全国2卷数学高考真题

合集下载

2023年全国统一高考数学试卷(新高考II)(解析版)

2023年全国统一高考数学试卷(新高考II)(解析版)

2023年全国统一高考数学试卷(新高考Ⅱ)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共计40分。

每小题给出的四个选项中,只有一个选项是正确的。

请把正确的选项填涂在答题卡相应的位置上。

1.(5分)在复平面内,(1+3i)(3﹣i)对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解答】解:(1+3i)(3﹣i)=3﹣i+9i+3=6+8i,则在复平面内,(1+3i)(3﹣i)对应的点的坐标为(6,8),位于第一象限.故选:A.2.(5分)设集合A={0,﹣a},B={1,a﹣2,2a﹣2},若A⊆B,则a=( )A.2B.1C.D.﹣1【答案】B【解答】解:依题意,a﹣2=0或2a﹣2=0,当a﹣2=0时,解得a=2,此时A={0,﹣2},B={1,0,2},不符合题意;当2a﹣2=0时,解得a=1,此时A={0,﹣1},B={1,﹣1,0},符合题意.故选:B.3.(5分)某学校为了了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( )A.种B.种C.种D.种【答案】D【解答】解:∵初中部和高中部分别有400和200名学生,∴人数比例为400:200=2:1,则需要从初中部抽取40人,高中部取20人即可,则有种.故选:D.4.(5分)若f(x)=(x+a)为偶函数,则a=( )A.﹣1B.0C.D.1【答案】B【解答】解:由>0,得x>或x<﹣,由f(x)是偶函数,∴f(﹣x)=f(x),得(﹣x+a)ln=(x+a),即(﹣x+a)ln=(﹣x+a)ln()﹣1=(x﹣a)ln=(x+a),∴x﹣a=x+a,得﹣a=a,得a=0.故选:B.5.(5分)已知椭圆C:的左焦点和右焦点分别为F1和F2,直线y=x+m与C交于点A,B两点,若△F1AB面积是△F2AB面积的两倍,则m=( )A.B.C.D.【答案】C【解答】解:记直线y=x+m与x轴交于M(﹣m,0),椭圆C:的左,右焦点分别为F1(﹣,0),F2(,0),由△F1AB面积是△F2AB的2倍,可得|F1M|=2|F2M|,∴|﹣﹣x M|=2|﹣x M|,解得x M=或x M=3,∴﹣m=或﹣m=3,∴m=﹣或m=﹣3,联立可得,4x2+6mx+3m2﹣3=0,∵直线y=x+m与C相交,所以Δ>0,解得m2<4,∴m=﹣3不符合题意,故m=.故选:C.6.(5分)已知函数f(x)=ae x﹣lnx在区间(1,2)上单调递增,则a的最小值为( )A.e2B.e C.e﹣1D.e﹣2【答案】C【解答】解:对函数f(x)求导可得,,依题意,在(1,2)上恒成立,即在(1,2)上恒成立,设,则,易知当x∈(1,2)时,g′(x)<0,则函数g(x)在(1,2)上单调递减,则.故选:C.7.(5分)已知α为锐角,cosα=,则sin=( )A.B.C.D.【答案】D【解答】解:cosα=,则cosα=,故=1﹣cosα=,即==,∵α为锐角,∴,∴sin=.故选:D.8.(5分)记S n为等比数列{a n}的前n项和,若S4=﹣5,S6=21S2,则S8=( )A.120B.85C.﹣85D.﹣120【答案】C【解答】解:等比数列{a n}中,S4=﹣5,S6=21S2,显然公比q≠1,设首项为a1,则=﹣5①,=②,化简②得q4+q2﹣20=0,解得q2=4或q2=﹣5(不合题意,舍去),代入①得=,所以S8==(1﹣q4)(1+q4)=×(﹣15)×(1+16)=﹣85.故选:C.二、选择题:本大题共小4题,每小题5分,共计20分。

2023年新高考II卷数学高考真题(含参考答案)

2023年新高考II卷数学高考真题(含参考答案)

