化工原理第七章萃取

合集下载

化工原理下液液萃取

化工原理下液液萃取
准备试剂
选择适当的萃取剂和被萃取溶液,按照实验要求准备试剂 。
操作步骤
将被萃取溶液和萃取剂按照一定比例加入分液漏斗中,充 分混合后静置分层,记录各层体积及颜色等物理性质。重 复萃取操作直至达到实验要求。
数据记录、整理和分析方法
1 2
数据记录
记录每次萃取操作后的各层体积、颜色等物理性 质,以及实验过程中的温度、搅拌速度等操作参 数。
操作方便
通过调节搅拌速度和澄清 时间,可以方便地控制萃 取过程。
适用范围广
适用于多种液液萃取体系 ,特别适用于处理量大、 停留时间长的体系。
萃取塔
高效传质
萃取塔内设有填料或塔板 ,以增加相际接触面积, 提高传质效率。
连续操作
萃取塔可实现连续进料和 出料,适用于大规模生产 。
易于自动化
萃取塔易于实现自动化控 制,提高生产效率和产品 质量。
萃取过程中,通常将含有目标组分的溶液与萃取剂充分接触,使目标组分在两种液 体之间进行分配。
通过调整萃取条件(如pH值、温度、压力等),可以改变目标组分在两种液体中的 分配系数,从而实现目标组分的分离和纯化。
溶解度与分配定律
溶解度是指在一定温度和压力下,溶质 在溶剂中的最大溶解量。在液液萃取中 ,溶解度决定了目标组分在两种液体中
的分配情况。
分配定律描述了目标组分在两种不混溶 液体之间的分配关系,通常用分配系数 表示。分配系数与目标组分在两种液体 中的溶解度、温度、压力等因素有关。
通过测定分配系数,可以预测目标组分 在液液萃取过程中的分离效果,并为优
化萃取条件提供依据。
萃取剂选择与性质
萃取剂的选择对液液萃取效果至关重 要。理想的萃取剂应具有与目标组分 相似或更高的溶解度,同时与被萃取 物不混溶。

化工原理7章液液萃取

化工原理7章液液萃取
形成新的混合物mM, ( zA, zB, zs) :
mM mR mE 物料衡算 mMzA mRxA mE yA
mMzs mRxs mE ys
将方程整理成如下形式:
mE xAzAzSxS mR zAyA ySzS
此式说明,三个组成点M、R、E在一条直线上, 即M点位 于RE 点的连接线上。
m E RM m R ME
理论萃取级:即无论进入该级的两股液流(原料、溶剂或前 一级的萃余相和后一级的萃取相)的组成如何,经过萃取后, 从该级流出的萃取相和萃余相为互成平衡的两个相。
7.3.1 单级萃取计算 (1) 流程
mF, xF mS
混合器
xE, y
mM, z
澄清槽
mR, x
单级萃取流程示意图
(2)特点 ◇ 原料液与溶剂一次性接触。 ◇ 萃取相与萃余相达到平衡。
m E MR
mM
ER
A
mR M E
mM
RE
mE M R
mM
RE
mE M R mR M E
S B
7.2.2 三角形相图 萃取相、萃余相的相平衡关系是萃取设计、计算的基本条件,相 平衡数据来自实验或由热力学关系推算。 讨论的前提: 各组分不发生化学反应。 (1)溶解度曲线及平衡联结线
① 相平衡数据的测定:
yB xB
越大,分离效果越 应好 选, 择 1的溶剂
与分k配 A 有系 关 kA 越 数 , 大 越, 大
kA1 ,则 一定 1 ; 大 kA1 于 , 可能 1 , 大也 于可1 。 能
(2)溶剂萃取容量 定义:部分互溶物系的褶点处或第二类物系溶解度最大时,
萃取相中单位溶剂可能达到的最大溶质负荷。
(6)稳定性,腐蚀性,价格 良好的稳定性,腐蚀性小,毒性低,资源充足,价格适宜等。

化工原理实验—萃取

化工原理实验—萃取

液液萃取塔的操作一、实验目的(1)了解液液萃取设备的结构和特点;(2)掌握液液萃取塔的操作;(3)掌握传质单元高度的测定方法,并分析外加能量对液液萃取塔传质单元高度和通量的影响。

二、基本原理1.液液萃取设备的特点液液相传质和气液相传质均属于相间传质过程。

因此这两类传质过程具有相似之处,但也有相当差别。

在液液系统中,两相间的重度差较小,界面张力也不大,所以从过程进行的流体力学条件看,在液液相的接触过程中,能用于强化过程的惯性力不大,同时已分散的两相,分层分离能力也不高。

