常用逻辑用语复习题

合集下载

常用逻辑用语试题及答案

常用逻辑用语试题及答案

第一章 常用逻辑用语一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +-> D .梯形是不是平面图形呢?2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c φ++<≠”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真 3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0a b >>是33a b >的充要条件.则其中正确的说法有( ) A .0个B .1个C .2个D .3个4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠” D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零, 另一根小于零,则A 是B 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 二、填空题1.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。

2.12:,A x x 是方程20(0)ax bx c a ++=≠的两实数根;12:b B x x a+=-,则A 是B 的 条件。

3.用“充分、必要、充要”填空:①p q ∨为真命题是p q ∧为真命题的_____________________条件; ②p ⌝为假命题是p q ∨为真命题的_____________________条件; ③:23A x -<, 2:4150B x x --<, 则A 是B 的___________条件。

常用逻辑用语练习题

常用逻辑用语练习题

常用逻辑用语练习题常用逻辑用语练题1.若命题“p q”为假,且“p”为假,则不能判断q的真假。

2.在△ABC 中,“A 30”是“sinA 1/2”的必要不充分条件。

3.有下列四个命题:①“若x + y = 0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q ≤ 1,则x + 2x + q = 0 有实根”的逆否命题;④“不等边三角形的三个内角不相等”的逆命题;其中真命题为①③。

4.设a ∈ R,则a。

1是a^2.1的充分但不必要条件。

5.命题p: 若a,b ∈ R,则a + b。

1是a + b。

1的充分而不必要条件;命题q: 函数y = x - 1 - 2的定义域是(-∞,-1] ∪ [3,+∞)。

则“p或q”为假。

6.若a,b ∈ R,使a + b。

1成立,则a。

1或b。

1是一个充分不必要条件。

7.有下列四个命题:①命题“若xy = 1,则x,y互为倒数”的逆命题;②命题“面积相等的三角形不一定全等”的否命题;③命题“若m ≤ 1,则x - 2x + m = 0 有实根”的逆否命题;④命题“若A ⊆ B,则A ∩ B = A”的逆否命题。

其中是真命题的是①③。

8.已知p,q都是r的必要条件,s是r的充分条件,q是s 的充分条件。

则s是q的充分条件,r是q的必要条件,p是s的必要条件。

9.“△ABC中,若∠C = 90,则∠A,∠B至少有一个不是锐角”的否命题为“△ABC中,若∠A,∠B都是锐角,则∠C ≠ 90”。

10.已知α、β是不同的两个平面,直线a ⊂ α,直线b ⊂ β,命题p:a与b无公共点;命题q:α//β,则p是q的充分条件。

11.若“x ∈ [2,5] 或 x ∈ {x|x。

4}”是假命题,则x的范围是x ∈ (1,2) ∪ (5.+∞)。

12.判断下列命题的真假:1)已知a,b,c,d ∈ R,若a ≠ c或b ≠ d,则a + b ≠ c + d。

常用逻辑用语试题及答案

常用逻辑用语试题及答案

第一章 常用逻辑用语一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +-> D .梯形是不是平面图形呢?2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c φ++<≠”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0a b >>是33a b >的充要条件.则其中正确的说法有( )A .0个B .1个C .2个D .3个4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 二、填空题1.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。

2.12:,A x x 是方程20(0)ax bx c a ++=≠的两实数根;12:b B x x a +=-,则A 是B 的 条件。

3.用“充分、必要、充要”填空:①p q ∨为真命题是p q ∧为真命题的_____________________条件; ②p ⌝为假命题是p q ∨为真命题的_____________________条件;③:23A x -<, 2:4150B x x --<, 则A 是B 的___________条件。

常用逻辑用语综合测试题(最终版)

常用逻辑用语综合测试题(最终版)

常用逻辑用语综合测试题班级___________姓名_______________分数______________一、选择题(共12个小题,每小题5分,共60分)1.下列语句中,是命题的个数是( )①|x+2|;②-5∈Z;③π∉R;④{0}∈N.A.1 B.2 C.3 D.42.若命题p:0是偶数,命题q:2是3的约数,则下列命题中为真的是( ) A.p且q B.p或qC.非p D.非p且非q3.下列命题,其中说法错误的是( ) A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”B.“x2-3x-4=0”是“x=4”的必要不充分条件C.若p∧q是假命题,则p,q都是假命题D.命题p:∃x∈R,使得x2+x+1<0,则¬p:∀x∈R,都有x2+x+1≥04.等比数列{a n}的公比为q,则“a1>0且q>1”是“∀n∈N+,都有a n+1>a n”的 ( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.若命题p:x=2且y=3,则¬p为 ( ) A.x≠2或y≠3 B.x≠2且y≠3C.x=2或y≠3 D.x≠2或y=36.命题“p且q”与命题“p或q”都是假命题,则下列判断正确的是 ( ) A.命题“非p”与“非q”真假不同 B.命题“非p”与“非q”至多有一个是假命题C.命题“非p”与“q”真假相同 D.命题“非p且非q”是真命题7.(2014·重庆理,6)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是( )A.p∧q B.¬p∧¬q C.¬p∧q D.p∧¬q8.以下判断正确的是( )A .命题“负数的平方是正数”不是全称命题B .命题“∀x ∈Z ,x 3>x 2”的否定是“∃x ∈Z ,x 3<x 2”C .“φ=π2”是“函数y =sin(x +φ)为偶函数”的充要条件 D .“b =0”是“关于x 的二次函数f (x )=ax 2+bx +c 是偶函数”的充要条件9.已知命题p :函数f (x )=log 0.5(3-x )的定义域为(-∞,3);命题q :若k <0,则函数h (x )=k x在(0,+∞)上是减函数,对以上两个命题,下列结论中正确的是( )A .命题“p 且q ”为真B .命题“p 或¬q ”为假C .命题“p 或q ”为假D .命题“¬p ”且“¬q ”为假10.设原命题:若a +b ≥2,则a 、b 中至少有一个不小于1,则原命题与其逆命题的真假情况是( )A .原命题真,逆命题假B .原命题假,逆命题真C .原命题与逆命题均为真命题D .原命题与逆命题均为假命题11.(2014·重庆万州)已知命题p :∀x ∈R ,a x >0(a >0且a ≠1),则( )A .¬p :∀x ∈R ,a x ≤0B .¬p :∀x ∈R ,a x >0C .¬p :∃x 0∈R ,ax 0>0D .¬p :∃x 0∈R ,ax 0≤0 12.(2013·天津理,4)已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18; ②若两组数据的平均数相等,则它们的标准差也相等;③直线x +y +1=0与圆x 2+y 2=12相切. 其中真命题的序号是( ) A .①②③ B .①② C .①③ D .②③二、填空题(共4个小题,每小题5分,共20分)13.命题“对任何x ∈R ,|x -2|+|x -4|>3”的否定是_____________________________.14.命题“若a >b ,则2a >2b -1”的否命题为___ __________________________________.15.设A =⎩⎨⎧⎭⎬⎫x |x -1x +1<0,B ={x ||x -b |<a },若“a =1”是“A ∩B ≠∅”的充分条件,则实数b 的取值范围是______________.16.在下列四个命题中,真命题的个数是________.①∀x∈R,x2+x+3>0;②∀x∈Q,13x2+12x+1是有理数;③∃α,β∈R,使sin(α+β)=sin α+sin β;④∃x0,y0∈Z,使3x0-2y0=10. 三、解答题(共6个小题,共70分)17.(10分)将下列命题改写成“若p,则q”的形式,并判断其真假.(1)同弧所对的圆周角不相等;(2)方程x2-x+1=0有两个实根.18.(12分)写出命题“若x-2+(y+1)2=0,则x=2且y=-1”的逆命题、否命题、逆否命题,并判断它们的真假.19.(12分)(2014·扬州高二检测)判断下列命题是全称命题还是特称命题,并判断其真假.(1)至少有一个整数,它既能被11整除,又能被9整除.(2)∀x∈{x|x>0},x+≥2. (3)∃x0∈{x|x∈Z},log2x0>2.20.(12分)已知P={x|a-4<x<a+4},Q={x|x2-4x+3<0},且x∈P是x∈Q的必要条件,求实数a的取值范围.21.(12分)已知命题p:方程x2-2mx+m=0没有实数根;命题q:∀x∈R,x2+mx+1≥0.(1)写出命题q的否定“q”.(2)如果“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.22.(12分)给定两个命题P:对任意实数x都有ax2+ax+1>0恒成立;Q:关于x的方程x2-x+a=0有实数根.如果P∧Q为假命题,P∨Q为真命题,求实数a的取值范围.。

