力Q'gsQ'gs=67858D2(1-n2)ωghPwTs/(PsTwZ)=#NUM! >20000m3/d结论:满足要求五、网垫除雾器计算:1.气体处理量Qgs: Qgs=20000m3/d2.分离条件下气体的实际处理量Q g:Q g=Q gs TwP s Z/(PwT s)=-774.644m3/d3.网垫除雾器的气体流速ωg:ωg=K[(ρo-ρg)/ρg]0.5=#NUM!m3/s4.网垫面积A:A=Q g/(86400ωg)=#NUM!m25.丝网单丝直径D0:0.00015m6.斯托克斯准数S t:S t=d2ρoωg/(18μg D0)=#NUM!7.单丝的捕集效率η:查图3-27η=0.788.捕雾效率E:0.989.网垫比表面积a:590m2/m310.除雾器网垫厚度H:H=-3πln(1-E)/(2aη)=0.040059m11.丝网除雾器直径 Ds:Ds=(4A/π)1/2=#NUM!m实际取值:Ds=m六、分离器进出口管确定:1.流动状态下气液混合体密度ρM:ρM=(ρ1Q+ρgQg)/(Q+Qg)=-143.386kg/m3 =-8.9512769lb/ft32.常数C(无固体杂质为100,含有沙子为50~75):503.进口管流体冲刷腐蚀速度V e:Ve=C/ρm1/2=#NUM!m/s4.出气管气体流速V2: V2=15m/s5.出油口液体流速Vo Vo=1m/s6.出水口液体流速V w Vw=1m/s7.进口管直径确定d1:d1=103[4Qg/(πVe)]1/2=#NUM!mm8.出气管直径确定d2:d2=103[4Qg/(πV2)]1/2=#NUM!mm9.出油口直径确定do:do=103[4Qo/(πVo)]1/2=47.79297mm10.出水口直径确定d w:dw=103[4Qw/(πVw)]1/2= 6.096259mm进口管径实际取值: DN=mm出气管径实际取值: DN=mm出液管径实际取值: DN=mm七、安全阀的计算:1.安全阀的安全泄放量W s:W s=Q gρg/24=136.1702kg/h2.分离器设计压力P: P=0.4MPa3.安全阀出口侧压力(绝)P0:P0=0.1Mpa4.安全阀开启压力P z:Pz=P=0.4Mpa5.安全阀排放压力(绝)P d:Pd=1.1P+0.1=0.54Mpa6.气体绝热系数k:C pi0=∑y i C pi=0.021887C p0=C pi0M=0.080113查图2-27△C p=0.07C p=C p0+△C p=0.150113查图2-29C p-C v=2C v=C p-5=-1.84989k=C p/C v =-0.081157.临界条件:P0/P d=0.185185<(2/(k+1))k/(k-1)=1.06011458 条件判别: 属于:临界状态8.气体特性系数C:C=520[k(2/(k+1))(k+1)/(k-1)]1/2=#NUM!9.安全阀额定泄放系数K:K=0.6510.安全阀排放面积A:A=W S/(7.6x10-2CKP d(M/ZTw)1/2=#NUM!mm211.安全阀数量 N:1个12.安全阀喉径d0:d0=(4A/(N*π))1/2=#NUM!mm结论:安全阀选用 A44Y-16C 公称直径 DN100 数 量:1个八、热负荷确定:1.原油入口温度:20℃2.原油出口温度:55℃3.被加热原油质量流量W o:W o=ρoQo=3469.698kg/h4.被加热原油含水率η1:η1=30%5.被加热水的质量流量Ww:W W=W oη1/(1-η1)=1487.014kg/h6.原油比热C O(按出口温度t2计算):Co=(1.687+3.39x10-3t2)/[4.1868(ρ15)1/2]=0.608581kcal/kg*℃7.水的比热C w: C w=1kcal/kg*℃8.加热所需的热负荷QR:Q R=(C W W w+C o W o)(t2-t1)=125951.2kcal/h=146.4812kw实际取值: Q R=kw。

三相分离器资料全

三相分离器资料全

高效三相分离器1.型号释疑JM-WS3.0×8.0-0.8设计压力 MPa设备筒体长度 m设备筒体径 mW:卧式容器S:三相分离器骏马集团2.三相分离器分离原理及结构特点刚从地下开采出来的石油我们称为原油,它是复杂的油水乳化混合物,还含有部分气体和少量泥沙。