因此,对于气液接触效率较高的设备,用于液液接触就显得效率不高。

为了提高液液相传质设备的效率,常常补给能量,如搅拌、脉动、振动等。

为使两相逆流和两相分离,需要分层段,以保证有足够的停留时间,让分散的液相凝聚,实现两相的分离。

2.液液萃取塔的操作(1)分散相的选择在萃取设备中,为了使两相密切接触,其中一相充满设备中的主要空间,并呈连续流动,称为连续相;另一相以液滴的形式,分散在连续相中,称为分散相。

哪一相作为分散相对设备的操作性能、传质效果有显著的影响。

分散相的选择可通过小试或中试确定,也可根据以下几方面综合考虑:1)为了增加相际接触面积,一般将流量大的一相作为分散相;但如果两相的流量相差很大,并且所选用的萃取设备具有较大的轴向混合现象,此时应将流量小的一相作为分散相,以减小轴向混合。

2)应充分考虑界面张力变化对传质面积的影响,对于dx d>0的系统,即系统的界面张力随溶质浓度增加而增加的系统;当溶质从液滴向连续相传递时,液滴的稳定性较差,容易破碎,而液膜的稳定性较好,液滴不易合并,所以形成的液滴平均直径较小,相际接触表面较大,当溶质从连续相向液滴传递时,情况刚好相反。

在设计液液传质设备时,根据系统性质正确选择作为分散相的液体,可在同样条件下获得较大的相际传质表面积,强化传质过程。

3)对于某些萃取设备,如填料塔和筛板塔等,连续相优先润湿填料或筛板是相当重要的。

化工原理萃取实验

化工原理萃取实验
努力尝试微笑
四. 萃取塔结构特征
⑴需要适度的外加能量; ⑵需要足够大的分层分离空间。
五.萃取塔的操作特点
⑴ 分散相的选择 a.流量大的一相作为分散相; b.不易润湿材质的一相作为分散相;
c.根据界面张力理论 d.粘度大的、含放射性的、成本高的选为分散相
(2)外加能量的大小 有利:a.增加液液传质面积; b.增加液液传质系数。 不利:a.返混增加,传质推动力下降; b.液滴太小,内循环消失,传质系数下降; c.容易发生液泛,通量下降。
Cf)(CR lnCfCRCf
0)
C
f
CE k
(6)C与x的换算
Cf
12 ρ油
2
CR
xR 122 ρ油
CE
xE 122 ρ水
CS 0
八.实验流程图
九.实验步骤
1.先灌满连续相; 2.再开启分散相; 3.将转速分别调至300,500,650,900,1100,1450;
4.取样分析进口苯甲酸浓度xf,随外加能量增加,分 析出口浓度xR,从而计算传质单元数,最终测得传质 单元高度HOR。
液-液萃取塔的操作 及其传质单元高度的测定
<化工原理实验室> <赵培 张秋香>
一.实验目的
⑴掌握萃取塔传质单元高度的测定方法,学会分析 外加能量对液-液萃取塔传质单元高度的影响;
⑵了解引起萃取塔液泛不正常现象出现的原因以及处 理方法;
⑶了解液-液萃取设备的结构和特点。
二.实验原理
萃取是利用液体混合物各组分在溶剂中溶解度的 差异而实现分离的一种方法。溶质A,稀释剂B,溶 剂S,当B、S不互溶时,萃取和吸收一样,均属两相 传质,因此,其传质过程的数学表达式和吸收一样。

化工原理萃取实验报告

化工原理萃取实验报告

实验报告:化工原理萃取实验
一、实验目的
本实验旨在使用化工原理的知识,学习萃取操作,掌握萃取技术,并分析混合溶液中有机
物的分离。

二、实验原理
萃取是指利用溶剂之间的不相溶特性,将混合物中的有机物从水相中分离出来的一种技术。

萃取技术的基本原理是,混合溶液中的有机物分子与溶剂分子之间存在一种相互作用,当
混合溶液中的溶剂按照一定比例添加时,有机物分子会优先溶于某一种溶剂,从而将其从
水相中分离出来。