常用逻辑用语_知识点+习题+答案

常用逻辑用语_知识点+习题+答案

常用逻辑用语知识点1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”.6、四种命题的真假性:四种命题的真假性之间的关系:()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧.当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q∧原命题 逆命题 否命题 逆否命题真 真 真 真 真 假 假 真 假 真 真 真 假假假假是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨.当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示. 含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”.10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题. 练习题1、一个命题与他们的逆命题、否命题、逆否命题这4个命题中( )A 、真命题与假命题的个数相同B 、真命题的个数一定是奇数C 、真命题的个数一定是偶数D 、真命题的个数可能是奇数,也可能是偶数2、下列说法中正确的是( )A 、一个命题的逆命题为真,则它的逆否命题一定为真B 、“a b >”与“ a c b c +>+”不等价C 、“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D 、一个命题的否命题为真,则它的逆命题一定为真3、“用反证法证明命题“如果x<y ,那么51x <51y ”时,假设的内容应该是( ) A 、51x =51yB 、51x <51yC 、51x =51y 且51x <51yD 、51x =51y 或51x >51y4、“a ≠1或b ≠2”是“a +b ≠3”的( ) A 、充分不必要条件 B 、必要不充分条件C 、充要条件D 、既不充分也不必要 5、函数f (x )=x|x+a|+b 是奇函数的充要条件是( ) A 、ab =0 B 、a +b=0 C 、a =b D 、a 2+b 2=0 6、“若x ≠a 且x ≠b ,则x 2-(a +b )x +ab ≠0”的否命题( ) A 、 若x =a 且x =b ,则x 2-(a +b )x +ab =0 B 、 B 、若x =a 或x =b ,则x 2-(a +b )x +ab ≠0 C 、 若x =a 且x =b ,则x 2-(a +b )x +ab ≠0 D 、D 、若x =a 或x =b ,则x 2-(a +b )x +ab =07、“12m =”是“直线(m+2)x+3my+1=0与直线(m+2)x+(m-2)y-3=0相互垂直”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要8、命题p :存在实数m ,使方程x 2+mx +1=0有实数根,则“非p ”形式的命题是( ) A 、存在实数m ,使得方程x 2+mx +1=0无实根B 、不存在实数m ,使得方程x 2+mx +1=0有实根C 、对任意的实数m ,使得方程x 2+mx +1=0有实根D 、至多有一个实数m ,使得方程x 2+mx +1=0有实根9、不等式2230xx --<成立的一个必要不充分条件是( C )A 、-1<x<3B 、0<x<3C 、-2<x<3D 、-2<x<110.设集合(){}(){}(){}0,,02,,,,≤-+=>+-=∈∈=n y x y x B m y x y x A R y R x y x u ,那么点P (2,3)()B C A u ⋂∈的充要条件是( )A .m>-1,n<5B .m<-1,n<5C .m>-1,n>5D .m<-1,n>511、命题:“若0>a ,则02>a ”的否命题是12、:23A x -<, 2:2150B x x --<, 则A 是B 的_____ _条件。

常用逻辑用语练习题4套(有答案)

常用逻辑用语练习题4套(有答案)

常用逻辑用语练习题4套(有答案)一、选择题1.下列语句不是命题的是()A.3是15的约数B.3小于2C.0不是自然数D.正数大于负数吗?【解析】选项D是疑问句,没有对正数与负数的大小关系作出判断,故选D.【答案】D2.若一个命题p的逆命题是一个假命题,则下列判断一定正确的是() A.命题p是真命题B.命题p的否命题是假命题C.命题p的逆否命题是假命题D.命题p的否命题是真命题【解析】一个命题的逆命题与否命题互为逆否命题,故它们同真假,故选B.【答案】B3.命题“若x2<1,则-1<x<1”的逆否命题是()A.若x2≥1,则x≥1或x≤-1B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1D.若x≥1或x≤-1,则x2≥1【解析】此命题的逆否命题为:若x≥1或x≤-1,则x2≥1.【答案】D4.假设坐标平面上一非空集合S内的点(x,y),具有以下性质:“若x >0,则y>0”,试问下列哪个叙述对S内的点(x,y)必定成立() A.若x≤0,则y≤0B.若y≤0,则x≤0C.若y>0,则x>0D.若y>0,则x≤0【解析】若x>0,则y>0⇔若y≤0,则x≤0,故选B.【答案】B5.有下列四个命题,其中真命题是()①“若x+y=0,则x,y互为相反数”的逆命题;②“若a+b≥2,则a,b中至少有一个不小于1”的否命题;③“面积相等的三角形全等”的否命题;④“若x≠π4+2kπ(k∈Z),则tanx≠1”的逆否命题.A.①②B.②③C.①③D.③④【解析】①逆命题为“若x,y互为相反数,则x+y=0”,真命题;②否命题为“若a+b<2,则a,b都小于1”,假命题;③否命题为“面积不相等的三角形不全等”,真命题;④逆否命题为“若tanx=1,则x=π4+2kπ(k∈Z)”,假命题.【答案】C二、填空题6.若命题p的否命题为r,命题r的逆命题为s,则s是p的逆命题t 的________命题.【解析】根据四种命题的关系,易知s是t的否命题.【答案】否7.在命题“若a>b,则a2>b2”的逆命题、否命题、逆否命题中,假命题的个数为________.【解析】当a=1,b=-2时,a2<b2,故原命题为假,所以它的逆否命题为假;当a=-2,b=1时,a<b,故原命题的逆命题为假,所以原命题的否命题为假,故假命题的个数为3.【答案】38.命题“负数的平方是正数”的否命题是________.【解析】负数的否定是非负数,是正数的否定是不是正数,故命题的否定是:非负数的平方不是正数.【答案】非负数的平方不是正数三、解答题9.将下列命题改写成“若p,则q”的形式.(1)偶数能被2整除;(2)奇函数的图像关于原点对称;【解】(1)若一个数是偶数,则它能被2整除;(2)若一个函数是奇函数,则它的图像关于原点对称.10.已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b)”.(1)写出逆命题,判断其真假,并证明你的结论;(2)写出逆否命题,判断其真假,并证明你的结论.【解】(1)逆命题是:若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.它是成立的,可用反证法证明:假设a+b<0,则a<-b,b<-a.因为f(x)是(-∞,+∞)上的增函数,则f(a)<f(-b),f(b)<f(-a),所以f(a)+f(b)<f(-a)+f(-b)与条件矛盾,逆命题真.(2)逆否命题是:若f(a)+f(b)<f(-a)+f(-b),则a+b<0.它为真,可用证明原命题为真来证明:由a+b≥0,得a≥-b,b≥-a.∵f(x)在(-∞,+∞)上是增函数,∴f(a)≥f(-b),f(b)≥f(-a).∴f(a)+f(b)≥f(-a)+f(-b).∴逆否命题为真.11.a,b,c为三个人,命题A:“如果b的年龄不是最大,那么a的年龄最小”和命题B:“如果c的年龄不是最小,那么a的年龄最大”都是真命题,则a,b,c的年龄的大小顺序是否能确定?请说明理由.【解】显然命题A和B的原命题的结论是矛盾的,因此我们应该从它的逆否命题来看.由命题A为真可知,b不是最大时,则a是最小,∴c最大,即c>b>a;而它的逆否命题也为真,即“a不是最小,则b是最大”为真,即b >a>c.同理由命题B为真可得:a>c>b或b>a>c.故由A与B均为真可知b>a>c.∴a,b,c三人的年龄的大小顺序是:b最大,a次之,c最小.。

常用逻辑用语练习题

常用逻辑用语练习题

常用逻辑用语练习题逻辑用语是数学和哲学中非常重要的工具,它帮助我们清晰地表达思想和论证。

以下是一些常用的逻辑用语练习题,旨在帮助学生熟悉和掌握这些基础概念。

# 练习题1:命题逻辑1. 给出命题P:今天是星期三。

命题Q:明天是星期四。

写出这两个命题的逻辑表达式。

2. 判断命题P和Q的逻辑关系,是互斥的、等价的还是既不互斥也不等价?3. 写出命题P或Q的逻辑表达式。

4. 写出命题P且Q的逻辑表达式。

5. 写出命题非P的逻辑表达式。

# 练习题2:条件语句1. 将“如果今天是星期三,那么明天是星期四”这个条件语句转化为逻辑表达式。

2. 给出一个条件语句的例子,并说明其真假条件。

3. 判断以下条件语句的真假:如果今天是星期一,那么明天是星期二。

# 练习题3:逻辑等价1. 证明以下两个逻辑表达式是等价的:(P → Q) ≡ ¬P ∨ Q。

2. 给出一个逻辑表达式,并找出它的逻辑等价表达式。

3. 使用逻辑等价规则简化以下表达式:(P ∨ Q) ∧ (¬P ∨ ¬Q)。

# 练习题4:逻辑推理1. 已知命题P:如果下雨,我就不去跑步。

命题Q:今天下雨了。

请使用逻辑推理判断我今天是否去跑步。

2. 给出一个包含两个前提的逻辑推理问题,并解答它。

3. 使用逻辑推理证明以下命题:如果所有的人都是动物,那么苏格拉底是动物。

# 练习题5:逻辑运算1. 给出命题P:今天是晴天。

命题R:我会去公园。

写出命题P且R的逻辑表达式。

2. 写出命题P或R的逻辑表达式。

3. 使用逻辑运算符,将命题P和R组合成一个复合命题,并判断其真假。

# 练习题6:逻辑谬误1. 识别并解释以下论证中的逻辑谬误:所有的鸟都会飞,企鹅是鸟,所以企鹅会飞。

2. 给出一个常见的逻辑谬误的例子,并解释为什么它是谬误。

3. 判断以下论证是否包含逻辑谬误:如果一个学生学习努力,他就会取得好成绩。

小明学习努力,所以小明会取得好成绩。

# 练习题7:量化逻辑1. 将“有些学生喜欢数学”这个命题转化为量化逻辑表达式。

常用逻辑用语练习题(含答案)