气体的主要成分是天然气和二氧化碳。

为了分别得到有利用价值的高纯度的天然气和石油,我们研制出了原油用高效三相分离器,来满足原油开发开采者的需要。

所谓的三相,就是气相、液相、固相。

三相分离器的工作原理就是利用原油中所含各物质的密度不同、粘度不同以及颗粒大小等的区别来进行分离的。

来自井口的原料油首先经过井口阀门、管线到一个加药装置,加药装置可连续可控制的来给原油加破乳剂。

这是用来降低原料油中水、油、泥沙之间的粘连混合程度以及分化乳化混合物的颗粒,有利于三相分离器更好的进行分离。

我们可根据原油的参数(粘度和温度)来看是否需要在加破乳剂之前设置水套加热炉。

水套加热炉就是对原油加热,来降低原油的粘度,提高原油的运输速度。

加了破乳剂的原料油首先进入三相分离器的一级分离装置,进口是在一级分离装置中部,沿切线方向旋转式进入。

通过旋风分离,根据离心力和重力的作用,将原油所含的各物质由里到外、由上到下的排列为气、油、水、泥沙。

为了延长分离器的使用寿命,我们在一级分离装置的入口处沿筒壁方向增加一块垫板,这样泥沙在冲涮筒壁时,只磨损到这块垫板。

等于说是把一级分离装置能接触到的高速流体的那段筒体壁厚进行了加强。

经过旋风分离,大部分气体涌向一级分离装置的上部,在分离装置的上部我们设有一个伞状板,伞状板由三根扁钢呈120°角分布支承。

下部靠一个焊接在筒体壁上的支承圈支撑。

气体冲击到伞状板之后,经过伞状板和一级分离器筒体之间的空隙到达分离器的顶部出气口,由出气口进入二级分离装置。

我们设置这个伞状板的原因,就是因初步分离的气体中,含有部分雾状的小颗粒,颗粒中有水和原油以及细微的泥沙,经碰撞到伞状板上之后,由于粘度的原因,大部分都附着在伞状板的壁上,积累到一定程度会沿伞状板的壁边缘滴落。

UASB反应器三相分离器的设计方法

UASB反应器三相分离器的设计方法
3、聚结:液体在混合物中受到的浮力和重力作用相对较小,但它们会在聚 结元件上聚集,形成液体沉积层。
Байду номын сангаас 四、结论
本次演示详细介绍了三相分离器的结构和工作原理。通过了解其结构和工作 原理,我们可以更好地理解其在石油、化工、能源等领域的应用和性能。对于设 计、制造和使用三相分离器的人员来说,掌握其结构和工作原理也是非常重要的。
5、在实际运行过程中,应对三相分离器进行定期维护和保养,以保证其长 期稳定运行并延长使用寿命。
六、结论
本次演示主要探讨了UASB反应器三相分离器的设计方法。通过介绍UASB反应 器的基本原理和三相分离器的重要性以及详细阐述三相分离器的设计要点和步骤 等方面的内容可以得出结论:一个合理的设计方法和参数选择对于UASB反应器的 性能至关重要;同时在实际应用过程中应注意对其进行定期维护和保养以保证其 长期稳定运行并延长使用寿命。因此本次演示的研究结果可以为相关领域的研究 和实践提供参考和借鉴意义。
四、三相分离器的设计要点
1、结构设计
三相分离器的结构设计应考虑到气、液、固三相的分离效果和操作简便性。 常见的分离器结构有伞形、钟罩形等。在设计过程中,应充分考虑反应器的尺寸、 处理量以及污泥的性质等因素。
2、材料选择
三相分离器的材料应具有耐腐蚀、耐磨损、耐高温等特点。常用的材料有不 锈钢、玻璃钢等。在选择材料时,应考虑到材料的成本、使用寿命以及与污水接 触的兼容性等因素。
感谢观看
UASB反应器三相分离器的设计 方法
目录
01 一、引言
03
三、三相分离器的重 要性
02 二、UASB反应器原理
04
四、三相分离器的设 计要点
目录
05 五、设计过程中的注 意事项和建议

IC三相分离器计算书

IC三相分离器计算书

IC三相分离器设计一、IC基本尺寸:有效容积1080m³,直径=8m,底部面积50㎡,H=20m;二、三、IC上层三相分离器设计1、上层三相分离器参照UASB设计,外循环泵取水口放置于第二反应区,为保证第二反应区上升流速<1m/h(运行时控制在0.4-0.8);则最大(进水量+外循环量)≤50m³/h(运行时控制在20-40);2、上层三相分离器设计计算①沉淀区设计沉淀区表面负荷率:Q/S=12.5/50=0.25m³/㎡*h,符合要求②回流缝设计取h2=1.41,倾角为55°,计算b1=0.9875m,设单元三相分离器的宽度为2.6m,则b2=0.625m;即设置三组三相分离器下三角形集气罩之间面积S1=2*6*b2+8*b2=12.5㎡,计算该处污泥回流缝的上升流速v1=Q/S1=12.5/12.5=1m/h<2m/h满足要求;令上三角形集气罩回流缝的宽度为0.32m>0.2m,S2=(4*6+2*8)*0.32=12.8㎡计算上三角形集气罩与下三角形集气罩斜面之间的上升流速v2=Q/S2=0.98<v1<2m/h,满足要求。

③气液分离设计BC=c/sin35°=0.32/0.5736=0.56m,取AB=0.3,夹角为58.8°,计算上三角形集气罩高度为0.8m,取水深h1=1.2m,设沼气气泡直径为0.008cm,废水密度为1.01g/cm³,碰撞系数为0.95,沼气密度为0.0012g/cm³,计算Vb=6.01m/h经过校核Vb/Va=6.01/0.98=6.13>BC/AB=0.56/0.3=1.87,满足设计要求。