2023年新课标全国Ⅱ卷数学真题一、单选题二、多选题四、解答题17.记ABC 的内角,,A B C 的对边分别为利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p c ;误诊率是将未患病者判定为阳性的概率,记为()q c .假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.(1)当漏诊率()0.5p c =%时,求临界值c 和误诊率()q c ;(2)设函数()()()f c p c q c =+,当[]95,105c ∈时,求()f c 的解析式,并求()f c 在区间[95,10520.如图,三棱锥A BCD -中,DA DB DC ==,BD CD ⊥,60ADB ADC ∠=∠= ,E 为BC (1)证明:BC DA ⊥;(2)点F 满足EF DA =,求二面角21.已知双曲线C 的中心为坐标原点,左焦点为(2)记C 的左、右顶点分别为1A ,2A ,过点()4,0-的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于点P .证明:点P 在定直线上.22.(1)证明:当01x <<时,sin x x x x 2-<<;(2)已知函数()()2cos ln 1f x ax x =--,若0x =是()f x 的极大值点,求a 的取值范围.参考答案1.(2023·新高考Ⅱ卷·1·★)在复平面内,(13i)(3i)+-对应的点位于()(A )第一象限(B )第二象限(C )第三象限(D )第四象限答案:A解析:2(13i)(3i)3i 9i 3i 68i +-=-+-=+,所以该复数对应的点为(6,8),位于第一象限.2.(2023·新高考Ⅱ卷·2·★)设集合{0,}A a =-,{1,2,22}B a a =--,若A B ⊆,则a =()(A )2(B )1(C )23(D )1-答案:B解析:观察发现集合A 中有元素0,故只需考虑B 中的哪个元素是0,因为0A ∈,A B ⊆,所以0B ∈,故20a -=或220a -=,解得:2a =或1,注意0B ∈不能保证A B ⊆,故还需代回集合检验,若2a =,则{0,2}A =-,{1,0,2}B =,不满足A B ⊆,不合题意;若1a =,则{0,1}A =-,{1,1,0}B =-,满足A B ⊆.故选B.3.(2023·新高考Ⅱ卷·3·★)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有()(A )4515400200C C ⋅种(B )2040400200C C ⋅种(C )3030400200C C ⋅种(D )4020400200C C ⋅种答案:D解析:应先找到两层中各抽多少人,因为是比例分配的分层抽取,故各层的抽取率都等于总体的抽取率,设初中部抽取x 人,则60400400200x =+,解得:40x =,所以初中部抽40人,高中部抽20人,故不同的抽样结果共有4020400200C C ⋅种.4.(2023·新高考Ⅱ卷·4·★★)若21()()ln 21x f x x a x -=++为偶函数,则a =()(A )1-(B )0(C )12(D )1答案:B解法1:偶函数可抓住定义()()f x f x -=来建立方程求参,因为()f x 为偶函数,所以()()f x f x -=,即2121()ln ()ln 2121x x x a x a x x ----+=+-++①,而121212121ln ln ln()ln 21212121x x x x x x x x ---+--===--+-++,代入①得:2121()(ln ()ln 2121x x x a x a x x ---+-=+++,化简得:x a x a -=+,所以0a =.解法2:也可在定义域内取个特值快速求出答案,210(21)(21)021x x x x ->⇔+->+,所以12x <-或12x >,因为()f x 为偶函数,所以(1)(1)f f -=,故1(1)ln3(1)ln 3a a -+=+①,而11ln ln3ln33-==-,代入①得:(1)ln3(1)ln3a a -+=-+,解得:0a =.5.(2023·新高考Ⅱ卷·5·★★★)已知椭圆22:13x C y +=的左、右焦点分别为1F ,2F ,直线y x m =+与C 交于A ,B 两点,若1F AB ∆的面积是F AB ∆面积的2倍,则m =()(A )23(B )3(C )3-(D )23-答案:C解析:如图,观察发现两个三角形有公共的底边AB ,故只需分析高的关系,作1FG AB ⊥于点G ,2F I AB ⊥于点I ,设AB 与x 轴交于点K ,由题意,121212212F AB F ABAB F G S S AB F I ∆∆⋅==⋅,所以122F G F I=,由图可知12F KG F KI ∆∆∽,所以11222F K F G F KF I==,故122F K F K =,又椭圆的半焦距c =,所以122F F c ==,从而21212233F K F F ==,故1123OK OF F K =-=,所以2(3K ,代入y x m =+可得203m =+,解得:23m =.6.(2023·新高考Ⅱ卷·6·★★★)已知函数()e ln x f x a x =-在区间(1,2)单调递增,则a 的最小值为()(A )2e (B )e (C )1e -(D )2e -答案:C解析:()f x 的解析式较复杂,不易直接分析单调性,故求导,由题意,1()e x f x a x '=-,因为()f x 在(1,2)上,所以()0f x '≥在(1,2)上恒成立,即1e 0x a x-≥①,观察发现参数a 容易全分离,故将其分离出来再看,不等式①等价于1ex a x ≥,令()e (12)x g x x x =<<,则()(1)e 0x g x x '=+>,所以()g x 在(1,2)上,又(1)e g =,2(2)2e g =,所以2()(e,2e )g x ∈,故21111(,)()e 2e e x g x x =∈,因为1e x a x ≥在(1,2)上恒成立,所以11e e a -≥=,故a 的最小值为1e -.7.(2023·新高考Ⅱ卷·7·★★)已知α为锐角,cos α=sin 2α=()(A (B (C (D 答案:D解析:221535cos 12sin sin 2428ααα+-=-=⇒=,此式要开根号,不妨上下同乘以2,将分母化为2,所以222625(51)sin 2164α-==,故51sin 24α-=±,又α为锐角,所以(0,)24απ∈,故51sin 24α-=.8.(2023·新高考Ⅱ卷·8·★★★)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =()(A )120(B )85(C )85-(D )120-答案:C解法1:观察发现2S ,4S ,6S ,8S 的下标都是2的整数倍,故可考虑片段和性质,先考虑q 是否为1-,若{}n a 的公比1q =-,则414[1(1)]01(1)a S --==--,与题意不符,所以1q ≠-,故2S ,42S S -,64S S -,86S S -成等比数列①,条件中有6221S S =,不妨由此设个未知数,设2S m =,则621S m =,所以425S S m -=--,64215S S m -=+,由①可得242262()()S S S S S -=-,所以2(5)(215)m m m --=+,解得:1m =-或54,若1m =-,则21S =-,424S S -=-,6416S S -=-,所以8664S S -=-,故8664216485S S m =-=-=-;到此结合选项已可确定选C ,另一种情况我也算一下,若54m =,则2504S =>,而2222412341212122()(1)(1)S a a a a a a a q a q a a q S q =+++=+++=++=+,所以4S 与2S 同号,故40S >,与题意不符;综上所述,m 只能取1-,此时885S =-.解法2:已知和要求的都只涉及前n 项和,故也可直接代公式翻译,先看公比是否为1,若{}n a 的公比1q =,则612162142S a S a =≠=,不合题意,所以1q ≠,故414(1)51a q S q -==--①,又6221S S =,所以6211(1)(1)2111a q a q q q--=⋅--,化简得:62121(1)q q -=-②,又62322411()(1)(1)q q q q q -=-=-++,代入②可得:2242(1)(1)21(1)q q q q -++=-③,两端有公因式可约,但需分析21q -是否可能为0,已经有1q ≠了,只需再看q 是否可能等于1-,若1q =-,则414[1(1)]01(1)a S --==--,与题意不符,所以1q ≠-,故式③可化为24121q q ++=,整理得:42200q q +-=,所以24q =或5-(舍去),故要求的8241118(1)[1()]255111a q a q aS q q q--===-⋅---④,只差11aq-了,该结构式①中也有,可由24q =整体计算它,将24q =代入①可得21(14)51a q-=--,所以1113a q =-,代入④得81255853S =-⨯=-.9.(2023·新高考Ⅱ卷·9·★★★)(多选)已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,o 120APB ∠=,2PA =,点C 在底面圆周上,且二面角P AC O --为o 45,则()(A )该圆锥的体积为π(B )该圆锥的侧面积为(C )AC =(D )PAC ∆答案:AC解析:A 项,因为2PA =,o 120APB ∠=,所以o 60APO ∠=,cos 1OP AP APO =⋅∠=,sin OA AP APO =⋅∠=,从而圆锥的体积211133V Sh ππ==⨯⨯⨯=,故A 项正确;B 项,圆锥的侧面积2S rl ππ===,故B 项错误;C 项,要求AC P O --还没用,观察发现PAC ∆和OAC ∆都是等腰三角形,故取底边中点即可构造棱的垂线,作出二面角的平面角,取AC 中点Q ,连接PQ ,OQ ,因为OA OC =,PA PC =,所以AC OQ ⊥,AC PQ ⊥,故PQO ∠即为二面角P AC O --的平面角,由题意,o 45PQO ∠=,所以1OQ OP ==,故AQ ==,所以2AC AQ ==,故C 项正确;D 项,PQ ==,所以11222PAC S AC PQ ∆=⋅=⨯=,故D 项错误.10.(2023·新高考Ⅱ卷·10·★★★)(多选)设O 为坐标原点,直线1)y x =-过抛物线2:2(0)C y px p =>的焦点,且与C 交于M ,N 两点,l 为C 的准线,则()(A )2p =(B )83MN =(C )以MN 为直径的圆与l 相切(D )OMN ∆为等腰三角形答案:AC解析:A 项,在1)y x =-中令0y =可得1x =,由题意,抛物线的焦点为(1,0)F ,所以12p=,从而2p =,故A 项正确;B 项,此处可以由直线MN 的斜率求得MFO ∠,再代角版焦点弦公式22sin pMN α=求MN ,但观察发现后续选项可能需要用M ,N 的坐标,所以直接联立直线与抛物线,用坐标版焦点弦公式来算,设11(,)M x y ,22(,)N x y,将1)y x =-代入24y x =消去y 整理得:231030x x -+=,解得:13x =或3,对应的y分别为3和-(3,M -,1(,33N ,从而121163233MN x x p =++=++=,故B 项错误;C 项,判断直线与圆的位置关系,只需将圆心到直线的距离d 和半径比较,12523x x MN +=⇒的中点Q 到准线:1l x =-的距离8132d MN ==,从而以MN 为直径的圆与准线l 相切,故C 项正确;D 项,M ,N 的坐标都有了,算出OM ,ON即可判断,OM =133ON ==,所以OM ,ON ,MN 均不相等,故D 项错误.11.(2023·新高考Ⅱ卷·11·★★★)(多选)若函数2()ln (0)b cf x a x a x x =++≠既有极大值也有极小值,则()(A )0bc >(B )0ab >(C )280b ac +>(D )0ac <答案:BCD解析:由题意,223322()(0)a b c ax bx cf x x x x x x --'=--=>,函数()f x 既有极大值,又有极小值,所以()f x '在(0,)+∞上有2个变号零点,故方程220ax bx c --=在(0,)+∞上有两个不相等实根,所以212120()(()4(2)020)()b a c c x x a b x x a ⎧⎪∆=--->⎪⎪=->⎨⎪⎪+=>⎪⎩保证有两根保证两根同号保证两根只能同③正①②,由①可得280b ac +>,故C 项正确;由②可得0ca<,所以a ,c 异号,从而0ac <,故D 项正确;由③可得a ,b 同号,所以0ab >,故B 项正确;因为a ,c 异号,a ,b 同号,所以b ,c 异号,从而0bc <,故A 项错误.12.(2023·新高考Ⅱ卷·12·★★★★)(多选)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为(01)αα<<,收到0的概率为1α-;发送1时,收到0的概率为(01)ββ<<,收到1的概率为1β-.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).()(A )采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为2(1)(1)αβ--(B )采用三次传输方案,若发送1,则依次收到1,0,1的概率为2(1)ββ-(C )采用三次传输方案,若发送1,则译码为1的概率为23(1)(1)βββ-+-(D )当00.5α<<时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率答案:ABD解析:A 项,由题意,若采用单次传输方案,则发送1收到1的概率为1β-,发送0收到0的概率为1α-,所以依次发送1,0,1,则依次收到1,0,1的概率为2(1)(1)(1)(1)(1)βαβαβ---=--,故A 项正确;B 项,采用三次传输方案,若发送1,则需独立重复发送3次1,依次收到1,0,1的概率为2(1)(1)(1)βββββ--=-,故B 项正确;C 项,采用三次传输方案,由B 项的分析过程可知若发送1,则收到1的个数~(3,1)X B β-,而译码为1需收2个1,或3个1,所以译码为1的概率为22332333(2)(3)C (1)C (1)3(1)(1)P X P X ββββββ=+==-+-=-+-,故C 项错误;D 项,若采用单次传输方案,则发送0译码为0的概率为1α-;若采用三次传输方案,则发送0等同于发3个0,收到0的个数~(3,1)Y B α-,且译码为0的概率为22332333(2)(3)C (1)C (1)3(1)(1)P Y P Y αααααα=+==-+-=-+-,要比较上述两个概率的大小,可作差来看,2323(1)(1)(1)(1)[3(1)(1)1](1)(12)ααααααααααα-+---=--+--=--,因为00.5α<<,所以233(1)(1)(1)(1)(12)0ααααααα-+---=-->,从而233(1)(1)1αααα-+->-,故D 项正确.13.(2023·新高考Ⅱ卷·13·★★)已知向量a ,b满足-=a b 2+=-a b a b ,则=b _____.解析:条件涉及两个模的等式,想到把它们平方来看,由题意,22223-=+-⋅=a b a b a b ①,又2+=-a b a b ,所以222+=-a b a b ,故2222244++⋅=+-⋅a b a b a b a b ,整理得:220-⋅=a a b ,代入①可得23=b ,即23=b,所以=b .14.(2023·新高考Ⅱ卷·14·★★)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为_____.答案:28解析:如图,四棱锥1111P A B C D -与P ABCD -相似,它们的体积之比等于边长之比的立方,故只需求四棱锥1111P A B C D -的体积,11113112111()4228P A B C D P ABCD V A B AB V --==⇒==,所以11118P ABCD P A B C D V V --=,故所求四棱台的体积11117P A B C D V V -=,由题意,1111212343P A B C D V -=⨯⨯=,所以7428V =⨯=.【反思】相似图形的面积之比等于边长之比的平方,体积之比等于边长之比的立方.15.(2023·新高考Ⅱ卷·15·★★★)已知直线10x my -+=与⊙22:(1)4C x y -+=交于A ,B 两点,写出满足“ABC∆的面积为85”的m 的一个值_____.答案:2(答案不唯一,也可填2-或12或12-)解析:如图,设圆心(1,0)C 到直线AB 的距离为(0)d d >,则12ABC S AB d ∆=⋅,注意到AB 也可用d 表示,故先由85ABC S ∆=求d ,再将d 用m 表示,建立关于m 的方程,又AB ==,所以12ABC S d ∆=⨯=,由题意,85ABC S ∆=85=,结合0d >解得:d =又d ==,所以==,解得:2m =±或12±.16.(2023·新高考Ⅱ卷·16·★★★★)已知函数()sin()f x x ωϕ=+,如图,A ,B 是直线12y =与曲线()y f x =的两个交点,若6AB π=,则()f π=_____.答案:解法1:6AB π=这个条件怎么翻译?可用12y =求A ,B 横坐标的通解,得到AB ,从而建立方程求ω,不妨设0ω>,令1sin()2x ωϕ+=可得26x k πωϕπ+=+或526k ππ+,其中k ∈Z ,由图知26A x k πωϕπ+=+,526B x k πωϕπ+=+,两式作差得:2()3B A x x πω-=,故23B A x x πω-=,又6B A AB x x π=-=,所以336ππω=,解得:4ω=,则()sin(4)f x x ϕ=+,再求ϕ,由图知23π是零点,可代入解析式,注意,23π是增区间上的零点,且sin y x =的增区间上的零点是2n π,故应按它来求ϕ的通解,所以82()3n n πϕπ+=∈Z ,从而823n πϕπ=-,故82()sin(42sin(4)33f x x n x πππ=+-=-,所以2223()sin(4)sin()sin 3332f πππππ=-=-=-=-.解法2:若注意横向伸缩虽会改变图象在水平方向上的线段长度,但不改变长度比例,则可先分析sin y x =与12y =交点的情况,再按比例对应到本题的图中来,如图1,直线12y =与函数sin y x =在y 轴右侧的三个I ,J ,K 的横坐标分别为6π,56π,136π,所以52663IJ πππ=-=,1354663JK πππ=-=,:1:2IJ JK =,故在图2中:1:2AB BC =,因为6AB π=,所以3BC π=,故2AC AB BC π=+=,又由图2可知AC T =,所以2T π=,故24Tπω==,接下来同解法1.【反思】①对于函数sin()(0)y x ωϕω=+>,若只能用零点来求解析式,则需尽量确定零点是在增区间还是减区间.“上升零点”用2x n ωϕπ+=来求,“下降零点”用2x n ωϕππ+=+来求;②对图象进行横向伸缩时,水平方向的线段长度比例关系不变,当涉及水平线与图象交点的距离时,我们常抓住这一特征来求周期.17.(2023·新高考Ⅱ卷·17·★★★)记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC ∆,D 为BC 的中点,且1AD =.(1)若3ADC π∠=,求tan B ;(2)若228b c +=,求b ,c .解:(1)如图,因为3ADC π∠=,所以23ADB π∠=,(要求tan B ,可到ABD ∆中来分析,所给面积怎么用?可以用它求出ABD S ∆,从而得到BD )因为D 是BC 中点,所以2ABC ABD S S ∆∆=,又ABC S ∆=ABD S ∆=,由图可知112sin 1sin 223ABD S AD BD ADB BD π∆=⋅⋅∠=⨯⨯⨯==2BD =,(此时ABD ∆已知两边及夹角,可先用余弦定理求第三边AB ,再用正弦定理求角B )在ABD ∆中,由余弦定理,2222212cos 12212()72AB AD BD AD BD ADB =+-⋅⋅∠=+-⨯⨯⨯-=,所以AB =由正弦定理,sin sin AB AD ADB B =∠,所以1sin sin AD ADB B AB ⋅∠===,由23ADB π∠=可知B为锐角,从而cos B ==,故sin tan cos 5B B B ==.(2)(已有关于bc 的一个方程,若再建立一个方程,就能求b 和c ,故把面积和中线都用b ,c 表示)由题意,1sin 2ABC S bc A ∆==,所以sin bc A =①,(中线AD 怎样用b ,c 表示?可用向量处理)因为D 为BC 中点,所以1()2AD AB AC =+ ,从而2AD AB AC =+ ,故22242AD AB AC AB AC =++⋅ ,所以222cos 4c b cb A ++=,将228b c +=代入上式化简得cos 2bc A =-②,(我们希望找的是b ,c 的方程,故由①②消去A ,平方相加即可)由①②得222222sin cos 16b c A b c A +=,所以4bc =③,由228b c +=可得2()28b c bc +-=,所以4b c +==,结合式③可得2b c ==.18.(2023·新高考Ⅱ卷·18·★★★★)已知{}n a 为等差数列,6,2,n n na nb a n -⎧⎪=⎨⎪⎩为奇数为偶数,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,432S =,316T =.(1)求{}n a 的通项公式;(2)证明:当5n >时,n n T S >.解:(1)(给出了两个条件,把它们用1a 和d 翻译出来,即可建立方程组求解1a 和d )由题意,414632S a d =+=①,31231231111(6)2(6)62()26441216T b b b a a a a a d a d a d =++=-++-=-++++-=+-=②,由①②解得:15a =,2d =,所以1(1)23n a a n d n =+-=+.(2)由(1)可得21()(523)422n n n a a n n S n n +++===+,(要证结论,还需求n T ,由于n b 按奇偶分段,故求n T 也应分奇偶讨论,先考虑n 为偶数的情形)当(5)n n >为偶数时,12n nT b b b =++⋅⋅⋅+12341(6)2(6)2(6)2n n a a a a a a -=-++-++⋅⋅⋅+-+13124()62()2n n n a a a a a a -=++⋅⋅⋅+-⨯+++⋅⋅⋅+③,因为131,,,n a a a -⋅⋅⋅和24,,,n a a a ⋅⋅⋅分别也构成等差数列,所以211131()(521)32242n n n a a n n n n a a a --++++++⋅⋅⋅+===,2224()(723)52242n n n a a n n n n a a a ++++++⋅⋅⋅+===,代入③化简得:222353732222n n n n n n n T n +++=-+⨯=,(要由此证n n T S >,可作差比较)所以2237(4)022n n n n n n T S n n 2+--=-+=>,故n n T S >;(对于n 为奇数的情形,可以重复上述计算过程,但更简单的做法是补1项凑成偶数项,再减掉补的那项)当(5)n n >为奇数时,2113(1)7(1)2n n n n n T T b +++++=-=-2213(1)7(1)351022(25)22n n n n n a n +++++-=-+=,所以223510(4)2n n n n T S n n +--=-+2310(2)(5)022n n n n --+-==>,故n n T S >;综上所述,当5n >时,总有n n T S >.19.(2023·新高考Ⅱ卷·19·★★★)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该项指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p c ;误诊率是将未患病者判定为阳性的概率,记为()q c .假设数据在组内均匀分布.以事件发生的频率作为相应事件发生的概率.(1)当漏诊率()0.5%p c =时,求临界值c 和误诊率()q c ;(2)设函数()()()f c p c q c =+.当[95,105]c ∈时,求()f c 的解析式,并求()f c 在区间[95,105]的最小值.解:(1)(给的是漏诊率,故先看患病者的图,漏诊率为0.5%即小于或等于c 的频率为0.5%,可由此求c )由患病者的图可知,[95,100)这组的频率为50.0020.010.005⨯=>,所以c 在[95,100)内,且(95)0.0020.005c -⨯=,解得:97.5c =;(要求()q c ,再来看未患病者的图,()q c 是误诊率,也即未患病者判定为阳性(指标大于c )的概率)由未患病者的图可知指标大于97.5的概率为(10097.5)0.0150.0020.035-⨯+⨯=,所以() 3.5%q c =.(2)([95,105]包含两个分组,故应分类讨论)当95100c ≤<时,()(95)0.002p c c =-⨯,()(100)0.0150.002q c c =-⨯+⨯,所以()()()0.0080.82f c p c q c c =+=-+,故()0.0081000.820.02f c >-⨯+=①;当100105c ≤≤时,()50.002(100)0.012p c c =⨯+-⨯,()(105)0.002q c c =-⨯,所以()()()0.010.98f c p c q c c =+=-,故()(100)0.011000.980.02f c f ≥=⨯-=②;所以0.0080.82,95100()0.010.98,100105c c f c c c -+≤<⎧=⎨-≤≤⎩,且由①②可得min ()0.02f c =.20.(2023·新高考Ⅱ卷·20·★★★)如图,三棱锥A BCD -中,DA DB DC ==,BD CD ⊥,o 60ADB ADC ∠=∠=,E 为BC 的中点.(1)证明:BC DA ⊥;(2)点F 满足EF DA = ,求二面角D AB F --的正弦值.解:(1)(BC 和DA 是异面直线,要证垂直,需找线面垂直,可用逆推法,假设BC DA ⊥,注意到条件中还有DB DC =,所以BC DE ⊥,二者结合可得到BC ⊥面ADE ,故可通过证此线面垂直来证BC DA ⊥)因为DA DB DC ==,o 60ADB ADC ∠=∠=,所以ADB ∆和ADC ∆是全等的正三角形,故AB AC =,又E 为BC 中点,所以BC AE ⊥,BC DE ⊥,因为AE ,DE ⊂平面ADE ,AE DE E = ,所以BC ⊥平面ADE ,又DA ⊂平面ADE ,所以BC DA ⊥.(2)(由图可猜想AE ⊥面BCD ,若能证出这一结果,就能建系处理,故先尝试证明)不妨设2DA DB DC ===,则2AB AC ==,因为BD CD ⊥,所以BC ==,故12DE CE BE BC ====AE ==所以2224AE DE AD +==,故AE DE ⊥,所以EA ,EB ,ED 两两垂直,以E为原点建立如图所示的空间直角坐标系,则A,D,B ,所以(DA =,AB = ,由EF DA = 可知四边形ADEF 是平行四边形,所以FA ED == ,设平面DAB 和平面ABF 的法向量分别为111(,,)x y z =m ,222(,,)x y z =n ,则111100DA AB ⎧⋅=+=⎪⎨⋅==⎪⎩ m m ,令11x =,则1111y z =⎧⎨=⎩,所以(1,1,1)=m 是平面DAB的一个法向量,22200AB FA ⎧⋅=-=⎪⎨⋅==⎪⎩ n n ,令21y =,则2201x z =⎧⎨=⎩,所以(0,1,1)=n 是平面ABF 的一个法向量,从而cos ,⋅<>===⋅m n m n m n D AB F --的正弦值为=21.(2023·新高考Ⅱ卷·21·★★★★)已知双曲线C的中心为坐标原点,左焦点为(-.(1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点(4,0)-的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于点P ,证明:点P 在定直线上.解:(1)设双曲线方程为()222210,0x y a b a b-=>>,由焦点坐标可知c =则由c e a==可得2a =,4b ==,双曲线方程为221416x y -=.(2)由(1)可得()()122,0,2,0A A -,设()()1122,,,M x y N x y ,显然直线的斜率不为0,所以设直线MN 的方程为4x my =-,且1122m -<<,与221416x y -=联立可得()224132480m y my --+=,且264(43)0m ∆=+>,则1212223248,4141m y y y y m m +==--,直线1MA 的方程为()1122y y x x =++,直线2NA 的方程为()2222y y x x =--,联立直线1MA 与直线2NA 的方程可得:()()()()()2121121211212121222222266y x y my my y y y y x x y x y my my y y +--+++==--=--112221122483216222141414148483664141m m m y y m m m m m y y m m -⋅-⋅++---===-⨯----,由2123x x +=--可得=1x -,即1P x =-,据此可得点P 在定直线=1x -上运动.【点睛】关键点点睛:求双曲线方程的定直线问题,意在考查学生的计算能力,转化能力和综合应用能力,其中根据设而不求的思想,利用韦达定理得到根与系数的关系可以简化运算,是解题的关键.22.(2023·新高考Ⅱ卷·22·★★★★)(1)证明:当01x <<时,2sin x x x x -<<;(2)已知函数2()cos ln(1)f x ax x =--,若0x =是()f x 的极大值点,求a 的取值范围.解:(1)构建()()sin ,0,1F x x x x =-∈,则()1cos 0F x x '=->对()0,1x ∀∈恒成立,则()F x 在()0,1上单调递增,可得()()00F x F >=,所以()sin ,0,1x x x >∈;构建()()()22sin sin ,0,1G x x x x x x x x =--=-+∈,则()()21cos ,0,1G x x x x '=-+∈,构建()()(),0,1g x G x x '=∈,则()2sin 0g x x '=->对()0,1x ∀∈恒成立,则()g x 在()0,1上单调递增,可得()()00g x g >=,即()0G x '>对()0,1x ∀∈恒成立,则()G x 在()0,1上单调递增,可得()()00G x G >=,所以()2sin ,0,1x x x x >-∈;综上所述:sin x x x x 2-<<.(2)令210x ->,解得11x -<<,即函数()f x 的定义域为()1,1-,若0a =,则()()()2ln 1,1,1f x x x =--∈-,因为ln y u =-在定义域内单调递减,21y x =-在()1,0-上单调递增,在()0,1上单调递减,则()()2ln 1f x x =--在()1,0-上单调递减,在()0,1上单调递增,故0x =是()f x 的极小值点,不合题意,所以0a ≠.当0a ≠时,令0b a =>因为()()()()()222cos ln 1cos ln 1cos ln 1f x ax x a x x bx x =--=--=--,且()()()()()22cos ln 1cos ln 1f x bx x bx x f x ⎡⎤-=----=--=⎣⎦,所以函数()f x 在定义域内为偶函数,由题意可得:()()22sin ,1,11x f x b bx x x =--∈'--,(i )当202b <≤时,取1min ,1m b ⎧⎫=⎨⎬⎩⎭,()0,x m ∈,则()0,1bx ∈,由(1)可得()()()2222222222sin 111x b x b x x f x b bx b x x x x+-'=-->--=---,且22220,20,10b x b x >-≥->,所以()()2222201x b x b f x x +-'>>-,即当()()0,0,1x m ∈⊆时,()0f x ¢>,则()f x 在()0,m 上单调递增,结合偶函数的对称性可知:()f x 在(),0m -上单调递减,所以0x =是()f x 的极小值点,不合题意;(ⅱ)当22b >时,取()10,0,1x b ⎛⎫∈⊆ ⎪⎝⎭,则()0,1bx ∈,由(1)可得()()()2233223222222sin 2111x x x f x b bx b bx b x b x b x b x b x x x'=--<---=-+++----,构建()33223212,0,h x b x b x b x b x b ⎛⎫=-+++-∈ ⎪⎝⎭,则()3223132,0,h x b x b x b x b ⎛⎫'=-++∈ ⎪⎝⎭,且()33100,0h b h b b b ⎛⎫''=>=-> ⎪⎝⎭,则()0h x '>对10,x b ⎛⎫∀∈ ⎪⎝⎭恒成立,可知()h x 在10,b ⎛⎫ ⎪⎝⎭上单调递增,且()21020,20h b h b ⎛⎫=-<=> ⎪⎝⎭,所以()h x 在10,b ⎛⎫ ⎪⎝⎭内存在唯一的零点10,n b ⎛⎫∈ ⎪⎝⎭,当()0,x n ∈时,则()0h x <,且20,10x x >->,则()()3322322201x f x b x b x b x b x'<-+++-<-,即当()()0,0,1x n ∈⊆时,()0f x '<,则()f x 在()0,n 上单调递减,结合偶函数的对称性可知:()f x 在(),0n -上单调递增,所以0x =是()f x 的极大值点,符合题意;综上所述:22b >,即22a >,解得aa <故a 的取值范围为(),-∞+∞ .。