常用逻辑用语练习题(含答案)

1.下列命题 :①2x x x ∀∈,≥R ;②2x x x ∃∈,≥R ; ③43≥;④“21x ≠”的充要条件是“1x ≠,或1x ≠-”. 中,其中正确命题的个数是 ( ) A .0 B .1 C .2 D .32.已知命题p :x ∀∈R ,||0x ≥,那么命题p ⌝为()A .x ∃∈R ,||0x ≤B .x ∀∈R ,||0x ≤C .x ∃∈R ,||0x <D .x ∀∈R ,||0x < 3.已知命题 :p x ∀∈R ,2x ≥,那么命题p ⌝为( )A .2x x ∀∈≤R ,B .2x x ∃∈<R ,C .2x x ∀∈≤-R ,D .2x x ∃∈<-R , 4.下列命题中的真命题是( )A .R x ∈∃使得5.1cos sin =+x xB . x x x cos sin ),,0(>∈∀πC .R x ∈∃使得12-=+x xD . 1),,0(+>+∞∈∀x e x x5.已知命题p :0x ∃∈R ,200220x x ++≤,那么下列结论正确的是( )A .0:p x ⌝∃∈R ,200220x x ++> B .:p x ⌝∀∈R ,2220x x ++>C .0:p x ⌝∃∈R ,200220x x ++≥ D .:p x ⌝∀∈R ,2220x x ++≥6.“2a =”是“直线20ax y +=与1x y +=平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.命题p :∃实数∈x 集合A ,满足032x x 2<--,命题q :∀实数∈x 集合A ,满足032x x 2<--,则命题p 是命题q 为真的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、非充分非必要条件8.如果对于任意实数x ,[]x 表示不超过x 的最大整数. 例如[]3.273=,[]0.60=.那么“[][]x y =”是“1x y -<”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 9.“b a <<0”是“ba)41()41(>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不是充分条件也不是必要条件10.“2=a ”是“直线03:21=+-y x a l 与直线14:2-=x y l 互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.“2m =-”是“直线(1)20m x y ++-=与直线(22)10mx m y +++=相互垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.在ABC ∆中,AB AC BA BC ⋅=⋅“”是 AC BC = “”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 二、填空题13、判断下列命题的真假性:①若m >0,则方程x 2-x +m =0有实根 ②若x >1,y >1,则x +y >2的逆命题③对任意的x ∈{x |-2<x <4},|x -2|<3的否定形式④△>0是一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件 14、“末位数字是0或5的整数能被5整除”的否定形式是 ; 否命题是15.若命题“∃x ∈R ,x 2+ax +1<0”是真命题,则实数a 的取值范围是 . 16、用符号“∀”与“∃”表示含有量词的命题:(1)实数的平方大于等于0_______________________________. (2)存在一对实数,使2x +3y +3>0成立 . 三、解答题 17、(12)写出下列命题的否定: (1)所有自然数的平方是正数(2)任何实数x 都是方程5x -12=0的根(3)对于任意实数x ,存在实数y ,使x +y >0 (4)有些质数是奇数 18.已知命题),0(012:,64:22>≥-+-≤-a a x x q x p 若非p 是q 的充分不必要条件,求a 的取值范围.19.已知命题p :方程x 2+mx +1=0有两个不等的负根;命题q :方程4x 2+4(m -2)x +1=0无实根.若“p 或q ”为真,“p 且q ”为假,求m 的取值范围.20证明:已知a 与b 均为有理数,且a 和b 都是无理数,证明a +b 也是无理数. 21.求实数a 的取值范围,使得关于x 的方程().062122=++-+a x a x(1) 有两个都大于1的实数根; (2) 至少有一个正实数根.常用逻辑用语练习题参考答案二、填空题13.假 假 真 假 ;14.否定形式:末位数是0或5的整数,不能被5整除; 否命题:末位数不是0或5的整数,不能被5整除 15. 16. 三、解答题 17.略 18.解:{}:46,10,2,|10,2p x x x A x x x ⌝->><-=><-或或{}22:2101,1,|1,1q x x a x a x a B x x a x a -+-≥≥+≤-=≥+≤-,或记或而,p q A⌝⇒∴B ,即12110,030a a a a -≥-⎧⎪+≤∴<≤⎨⎪>⎩19.解: 若方程x 2+mx +1=0有两不等的负根,则⎩⎨⎧>>-=∆042m m 解得m >2,即命题p :m >2若方程4x 2+4(m -2)x +1=0无实根, 则Δ=16(m -2)2-16=16(m 2-4m +3)<0 解得:1<m <3.即q :1<m <3.因“p 或q ”为真,所以p 、q 至少有一为真, 又“p 且q ”为假,所以命题p 、q 至少有一为假,因此,命题p 、q 应一真一假,即命题p 为真,命题q 为假或命题p 为假,命题q 为真.∴⎩⎨⎧<<≤⎩⎨⎧≥≤>312312m m m m m 或或 解得:m ≥3或1<m ≤2.20.证明:假设a +b 是有理数,则(a +b )(a -b )=a -b由a >0, b >0 则a +b >0 即a +b ≠0 ∴ba b a b a +-=- ∵a ,b ∈Q 且a +b ∈Q∴ba b a +-∈Q 即(a -b )∈Q这样(a +b )+(a -b )=2a ∈Q从而a ∈Q (矛盾) ∴a +b 是无理数.。

高考专题复习1.2常用逻辑用语真题练习(附答案)

高考专题复习1.2常用逻辑用语真题练习(附答案)