二、下层三相分离器设计设计IC去除率为70%,进水COD8000mg/L,出水COD2300mg/L;第一反应区占总去除率的85%,计算总去除1710kgCOD/d,沼气产率按0.4m³/kgCOD计算,总计产生684m³/d沼气,假设每方沼气提升1-2m³/d废水,计算总计提升液体为684-1368m³/d,即28.5-57m³/h;外循环泵+进水最大流量为40m³/h,内循环泵为90m³/h(取水管安置于下层三相分离器下);第一反应区最大流量为187.5m³/h,计算第一反应室最大升流速度为3.75m/h;通过下层三相分离器最大流量为40+57*15%=47.65m³/h,即通过三相分离器最大升流速度为0.95m/h;以最大升流速度设计IC下层三相分离器;三相分离器示意图见图1-1;①沉淀区设计沉淀区表面负荷率:Q/S=47.65/50=0.95m³/㎡*h,符合要求②回流缝设计设置一组三相分离器,d=8m,取AB为1.15m,下三角罩为52°,则下三角高为h=3.65m,下三角过水断面为S1=3.14*4*4-3.14*2.85*2.85=25.6㎡,则V1=Q/S1=47.65/25.6=1.86m/h<2m/h,符合要求;令上三角形集气罩回流缝的宽度为0.3m>0.2m,取上集气罩离下集气罩水平距离为1.2m,通过计算得出S2=37㎡,V2=1.29m/h<V1<v1,符合要求;③气液分离设计设沼气气泡直径为0.01cm,废水密度为1.03g/cm³,碰撞系数为0.95,沼气密度为0.0012g/cm³,净水运动粘滞系数v=0.0101c㎡/s计算Vb=9.58m/h Vb/va=9.58/1.29=7.4>BC/AB=1.54/0.3=5.1。