2023年全国统一高考数学试卷以及答案解析(全国2卷)

2023年全国统一高考数学试卷以及答案解析(全国2卷)

2023年全国统一高考数学试卷以及答案
解析(全国2卷)
简介
本文档为2023年全国统一高考数学试卷及答案解析提供了全
国2卷的详细内容。

试卷由相关教育机构编写,并经过严格审核确
保质量。

以下是试卷和答案解析的概要。

试卷内容
试卷分为多个部分,涵盖了数学的各个领域和知识点。

主要的
考查内容包括但不限于:代数、几何、概率与统计、函数与解析几
何等。

试卷设置了不同难度的题目,旨在全面考查学生的数学能力
和应试能力。

答案解析
答案解析部分为每个试题提供了详细的解题方法和步骤。

通过
阅读答案解析,学生能够理解每道题目的解题思路和方法。

答案解
析还包括常见错误的解释和注意事项,帮助学生避免犯同样的错误。

注意事项
1. 本文档提供的试卷及答案解析仅供研究和参考,不可作为学生高考成绩的依据。

2. 学生在参考本文档时应保持独立思考,不应完全依赖答案解析提供的答案。

3. 文档中提供的内容经过审核,但仍有可能存在错误或遗漏,敬请谅解。

结束语
希望本文档能为广大学生提供有价值的研究参考。

祝愿各位同学在2023年全国统一高考中取得优异的成绩!
---
该文档由Writing Documents助手编写。

如有疑问,请及时反馈。

2022年新高考全国II卷数学真题 (2)