1.2常用逻辑用语考点一充分条件与必要条件1.(2022浙江,4,4分)设x∈R,则“sin x=1”是“cos x=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案A根据sin x=1解得x=π2+2kπ,k∈Z,此时cos x2χ=cosπ2=0.根据cos x=0解得x=π2+kπ,k∈Z,此时sin xχ=±1.故“sin x=1”是“cos x=0”的充分不必要条件,故选A.2.(2021浙江,3,4分)已知非零向量a,b,c,则“a·c=b·c”是“a=b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案B解题指导:利用平面向量的数量积定义分别判断命题“若a·c=b·c,则a=b”与“若a=b,则a·c=b·c”的真假性即可.解析若c与向量a,b都垂直,则由a·c=b·c不一定能得到a=b;若a=b,则由平面向量的数量积的定义知a·c=b·c成立,故“a·c=b·c”是“a=b”的必要不充分条件.故选B.方法总结:(1)充分条件、必要条件的判断方法:①定义法:根据“若p,则q”与“若q,则p”的真假性进行判断;②集合法:根据p,q成立的对象的集合之间的包含关系进行判断.(2)要判断一个命题是假命题,只需举出一个反例即可.但要判断一个命题是真命题,必须通过严格的推理论证.3.(2021北京,3,4分)设函数f(x)的定义域为[0,1],则“函数f(x)在[0,1]上单调递增”是“函数f(x)在[0,1]上的最大值为f(1)”的() A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案A若f(x)在[0,1]上单调递增,则f(x)在[0,1]上的最大值为f(1);若f(x)在[0,1]上的最大值为f(1),则f(x)未必在[0,1]上单调递增,如图.故选A.4.(2022北京,6,4分)设{a n}是公差不为0的无穷等差数列,则“{a n}为递增数列”是“存在正整数N0,当n>N0时,a n>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案C设等差数列{a n}的公差为d(d≠0),则a n=a1+(n-1)d.若{a n}为递增数列,则d>0,由a n=a1+(n-1)d可构造函数f(x)=xd+a1-d,令f(x)=0,得x=K1,若a1>d,则x<0,取N0=1,即有n>1时,f(n)>f(1)>0成立;若a1<d,则x>0,取N0K1K1表示不超过K1的最大正整数,此时n>N0,必有f(n)>f(N0)=K1+1>K1.综上,存在正整数N0,当n>N0时,a n>0,∴充分性成立.易知a n是关于n的一次函数,若存在正整数N0,当n>N0时,a n>0,则一次函数为增函数,∴d>0,∴必要性成立.故选C.5.(2019天津文,3,5分)设x∈R,则“0<x<5”是“|x-1|<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案B|x-1|<1⇔-1<x-1<1⇔0<x<2.当0<x<2时,必有0<x<5;反之,不成立.所以,“0<x<5”是“|x-1|<1”的必要而不充分条件.一题多解因为{x||x-1|<1}={x|0<x<2}⫋{x|0<x<5},所以“0<x<5”是“|x-1|<1”的必要而不充分条件.6.(2018天津,理4,文3,5分)设x∈R,则“<12”是“x3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案A本题主要考查解不等式和充分、必要条件的判断.由−<12得-12<x-12<12,解得0<x<1.由x3<1得x<1.当0<x<1时能得到x<1一定成立;当x<1时,0<x<1不一定成立.所以“<12”是“x3<1”的充分而不必要条件.方法总结(1)充分、必要条件的判断.解决此类问题应分三步:①确定条件是什么,结论是什么;②尝试从条件推结论,从结论推条件;③确定条件和结论是什么关系.(2)探究某结论成立的充要、充分、必要条件.解答此类题目,可先从结论出发,求出使结论成立的必要条件,然后验证得到的必要条件是否满足充分性.7.(2017北京理,6,5分)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案A由存在负数λ,使得m=λn,可得m、n共线且反向,夹角为180°,则m·n=-|m||n|<0,故充分性成立.由m·n<0,可得m,n的夹角为钝角或180°,故必要性不成立.故选A.8.(2017天津理,4,5分)设θ∈R,则“−<π12”是“sinθ<12”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案A本题考查不等式的解法及充分必要条件的判断.∵<π12⇔-π12<θ-π12<π12⇔0<θ<π6,sin θ<12⇔θ∈2χ−7π6,+62χ−7π6,2kπ+∴“−<π12”是“sin θ<12”的充分而不必要条件.9.(2016天津理,5,5分)设{a n }是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a 2n-1+a 2n <0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件答案C 若对任意的正整数n,a 2n-1+a 2n <0,则a 1+a 2<0,又a 1>0,所以a 2<0,所以q=21<0.若q<0,可取q=-1,a 1=1,则a 1+a 2=1-1=0,不满足对任意的正整数n,a 2n-1+a 2n <0.所以“q<0”是“对任意的正整数n,a 2n-1+a 2n <0”的必要而不充分条件.故选C.评析本题以等比数列为载体,考查了充分条件、必要条件的判定方法,属中档题.10.(2015重庆理,4,5分)“x>1”是“lo g 12(x+2)<0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件答案B 当x>1时,x+2>3>1,又y=lo g 12x 是减函数,∴lo g 12(x+2)<lo g 121=0,则x>1⇒lo g 12(x+2)<0;当lo g 12(x+2)<0时,x+2>1,x>-1,则lo g 12(x+2)<0⇒/x>1.故“x>1”是“lo g 12(x+2)<0”的充分而不必要条件.选B.11.(2015天津理,4,5分)设x∈R,则“1<x<2”是“|x-2|<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案A因为|x-2|<1等价于-1<x-2<1,即1<x<3,由于(1,2)⫋(1,3),所以“1<x<2”是“|x-2|<1”的充分而不必要条件,故选A.12.(2015湖南理,2,5分)设A,B是两个集合,则“A∩B=A”是“A⊆B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案C若A∩B=A,任取x∈A,则x∈A∩B,∴x∈B,故A⊆B;若A⊆B,任取x∈A,都有x∈B,∴x∈A∩B,∴A⊆(A∩B),又A∩B⊆A显然成立,∴A∩B=A.综上,“A∩B=A”是“A⊆B”的充要条件,故选C.13.(2015陕西理,6,5分)“sinα=cosα”是“cos2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案A由sinα=cosα,得cos2α=cos2α-sin2α=0,即充分性成立.由cos2α=0,得sinα=±cosα,即必要性不成立.故选A..若p:f'(x0)=0;q:x=x0是f(x)的极值点,则() 14.(2014课标Ⅱ文,3,5分)函数f(x)在x=x0处导数存在A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件答案C∵f(x)在x=x0处可导,∴若x=x0是f(x)的极值点,则f'(x0)=0,∴q⇒p,故p是q的必要条件;反之,以f(x)=x3为例,f'(0)=0,但x=0不是极值点,∴p⇒/q,故p不是q的充分条件.故选C.15.(2014安徽理,2,5分)“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案B ln(x+1)<0⇔0<x+1<1⇔-1<x<0⇒x<0;而x<0⇒/-1<x<0,故选B.16.(2014浙江理,2,5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案A当a=b=1时,有(1+i)2=2i,即充分性成立.当(a+bi)2=2i时,有a2-b2+2abi=2i,得2−2=0,B=1,解得a=b=1或a=b=-1,即必要性不成立,故选A.评析本题考查复数的运算,复数相等的概念,充分条件与必要条件的判定,属于容易题.17.(2014北京理,5,5分)设{an }是公比为q的等比数列.则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案D若q>1,则当a1=-1时,a n=-q n-1,{a n}为递减数列,所以“q>1”⇒/“{a n}为递增数列”;若{a n}为递增数列,则当a n时,a1=-12,q=12<1,即“{a n}为递增数列”⇒/“q>1”.故选D.考点二全称量词与存在量词1.(2015浙江理,4,5分)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n)∉N*且f(n0)>n0D.∃n0∈N*,f(n)∉N*或f(n0)>n0答案D“f(n)∈N*且f(n)≤n”的否定为“f(n)∉N*或f(n)>n”,全称命题的否定为特称命题,故选D.2.(2014湖北文,3,5分)命题“∀x∈R,x2≠x”的否定是()A.∀x∉R,x2≠xB.∀x∈R,x2=xC.∃x∉R,x2≠xD.∃x∈R,x2=x答案D原命题的否定为∃x∈R,x2=x.故选D.3.(2013重庆理,2,5分)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0B.不存在x∈R,使得x2<0C.存在x∈R,使得02≥0 D.存在x0∈R,使得02<0答案D全称命题的否定是特称命题.“对任意x∈R,都有x2≥0”的否定为“存在x0∈R,使得02<0”,故选D.4.(2015山东理,12,5分)若“∀x∈x≤m”是真命题,则实数m的最小值为.答案1解析∵0≤x≤π4,∴0≤tan x≤1,∵“∀x∈0,x≤m”是真命题,∴m≥1.∴实数m的最小值为1。

(完整版)常用逻辑用语测试题(含答案)

(完整版)常用逻辑用语测试题(含答案)

常用逻辑用语测试题(答案)1、一个命题与他们的逆命题、否命题、逆否命题这4个命题中( )A 、真命题与假命题的个数相同B 、真命题的个数一定是奇数C 、真命题的个数一定是偶数D 、真命题的个数可能是奇数,也可能是偶数2、下列说法中正确的是( )A 、一个命题的逆命题为真,则它的逆否命题一定为真B 、“a b >”与“ a c b c +>+”不等价C 、“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D 、一个命题的否命题为真,则它的逆命题一定为真3、给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A 、3B 、2C 、1D 、04、命题“设a 、b 、c R ∈,若22ac bc >则a b >”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A 、0B 、1C 、2D 、35、“若x ≠a 且x ≠b,则2()x a b x ab -++≠0”的否命题( )A 、若x =a 且x =b ,则2()x a b x ab -++=0B 、若x =a 或x =b ,则2()x a b x ab -++≠0C 、若x =a 且x =b ,则2()x a b x ab -++≠0 D、若x =a 或x =b ,则2()x a b x ab -++=06、“0x >0>”成立的( )A 、充分不必要条件.B 、必要不充分条件.C 、充要条件.D 、既不充分也不必要条件.7、“()24x k k Z ππ=+∈”是“tan 1x =”成立的 ( )A 、充分不必要条件.B 、必要不充分条件.C 、充分条件.D 、既不充分也不必要条件.8、不等式2230x x --<成立的一个必要不充分条件是( )A 、-1<x<3B 、0<x<3C 、-2<x<3D 、-2<x<19、设甲是乙的充分而不必要条件,丙是乙的充要条件,丁是丙的必要而不充分条件,则丁是甲的( )A 、充分而不必要条件B 、必要而不充分条件C 、充要条件D 、既不充分也不必要条件10、若"a b c d ≥⇒>"和"a b e f <⇒≤"都是真命题,且它们的逆命题都是假命题,则"c d ≤"是"e f ≤" 的( )A 、必要非充分条件B 、充分非必要条件C 、充分必要条件D 、既非充分也非必要条件11、命题:“若0>a ,则02>a ”的否命题是__________________________________________12、设P :x >2或2x <3;Q: x >2或x <-1,则¬p 是¬q 的___________________________条件. 13、:23A x -<, 2:2150B x x --<, 则A 是B 的__________________________条件。

逻辑用语复习题

逻辑用语复习题

逻辑用语复习题逻辑用语复习题逻辑用语是我们在日常生活中经常使用的一种语言工具,它可以帮助我们更准确地表达思想和观点。

在这篇文章中,我们将通过一些复习题来回顾和巩固逻辑用语的运用。

一、选择题1. 下列哪个选项中的逻辑用语表示因果关系?a) 所以b) 因此c) 但是d) 或者2. 下列哪个选项中的逻辑用语表示比较关系?a) 因此b) 所以c) 但是d) 或者3. 下列哪个选项中的逻辑用语表示条件关系?a) 或者b) 所以c) 但是d) 如果4. 下列哪个选项中的逻辑用语表示转折关系?a) 因此b) 所以c) 但是d) 或者5. 下列哪个选项中的逻辑用语表示选择关系?a) 或者b) 因此c) 所以d) 但是二、填空题1. 他很努力学习,_________ 能考上理想的大学。