三相分离器工作原理结构工艺参数剖析

三相分离器工作原理结构工艺参数剖析

三相分离器工作原理结构工艺参数剖析一、工作原理三相分离器的工作原理基于物料在离心力和重力的共同作用下实现固液分离。

当混合物通过分离器进入旋转鼓体时,固体颗粒因离心力的作用被推到鼓壁上形成固相层,并通过排渣装置将固体颗粒排出。

液体由于其较小的密度则形成液相层,自由流动至液体收集室。

这样,通过分离器的旋转运动,三相混合物得以分离。

二、结构三相分离器的主要结构包括进料管、旋转鼓体、收料斗、排渣装置、液相排出管和固相排渣口等。

进料管将混合物引入旋转鼓体,鼓体内壁有不同结构的槽,用于增加分离效果。

收料斗用以收集分离后的液体相,排渣装置用于将固相颗粒分离出来,液相排出管用于将分离后的液体排出,固相排渣口用于将固相颗粒排出。

三、工艺参数1.旋转速度:分离效果与旋转速度有关,一般情况下,旋转速度越高,分离效果越好,但需根据实际情况进行调整。

2.分离因素:分离因素是分离器分离能力的指标,由分离器径向加速度和离心力系数决定,分离因素越大,分离效果越好。

3.分离时间:分离时间与分离效果也有关,分离时间越长,分离效果越好。

4.液态混合物的流量和浓度:液态混合物的流量和浓度直接影响分离器的处理能力和效果,需根据实际情况进行调整。

总结起来,三相分离器的工作原理基于离心力和重力,通过旋转鼓体将液态混合物中的固体和液体相分离。

其结构包括进料管、旋转鼓体、收料斗、排渣装置等部件。

工艺参数包括旋转速度、分离因素、分离时间以及液相混合物的流量和浓度等。

三相分离器在实际应用中可以根据具体需求进行调整和优化,以达到最佳的分离效果。

卧式三相分离器工艺设计计算讲解学习

卧式三相分离器工艺设计计算讲解学习

一、工艺委托参数:工作压力P'w: 1.661Mpa 工作温度:18.5℃处理气量:352m3/d 原油密度:894.9kg/m3油处理量:40m3/d 停留时间:10min含水率:10%水的密度:1013kg/m3液体加热温度:℃ 入口:18.5 进口:18.5天然气组分:(Vi%)C1 C2 C3 iC4 nC4 iC50.2850.1410.1580.0530.141 4.49nC5 C6 C7 N2 CO2 H2O0.03440.07030.053000.065二、基本参数的确定:1.天然气组分数三相分离器工艺计算书分子量M:3.6603563.天然气相对密度△g:0.1263764.临界压力Pc:0.280427Mpa 5.临界温度T'c:9.274789 ℃=282.2748K6.工作温度:t=18.5℃Tw= t+273=291.5K7.工作压力Pw:P'w= 1.661MPaPw=P'w+0.1= 1.761Mpa(绝)8.对比压力Pr:Pr=Pw/Pc= 6.2797029.对比温度Tr:Tr=Tw/T'c= 1.03268210.压缩因子Z:(0≤Pr≤2;1.25≤Tr≤1.6)Z=1+(0.34Tr-0.6)Pr=-0.5629411.1大气压下定压比热C0p:C0p i=∑y i Cp i=0.021887(卡/克.℃)M=∑y i m i=△g=M/28.964= Pc=∑Pc i y i= T'c=∑y i Tc i=C0p=C0p i M=0.080113(卡/克.℃)12.标准状态下大气压Ps:Ps=0.1MPa 13.标准状态下温度Ts:(To=20℃ 或0℃)To=0℃Ts=To+273=273K 14.标准状态下空气密度ρa(Ts=20℃时取1.205;Ts=0 ℃时取1.293):ρa= 1.293kg/m3 15.标准状态下气体密度ρgs:ρgs=ρa△g=0.163404kg/m3 16.分离条件下气体密度ρg:ρg=ρgsPwT s/(PSTwZ)=-4.7872kg/m3 17.分离条件下气体动力粘度μg:x=2.57+0.2781△+1063.6/gTw= 6.253859y=1.11+0.04x= 1.360154c=2.415(7.77+0.1844△)Tw1.5x1g0-4/(122.4+377.58△+1.8Tw)g=0.01348112μ=cexp[x(gρ/1000)y]g=#NUM!mPa.s18.原油20℃时的密度ρ:20ρ20=894.9kg/m319.原油工作温度下的密度ρo:(0~50℃) §=1.828-0.646732ρo=ρ20-§(t-20)=895.8701kg/m320.原油15℃时的密度ρ:15ρ15=ρ-§(t-2020)=898.1337kg/m321.阿基米德准数Ar:Ar=d3(ρ-ρg)gρo/μg2=#NUM!g22.油滴沉降状态处于过渡区,雷诺数Re:Re=0.153Ar0.714=#NUM!23.液相截面高度与容器直径之比η:η=h/D=0.624.油滴匀速沉降速度ω0:ω0=μRe/dρg=#NUM!m/sg25.容器长度与直径之比L/D:3~526.分离器允许气体流速ω:ghω=0.49(3gh~5)ω/(1-η)=#NUM!~#NUM!m/s三、分离器外形尺寸的确定:1.油处理量Qo:40m3/d2.原油含水率ηi:10%3.水的密度ρw: ρw=1013kg/m34.