2022年新高考全国II卷数学真题 (2)

一、单选题1. 八卦是中国文化的基本哲学概念,图1是八卦模型图,其平面图形为图2中的正八边形,其中,给出下列结论:①与的夹角为;②;③;④向量在向量上的投影向量为(其中是与同向的单位向量).其中正确结论的个数为( )A .1B .2C .3D .42. 如图,在三棱锥中,,且,则三棱锥体积的最大值为()A.B.C.D.3. 设i 为虚数单位,若是纯虚数,则的值是( )A.B .0C .1D .24.已知函数,则“”是,的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5. 三棱锥A -BCD 的所有棱长都相等,M ,N 分别是棱AD ,BC 的中点,则异面直线BM 与AN 所成角的余弦值为( )A.B.C.D.6. 函数的部分图象大致为A.B.C.D.7. 已知全集U ={0,1,2,3,4,5},集合A ={0,1,2},B ={5},那么(∁U A )∪B =2022年新高考全国II卷数学真题 (2)2022年新高考全国II卷数学真题 (2)二、多选题三、填空题四、解答题A .{0,1,2}B .{3,4,5}C .{1,4,5}D .{0,1,2,5}8.已知函数,若是的一个极大值点,则的取值范围为( )A.B.C.D.9. 甲、乙两人6次模拟考试英语成绩(不含听力)的统计折线图如下图所示,下列说法中正确的是()A .若甲、乙两组成绩的平均数分别为,则B .若甲、乙两组成绩的方差分别为,则C .甲成绩的中位数大于乙成绩的第三四分位数D .甲成绩的极差大于乙成绩的极差10. 某地区公共部门为了调查本地区中学生的吸烟情况,对随机抽出的编号为1~1000的1000名学生进行了调查.调查中使用了两个问题,问题1:你的编号是否为奇数?问题2:你是否吸烟?被调查者从设计好的随机装置(内有除颜色外完全相同的白球50个,红球50个)中摸出一个小球(摸完放回):摸到白球则如实回答问题1,摸到红球则如实回答问题2,回答“是”的人在一张白纸上画一个“√”,回答“否”的人什么都不用做,由于问题的答案只有“是”和“否”,而且回答的是哪个问题也是别人不知道的,因此被调查者可以毫无顾忌的给出真实的答案.最后统计得出,这1000人中,共有265人回答“是”,则下列表述正确的是( )A .估计被调查者中约有15人吸烟B .估计约有15人对问题2的回答为“是”C .估计该地区约有3%的中学生吸烟D .估计该地区约有1.5%的中学生吸烟11.已知点为椭圆()的左焦点,过原点的直线交椭圆于,两点,点是椭圆上异于,的一点,直线,分别为,,椭圆的离心率为,若,,则( )A.B.C.D.12. 甲、乙两位射击爱好者,各射击10次,甲的环数从小到大排列为4,5,5,6,6,7,7,8,8,9,乙的环数从小到大排列为2,5,6,6,7,7,7,8,9,10,则( )A .甲、乙的第70百分位数相等B .甲的极差比乙的极差小C .甲的平均数比乙的平均数大D .甲的方差比乙的方差大13. 已知函数,则方程的解为________.14.已知椭圆的左焦点为F ,若A 、B 是椭圆上两动点,且垂直于x 轴,则周长的最大值为___________.15.已知,且,则__________.16.已知函数(1)判断并证明函数的奇偶性;(2)求不等式的解集.17. 某汽车零件加工厂为迎接国庆大促销活动预估国庆七天销售量,该厂工作人员根据以往该厂的销售情况,绘制了该厂日销售量的频率分布直方图,如图所示,将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)根据频率分布直方图估计该厂的日平均销售量;(每组以中点值为代表)(2)求未来天内,连续天日销售量不低于吨,另一天日销售量低于吨的概率;(3)用表示未来天内日销售量不低于吨的天数,求随机变量的分布列、数学期望与方差.18. 已知函数,曲线在点处的切线方程为.(1)求实数、的值;(2)令,函数的极大值与极小值之差等于,求实数的值.19.的内角,,的对边分别为,,,且.(1)求角;(2)若角的平分线交于点,且,的面积为,求的周长.20. 在中,角,,的对边分别为,,,已知.(1)若,的面积为,求的值;(2)若,求的取值范围.21. 已知菱形的一对内角各为,边长为4,以菱形对角线所在的直线为坐标轴建立直角坐标系,以菱形角的两个顶点为焦点,并且过菱形的另外两个顶点作椭圆,求椭圆方程.。

2022年全国新高考II卷数学真题及答案

2022年全国新高考II卷数学真题及答案
对C,当 时, , ,直线 不是对称轴;
对D,由 得: ,
解得 或 ,
从而得: 或 ,
所以函数 在点 处的切线斜率为 ,
切线方程为: 即 .
故选:AD.
10. 已知O为坐标原点,过抛物线 的焦点F的直线与C交于A,B两点,点A在第一象限,点 ,若 ,则( )
A. 直线 的斜率为 B.
C. D.
【答案】ACD
2022年全国新高考II卷数学真题及答案
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
3.考试结束后,将本试卷和答题卡一并交回.
【解析】
【分析】由 及抛物线方程求得 ,再由斜率公式即可判断A选项;表示出直线 的方程,联立抛物线求得 ,即可求出 判断B选项;由抛物线的定义求出 即可判断C选项;由 , 求得 , 为钝角即可判断D选项.
【详解】
对于A,易得 ,由 可得点 在 的垂直平分线上,则 点横坐标为 ,
代入抛物线可得 ,则 ,则直线 的斜率为 ,A正确;
【答案】A
【解析】
【分析】根据题意可求出正三棱台上下底面所在圆面 半径 ,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.
【详解】设正三棱台上下底面所在圆面的半径 ,所以 ,即 ,设球心到上下底面的距离分别为 ,球的半径为 ,所以 , ,故 或 ,即 或 ,解得 符合题意,所以球的表面积为 .
A. B.
C. D.
【答案】CD
【解析】
【分析】直接由体积公式计算 ,连接 交 于点 ,连接 ,由 计算出 ,依次判断选项即可.

2024理科高考数学全国2卷真题

2024理科高考数学全国2卷真题

2024理科高考数学全国2卷真题一、文章类型本文将根据2024年理科高考数学全国2卷真题进行撰写,以记叙文的形式展现考题的真实情境和解题思路。

二、文章提纲1、引子:介绍2024年理科高考数学全国2卷的整体特点,强调高考对于学生数学素养的考察。

2、情景一:选择题部分,题目涉及数学概念、解题技巧和实际应用。

3、情景二:填空题部分,题目要求考生运用所学的数学知识进行推理、分析和计算。

4、情景三:解答题部分,题目考察了考生的综合数学能力,包括几何、代数、概率统计等方面的知识。

5、解题思路:针对各个情景的题目,分别给出相应的解题思路和方法,强调数学思维和实际应用的重要性。

6、总结:回顾高考数学全国2卷的命题特点,强调数学学习需要注重基础知识、解题技巧和实际应用,同时培养学生的创新思维和实践能力。

三、文章内容引子: 2024年高考如期而至,理科高考数学全国2卷依然保持着其一贯的命题风格,既注重基础知识的考察,又强调数学的实际应用。

此次高考数学全国2卷的命题特点,依然是以考察学生的数学素养为主,强调学生的综合素质和创新能力。

情景一:在选择题部分,题目设计涉及数学概念、解题技巧和实际应用。

其中有一道题目考察了函数的定义域和值域的概念,题目采用了文字叙述的方式,考察了学生对于数学概念的掌握程度。

还有一道题目考察了概率的计算方法,要求学生能够根据实际情况进行计算。

这些题目都注重对于数学基础知识的考察,同时也强调了学生的实际应用能力。

情景二:在填空题部分,题目要求考生运用所学的数学知识进行推理、分析和计算。

其中有一道题目考察了解方程的方法,要求考生能够根据方程的特点进行求解。

还有一道题目考察了向量的基本概念和运算方法,要求考生能够根据题目要求进行计算。

这些题目都注重对于数学解题技巧的考察,同时也强调了学生的逻辑推理能力。

情景三:在解答题部分,题目考察了考生的综合数学能力,包括几何、代数、概率统计等方面的知识。

其中有一道题目考察了几何图形的面积计算方法,要求考生能够根据几何知识进行计算。

2022年新高考全国Ⅱ卷数学真题及参考答案

2022年新高考全国Ⅱ卷数学真题及参考答案

一、选择题1. 已知函数f(x) = x^2 2x + 1,求f(x)的极值。

答案:f(x)的极值为0。

2. 若等差数列{an}的前n项和为Sn,且Sn = 2n^2 3n,求公差d。

答案:d = 4。

3. 设圆C的方程为(x 1)^2 + (y 2)^2 = 4,求圆C的半径。

答案:半径为2。

4. 若随机变量X服从正态分布N(0, 1),求P(X < 0)。

答案:P(X < 0) = 0.5。

5. 已知等比数列{bn}的前n项和为Tn,且Tn = 2^n 1,求公比q。

答案:q = 2。

二、填空题1. 已知函数g(x) = x^3 3x,求g(x)的导数。

答案:g'(x) = 3x^2 3。

2. 若等差数列{cn}的前n项和为Sn,且Sn = 3n^2 + 2n,求首项c1。

答案:c1 = 5。

3. 已知圆C的方程为(x 1)^2 + (y 2)^2 = 4,求圆心坐标。

答案:圆心坐标为(1, 2)。

4. 若随机变量Y服从二项分布B(n, p),且P(Y = 2) = 3P(Y = 1),求n和p。

答案:n = 3,p = 1/2。

5. 已知等比数列{dn}的前n项和为Tn,且Tn = 2^n 1,求首项d1。

答案:d1 = 1。

三、解答题1. 已知函数h(x) = (x 1)^2,求h(x)的单调区间。

答案:h(x)的单调递增区间为(∞, 1),单调递减区间为(1, +∞)。

2. 若等差数列{en}的前n项和为Sn,且Sn = 3n^2 2n,求公差d。

答案:d = 6。

3. 已知圆C的方程为(x 1)^2 + (y 2)^2 = 4,求圆C与x轴的交点坐标。

答案:交点坐标为(1, 0)。

4. 若随机变量Z服从泊松分布P(λ),且P(Z = 1) = P(Z = 2),求λ。

答案:λ = 2。

5. 已知等比数列{fn}的前n项和为Tn,且Tn = 2^n 1,求公比q。

答案:q = 2。

2023年新高考II卷数学真题(解析版)

2023年新高考II卷数学真题(解析版)

1 q
故选:C.
方法二:设等比数列an 的公比为 q ,
因为 S4 5, S6 21S2 ,所以 q 1,否则 S4 0 ,
从而, S2, S4 S2, S6 S4, S8 S6 成等比数列,
所以有, 5
S2
2
S2
21S2
5 ,解得:
S2
1 或
S2
5 4