2. 昨天下了很大的雨,_________ 外面的道路湿滑不堪。

3. 我们要保护环境,_________ 才能让后代有一个美好的未来。

4. 她爱吃水果,_________ 尤其是苹果和橙子。

5. 这个问题很难,_________ 只有专业人士才能解决。

三、简答题1. 解释以下逻辑用语的含义:因此、所以、但是、或者、如果。

2. 举例说明以下逻辑用语的使用场景:因此、所以、但是、或者、如果。

四、分析题阅读以下段落,分析其中的逻辑关系,并解释逻辑用语的运用。

"昨天下了很大的雨,所以今天的空气特别清新。

但是,由于雨水过多,导致了一些地区的水灾。

如果我们能更好地管理水资源,或者采取一些防洪措施,就能减少这种自然灾害的发生。

因此,保护环境和合理利用资源是我们每个人的责任。

"五、创作题请根据自己的理解,写一段短文,其中包含至少五个逻辑用语。

答案:一、选择题1. b) 因此2. c) 但是3. d) 如果4. c) 但是5. a) 或者二、填空题1. 所以2. 因此3. 才能4. 尤其是5. 只有三、简答题1. 因此表示由于前面的原因或条件,所以结果或结论是这样的。

高三数学常用逻辑用语试题答案及解析

高三数学常用逻辑用语试题答案及解析

高三数学常用逻辑用语试题答案及解析1.若“”是“”的充分不必要条件,则实数的取值范围是( )A.B.C.D.【答案】A【解析】依题意,∴,∴.【考点】充分必要条件.2.下列给出的四个命题中,说法正确的是()A.命题“若,则”的否命题是“若,则”;B.“”是“”的必要不充分条件;C.命题“存在,使得”的否定是“对任意,均有”;D.命题“若,则”的逆否命题为真.【答案】D【解析】本题考查命题的相关概念. 选项,“若,则”的否命题为:“若,则”;可以推出,反之不成立,故“”是“”的充分不必要条件,故选项错;命题“存在,使得”的否定应为:“对任意,均有”,故选项错,正确答案为.【考点】1.四种命题及其关系;2.充分与必要条件;3.全程量词与存在量词.3.已知命题:函数的最小正周期为;命题:若函数为偶函数,则关于对称.则下列命题是真命题的是()A.B.C.D.【答案】B【解析】函数的最小正周期为知命题为假命题;若函数为偶函数,则,所以关于对称,据此可知命题为真命题,根据真值表可得为真命题.【考点】真值表等基础知识.4.下列命题中,真命题的个数有()①;②;③“”是“”的充要条件;④是奇函数.A.1个B.2个C.3个D.4个【答案】C【解析】由知①是真命题;当时,知②是真命题;若则,而若且则知“”是“”的必要不充分条件,所以③是假命题;令,显然,则知“是奇函数”是真命题.【考点】真假命题的判断.5.已知命题函数在上单调递增;命题不等式的解集是.若且为真命题,则实数的取值范围是______.【答案】【解析】为真命题是真命题, 是真命题,是真命题, ②是真命题所以为真命题【考点】命题,基本逻辑联结词,一次函数单调性,二次不等式.6.下列命题中,是的充要条件的是()①或;有两个不同的零点;②是偶函数;③;④。

A.①②B.②③C.③④D.①④【答案】D【解析】①有两个不同的零点,由得或.因此①正确;②是偶函数,则不成立;③,但是无意义;④;所以④正确,因此是的充要条件的是①④.【考点】1.充要条件;2.函数的零点;3.奇偶函数的定义等.7.钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的()A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件【答案】A【解析】若p⇒q为真命题,则命题p是命题q的充分条件;“好货不便宜”,其条件是:此货是好货,结论是此货不便宜,由条件⇒结论.故“好货”是“不便宜”的充分条件.【考点】必要条件、充分条件与充要条件的判断点评:本题考查了必要条件、充分条件与充要条件的判断,属于基础题8.若集合,集合,则是“”( )A充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】若,则,,即“”;若,则,即“”,所以是“” 必要不充分条件。

逻辑用语复习题及答案

逻辑用语复习题及答案

逻辑用语复习题及答案1. 定义逻辑用语中的“真”和“假”。

2. 解释什么是命题,并给出一个例子。

3. 什么是逻辑连接词?请列出至少三种常见的逻辑连接词。

4. 描述“与”(AND)、“或”(OR)、“非”(NOT)连接词的真值表。

5. 什么是条件语句?请用逻辑用语表达“如果A,则B”。

6. 什么是双条件语句?请用逻辑用语表达“只有A,才B”。

7. 解释什么是逻辑等价。

8. 给出逻辑等价的两个例子,并解释为什么它们是等价的。

9. 什么是逻辑蕴涵?请用逻辑用语表达“A蕴涵B”。

10. 什么是逻辑悖论?请给出一个例子并解释其含义。

答案1. 在逻辑用语中,“真”通常表示一个命题是正确的,而“假”表示一个命题是错误的。

2. 命题是一个可以被判断为真或假的陈述。

例如,命题“今天是星期一”可以是真或假,取决于今天是星期几。

3. 常见的逻辑连接词包括“与”(AND)、“或”(OR)、“非”(NOT)、“异或”(XOR)、“蕴含”(IMPLIES)等。

4. 真值表如下:- AND: (T, T) -> T; (T, F) -> F; (F, T) -> F; (F, F) -> F- OR: (T, T) -> T; (T, F) -> T; (F, T) -> T; (F, F) -> F- NOT: (T) -> F; (F) -> T5. 条件语句可以用逻辑用语表达为:\( B \rightarrow A \)6. 双条件语句可以用逻辑用语表达为:\( A \leftrightarrow B \)7. 逻辑等价是指两个命题在所有可能的真值分配下都具有相同的真值。

8. 例子:命题 \( A \lor (B \land \neg B) \) 和 \( A \) 是等价的,因为无论 \( B \) 的真值如何,\( B \land \neg B \) 总是假,所以整个表达式等价于 \( A \)。

常用逻辑用语复习知识点+测试题

常用逻辑用语复习知识点+测试题

常用逻辑用语复习知识点+测试题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(常用逻辑用语复习知识点+测试题(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为常用逻辑用语复习知识点+测试题(word版可编辑修改)的全部内容。

常用逻辑用语复习 目标认知考试大纲要求:1。

理解命题的概念;了解逻辑联结词“或”、“且”、“非”的含义。

2。

了解命题“若p,则q”的形式及其逆命题、否命题与逆否命题,分析四种命题相互关系。

3。

理解必要条件、充分条件与充要条件的意义.4. 理解全称量词与存在量词的意义;能正确地对含有一个量词的命题进行否定.重点:充分条件与必要条件的判定难点:根据命题关系或充分(或必要)条件进行逻辑推理.知识要点梳理知识点一:命题1。

定义: 一般地,我们把用语言、符号或式子表达的,可以判断真假的语句叫做命题.(1)命题由题设和结论两部分构成. 命题通常用小写英文字母表示,如p,q,r,m,n等。

(2)命题有真假之分,正确的命题叫做真命题,错误的命题叫做假命题. 数学中的定义、公理、定理等都是真命题逻辑联结词:非“或"”的否定是“p且q"的否定是“p或q”.知识点二:四种命题1。

四种命题的形式:用p和q分别表示原命题的条件和结论,用p和q分别表示p和q的否定,则四种命题的形式为: 原命题:若p则q; 逆命题:若q则p; 否命题:若p则q;逆否命题:若q则p.2. 四种命题的关系 ①原命题逆否命题。

它们具有相同的真假性,是命题转化的依据和途径之一. ②逆命题否命题,它们之间互为逆否关系,具有相同的真假性,是命题转化的另一依据和途径. 除①、②之外,四种命题中其它两个命题的真伪无必然联系。

2023届高考复习数学易错题专题(常用逻辑用语)汇编 (附答案)

2023届高考复习数学易错题专题(常用逻辑用语)汇编 (附答案)