液体综合密度ρl:ρl=ρwηi+ρo(1-ηi)=907.5831kg/m35.液体处理量Q:Q=Q oρ20/(1000(1-ηi))=39.77333(t/d) /ρl=43.82335m3/d 6.水处理量Qw:Q w=ηiQ= 3.977333(t/d)/ρw= 3.926292m3/d 7.载荷波动系数β: 1.28.液相所占截面积与分离器横截面积之比n2:n2=[(2η-1)(1-(2η-1)2)1/2+arcsin(2η-1)]/π+1/2=0.626479.出油口高度与分离器直径之比η1:η1=0.110.出油口以下弓形截面积与分离器横截面积之比n1:n1=[(2η1-1)(1-(2η1-1)2)1/2+arcsin(2η1-1)]/π+1/2=0.05204401 11.液体在分离器中的停留时间t:t=10min12.分离器直径D:D=[(Qtβ)/(360π(L/D)(n2-n1))]1/3=0.646189~0.54501711m 13.分离器实际外形尺寸:直径D= 1.4m长度L= 5.6m四、气体处理量核算:1.容器长度与直径之比K1:K1= L/D=42.分离器允许气体流速ωgh:ωgh=0.49K1ω0/(1-η)=#NUM!3.分离器实际处理能力Q'gsQ'gs=67858D2(1-n2)ωghPwTs/(PsTwZ)=#NUM! >352m3/d结论:满足要求五、网垫除雾器计算:1.气体处理量Qgs: Qgs=352m3/d2.分离条件下气体的实际处理量Q g:Q g=Q gs TwPsZ/(PwT s)=-12.015m3/d3.网垫除雾器的气体流速ωg:ω=K[(ρo-gρg)/ρ]0.5=#NUM!m3/sg4.网垫面积A:A=Q g/(86400ωg)=#NUM!m25.丝网单丝直径D0:0.00015m6.斯托克斯准数S t:S t=d2ρoωg/(18μg D0)=#NUM!7.单丝的捕集效率η:查图3-27η=0.788.捕雾效率E:0.989.网垫比表面积a:590m2/m310.除雾器网垫厚度H:H=-3πln(1-E)/(2aη)=0.040059m11.丝网除雾器直径 Ds:Ds=(4A/π)1/2=#NUM!m实际取值:Ds=m六、分离器进出口管确定:1.流动状态下气液混合体密度ρM:ρ=(ρ1Q+MρgQg)/(Q+Qg)=1252.214kg/m3 =78.1730091lb/ft3 2.常数C(无固体杂质为100,含有沙子为50~75):503.进口管流体冲刷腐蚀速度V e:Ve=C/ρ1/2= 1.72368m/sm4.出气管气体流速V2:V2=15m/s5.出油口液体流速Vo Vo=1m/s6.出水口液体流速Vw=1m/s7.进口管直径确定d1:d1=103[4Qg/(πVe)]1/2=#NUM!mm8.出气管直径确定d2:d2=103[4Qg/(πV2)]1/2=#NUM!mm直径确定do:do=103[4Qo/(πVo)]1/2=24.27885mm10.出水口直径确定d w:dw=103[4Qw/(πVw)]1/2=7.60658mm进口管径实际取值:DN=mm出气管径实际取值:DN=mm出液管径实际取值:DN=mm 七、安全阀的计算:1.安全阀的安全泄放量W s:W s=Q gρ/24= 2.396596kg/hg2.分离器设计压力P:P=0.4MPa3.安全阀出口侧压力(绝)P0:P0=0.1Mpa开启压力P z:Pz=P=0.4Mpa 5.安全阀排放压力(绝)P d:Pd=1.1P+0.1=0.54Mpa6.气体绝热系数k:C pi0=∑y i C pi=0.021887C p0=C pi0M=0.080113查图2-27△C p=0.07C p=C p0+△C p=0.150113查图2-29C p-C v=2C v=C p-5=-1.84989k=C p/C v =-0.081157.临界条件:P0/P d=0.185185<(2/(k+1))k/(k-1)=1.06011458条件判别: 属于:临界状态8.气体特性系数C:C=520[k(2/(k+1))(k+1)/(k-1)]1/2=#NUM!9.安全阀额定泄放系数K:K=0.6510.安全阀排放面积A:A=W S/(7.6x10-2CKPd(M/ZTw)1/2=#NUM!mm2阀数量N:N=1个12.安全阀喉径d0:d0=(4A/(N*π))1/2=#NUM!mm结论:安全阀选用 A44Y-16C 公称直径DN100 数量:1个八、热负荷确定:1.原油入口温度:t1=18.5℃2.原油出口温度:t2=18.5℃3.被加热原油质量流量W o:W o=ρoQo=1493.117kg/h4.被加热原油含水率η1:η1=30%5.被加热水的质量流量Ww:W W=W oη1/(1-η1)=639.9072kg/h6.原油比热C O(按出口温度t2计算):Co=(1.687+3.39x10-3t2)/[4.1868(ρ15)1/2]=0.440976kcal/kg*℃7.水的比热C w: C w=1kcal/kg*℃8.加热所需的热负荷QR:Q R=(C W W w+C o W o)(t2-t1)=0kcal/h=0kw实际取值: Q R=kw。