当 S2 1时, S2, S4 S2, S6 S4, S8 S6 ,即为 1, 4, 16, S8 21,
A. bc 0
B. ab 0
C. b2 8ac 0
).
D. ac 0
【答案】BCD 【解析】
【分析】求出函数 f (x) 的导数 f (x) ,由已知可得 f (x) 在 (0, ) 上有两个变号零点,转化为一元二次方
程有两个不等的正根判断作答.
【详解】函数
f
(x)
a ln
x
b xc x2Fra bibliotekA. 该圆锥的体积为 π
B. 该圆锥的侧面积为 4 3π
C. AC 2 2
D. △PAC 的面积为 3
【答案】AC 【解析】 【分析】根据圆锥的体积、侧面积判断 A、B 选项的正确性,利用二面角的知识判断 C、D 选项的正确性.
【详解】依题意, APB 120, PA 2 ,所以 OP 1,OA OB 3 ,
B. MN 8 3
D. OMN 为等腰三角形
【分析】先求得焦点坐标,从而求得 p ,根据弦长公式求得 MN ,根据圆与等腰三角形的知识确定正确答
案.
【详解】A 选项:直线 y 3 x 1 过点 1, 0 ,所以抛物线 C : y2 2 px p 0 的焦点 F 1, 0 ,

2022年新高考全国II卷数学真题含答案解析

2022年新高考全国II卷数学真题含答案解析

a,c
cos b,
c
,即
9
3t16 5c
3
c
t
,解得
t
5
,
故选:C
5. 有甲、乙、丙、丁、戊 5 名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方
式共有( )
A. 12 种
B. 24 种
C. 36 种
D. 48 种
【答案】B
【解析】
【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解
[方法二]:特殊值排除法
解法一:设 β=0 则 sinα +cosα =0,取 = ,排除 A, B; 2
再取 α=0 则 sinβ +cosβ= 2sinβ,取 β = ,排除 D;选 C.
4
[方法三]:三角恒等变换
sin( ) cos( ) 2 sin( )= 2 sin([ ) ]
【答案】B
【解析】
【分析】方法一:求出集合 B 后可求 A B .
【详解】[方法一]:直接法
因为 B x | 0 x 2 ,故 A B 1, 2 ,故选:B.
[方法二]:【最优解】代入排除法
x 1 代入集合 B x x 1 1 ,可得 2 1,不满足,排除 A、D; x 4 代入集合 B x x 1 1 ,可得 3 1 ,不满足,排除 C.
2π 3
,
3π 2
,由正弦函数
y
sin
u
图象知
y
f
(x)

0,
5π 12
上是单
调递减;

B,当
x
π 12
,
11π 12
时,

2022年新高考全国II卷数学真题含答案解析

2022年新高考全国II卷数学真题含答案解析
【分析】分 和 两种情况,当 时设切点为 ,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出 ,即可求出切线方程,当 时同理可得;
【详解】[方法一]:化为分段函数,分段求
分 和 两种情况,当 时设切点为 ,求出函数 导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出 ,即可求出切线方程,当 时同理可得;
【详解】[方法一]:赋值加性质
因为 ,令 可得, ,所以
,令 可得, ,即 ,所以函数 为偶函数,令 得, ,即有 ,从而可知 , ,故 ,即 ,所以函数 的一个周期为 .因为 , , , , ,所以
一个周期内的 .由于22除以6余4,
所以 .故选:A.
[方法二]:【最优解】构造特殊函数
由 ,联想到余弦函数和差化积公式
代入集合 ,可得 ,不满足,排除A、D;
代入集合 ,可得 ,不满足,排除C.
故选:B.
【整体点评】方法一:直接解不等式,利用交集运算求出,是通性通法;
方法二:根据选择题特征,利用特殊值代入验证,是该题的最优解.
2. ()
A. B. C. D.
【答案】D
【解析】
【分析】利用复数的乘法可求 .
【详解】 ,
所以直线 ,即
[方法三]:
令 的中点为 ,因为 ,所以 ,
设 , ,则 , ,
所以 ,即
所以 ,即 ,设直线 , , ,
令 得 ,令 得 ห้องสมุดไป่ตู้即 , ,所以 ,
即 ,解得 或 (舍去),
又 ,即 ,解得 或 (舍去),
所以直线 ,即 ;
故答案为:
四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.

2020全国2卷高考数学试题(试卷版+解析版)

2020全国2卷高考数学试题(试卷版+解析版)

2020全国2卷高考数学试题(试卷版+解析版)1.已知集合 $A=\{-1.1\}$,$B=\{1.2\}$,$C=\{-2.-1.1.2.3\}$,则 $(A\cup B)\cup C$ 等于哪个集合。

A。

$\{-2.3\}$B。

$\{-2.2.3\}$C。

$\{-2.-1.3\}$D。

$\{-2.-1.1.2.3\}$2.若 $\alpha$ 为第四象限角,则 $\cos2\alpha$ 的大小关系是。

A。

$\cos2\alpha>0$B。

$\cos2\alpha<0$C。

$\sin2\alpha>0$D。

$\sin2\alpha<0$3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成 1200 份订单的配货。