2023届高考复习数学易错题专题(常用逻辑用语)汇编1.命题“∀a ,b >0,a +1b ≥2和b +1a ≥2至少有一个成立”的否定为( ) A .∀a ,b >0,a +1b<2和b +1a <2至少有一个成立 B .∀a ,b >0,a +1b≥2和b +1a ≥2都不成立 C .∃a ,b >0,a +1b<2和b +1a <2至少有一个成立 D .∃a ,b >0,a +1b≥2和b +1a ≥2都不成立 2.使“a b >”成立的一个充分不必要条件是()A.1a b >+ B.1a b > C.22a b > D.33a b >3.下列命题的否定是真命题的是( )A .a ∀∈R ,一元二次方程210x ax --=有实根B .每个正方形都是平行四边形C .m N N ∃∈D .存在一个四边形ABCD ,其内角和不等于360°4.“直线m 垂直于平面α内的无数条直线”是“m ⊥α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.设x >0,y >0,则“x +y =1”是“xy ≤14”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.(多选)下列命题的否定中,真命题的是( )A .x R ∃∈,2104x x -+<B .所有正方形既是矩形也是菱形C .0a ∃>,2220x x a +++=D .所有三角形都有外接圆 7.(多选)下列选项中p 是q 的充分不必要条件的是( )A.:12p x <<,:12q x ≤≤B.:1p xy >,:1q x >,1y > C.1:1p x >,:1q x < D.p :两直线平行,q :内错角相等8.已知命题p :x 2-3x +2≤0,命题q :x 2-4x +4-m 2≤0.若p 是q 的充分不必要条件,则m 的取值范围是( )A .(-∞,0]B .[1,+∞)C .{0}D .(-∞,-1]∪[1,+∞)9.已知:0p a ≥;:q x R ∀∈,20x ax a -+>,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.(多选)已知命题:{11}p m mm ∃∈-≤≤∣,2532a a m -+<+,若p 是假命题,则实数a 的取值范围是( )A .a 0B .a 5C .a 0D .a 511.(多选)下列命题正确的是( )A .“a >1”是“1a <1”的充分不必要条件B .命题“∃x ∈(0,+∞),ln x =x -1”的否定是“∀x ∈(0,+∞),ln x ≠x -1”C .设x ,y ∈R,则“x ≥2且y ≥2”是“x 2+y 2≥4”的必要不充分条件D .设a ,b ∈R,则“a ≠0”是“ab ≠0”的必要不充分条件12.命题“0x ∀>11x+≥”的否定是___________. 13.若f (x )=x 2-2x ,g (x )=ax +2(a >0),∀x 1∈[-1,2],∃x 0∈[-1,2],使g (x 1)=f (x 0),则实数a 的取值范围是________.14.已知():210110p x q m x m m -≤≤-≤≤+>,:,且q 是p 的必要不充分条件,则实数m 的取值范围是____________.15.命题“x ∃∈R ,210x x ++≤”的否定是______.16.已知命题“2,10x R ax ax ∀∈-+>”为真命题,则实数a 的取值范围是__________.17.设:12m x m α-≤≤,:24x β≤≤,m R ∈,α是β的必要条件,但α不是β的充分条件,则实数m 的取值范围为___________.18.若“∃x ∈[4,6],x 2-ax -1>0”为假命题,则实数a 的取值范围为________.19.在①x ∃∈R ,2220x ax a ++-=,②存在区间()2,4A =,(),3B a a =,使得A B =∅ ,这2个条件中任选一个,补充在下面问题中,并求解问题中的实数a .问题:求解实数a ,使得命题[]:1,2p x ∀∈,20x a -≥,命题:q ______,都是真命题.(若选择两个条件都解答,只按第一个解答计分.)答案解析1.命题“∀a ,b >0,a +1b ≥2和b +1a ≥2至少有一个成立”的否定为( ) A .∀a ,b >0,a +1b<2和b +1a <2至少有一个成立 B .∀a ,b >0,a +1b≥2和b +1a ≥2都不成立 C .∃a ,b >0,a +1b<2和b +1a <2至少有一个成立 D .∃a ,b >0,a +1b≥2和b +1a ≥2都不成立 【参考答案】D【答案解析】 “∀a ,b >0,a +1b≥2和b +1a ≥2至少有一个成立”的否定为:∃a ,b >0, a +1b ≥2和b +1a ≥2都不成立.2.使“a b >”成立的一个充分不必要条件是()A.1a b >+ B.1a b > C.22a b > D.33a b >【参考答案】A【答案解析】对于A 选项,若1a b >+,则a b >成立,即充分性成立,反之,若a b >,则 1a b >+不一定成立,所以1a b >+是“a b >”成立的一个充分不必要条件,对于B 选项,当0b <时,由1a b >得a b <,则a b >不成立,即1a b>不是充分条件,不满足条件;对于C 选项,由22a b >,若2a =-,1b =,则a b <,则a b >不一定成立,所以22a b >不是a b >的充分条件,不满足条件,对于D 选项,由33a b >可得a b >,则33a b >是a b >成立的充要条件,不满足题意。

高三数学常用逻辑用语试题答案及解析

高三数学常用逻辑用语试题答案及解析

高三数学常用逻辑用语试题答案及解析1.已知函数,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】函数,所以,,,所以,即;反过来,时,得得,不能得到.所以“”是“”的充分不必要条件.【考点】充分条件与必要条件、一元一次不等式2.若“,使”为真命题,则实数的取值范围是 .【答案】【解析】若“,使”为真命题,则解得.【考点】一元二次不等式的解法,考查学生的分析、计算能力.3.已知命题:,则是()A.B.C.D.【答案】【解析】由.【考点】命题与量词,基本逻辑联结词.4.若集合,集合,则是“”( )A充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】若,则,,即“”;若,则,即“”,所以是“” 必要不充分条件。

故选B。

【考点】充分条件与必要条件点评:判断两个条件之间的关系是一个重要的考点。

本题就是结合结论:若,则A是B的必要不充分而条件。

5.“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】,所以答案选择B【考点】考查充分条件和必要条件,属于简单题.6.下列命题中是假命题的是A.,B.,C.,D.,【答案】D【解析】对于A. ,,根据三角函数的定义可知成立。

对于 B.,,当变量为1时成立,故正确,对于C.,,符合指数函数的值域,成立,对于 D.,,不可能,因为最大值为,故选D.【考点】全称命题的和特称命题的真假点评:主要是考查了命题真假的判定,利用全称命题和特称命题的关系,属于基础题。

7.下列说法中,正确的是A.命题“若,则”的逆命题是真命题;B.命题“,”的否定是:“,”;C.命题“或”为真命题,则命题“”和命题“”均为真命题;D.已知,则“”是“”的充分不必要条件.【答案】B【解析】“若,则”的逆命题是:若,则,是假命题;命题“,”的否定是:“,”;是真命题;“或”为真命题,则命题“”和命题“”至少有一是真命题,即C是假命题;推不出,由可推出,即已知,则“”是“”的必要不充分条件。

逻辑用语考试题及答案解析

逻辑用语考试题及答案解析

逻辑用语考试题及答案解析一、选择题1. 以下哪个选项是逻辑中的“或”运算?A. ∨B. ∧C. →D. ¬答案:A解析:在逻辑中,“或”运算用符号“∨”表示,表示两个命题中至少有一个为真。