三相分离器技术参数

三相分离器技术参数

三相分离器是一种用于分离油、气、水三相混合物的设备,其技术参数如下:
1. 工作压力:一般为0.2~0.6MPa。

2. 工作温度:一般为-20℃~60℃。

3. 分离效率:根据具体的分离器型号和设计参数不同,分离效率一般在90%以上。

4. 油、气、水的分离比例:根据具体的分离器型号和设计参数不同,油、气、水的分离比例也不同,一般在1:1:1左右。

5. 处理能力:根据具体的分离器型号和设计参数不同,处理能力一般在5000~20000吨/天之间。

6. 占地面积:根据具体的分离器型号和设计参数不同,占地面积也不同,一般在100~500平方米之间。

7. 外形尺寸:根据具体的分离器型号和设计参数不同,外形尺寸也不同,一般在2~5米之间。

需要注意的是,不同厂家生产的三相分离器可能会有些许差异,具体的技术参数应根据具体的产品型号和厂家提供的技术参数进行确认。

三相分离器工作原理结构工艺设计参数

三相分离器工作原理结构工艺设计参数

三相分离器工作原理结构工艺设计参数一、工作原理:三相分离器的工作原理基于液体的不同密度。

具体来说,当混合液体经过分离器后,由于密度的差异,沉降速度不同的各相会自发地分离。

在三相分离器中,通常会分为上部清液相、中间重液相和下部轻液相三个部分。

其中,上部清液相是最轻的,中间重液相的密度适中,而下部轻液相是最重的。

三相分离器会通过不同的结构和设计参数来促进液相的分离。

二、结构设计:1.进料管:将混合液体引入分离器。

2.表面波纹板:用于增加表面积,增强沉降效果。

它会使液体在分离器内形成由上至下的流动和沉降路径。

3.溢流管:用于收集最轻的上部清液相,并排出分离器。

4.下排液管:用于排出最重的下部轻液相。

三、工艺设计参数:1.载体管道尺寸:用于控制液体通过分离器的流速和液位高度,需根据工作要求和液体性质确定。

2.表面波纹板形式:可选择平板、U型板、V型板等形式,根据实际工况选择合适的波纹板形式。

3.表面波纹板的倾角:倾角越大,波纹板上的液体层厚度越大,分离效果越好,但也会增加液体的持留时间,需根据具体要求进行调整。

4.斜板长度:斜板长度越长,分离效果越好,但也会导致设备占地面积增加,需根据实际情况进行设计。

5.出口设计:要保证各相的顺利排出,避免相互干扰。

6.液位控制:采用自动控制系统,可根据液位高度调整溢流管和下排液管的开启程度,从而控制三相液体的分离效果。

总之,三相分离器通过利用液体的不同密度,采用适当的结构和工艺设计参数,实现混合液体中的不同相的分离。

在实际运行中,需根据具体工况和要求,选取合适的设备结构和参数,以实现高效、稳定的物料分离过程。

三相分离器的设计

三相分离器的设计

必要的设计参数设计压力操作压力设计温度操作温度最大气、液处理量液体密度气体比重(标态)载荷波动系数液体停留时间设计后可能存在的问题三相分离需要确定两个停留时间,即从油中分水所需停留时间和从水中分油所需停留时间。

油水所需的停留时间最好由室内和现场试验确定。

存在的问题是,从油中分出水珠和从水中分出油滴所需时间是不同的,使油水停留时间相同不是不是最优的设计方案。

再者,停留时间法没有考虑容器形状对分离效果的影响,立式和卧式分离器在相同的时间下有不同的油水分离效果。

第三,停留时间法也不能提供分离质量的数据,如水中含油率和油中含水率。

三相分离器结构及原理三相分离器的结构分为分离沉降室和油室。

油、气、水混合物来液进入三相分离器,经整流器、波纹板组、斜板组等后大部分液体沉降到分离沉降室的液相区,极少部分液体靠液体重力继续沉降,剩余的液体经除雾器进一步分离后,气体通过压力调节阀进入天然器系统。

沉降下来的油、水混合液停留一段时间后因密度的差别逐渐进行分层,水沉积在集水包和液相区的底部,液相区的上部为油层。

当油层的液位高出隔油板顶部时则慢慢流入油室内,然后由油室下部的出油口排出。

液相区的水沉降分离到沉降室的底层,并且经过出水阀排出。

图1 三相分离器结构示意图三相分离器工艺流程(1)流程三相分离器及计量部分的工艺流程示意如图2所示。

装置包括油气水三相分离器容器、油气水流量计、油水界面检测仪、油气水控制调节阀等。

油气水在分离器内分离,天然气经气出口流量计计量流量和控制压力后,进入天然气处理系统;低含水原油经溢油堰板进入油腔,油腔内的液面由液面调节器控制;低含油污水经射频导纳油水界面仪控制的调节阀排出速度,从而控制油水界面。

另外一种控制方案如图3所示。

低含水原油经溢油堰板进入油腔,油腔内的液面由液面计检测,并且控制调节阀,调节排油速度。

(2)主要设备如下:1)油水界面检测仪:采用美国进口DE509-15-90N射频导纳油水界面检测仪测试分离器内沉降段的油水界面高度,并且输出4-20mA电流信号。

三项分离器使用说明

三项分离器使用说明

三相分离器整套装置技术指标HPT-30/50-A型气相处理30万方/天,液相处理50万方/天,自动控制。

设计压力:9.8MPa;爆破片压力:9.4MPa;安全阀压力8.5MPa,三相分离器允许操作压力:l-8Mpa,推荐2-6MPa操作温度:20-65°C水套炉功率:480Kw;水套炉盘管设计压力35/12MPa天然气流量测试精度、油水测试精度:±2%1、水套炉水温控制在不大于80C,一般控制天然气出炉温度在25-40C。

2、三相分离器原理如下图:分离器内天然气温度、压力和流量的控制对分离效果影响很大,分离器介质的温度一般控制在25-75C(凝析气井25-35C;轻中质原油井45-55C),压力一般控制在3-7Mpa,在满足油水分离的要求下,适当降低操作温度对气液分离有利,根据气相实际处理量的大小,大处理量时操作压力应相应提高。

3、净化器净化器是将分离器排出的天然气经减压后再次脱水,作为燃烧和仪表控制使用。

安全阀定压:1.3MPa;最高工作压力1.2MPa4、干燥器将净化器输出的部分天然气经干燥剂深度脱水后用作仪表控制,使用一段时间后,应将罐中干燥剂卸出烘干或用新鲜干燥剂替换。

安全阀定压:1.3MPa;最高工作压力:1.2MPa5、安全装置采用安全阀(8.5MPa)和爆破片(9.4MPa,响应快、性能可靠)装置并列串级保护。

安▲全阀使用中每年应按规定标校,爆破片装置至少每两年更换一次。

6、装置启动前的检查和阀门位置检查装置进出管线上的法兰、管接头有无松动,若发现松动应加以紧固。

关闭设备及管线上的全部阀门,设置禁火标志,严禁明火。

检查仪表引压管线、气源管线、调节阀的启动信号管线接头、卡套和法兰有无松动,若有则加以紧固。

各仪表阀门开关位置按照以下要求设置:a、打开各压力表的截止阀;b、关闭差压变送器三阀组的高低压侧取压阀,打开平衡阀;c、打开孔板阀的高低压侧取压阀,关闭放空阀;d、打开压力变送器的取压阀;e、打开分离器上石英液位计的连通阀。