由于订单量大幅增加,导致订单积压。

为解决困难,许多志愿者踊跃报名参加配货工作。

已知该超市某日积压 500 份订单未配货,预计第二天的新订单超过 1600 份的概率为 0.05.志愿者每人每天能完成 50 份订单的配货。

为使第二天完成积压订单及当日订单的配货的概率不小于 0.95,则至少需要多少名志愿者。

A。

10 名B。

18 名C。

24 名D。

32 名4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层。

上层中心有一块圆形石板(称为天心石),环绕天心石砌9 块扇面形石板构成第一环,向外每环依次增加 9 块。

下一层的第一环比上一层的最后一环多 9 块,向外每环依次也增加 9 块。

已知每层环数相同,且下层比中层多 729 块,则三层共有扇面形石板(不含天心石)多少块。

A。

3699 块B。

3474 块C。

3402 块D。

3339 块5.若过点 $(2,1)$ 的圆与两坐标轴都相切,则圆心到直线$2x-y-3=0$ 的距离为多少。

A。

$\frac{5}{\sqrt{5}}$B。

$\frac{25}{\sqrt{5}}$C。

$\frac{35}{\sqrt{5}}$D。

2022年新高考全国Ⅱ卷数学试题及答案解析

2022年新高考全国Ⅱ卷数学试题及答案解析

2022年普通高等学校招生全国统一考试(新高考Ⅱ卷)数学一、单选题(本大题共8小题,共40.0分)1.已知集合A={−1,1,2,4},B={x||x−1|≤1},则A∩B=()A. {−1,2}B. {1,2}C. {1,4}D. {−1,4}2.(2+2i)(1−2i)=()A. −2+4iB. −2−4iC. 6+2iD. 6−2i3.图1是中国古代建筑中的举架结构,AA′,BB′,CC′,DD′是桁,相邻桁的水平距离称为步,垂直距离称为举.图2是某古代建筑屋顶截面的示意图,其中DD1,CC1,BB1,AA1是举,OD1,DC1,CB1,BA1是相等的步,相邻桁的举步之比分别为DD1OD1=0.5,CC1 DC1=k1,BB1CB1=k2,AA1BA1=k3.已知k1,k2,k3成公差为0.1的等差数列,且直线OA的斜率为0.725,则k3=()A. 0.75B. 0.8C. 0.85D. 0.94.已知向量a⃗=(3,4),b⃗ =(1,0),c⃗=a⃗+t b⃗ ,若<a⃗,c⃗>=<b⃗ ,c⃗>,则t=()A. −6B. −5C. 5D. 65.甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同的排列方式共有()A. 12种B. 24种C. 36种D. 48种6.若sin(α+β)+cos(α+β)=2√2cos(α+π4)sinβ,则()A. tan(α−β)=1B. tan(α+β)=1C. tan(α−β)=−1D. tan(α+β)=−17.已知正三棱台的高为1,上、下底面边长分别为3√3和4√3,其顶点都在同一球面上,则该球的表面积为()A. 100πB. 128πC. 144πD. 192π8. 已知函数f(x)的定义域为R ,且f(x +y)+f(x −y)=f(x)f(y),f(1)=1,则∑f 22k=1(k)=( )A. −3B. −2C. 0D. 1二、多选题(本大题共4小题,共20.0分)9. 已知函数f(x)=sin(2x +φ)(0<φ<π)的图像关于点(2π3,0)中心对称,则( )A. f(x)在区间(0,5π12)单调递减 B. f(x)在区间(−π12,11π12)有两个极值点C. 直线x =7π6是曲线y =f(x)的对称轴D. 直线y =√32−x 是曲线y =f(x)的切线10. 已知O 为坐标原点,过抛物线C :y 2=2px(p >0)焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点M(p,0).若|AF|=|AM|,则( )A. 直线AB 的斜率为2√6B. |OB|=|OF|C. |AB|>4|OF|D. ∠OAM +∠OBM <180°11. 如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,FB//ED ,AB =ED =2FB.记三棱锥E −ACD ,F −ABC ,F −ACE 的体积分别为V 1,V 2,V 3,则( )A. V 3=2V 2B. V 3=V 1C. V 3=V 1+V 2D. 2V 3=3V 112. 若x ,y 满足x 2+y 2−xy =1,则( )A. x +y ≤1B. x +y ≥−2C. x 2+y 2≤2D. x 2+y 2≥1三、填空题(本大题共4小题,共20.0分)13. 已知随机变量X 服从正态分布N(2,σ2),且P(2<X ≤2.5)=0.36,则P(X >2.5)=______.14. 曲线y =ln|x|过坐标原点的两条切线的方程为______,______.15. 设点A(−2,3),B(0,a),若直线AB 关于y =a 对称的直线与圆(x +3)2+(y +2)2=1有公共点,则a 的取值范围是______.16.已知直线l与椭圆x26+y23=1在第一象限交于A,B两点,l与x轴、y轴分别相交于M,N两点,且|MA|=|NB|,|MN|=2√3,则l的方程为______.四、解答题(本大题共6小题,共70.0分)17.已知{a n}是等差数列,{b n}是公比为2的等比数列,且a2−b2=a3−b3=b4−a4.(1)证明:a1=b1;(2)求集合{k|b k=a m+a1,1≤m≤500}中元素的个数.18.记△ABC的内角A,B,C的对边分别为a,b,c,分别以a,b,c为边长的三个正三角形的面积依次为S1,S2,S3.已知S1−S2+S3=√32,sinB=13.(1)求△ABC的面积;(2)若sinAsinC=√23,求b.19.在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患者的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).20.如图,PO是三棱锥P−ABC的高,PA=PB,AB⊥AC,E为PB的中点.(1)证明:OE//平面PAC;(2)若∠ABO=∠CBO=30°,PO=3,PA=5,求二面角C−AE−B的正弦值.21.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±√3x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P(x1,y1),Q(x2,y2)在C上,且x1>x2>0,y1>0.过P且斜率为−√3的直线与过Q且斜率为√3的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立.①M在AB上;②PQ//AB;③|MA|=|MB|.注:若选择不同的组合分别解答,则按第一个解答计分.已知函数f(x)=xe ax−e x.(1)当a=1时,讨论f(x)的单调性;(2)当x>0时,f(x)<−1,求a的取值范围;(3)设n∈N∗,证明:1√12+1+1√22+2+⋯+1√n2+n>ln(n+1).答案解析1.【答案】B【解析】解:|x −1|≤1,解得:0≤x ≤2, ∴集合B ={x|0≤x ≤2} ∴A ∩B ={1,2}. 故选:B .解不等式求集合B ,再根据集合的运算求解即可.本题主要考查集合的基本运算,利用集合的关系是解决本题的关键.2.【答案】D【解析】解:(2+2i)(1−2i)=2−4i +2i −4i 2=6−2i . 故选:D .由已知结合复数的四则运算即可求解. 本题主要考查了复数的四则运算,属于基础题.3.【答案】D【解析】解:设OD 1=DC 1=CB 1=BA 1=1,则CC 1=k 1,BB 1=k 2,AA 1=k 3, 由题意得:k 1=k 3−0.2,k 2=k 3−0.1, 且DD 1+CC 1+BB 1+AA 1OD1+DC 1+CB 1+BA 1=0.725,解得k 3=0.9, 故选:D . 由题意DD 1+CC 1+BB 1+AA 1OD1+DC 1+CB 1+BA 1=0.725,结合等差数列的性质求解即可.本题主要考查等差数列的性质,结合阅读材料,考查学生的知识运用能力,是基础题.4.【答案】C【解析】解:∵向量a ⃗ =(3,4),b ⃗ =(1,0),c ⃗ =a ⃗ +t b ⃗ , ∴c ⃗ =(3+t,4), ∵<a ⃗ ,c ⃗ >=<b ⃗ ,c ⃗ >, ∴a ⃗ ⋅c ⃗|a ⃗ |⋅|c ⃗ |=b ⃗ ⋅c ⃗|b ⃗ |⋅|c ⃗ |,∴25+3t 5=3+t 1,解得实数t =5.先利用向量坐标运算法则求出c ⃗ =(3+t,4),再由<a ⃗ ,c ⃗ >=<b ⃗ ,c ⃗ >,利用向量夹角余弦公式列方程,能求出实数t 的值.本题考查实数值的求法,考查向量坐标运算法则、向量夹角余弦公式等基础知识,考查运算求解能力,是基础题.5.【答案】B【解析】解:把丙和丁捆绑在一起,4个人任意排列,有A 22⋅A 44=48种情况,甲站在两端的情况有33C 21A A 22=24种情况,∴甲不站在两端,丙和丁相邻的不同排列方式有48−24=24种, 故选:B .利用捆绑法求出丙和丁相邻的不同排列方式,再减去甲站在两端的情况即可求出结果. 本题考查排列组合的应用,本题运用排除法,可以避免讨论,简化计算,属于基础题.6.【答案】C【解析】解:因为sin(α+β)+cos(α+β)=2√2cos(α+π4)sinβ, 所以√2sin(α+β+π4)=2√2cos(α+π4)sinβ, 即sin(α+β+π4)=2cos(α+π4)sinβ,所以sin(α+π4)cosβ+sinβcos(α+π4)=2cos(α+π4)sinβ, 所以sin(α+π4)cosβ−sinβcos(α+π4)=0, 所以sin(α+π4−β)=0, 所α+π4−β=kπ,k ∈Z , 所以α−β=kπ−π4, 所以tan(α−β)=−1. 故选:C .由已知结合辅助角公式及和差角公式对已知等式进行化简可求α−β,进而可求. 本题主要考查了辅助角公式,和差角公式在三角化简求值中的应用,解题的关键是公式的灵活应用,属于中档题.=3,下底面所在【解析】解:由题意得,上底面所在平面截球所得圆的半径为3√32sin60°=4,如图,平面截球所得圆的半径为4√32sin60°设球的半径为R,则轴截面中由几何知识可得√R2−32+√R2−42=1,解得R=5,∴该球的表面积为4πR2=4π×25=100π.故选:A.求出上底面及下底面所在平面截球所得圆的半径,作出轴截面图,根据几何知识可求得球的半径,进而得到其表面积.本题考查球的表面积求解,同时还涉及了正弦定理的运用,考查了运算求解能力,对空间想象能力要求较高,属于较难题目.8.【答案】A【解析】解:令y=1,则f(x+1)+f(x−1)=f(x),即f(x+1)=f(x)−f(x−1),∴f(x+2)=f(x+1)−f(x),f(x+3)=f(x+2)−f(x+1),∴f(x+3)=−f(x),则f(x+6)=−f(x+3)=f(x),∴f(x)的周期为6,令x =1,y =0得f(1)+f(1)=f(1)×f(0),解得f(0)=2, 又f(x +1)=f(x)−f(x −1), ∴f(2)=f(1)−f(0)=−1, f(3)=f(2)−f(1)=−2, f(4)=f(3)−f(2)=−1, f(5)=f(4)−f(3)=1, f(6)=f(5)−f(4)=2,∴∑f 6k=1(k)=1−1−2−1+1+2=0,∴∑f 22k=1(k)=3×0+f(19)+f(20)+f(21)+f(22)=f(1)+f(2)+f(3)+f(4)=−3. 故选:A .先根据题意求得函数f(x)的周期为6,再计算一个周期内的每个函数值,由此可得解. 本题考查抽象函数以及函数周期性的运用,考查运算求解能力,属于中档题.9.【答案】AD【解析】解:因为f(x)=sin(2x +φ)(0<φ<π)的图象关于点(2π3,0)对称, 所以2×2π3+φ=kπ,k ∈Z ,所以φ=kπ−4π3,因为0<φ<π, 所以φ=2π3,故f(x)=sin(2x +2π3),令π2<2x +2π3<3π2,解得−π12<x <5π12,故f(x)在(0,5π12)单调递减,A 正确; x ∈(−π12,11π12),2x +2π3∈(π2,5π2),根据函数的单调性,故函数f(x)在区间(−π12,11π12)只有一个极值点,故B 错误;令2x +2π3=kπ+π2,k ∈Z ,得x =kπ2−π12,k ∈Z ,C 显然错误;结合正弦函数的图象可知,直线y=√32−x显然与y=sin(2x+2π3)相切,故直线y=√32−x显然是曲线的切线,故D正确.故选:AD.直接利用函数的对称性求出函数的关系式,进一步利用函数的性质的判断A、B、C、D 的真假.本题考查的知识要点:三角函数关系式的求法,函数的性质的应用,主要考查学生的运算能力和数学思维能力,属于基础题.10.【答案】ACD【解析】解:如图,∵F(p2,0),M(p,0),且|AF|=|AM|,∴A(3p4,√6p2),由抛物线焦点弦的性质可得x A⋅x B=p24,则x B=p3,则B(p3,−√6p3),∴k AB=k AF=√6p2−03p4−p2=2√6,故A正确;|OB|=√p29+6p29=√7p3,|OF|=p2,|OB|≠|OF|,故B错误;|AB|=3p4+p3+p=25p12>2p=4|OF|,故C正确;|OA|2=33p216,|OB|2=7p29,|AM|2=25p216,|BM|2=10p29,|AB|2=625p2144,∵|OA|2+|OB|2<|AB|2,|AM|2+|BM|2<|AB|2,∴∠AOB,∠AMB均为钝角,可得∠OAM+∠OBM<180°,故D正确.故选:ACD .由已知可得A 的坐标,再由抛物线焦点弦的性质求得B 点坐标,然后逐一分析四个选项得答案.本题考查抛物线的几何性质,考查运算求解能力,是中档题.11.【答案】CD【解析】解:设AB =ED =2FB =2,∵ED ⊥平面ABCD ,∴|ED|为四棱锥E −ABCD 的高, ∵FB//ED ,∴|FB|为三棱锥F −ABC 的高,∵平面ADE//平面FBC ,∴点E 到平面FBC 的距离等于点D 到平面FBC 的距离, 即三棱锥E −FBC 的高=|DC|=2,几何体的体积V =V E−ABCD +V E−FBC +V E−ABF =13×S ABCD ×|ED|+13×S △FBC ×|DC|+13×S △ABF ×|AB|=4,V 1=13×S △ACD ×|ED|=43, V 2=13×S △ABC ×|FB|=23, V 3=V −V 1−V 2=2. 故C 、D 正确,A 、B 错误. 故选:CD .利用等体积法,先求出几何体的体积V ,再求出三棱锥E −ACD ,F −ABC 的体积V 1、V 2,V 3=V −V 1−V 2,可得V 1、V 2、V 3之间的关系.本题主要考查组合体的体积,熟练掌握棱锥的体积公式是解决本题的关键.12.【答案】BC【解析】解:由x 2+y 2−xy =1可得,(x −y2)2+(√32y)2=1,令{x −y2=cosθ√32y =sinθ,则{x =√33sinθ+cosθy =2√33sinθ,∴x +y =√3sinθ+cosθ=2sin(θ+π6)∈[−2,2],故A 错,B 对, ∵x 2+y 2=(√33sinθ+cosθ)2+(2√33sinθ)2=√33sin2θ−13cos2θ+43=23sin(2θ−π6)+43∈[23,2],故C 对,D 错, 故选:BC .原等式可化为,(x −y 2)2+(√32y)2=1,进行三角代换,令{x −y2=cosθ√32y =sinθ,则{x =√33sinθ+cosθy =2√33sinθ,结合三角函数的性质分别求出x +y 与x 2+y 2的取值范围即可.本题主要考查了三角代换求最值,考查了三角函数的性质,同时考查了学生分析问题,转化问题的能力,属于中档题.13.