选项A正确。

2. 以下哪个命题是真命题?A. 如果今天是星期一,那么明天是星期二。

B. 如果今天是星期一,那么明天是星期三。

C. 如果今天是星期一,那么今天是星期二。

D. 如果今天是星期一,那么今天是星期六。

答案:A解析:选项A是一个真命题,因为如果今天是星期一,那么根据一周的顺序,明天确实是星期二。

选项B、C和D都是假命题,因为它们违反了一周的顺序或逻辑上的一致性。

二、填空题1. 如果命题P为“所有的苹果都是水果”,命题Q为“有些水果不是苹果”,那么命题P和Q的逻辑关系是_________。

答案:兼容解析:命题P和Q并不矛盾,它们可以同时为真。

命题P声称所有的苹果都是水果,而命题Q指出有些水果不是苹果,这两者并不冲突,因为可能存在除了苹果之外的其他水果。

三、简答题1. 解释逻辑中的“充分条件”和“必要条件”。

答案:在逻辑中,“充分条件”指的是当一个条件成立时,必然导致另一个条件成立。

换句话说,如果条件A是条件B的充分条件,那么每当A成立时,B一定成立。

而“必要条件”则是指为了使一个条件成立,必须满足的另一个条件。

如果条件A是条件B的必要条件,那么没有A,B就不可能成立。

解析:充分条件和必要条件是逻辑推理中非常重要的概念,它们帮助我们理解命题之间的依赖关系。

充分条件强调的是“有之则必然”,而必要条件强调的是“无之则不可能”。

四、论述题1. 论述逻辑中的“逆否命题”及其在逻辑推理中的应用。

答案:逆否命题是指将一个条件命题的前件和后件都取反,并且交换它们的位置。

如果原命题是“如果A,则B”,那么逆否命题就是“如果非B,则非A”。

根据逻辑原理,一个命题和它的逆否命题在真值上是等价的,即它们要么同时为真,要么同时为假。

逻辑用语考试题及答案大全

逻辑用语考试题及答案大全

逻辑用语考试题及答案大全1. 命题逻辑中,复合命题“若p则q”的逆命题是:A. 若q则pB. 若非p则非qC. 若p则非qD. 若非q则非p答案:A2. 以下哪个命题是永真命题?A. p∧非pB. p∨非pC. p⇒非pD. p⇔非p答案:B3. 在谓词逻辑中,全称量词“∀”表示:A. 存在B. 对于所有C. 至少有一个D. 没有答案:B4. 如果命题p和命题q互为逆否命题,那么它们具有相同的:A. 真值B. 否定C. 蕴含D. 析取答案:A5. 逻辑运算符“∧”表示:A. 与B. 或C. 非D. 蕴含答案:A6. 命题“所有学生都是勤奋的”的否定是:A. 所有学生都不是勤奋的B. 存在一个学生不是勤奋的C. 存在一个学生是勤奋的D. 所有学生都是懒惰的答案:B7. 若p∧q为真命题,则p和q:A. 至少有一个为真B. 至少有一个为假C. 都为真D. 都为假答案:C8. 以下哪个命题逻辑表达式表示“p或q至少有一个为真”?A. p∧qB. p∨qC. p⇒qD. p⇔q答案:B9. 命题“如果今天是周一,那么明天是周二”的逆命题是:A. 如果明天是周二,那么今天是周一B. 如果今天不是周一,那么明天不是周二C. 如果明天是周一,那么今天是周二D. 如果明天不是周二,那么今天不是周一答案:A10. 在逻辑推理中,如果p⇒q为真,且p为假,则q的真值可以是:A. 真B. 假C. 既真又假D. 不确定答案:D11. 以下哪个选项是命题“存在一个x,使得x是偶数”的否定?A. 所有x都是偶数B. 所有x都不是偶数C. 存在一个x,使得x不是偶数D. 存在一个x,使得x是奇数答案:B12. 逻辑运算符“∨”表示:A. 与B. 或C. 非D. 蕴含答案:B13. 命题“若p则q”和命题“若q则p”之间的关系是:A. 互为逆命题B. 互为逆否命题C. 互为对偶命题D. 互为逆命题和逆否命题答案:A14. 在逻辑推理中,如果p∧q为假,那么p和q:A. 至少有一个为真B. 至少有一个为假C. 都为真D. 都为假答案:B15. 命题“所有人都是平等的”的否定是:A. 所有人都是不平等的B. 至少有一个人是不平等的C. 至少有一个人是平等的D. 没有人是平等的答案:B。

高三总复习数学检测题 常用逻辑用语

高三总复习数学检测题 常用逻辑用语

常用逻辑用语A 级——基础达标1.命题“∀x >2,log 2x >1”的否定是( )A .∃x >2,log 2x ≤1B .∃x ≤2,log 2x ≤1C .∃x >2,log 2x <1D .∃x <2,log 2x <1解析:A 命题为全称量词命题,则命题的否定为∃x >2,log 2x ≤1”.故选A .2.1943年深秋的一个夜晚,年仅19岁的曹火星在晋察冀边区创作了歌曲《没有共产党就没有中国》,毛主席得知后感觉歌名的逻辑上有点问题,遂提出修改意见,将歌名改成《没有共产党就没有新中国》,请问“没有共产党”是“没有新中国”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件解析:A 记条件p: “没有共产党”,条件q :“没有新中国”,由歌词知,p 可推出q ,故“没有共产党”是“没有新中国”的充分条件.故选A .3.(2021·天津高考)已知a ∈R ,则“a >6”是“a 2>36”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A a 2>36等价于|a |>6⇔a >6或a <-6,故a >6⇒|a |>6,即a 2>36,但|a |>6a >6,因此“a >6”是“a 2>36”的充分不必要条件.4.△ABC 中,“△ABC 是钝角三角形”是“|AB ―→+AC ―→|<|BC ―→|”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:B 在△ABC 中,若C 为钝角,如图画出平行四边形ABDC ,∴|AB ―→+AC ―→|=|AD ―→|,易知|AD ―→|>|BC ―→|,∴“△ABC 是钝角三角形”不一定能推出“|AB ―→+AC ―→|<|BC ―→|”;在△ABC 中,A ,B ,C 三点不共线,∵|AB ―→+AC ―→|<|BC ―→|,∴|AB ―→+AC ―→|<|AC ―→-AB ―→|,∴|AB ―→+AC ―→|2<|AC ―→-AB ―→|2,∴AB ―→·AC ―→<0,∴A 为钝角,∴△ABC 为钝角三角形,∴“|AB ―→+AC―→|<|BC ―→|”能推出“△ABC 是钝角三角形”,故“△ABC 是钝角三角形”是“|AB ―→+AC ―→|<|BC ―→|”的必要不充分条件,故选B .5.设计如图所示的四个电路图,则能表示“开关A 闭合”是“灯泡B 亮”的必要不充分条件的一个电路图是( )解析:C 选项A :“开关A 闭合”是“灯泡B 亮”的充分不必要条件;选项B :“开关A 闭合”是“灯泡B 亮”的充要条件;选项C :“开关A 闭合”是“灯泡B 亮”的必要不充分条件;选项D :“开关A 闭合”是“灯泡B 亮”的既不充分也不必要条件.故选C .6.“n >1”是“方程x 2+ny 2=1表示焦点在x 轴上的圆锥曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A 当n <0时,方程x 2+ny 2=1表示焦点在x 轴上的双曲线;当n >0时,x 2+ny 2=1可化为x 2+y 21n =1,因为椭圆的焦点在x 轴上,所以1>1n,即n >1,故方程x 2+ny 2=1表示焦点在x 轴上的圆锥曲线时,n <0或n >1,故“n >1”是“方程x 2+ny 2=1表示焦点在x 轴上的圆锥曲线”的充分不必要条件,故选A .7.(多选)命题“∃x ∈[1,2],x 2≤a ”为真命题的一个充分不必要条件是( )A .a ≥1B .a ≥4C .a ≥-2D .a =4解析:BD 命题“∃x ∈[1,2],x 2≤a ”等价于a ≥1,即命题“∃x ∈[1,2],x 2≤a ”为真命题所对应集合为[1,+∞),所求的一个充分不必要条件的选项所对应的集合真包含于[1,+∞),显然只有B 、D 正确.故选B 、D .8.(多选)给出下列四个命题,其中为真命题的是( )A .“∀x ∈(-∞,0),2x >3x ”的否定是“∃x ∈(-∞,0),2x ≤3x ”B .∃α,β∈R ,使得sin(α+β)=sin α+sin βC .“x >2”是“x 2-3x +2>0”的充分不必要条件D .若z 1,z 2不是共轭复数,则|z 1|≠|z 2|解析:ABC 对于A 选项,“∀x ∈(-∞,0),2x >3x ”的否定是“∃x ∈(-∞,0),2x ≤3x ”,A 选项正确;对于B 选项,取α=β=0,则sin(α+β)=sin 0=sin 0+sin 0=sin α+sin β,B 选项正确; 对于C 选项,解不等式x 2-3x +2>0得x <1或x >2,因为{x |x >2} {x |x <1或x >2},所以“x >2”是“x 2-3x +2>0”的充分不必要条件,C 选项正确;对于D 选项,取z 1=1+i ,z 2=-1+i ,此时z 1,z 2不是共轭复数,但|z 1|=|z 2|=2,D 选项错误.故选A 、B 、C .9.(2021·镇江三模)给出下列四个命题,其中真命题的序号是________.①因为sin ⎝⎛⎭⎫x +π3≠sin x ,所以π3不是函数y =sin x 的周期; ②对于定义在R 上的函数f (x ),若f (-2)≠f (2),则函数f (x )不是偶函数;③“M >N ”是“log 2M >log 2N ”成立的充要条件;④若实数a 满足a 2≤4,则a ≤2.解析:因为当x =π3时,sin ⎝⎛⎭⎫x +π3≠sin x ,所以由周期函数的定义知π3不是函数y =sin x 的周期,故①正确;对于定义在R 上的函数f (x ),若f (-2)≠f (2),由偶函数的定义知函数f (x )不是偶函数,故②正确;当M =1,N =0时不满足log 2M >log 2N ,则“M >N ”不是“log 2M >log 2N ”成立的充要条件,故③错误;若实数a 满足a 2≤4,则-2≤a ≤2,所以a ≤2成立,故④正确.所以真命题的序号是①②④.答案:①②④10.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________.解析:设f (x )=sin x ,则f (x )在⎣⎡⎦⎤0,π2上是增函数,在⎣⎡⎦⎤π2,2上是减函数.由正弦函数图象的对称性知,当x ∈(0,2]时,f (x )>f (0)=sin 0=0,故f (x )=sin x 满足条件f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不一直都是增函数.答案:f (x )=sin x (答案不唯一)B 级——综合应用11.已知条件p :|x +1|>2,条件q :x >a ,且綈p 是綈q 的充分不必要条件,则实数a 的取值范围为( )A .[1,+∞)B .[-1,+∞)C .(-∞,1]D .(-∞,3]解析:A 由条件p :|x +1|>2,解得x >1或x <-3,故綈p :-3≤x ≤1,由条件q :x >a 得綈q :x ≤a ,∵綈p 是綈q 的充分不必要条件,∴a ≥1,故选A .12.(多选)若a ,b 为正实数,则a >b 的充要条件为( )A .1a >1bB .ln a >ln bC .a ln a <b ln bD .a -b <e a -e b解析:BD 因为1a >1b⇔b >a ,故A 选项错误; 因为a ,b 为正实数,所以ln a >ln b ⇔a >b ,故B 选项正确;取a =e 2,b =e ,则e 2lne 2=2e 2,eln e =e ,且2e 2>e ,即a ln a >b ln b ,故C 选项错误; 设y =e x -x ,因为y ′=(e x -x )′=e x -1,当x >0时,y ′>0,所以y =e x -x 在x ∈(0,+∞)上单调递增,即a >b ⇔e a -a >e b -b ⇔a -b <e a -e b ,故D 正确.故选B 、D .13.已知命题:“a ,b ∈R ,且a +b <0”.(1)该命题的一个充分不必要条件是________;(2)该命题的一个必要不充分条件是________.解析:(1)根据充分不必要条件,可知“a ,b ∈R ,且a +b <0”的一个充分不必要条件是“a <0且b <0”,a <0且b <0能推出a +b <0,但a +b <0不能推出a <0且b <0;(2)该命题一个必要不充分条件是“a +b <1,a ,b 中至少有一个小于0”,即a +b <0能推出a +b <1,a ,b 中至少有一个小于0,但反过来,a +b <1,a ,b 中至少有一个小于0,不能推出a +b <0.答案:(1)a <0且b <0(答案不唯一)(2)a +b <1,a ,b 中至少有一个小于0(答案不唯一)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用逻辑用语复习题
一、选择题:
1.下列四个命题,其中为真命题的是( )
A .命题“若24x =,则2x =或2x =-”的逆否命题是“若2x ≠或2x ≠-,则24x ≠”
B .若命题:p 所有幂函数的图像不过第四象限,命题:q 所有抛物线的离心率为1,则命题“p 且q ”为真
C .若命题:p 2,230,x R x x ∀∈-+>则2
000:,230p x R x x ⌝∃∈-+<
D .若a b >,则()
*n n a b n N >∈
2.下列命题中,p 是q 的充要条件的是( )
①:2p m <-或6m >;2:3q y x mx m =+++有两个不同的零点;
③:cos cos ;p αβ=:tan tan q αβ=; ④:;p A B A ⋂=:U U q C B C A ⊆。