油田油气水三相分离器的设计技术研究

油田油气水三相分离器的设计技术研究

油田油气水三相分离器的设计技术研究引言:油气水三相分离器是油田生产中不可或缺的设备之一、它的设计和性能直接关系到油田产能和分离效果。

本文将重点研究油气水三相分离器的设计技术,包括分离器结构、分离过程中的关键问题以及分离器优化的方法。

一、油气水三相分离器结构设计油气水三相分离器的结构设计是保证分离效果的重要因素。

一般来说,油气水三相分离器的结构包括进出口管道、分离层、支撑板和排气管等部分。

其中,分离层的设计是关键。

分离层的设计应基于浮力和沉降速度的原理。

一般情况下,较重的水沉降到底部,较轻的气体上升到顶部,而中等密度的油则位于中间层。

为了提高分离效果,可以在分离层上设置泡沫塞或异型板,增加分离效果。

二、分离过程中的关键技术问题在油气水三相分离过程中,存在一些关键技术问题需要解决。

1.液位控制:分离器中的液位控制是分离过程中的关键问题之一、过高的液位会导致分离器容积不足,影响分离效果。

过低的液位则可能导致油、气、水混合不充分,分离效果不理想。

因此,需要在分离器中设置液位控制装置,确保液位始终保持在适当范围内。

2.压力控制:油气水三相分离器中的压力控制也是一个重要问题。

过高的压力会导致设备故障和安全隐患,而过低的压力则可能影响分离效果。

因此,在设计分离器时需要考虑压力控制装置的设置和调节。

3.破乳剂的使用:在油气水三相分离过程中,水中常含有一定量的乳化物。

这些乳化物会影响分离效果,甚至引发设备故障。

因此,在分离过程中需要添加适量的破乳剂,破坏乳化物的形成,提高分离效果。

三、油气水三相分离器的优化方法为了提高油气水三相分离器的分离效果和性能,可以采用以下优化方法。

1.提高分离器的处理能力:可以通过增加分离器的容积或改善分离层的结构来提高其处理能力。

另外,可以考虑增加分离器的数量或设置串联分离器的方式。

2.优化液位和压力控制:可以使用先进的自动控制系统,根据实际情况进行液位和压力的调节,实现最佳的分离效果。

三相分离器工作原理、结构、工艺参数

三相分离器工作原理、结构、工艺参数

三相分离器工作原理、结构、工艺参数一、工作原理生产汇管来原油进入三相分离器,利用油、气、水密度的不同进行油、气、水三相初步分离。

1、预分离段从三相分离器进口来的油气由切向进入预分离器,利用离心力而不是机械的搅动来分离来液成为液体和气体,进行初步气、液两相旋流分离。

分离后的气体向上进入预分离器下伞和上伞,按折流方式先后与下伞、上伞壁碰撞,从而将气中带出的液体形成较大的液滴,重力使液滴进一步分离出来,经上、下伞碰撞分离后的气体则通过气连通管导入到三相生产分离器的分离沉降段上部。

分离后的液体通过预分离器向下导液管导入到三相分离器底部,经布液管从液面以下的水层向上喷出,进入到三相分离器预分离段进行油、水初步分离,主要分离出游离水。

布液管的作用:避免了气体对液体的扰动,保持了油水界面的稳定,有利于油水更好地分离。

2、分离沉降段经预分离段进行初步分离后的液体,沿水平方向向右移动进入分离沉降段。

这一段内有较大的沉降空间(分离沉降时间20分钟左右),其中部有两段聚结填料,有助于水中油滴和油中水滴的聚结,从而有促进油、水分离。

液体在水平移动过程中,密度较小的原油逐渐上浮,而密度较大的污水(主要是游离水)则向下沉入设备底部,同时使油气逐步分离开来。

气体则在分离沉降段上部空间内,沿水平方向向右运动进入到分气包,重力作用使气体中的液体沉降到三相分离器分离沉降段液面上。

3、集液段由于油、水密度的不同,使分离沉降段中的液体出现分层,水的密度较大在下层,油的密度较小在上层。

在下层的水则通过集液段底部的喇叭口,利用连通器原理向上溢流进入三相分离器水室,水室中的水通过出水口导出进入5000m3沉降罐。

在上层的油经集液段上部堰板溢流到导油汇管,进入到三相分离器的油室,油室中的油通过油出口导出进入热化学脱水器。

4、捕雾段气体经沉降分离段后进入到分气包,由于气体中仍夹有细小的液滴,在分气包中装有捕雾装置-丝网捕雾器,丝网捕雾器的丝网由圆形或扁形的耐腐蚀的金属丝编织而成,其脱除液沫工作原理是:夹带液沫的气体流经丝网时,与丝网相碰撞,液沫由于其表面张力,而在丝与丝的交叉接头处聚集。