【答案】0.14【解析】解:∵随机变量X 服从正态分布N(2,σ2), ∴P(2<X ≤2.5)+P(X >2.5)=0.5, ∴P(X >2.5)=0.5−0.36=0.14, 故答案为:0.14.利用正态分布曲线的对称性求解.本题主要考查了正态分布曲线的对称性,属于基础题.14.【答案】x −ey =0 x +ey =0【解析】解:当x >0时,y =lnx ,设切点坐标为(x 0,lnx 0), ∵y′=1x ,∴切线的斜率k =1x 0,∴切线方程为y −lnx 0=1x 0(x −x 0),又∵切线过原点,∴−lnx 0=−1, ∴x 0=e ,∴切线方程为y −1=1e (x −e),即x −ey =0,当x <0时,y =ln(−x),与y =lnx 的图像关于y 轴对称, ∴切线方程也关于y 轴对称, ∴切线方程为x +ey =0,综上所述,曲线y =ln|x|经过坐标原点的两条切线方程分别为x −ey =0,x +ey =0, 故答案为:x −ey =0,x +ey =0.当x >0时,y =lnx ,设切点坐标为(x 0,lnx 0),利用导数的几何意义表达出切线的斜率,进而表达出切线方程,再把原点代入即可求出x 0的值,从而得到切线方程,当x <0时,根据对称性可求出另一条切线方程.本题主要考查了利用导数研究曲线上某点处的切线方程,属于中档题.15.【答案】[13,32]【解析】解:点A(−2,3),B(0,a),k AB =a−32,所以直线AB 关于y =a 对称的直线的向量为:3−a 2,所以对称直线方程为:y −a =3−a 2⋅x ,即:(3−a)x −2y +2a =0,(x +3)2+(y +2)2=1的圆心(−3,−2),半径为1, 所以√4+(3−a)2≤1,得12a 2−22a +6≤0,解得a ∈[13,32].故答案为:[13,32].求出AB 的斜率,然后求解直线AB 关于y =a 对称的直线方程,利用圆的圆心到直线的距离小于等于半径,列出不等式求解a 的范围即可.本题考查直线与圆的位置关系的判断与应用,考查转化思想以及计算能力,是中档题.16.【答案】x +√2y −2√2=0【解析】解:设A(x 1,y 1),B(x 2,y 2),线段AB 的中点为E , 由x 126+y 123=1,x 226+y 223=1,相减可得:y 22−y 12x 22−x 12=−12,则k OE ⋅k AB =y 1+y 2x 1+x 2⋅y 2−y1x 2−x 1=y 22−y 12x 22−x 12=−12,设直线l 的方程为:y =kx +m ,k <0,m >0,M(−mk ,0),N(0,m), ∴E(−m 2k ,m2),∴k OE =−k , ∴−k ⋅k =−12,解得k =−√22,∵|MN|=2√3,∴√m 2k 2+m 2=2√3,化为:m 2k 2+m 2=12.∴3m 2=12,m >0,解得m =2.∴l 的方程为y =−√22x +2,即x +√2y −2√2=0,故答案为:x +√2y −2√2=0.设A(x 1,y 1),B(x 2,y 2),线段AB 的中点为E ,可得k OE ⋅k AB =y 1+y 2x 1+x 2⋅y 2−y 1x 2−x 1=−12,设直线l 的方程为:y =kx +m ,k <0,m >0,M(−m k ,0),N(0,m),可得E(−m 2k ,m2),k OE =−k ,进而得出k,再利用|MN|=2√3,解得m,即可得出l的方程.本题考查了椭圆的标准方程及其性质、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.17.【答案】解:(1)证明:设等差数列{a n}的公差为d,由a2−b2=a3−b3,得a1+d−2b1=a1+2d−4b1,则d=2b1,由a2−b2=b4−a4,得a1+d−2b1=8b1−(a1+3d),即a1+d−2b1=4d−(a1+3d),∴a1=b1.(2)由(1)知,d=2b1=2a1,由b k=a m+a1知,b1⋅2k−1=a1+(m−1)d+a1,∴b1⋅2k−1=b1+(m−1)⋅2b1+b1,即2k−1=2m,又1≤m≤500,故2≤2k−1≤1000,则2≤k≤10,故集合{k|b k=a m+a1,1≤m≤500}中元素个数为9个.【解析】(1)设等差数列{a n}的公差为d,由题意可得a1+d−2b1=a1+2d−4b1,a1+ d−2b1=4d−(a1+3d),根据这两式即可证明a1=b1;(2)由题设条件可知2k−1=2m,由m的范围,求出k的范围,进而得出答案.本题考查等差数列与等比数列的综合运用,考查运算求解能力,属于中档题.18.【答案】解:(1)S1=12a2²sin60°=√34a2²,S2=12b2²sin60°=√34b2²,S3=12c2²sin60°=√34c2²,∵S1−S2+S3=√34a2²−√34b2²+√34c2²=√32,解得:a2−b2+c2=2,∵sinB=13,a2−b2+c2=2>0,即cosB>0,∴cosB=2√23,∴cosB=a2+c2−b22ac =2√23,解得:ac=3√24,S△ABC=12acsinB=√28.∴△ABC 的面积为√28.(2)由正弦定理得:b sinB =a sinA =csinC , ∴a =bsinAsinB,c =bsinC sinB,由(1)得ac =3√24, ∴ac =bsinA sinB⋅bsinC sinB =3√24已知,sinB =13,sinAsinC =√23,解得:b =12.【解析】(1)根据S 1−S 2+S 3=√32,求得a 2−b 2+c 2=2,由余弦定理求得ac 的值,根据S =12acsinB ,求△ABC 面积. (2)由正弦定理得∴a =bsinAsinB,c =bsinCsinB,且ac =3√24,求解即可. 本题考查利用正余弦定理解三角形,需灵活运用正余弦定理公式.19.【答案】解:(1)由频率分布直方图得该地区这种疾病患者的平均年龄为:x −=5×0.001×10+15×0.002×10+25×0.012×10+35×0.017×10+45×0.023×10+55×0.020×10+65×0.017×10+75×0.006×10+85×0.002×10=47.9岁.(2)该地区一位这种疾病患者的年龄位于区间[20,70)的频率为: (0.012+0.017+0.023+0.020+0.017)×10=0.89,∴估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率为0.89.(3)设从该地区中任选一人,此人的年龄位于区间[40,50)为事件B ,此人患这种疾病为事件C , 则P(C|B)=P(BC)P(B)=0.1%×0.023×1016%≈0.0014.【解析】(1)利用平均数公式求解即可.(2)利用频率分布直方图求出频率,进而得到概率. (3)利用条件概率公式计算即可.本题考查频率分布直方图求平均数、频率,考查条件概率计算公式,属于基础题.20.【答案】解:(1)证明:连接OA ,OB ,依题意,OP ⊥平面ABC , 又OA ⊂平面ABC ,OB ⊂平面ABC ,则OP ⊥OA ,OP ⊥OB , ∴∠POA =∠POB =90°,又PA =PB ,OP =OP ,则△POA≌△POB , ∴OA =OB ,延长BO 交AC 于点F ,又AB ⊥AC ,则在Rt △ABF 中,O 为BF 中点,连接PF , 在△PBF 中,O ,E 分别为BF ,BP 的中点,则OE//PF , ∵OE ⊄平面PAC ,PF ⊂平面PAC , ∴OE//平面PAC ;(2)过点A 作AM//OP ,以AB ,AC ,AF 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,由于PO =3,PA =5,由(1)知OA =OB =4, 又∠ABO =∠CBO =30°,则AB =4√3, ∴P(2√3,2,3),B(4√3,0,0),A(0,0,0),E(3√3,1,32),设AC =t ,则C(0,t,0),设平面AEB 的一个法向量为n⃗ =(x,y,z),又AB ⃗⃗⃗⃗⃗ =(4√3,0,0),AE ⃗⃗⃗⃗⃗ =(3√3,1,32), 则{n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =4√3x =0n⃗ ⋅AE ⃗⃗⃗⃗⃗ =3√3x +y +32z =0,则可取n ⃗ =(0,3,−2), 设平面AEC 的一个法向量为m⃗⃗⃗ =(a,b,c),又AC ⃗⃗⃗⃗⃗ =(0,t,0),AE ⃗⃗⃗⃗⃗ =(3√3,1,32), 则{m ⃗⃗⃗ ⋅AC⃗⃗⃗⃗⃗ =tb =0m⃗⃗⃗ ⋅AE ⃗⃗⃗⃗⃗ =3√3a +b +32c =0,则可取m ⃗⃗⃗ =(−√3,0,6), 设锐二面角C −AE −B 的平面角为θ,则cosθ=|cos <m ⃗⃗⃗ ,n ⃗ >|=|m ⃗⃗⃗ ⋅n ⃗⃗ |m ⃗⃗⃗ ||n ⃗⃗ ||=4√313,∴sinθ=√1−cos 2θ=1113,即二面角C −AE −B 正弦值为1113.【解析】(1)连接OA ,OB ,可证得OA =OB ,延长BO 交AC 于点F ,可证得OE//PF ,由此得证;(2)建立空间直角坐标系,写出各点的坐标,再求出平面ACE 及平面ABE 的法向量,利用向量的夹角公式得解.本题考查线面平行的判定以及利用空间向量求解二面角的正弦值,考查逻辑推理能力及运算求解能力,属于中档题.21.【答案】解:(1)由题意可得ba =√3,√a 2+b 2=2,解得a =1,b =√3, 因此C 的方程为x 23−y 2=1,(2)设直线PQ 的方程为y =kx +b ,(k ≠0),将直线PQ 的方程代入x 23−y 2=1可得(3−k 2)x 2−2kbx −b 2−3=0, ∴x 1+x 2=2kb3−k 2,x 1x 2=−b 2+33−k 2, ∴x 1−x 2=√(x 1+x 2)2−4x 1x 2=2√3⋅√b 2+3−k 23−k 2,设点M 的坐标为(x M .y M ),则{y M −y 1=−√3(x M −x 1)y M −y 2=√3(x M −x 2),两式相减可得y 1−y 2=2√3x M −√3(x 1+x 2), ∵y 1−y 2=k(x 1−x 2),∴2√3x M =√3(x 1+x 2)+k(x 1−x 2), 解得X M =k√b2+3−k 2+kb3−k 2,两式相减可得2y M −(y 1+y 2)=√3(x 1+x 2), ∵y 1+y 2=k(x 1+x 2)+2b ,∴2y M =√3(x 1−x 2)+k(x 1+x 2)+2b , 解得y M =3√b2+3−k 2+3b3−k 2,∴y M =3k x M ,其中k 为直线PQ 的斜率; 若选择①②:设直线AB 的方程为y =k(x −2),并设A 的坐标为(x 3,y 3),B 的坐标为(x 4,y 4), 则{y 3=k(x 3−2)y 3=√3x 3,解得x 3=k−√3,y 3=√3k k−√3,同理可得x 4=4k 2k 2−3,y 4=√3kk+√3,∴x 3+x 4=4k 2k 2−3,y 3+y 4=12kk 2−3,此时点M 的坐标满足{y M =k(x M −2)y M =3kx M,解得X M =2k 2k 2−3=12(x 3+x 4),y M =6k k 2−3=12(y 3+y 4),∴M 为AB 的中点,即|MA|=|MB|; 若选择①③:当直线AB 的斜率不存在时,点M 即为点F(2,0),此时不在直线y =3k x 上,矛盾, 当直线AB 的斜率存在时,设直线AB 的方程为y =m(x −2)(m ≠0),并设A 的坐标为(x 3,y 3),B 的坐标为(x 4,y 4),则{y 3=m(x 3−2)y 3=√3x 3,解得x 3=k−√3,y 3=√3mk−√3,同理可得x 4=m+√3,y 4=√3mm+√3,此时x M =12(x 3+x 4)=2m 2m 2−3,∴y M =12(y 3+y 4)=6mm 2−3,由于点M 同时在直线y =3k x 上,故6m =3k ⋅2m 2,解得k =m , 因此PQ//AB . 若选择②③,设直线AB 的方程为y =k(x −2),并设A 的坐标为(x 3,y 3),B 的坐标为(x 4,y 4), 则{y 3=k(x 3−2)y 3=√3x 3,解得x 3=k−√3,y 3=√3kk−√3,同理可得x 4=k+√3,y 4=√3kk−√3,设AB 的中点C(x C ,y C ),则x C =12(x 3+x 4)=2k 2k 2−3,y C =12(y 3+y 4)=6kk 2−3,由于|MA|=|MB|,故M 在AB 的垂直平分线上,即点M 在直线y −y C =−1k (x −x C )上, 将该直线y =3k x 联立,解得x M =2k 2k 2−3=x C ,y M =6kk 2−3=y C ,即点M 恰为AB 中点,故点M 在直线AB 上.【解析】(1)根据渐近线方程和a 2=b 2+c 2即可求出;(2)首先求出点M 的轨迹方程即为y M =3k x M ,其中k 为直线PQ 的斜率,若选择①②:设直线AB 的方程为y =k(x −2),求出点M 的坐标,可得M 为AB 的中点,即可|MA|=|MB|;若选择①③:当直线AB 的斜率存在时,设直线AB 的方程为y =m(x −2)(m ≠0),求出点M 的坐标,即可PQ//AB ;若选择②③:设直线AB 的方程为y =k(x −2),设AB 的中点C(x C ,y C ),求出点C 的坐标,可得点M 恰为AB 中点,故点M 在直线AB 上.本题考查了直线和双曲线的位置关系,考查了运算求解能力,转化与化归能力,属于难题.22.【答案】解:(1)当a =1时,f(x)=xe x −e x =e x (x −1),f′(x)=e x (x −1)+e x =xe x , ∵e x >0,∴当x ∈(0,+∞)时,f′(x)>0,f(x)单调递增;当x ∈(−∞,0)时,f′(x)<0,f(x)单调递减.(2)令g(x)=f(x)+1=xe ax −e x +1(x >0), ∵f(x)<−1,f(x)+1<0, ∴g(x)<g(0)=0在x >0上恒成立, 又g′(x)=e ax +xae ax −e x ,令ℎ(x)=g′(x),则ℎ′(x)=ae ax +a(e ax +axe ax )−e x =a(2e ax +axe ax )−e x , ∴ℎ′(0)=2a −1,①当2a −1>0,即a >12,ℎ′(0)=n →0+limg′(x)−g′(0)x−0=n →0+limg′(x)x>0,∴∃x 0>0,使得当x ∈(0,x 0),有 g′(x)x>0,∴g′(x)>0,所以g(x)单调递增,g(x 0)>g(0)=0,矛盾; ①当2a −1≤0,即a ≤12, g′(x)=xeax+xaeax−e x =eax+ln(1+ax)−e x≤e12x+ln(1+12x)−e x≤e12x+12x −e x =0,所以g(x)在[0,+∞)上单调递减,g(x)≤g(0)=0,符合题意. 综上所述,实数a 的取值范围是a ≤12. (3)求导易得t −1t >2lnt(t >1), 令t =√1+1 n ,√1+1n−√1+1n>2ln√1+1n ,可得1 n√1+1n>ln(1+1n ),√n 2+n>ln(n+1n ),∑√k 2+k n >∑ln nk=1(k+1k)=ln(21×32×...×n+1n)=ln(n +1),即√12+1√22+2√ n 2+n >ln(n +1).【解析】(1)先求出导函数f′(x),再根据导函数f′(x)的正负即可得到函数f(x)的单调性.(2)构造函数g(x)=f(x)+1=xe ax−e x+1(x>0),则g(x)<g(0)=0在x>0上恒成立,又g′(x)=e ax+xae ax−e x,令ℎ(x)=g′(x),则ℎ′(x)=a(2e ax+axe ax)−e x,根据ℎ′(0)的正负分情况讨论,得到g(x)的单调性以及最值,判断是否满足题意,即可求出a的取值范围.(3)求导易得t−1t >2lnt(t>1),令t=√1+1 n,利用上述不等式,结合对数的运算性质即可证得结论.本题主要考查了利用导数研究函数的单调性,考查了学生分析问题和转化问题的能力,属于难题.。