A.①②
B.②③
C.③④
D.①④ 3.下列说法中正确的是
A .若p ∨q 为真命题,则p ,q 均为真命题
B .命题“0
0,2
0x x R ∃∈≤”的否定是“,20x x R ∀∈>”
C .“a≥5”是“2
[1,2],0x x a ∀
∈-≤恒成立“的充要条件 D .在△ABC 中,“a>b”是“sinA>sinB”的必要不充分条件
4.已知: 0)3)(2(:>--x x q ,的充分不必要条件是若q p ⌝⌝,则实数a 的取值范围是( )
A.61>-<a a 或
B.
C.61≤≤-a
D. 5.由命题p :“函数q:“数列a,a 2,a 3,…, a n ,…是等比数列”构成的复合命题中,下列判断正确的是( ) A .p q 为假,p q 为假 B .p q 为真,p q 为真 C .p q 为真,p q 为假 D .p q 为假,p q 为真
6.已知命题:函数的值域为,命题:函数
是减函数,若或为真命题,且为假命题,则实数的取值范围是( ) A . B . C . D .或 7.下列4个命题:
2
2
∨∧∨∧∨∧∨∧p )2(log 25.0a x x y ++=R q x
a y )25(--=p q p q a 1≤a 2<a 21<<a 1<a 2≥a
②“18a ≥
”是“对任意的正数x ,21a
x x
+
≥”的充要条件; ③命题“,”的否定是:“,x R ∀∈20x x -<”
④已知p,q 为简单命题,则“p q ∧为假命题”是“p q ∨为假命题”的充分不必要条件;
其中正确的命题个数是
A.1
B.2
C.3
D.4 8.下列命题中正确的是( ) A. 若a b a b →→→→
=和都是单位向量,则
B. 若AB →=DC →
,则A ,B ,C ,D 四点构成平行四边形 C. ,,a b b c a c →→→→→→
若∥∥则∥ D. 向量AB →与BA →
是两平行向量
9.若:,1A a R a ∈<, :B x 的二次方程2
(1)20x a x a +++-=的一个根大于零, 另一根小于零,则A 是B 的
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
10.命题:p 函数2
2log (2)y x x =-的单调增区间是[1,)+∞,命题:q 函数1
31
x y =
+的值域为(0,1),下列命题是真命题的为( )
A .p q ∧
B .p q ∨ C. ()p q ∧⌝ D.q ⌝
二、填空题::
11.下列命题中_________为真命题.
①“A ∩B=A ”成立的必要条件是“A B ”; ②“若x 2+y 2
=0,则x ,y 全为0”的否命题; ③“全等三角形是相似三角形”的逆命题; ④“圆内接四边形对角互补”的逆否命题. 12.命题:“2
5:(1,),2302
p x tx x ∃∈+->使不等式有解”为真命题,则实数t 的取值范围是______________
13.已知p:-4<x-a <4,q:(x-2)(3-x)>0,若⌝p 是⌝q 的充分条件,则实数a 的取值范围是 .
14.设命题:(),命题:(),
若命题是命题
的充分非必要条件,则的取值范围是 。

15.关于函数(3),0
()23,0
x x e x f x ax x -⎧-≥=⎨-<⎩(为常数,且),对于下列命题:
x R ∃∈02
>-x x p ⎪⎩
⎪⎨⎧≥+-≤-->-+06208201243y x y x y x R y x ∈,q 2
22r y x ≤+0,,,>∈r R r y x q p ⌝
r a 0a >
②若2a =
,则函数在处可导; ③函数在R 上存在反函数; ④函数有最大值
⑤对任意的实数120x x >≥,恒有 其中正确命题的序号是___________________.
三、解答题:
16.已知命题p :任意x ∈R ,x 2
+1≥a 都成立,命题q (1)若命题p 为真命题,求实数a 的取值范围; (2)若 “p 且q ”为真命题,求实数a 的取值范围.
17.已知条件p :{}
2|230,,x A x x x x R ∈=--≤∈ 条件q :{}
22|240,,x B x x mx m x R m R ∈=-+-≤∈∈ (Ⅰ)若[]0,3A B =I ,求实数m 的值;
(Ⅱ)若p 是q ⌝的充分条件,求实数m 的取值范围.
18(x ∈R ), (Ⅱ)已知m ∈R ,p :关于x 的不等式2()22f x m m ≥+-对任意x ∈R 恒成立; q :函数2(1)x y m =-是增函数.若“p 或q ”为真,“p 且q ”为假,求实数m 的取值范围.
()f x 0x =()f x ()f x
19. a,b,c为实数,且a=b+c+1.证明:两个一元二次方程x2+x+b=0,x2+ax+c=0中至少有一个方程有两个不相等的实数根.
20.已知集合
(1)能否相等?若能,求出实数的值,若不能,试说明理由?
(2)若命题命题且是的充分不必要条件,求实数的取值范围.
21.已知,设命题:函数在区间上与轴有两个不同
的交点;命题:在区间上有最小值.若是真命题,求实数的取值范围.
参考答案
1.B 2.D 3.B 4.C 5.C 6.C 7.B 8.D 9.A 10.B 11.②④ 12.825
t >-
13.[-1,6] 14.(0 15.①②④
16.(1)1≤a (2)12≤<-a 17.(1)21≤≤m (2)5>m 或3-<m
18.(1)1;(2)
19.假设两个方程都没有两个不等的实数根,则
Δ1=1-4b ≤0,Δ2=a 2-4c ≤0,∴Δ1+Δ2=1-4b+a 2
-4c ≤0.
∵a=b+c+1,∴b+c=a-1.∴1-4(a-1)+a 2
≤0,
即a 2-4a+5≤0.但是a 2-4a+5=(a-2)2
+1>0,故矛盾.
所以假设不成立,原命题正确,即两个方程中至少有一个方程有两个不相等的实数根.
20. (1)当时,当时
显然
,故时,
.
(2)
当时, 则解得
5
12
当时,则
综上是的充分不必要条件,实数的取值范围是或.
21.要使函数在上与轴有两个不同的交点,
必须
2分

4分
解得.
所以当时,函数在上与轴有两个不同的交点. 5分
下面求在上有最小值时的取值范围:
方法1:因为
6分
①当时,在和上单调递减,在上无最小值; 7分
②当时,在上有最小值
; 8分
在上有最小值. 9分
所以当时,函数在上有最小值. 10分
方法2:因为
6分
因为,所以.
所以函数是单调递减的. 7分
要使在上有最小值,必须使在上单调递增或为常数. 8分
即,即. 9分
所以当时,函数在上有最小值.10分
若是真命题,则是真命题且是真命题,即是假命题且是真命题. 11分
所以
1 2分
解得或
.13分
故实数的取值范围为. 14分。

相关文档
最新文档