三相分离器使用说明书

三相分离器使用说明书

用途WS1.0X4.5-9.8型三相测试分离器橇块是针对油气井测试而设计的油气处理设备。

此设备是可实现油、气、水三相分离,同时集天然气、原油、污水计量、自动排水排油、安全泄放为一体的油气处理装置。

该装置设计技术先进、可靠、实用,而且工作效率高,运行平稳,占地面积小,操作十分方便。

本橇块适用于油、气、水三相分离的单井测试和计量。

二.主要技术参数1•设计压力:P=9.8MP a2•最高工作压力:PW=9.2MP aW3•安全阀最低开启压力P d=9.2Mpa4•设计温度:80°C5•工作温度:0-50°C6•介质:油、水、天然气(含H2S体积比不大于7%)7•处理量:液体处理量:300m3/d,天然气:50X104Nm3/d8.气相分离精度:10p m9•外形尺寸:6750X2250X280010•设备总重:14500Kg三.结构及工作原理1.结构:WS1.0X4.5-9.8测试分离装置是以油、气、水三相分离器为主体的整体橇装式分离、处理、计量装置。

分离器由壳体、封头、进料组件、出气组件、人孔、液位控制组件、分离聚集组件、除沫器、油池、水池、鞍座等组成。

壳体是由钢板卷焊而成,壳体左上部设有进料组件,进料组件后部装有分离聚集组件。

壳体—端封头上设有DN400的人孔,可通过它进入分离器进行检验和维护。

在壳体上设有液位计、油位变送器、水位变送器接口,分别装有液位计、油位变送器、水位变送器。

装在筒体上部的安全阀可起超压保护作用。

分离器上还设置有压力表、温度计以及排污、排水、排油接口。

与分离器相连的管线分别为:(1)原料输入管线,此管线由无缝钢管及原料输入总控制球阀、旁通组成;(2)输气管线:由无缝钢管及阀件组成。

管线上装有一体化孔板流量计、球阀、基地式调压阀、止回阀、压力表装置等。

(3)仪表、阀件供气管线:此管线主要由无缝钢管和球阀、调压阀、缓冲罐、压力表装置等组成。

(4)排液排污管线:此管线由相互连通的排污、排水、排油管线组成,管线由无缝钢管、球阀、气动调节阀、油水计量仪表、过滤器等组成。

三相分离器设计经验参数

三相分离器设计经验参数

三相分离器设计经验参

-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
UASB的重要构造是指反应器内三相分离器的构造,三相分离器的设计直接影响气、液、固三相在反应器内的分离效果和反应器的处理效果。

对污泥床的正常运行和获得良好的出水水质起十分重要的作用,根据已有的研究和工程经验,三相分离器应满足以下几点要求:
沉淀区的表面水力负荷<h;
三相分离器集气罩顶以上的覆盖水深可采用~;
沉淀区四壁倾斜角度应在45º~60º之间,使污泥不积聚,尽快落入反应区内;
沉淀区斜面高度约为~;
进入沉淀区前,沉淀槽底缝隙的流速≤2m/h;
总沉淀水深应≥;
水力停留时间介于~2h;
分离气体的挡板与分离器壁重叠在20mm以上;
以上条件如能满足,则可达到良好的分离效果。

因此,对于每个实际工程,由于水质,COD负荷,水力负荷,沼气产率等条件均不同,使用三相分离器,必须采用重新核算过专门设计的三相分离器,才能保证良好的运行效果。

目前,市场上许多厂商提供的三相分离器,仅是为某一特定工程设计的三相分离器图纸而加工的产品,并不能保证最佳的使用效果。

甚至出现大量跑泥的极端例子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

UASB的重要构造是指反应器内三相分离器的构造,三相分离器的设计直接影响气、液、固三相在反应器内的分离效果和反应器的处理效果。

对污泥床的正常运行和获得良好的出水水质起十分重要的作用,根据已有的研究和工程经验,三相分离器应满足以下几点要求:
沉淀区的表面水力负荷<1.0m/h;
三相分离器集气罩顶以上的覆盖水深可采用0.5~1.0m;
沉淀区四壁倾斜角度应在45º~60º之间,使污泥不积聚,尽快落入反应区内;
沉淀区斜面高度约为0.5~1.0m;
进入沉淀区前,沉淀槽底缝隙的流速≤2m/h;
总沉淀水深应≥1.5m;
水力停留时间介于1.5~2h;
分离气体的挡板与分离器壁重叠在20mm以上;
以上条件如能满足,则可达到良好的分离效果。

因此,对于每个实际工程,由于水质,COD负荷,水力负荷,沼气产率等条件均不同,使用三相分离器,必须采用重新核算过专门设计的三相分离器,才能保证良好的运行效果。

目前,市场上许多厂商提供的三相分离器,仅是为某一特定工程设计的三相分离器图纸而加工的产品,并不能保证最佳的使用效果。

甚至出现大量跑泥的极端例子。

相关文档
最新文档