2022年全国统一高考数学卷(新高考2卷)含答案解析(原卷版)

2022年全国统一高考数学卷(新高考2卷)含答案解析(原卷版)

……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2022年普通高等学校招生全国统一考试(新高考2卷)数学副标题学校:___________姓名:___________班级:___________考号:___________题号 一 二 三 四 总分 得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项)1. 已知集合A ={−1,1,2,4},B ={x||x −1|≤1},则A ∩B =( ) A. {−1,2}B. {1,2}C. {1,4}D. {−1,4}2. (2+ 2i)(1−2i)=( ) A. −2+4iB. −2−4iC. 6+2iD. 6−2i3. 中国的古建筑不仅是挡风遮雨的住处,更是美学和哲学的体现.如图是某古建筑物的剖面图,AA′,BB′,CC′,DD′是桁,DD 1,CC 1,BB 1,AA 1是脊,OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的脊步的比分别为DD 1OD 1=0.5,CC 1DC 1=k 1,BB1CB 1=k 2,AA 1BA 1=k 3,若k 1,k 2,k 3是公差为0.1的等差数列,直线OA 的斜率为0.725,则k 3=( )A. 0.75B. 0.8C. 0.85D. 0.94. 已知向量a ⃗ =(3,4),b ⃗ =(1,0),c ⃗ =a ⃗ +t b ⃗ ,若<a ⃗ ,c ⃗ >=<b ⃗ ,c ⃗ >,则实数t =( )A. −6B. −5C. 5D. 65. 甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有( )A. 12种B. 24种C. 36种D. 48种6. 若sin(α+β)+cos(α+β)=2√2cos(α+π4)sinβ,则( ) A. tan(α+β)=−1 B. tan(α+β)=1 C. tan(α−β)=−1D. tan(α−β)=17. 已知正三棱台的高为1,上下底面的边长分别为3√3和4√3,其顶点都在同一球面上,则该球的表面积为( )A. 100πB. 128πC. 144πD. 192π8. 若函数f(x)的定义域为R ,且f(x +y)+f(x −y)=f(x)f(y),f(1)=1,则∑f 22k=1(k)=( )A. −3B. −2C. 0D. 1二、多选题(本大题共4小题,共20.0分。

2024年全国新高考二卷数学真题及参考答案

2024年全国新高考二卷数学真题及参考答案

2024年全国新高考二卷数学真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。

1.已知1i z =--,则||z =().A.0B.1D.22.已知命题:R p x ∀∈,|1|1x +>;命题:0q x ∃>,3x x =.则().A.p 和q 都是真命题B.p ⌝和q 都是真命题C.p 和q ⌝都是真命题D.p ⌝和q ⌝都是真命题3.已知向量a ,b 满足||1a = ,|2|2a b += ,且(2)b a b -⊥ ,则||b =().A.12B.22C.32D.14.某农业研究部门在面积相等的100块稻田上种植新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理如下表所示.根据表中数据,下列结论正确的是()A.100块稻田亩产量的中位数小于1050kgB.100块稻田中的亩产量低于1100kg 的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg 到300kg 之间D.100块稻田亩产量的平均值介于900kg 到1000kg 之间5.已知曲线22:16(0)C x y y +=>,从C 上任意一点P 向x 轴作垂线PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为().A.221(0)164x y y +=> B.221(0)168x y y +=>C.221(0)164y x y +=> D.221(0)168y x y +=>6.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =和()y g x =恰有一个交点,则a =()A.-1B.12C.1D.27.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为().A.12 B.1C.2D.38.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为().A.18B.14C.12D.1二、多项选择题:本题共3小题,每小题6分,共18分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启封并使用完毕前
试题类型:A
普通高等学校招生全国统一考试
理科数学2
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页, 第Ⅱ卷3至5页。

2.答题前, 考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题卡上完成, 答在本试题上无效。

4. 考试结束后, 将本试题和答题卡一并交回。

第Ⅰ卷
一. 选择题:本大题共12小题, 每小题5分, 在每小题给出的四个选项中, 只有一项是符合题目要求的。

(1) 设复数z 满足1+z
1z
-=i , 则|z|=
(A )1 (B (C (D )2 (2)sin20°cos10°-con160°sin10°=
(A ) (B (C )12- (D )1
2
(3)设命题P :∃n ∈N , 2n >2n , 则⌝P 为
(A )∀n ∈N, 2n >2n (B )∃ n ∈N, 2n ≤2n (C )∀n ∈N, 2n ≤2n (D )∃ n ∈N, 2n =2n
(4)投篮测试中, 每人投3次, 至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为0.6, 且各次投篮是否投中相互独立, 则该同学通过测试的概率为 (A )0.648 (B )0.432 (C )0.36 (D )0.312
(5)已知M (x 0, y 0)是双曲线C :2
212x y -= 上的一点, F 1、F 2是C 上的两个焦
点, 若1MF •2MF <0, 则y 0的取值范围是
(A )(-
3, 3 (B )(-6 6)
(C )(3-, 3) (D )(3-, 3

(6)《九章算术》是我国古代内容极为丰富的数学名著, 书中有如下问题:“今有委米依垣内角, 下周八尺, 高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图, 米堆为一个圆锥的四分之一), 米堆为一个圆锥的四分之一), 米堆底部的弧度为8尺, 米堆的高为5尺, 问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺, 圆周率约为3, 估算出堆放斛的米约有
A.14斛
B.22斛
C.36斛
D.66斛
(7)设D为ABC所在平面内一点=3,则
(A)=+(B)=
(C)=+(D)=
(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为
(A)(),k (b)(),k
(C)(),k(D)(),k
(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=
(A)5 (B)6 (C)7 (D)8
(10)的展开式中,y²的系数为
(A)10 (B)20 (C)30(D)60
(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。

若该几何体的表面积为16 + 20π,则r=
(A)1(B)2(C)4(D)8
12.设函数f(x)=e x(2x-1)-ax+a,其中a1,若存在唯一的整数x
0,使得f(x
)0,则
a的取值范围是()
A.[-, 1)
B. [-,)
C. [,)
D. [, 1)
第II卷
本卷包括必考题和选考题两部分。

第(13)题~第(21)题为必考题,每个试题考生都必须作答。

第(22)题~第(24)题未选考题,考生根据要求作答。

二、填空题:本大题共3小题,每小题5分
(13)若函数f(x)=xln(x+2x
a+)为偶函数,则a=
(14)一个圆经过椭圆的三个顶点, 且圆心在x 轴上, 则该圆的标准方程
为 。

(15)若x,y 满足约束条件
则的最大值为 .
(16)在平面四边形ABCD 中, ∠A=∠B=∠C=75°, BC=2, 则AB 的取值范围是 三.解答题:解答应写出文字说明, 证明过程或演算步骤。

(17)(本小题满分12分)
Sn 为数列{an}的前n 项和.已知an>0, (Ⅰ)求{an}的通项公式: (Ⅱ)设
,求数列
}的前n 项和
(18)如图, , 四边形ABCD 为菱形, ∠ABC=120°, E , F 是平面ABCD 同一侧的两点, BE ⊥平面ABCD , DF ⊥平面ABCD , BE=2DF , AE ⊥EC 。

(1)证明:平面AEC ⊥平面AFC
(2)求直线AE 与直线CF 所成角的余弦值
(19)某公司为确定下一年度投入某种产品的宣传费, 需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响, 对近8年的年宣传费x1和年销售量y1(i=1,2, ···, 8)数据作了初步处理, 得到下面的散点图及一些统计量的值。

x y w
1
1
x +∑
(x 1-x
)2
1
1
x +∑
(w 1-w
)2
1
1
x +∑
(x 1-x )
(y-y ) 1
1
x +∑
(w 1-w )
(y-y ) 46.6 56.3 6.8
289.8 1.6
1469 108.8
表中w 1 x
1, ,
w =
18
1
1
1x w +∑
(1) 根据散点图判断, y=a+bx 与x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程
类型?(给出判断即可, 不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据, 建立y 关于x 的回归方程;
(Ⅲ)以知这种产品的年利率z 与x 、y 的关系为z=0.2y-x 。

根据(Ⅱ)的结果回答下列问题:
(i ) 年宣传费x=49时, 年销售量及年利润的预报值是多少? (ii ) 年宣传费x 为何值时, 年利率的预报值最大?
附:对于一组数据(u 1 v 1),(u 2 v 2)…….. (u n v n ),其回归线v=αβ+u 的斜率和截距的最小二乘估计分别为:
(20)(本小题满分12分)
在直角坐标系xoy 中, 曲线C :y=2
4
x 与直线y=ks+a(a>0)交与M,N 两点,
(Ⅰ)当k=0时, 分别求C 在点M 和N 处的切线方程;
(Ⅱ)y 轴上是否存在点P , 使得当K 变动时, 总有∠OPM=∠OPN ?说明理由。

(21)(本小题满分12分)
已知函数f (x )=31
,()ln 4
x ax g x x ++=-
(Ⅰ)当a 为何值时, x 轴为曲线()y f x = 的切线;
(Ⅱ)用min {},m n 表示m,n 中的最小值, 设函数}{()min (),()
(0)h x f x g x x => , 讨
论h (x )零点的个数
请考生在(22)、(23)、(24)三题中任选一题作答。

注意:只能做所选定的题目。

如果多做, 则按所做第一个题目计分, 做答时, 请用2B 铅笔在答题卡上将所选题号后的方框涂黑。

(22)(本题满分10分)选修4-1:几何证明选讲
如图, AB 是☉O 的直径, AC 是☉C 的Q 切线, BC 交☉O 于E
(I ) 若D 为AC 的中点, 证明:DE 是O 的切线;
(II ) 若OA=CE , 求∠ACB 的大小.
(24)(本小题满分10分)选修4—5:不等式选讲
已知函数
=|x+1|-2|x-a|, a>0.
(Ⅰ)当a=1时, 求不等式f(x)>1的解集;
(Ⅱ)若f(x)的图像与x 轴围成的三角形面积大于6, 求a 的取值范围
(23)(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系O χγ中。

直线1C :χ=-2, 圆2C :()()2
2
121χγ-+-=,以坐标原点为极点, χ轴的正半轴为极轴建立极坐标系。

(I ) 求1C , 2C 的极坐标方程;
(II ) 若直线3C 的极坐标方程为()4
R π
θρ=∈, 设2C 与3C 的交点为M ,N ,求2C MN
的面积。

相关文档
最新文档