三、实验材料
实验材料包括:萃取实验用烧杯、搅拌棒、蒸馏水、氢氧化钠溶液、乙醇、硫酸铵溶液。

四、实验步骤
1.将烧杯中加入10ml蒸馏水,然后添加4ml氢氧化钠溶液;
2.将烧杯中的溶液搅拌均匀,然后加入20ml乙醇,再搅拌均匀;
3.将烧杯中的溶液放入萃取仪中,缓慢加热,直至溶液沸腾;
4.将烧杯中的溶液搅拌均匀,然后加入10ml硫酸铵溶液,再搅拌均匀;
5.将搅拌后的溶液放入萃取仪中,缓慢加热,直至溶液沸腾;
6.等待溶液冷却,然后将上层液体萃取出来,放入容器中;
7.将下层液体也萃取出来,放入容器中,完成萃取实验。

五、实验结果
实验结果显示,萃取实验成功完成,混合溶液中的有机物得到了完全分离。

六、实验结论
本实验成功地使用了化工原理的知识,学习了萃取操作,掌握了萃取技术,并成功地分析了混合溶液中的有机物的分离。

zd化工原理实验7萃取塔(桨叶)实验

zd化工原理实验7萃取塔(桨叶)实验

项目 桨叶转速 转/分 水转子流量计读数 l/h 煤油转子流量计读数 l/h 校正得到的煤油实际流量l/h NaoH浓度 N 样品体积, ml 塔底轻相XRb NaoH用量, ml 浓 样品体积, 度 ml 分 塔顶轻相XRt NaoH用量, 析 ml 样品体积, ml 塔底重相YEb NaoH用量, ml 塔底轻相浓度XRb,kgA/kgB 计 塔顶轻相浓度XRt,kgA/kgB 算 塔底重相浓度YEb,kgA/kgB 及 水流量 S, kg/h 实 煤油流量 B, kg/h 验 传质单元数NOE(图解积分) 结 传质单元高度HOE 果 KYEa kgA/【m³×h×(kg苯
萃取塔(桨叶)实验
Q水=4L/h 类目 V样品体积/ml V NaOH 苯甲酸 重相入口 Y 25.00 0.00 0.00000 操作线 0.00000 0.00109
Et
重相出口 Y 25.00 6.70 0.00035
Q油=6L/h 轻相入口 X Eb
Rb
轻相出口 X Rt 10.00 5.10 0.00067
函数y= 2×10ˆ10×x²- 2×10ˆ6×x + 746.28 原函数F(x)=2/3×10ˆ10×x³- 10ˆ6×x² + 746.28x 积分后可得曲线下面积为0.45,亦即传质单元数NOE=0.45
1/ (Y E*-Y E) 632 3124 F1 F2 F2-F1 0 0.45 0.45
10.00 8.30 0.00109
YE XR
0.00035 0.00067
函数y=-1.194x+0.0011 取点如下 Y
E
X
R
Y
E*
1/ (Y
E*-Y E)

化工原理-萃取过程的计算

化工原理-萃取过程的计算

中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中4南.5.林2 塔业式科萃技取大设学备化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
(3) 选择性系数β β=yA/xA/yB/xB=(27/7.2)/(1.5/91.4)=228.5 (4) 每公斤B需要的S量 组分B,S可视为完全不互溶 XF=xF/(1-xF)=0.35/0.65=0.5385 X1=(1-ψA)XF=(1-0.8)0.5385=0.1077 Ys=0 Y1与X1呈平衡关系 Y1=3.4X1=3.4×0.1077=0.3622 S/B=(XF-X1)/Y1=(0.5385-0.1077) /0.3622=1.176
例:4-5
4.4 其他萃取分离技术
中南林业科技大学化工原理
4.5 液—液萃取设备
根据两相的接触方式 :逐级接触式和微分接触式.
4.5.2 混合—澄清槽
优点:传质效率高,操作方便,运转稳定可靠,结构 简单,可处理含有悬浮固体的物料. 缺点:水平排列的设备占地面积大,每级内都装有搅 拌装置,液体在基建流动需泵输送,能量消耗大,设 备费及操作费都较高
BXF +SYs =SY1+BX1 B(XF-X1)=S(Y1-Ys)
中南林业科技大学化工原理
例:在25℃下以水(S)为萃取剂从醋酸(A)与氯仿(B)的混合液中 提取醋酸,已知原料液流量为1000kg/h,其中醋酸的质量百分 率为35%,其余为氯仿。用水量为800kg/h,操作温度下,E相 和R相以质量百分率表示的平衡数据列于本题附表中。 求:(1)经单级萃取后E相和R相的组成及流量;(2)若将E相和R 相中的溶剂完全脱除,再求萃取液及萃余液的组成和流量;(3) 操作条件下的选择性系数β;(4)若组分B,S可视为完全不互溶, 且操作条件下以质量比表示相组成的分配系数K=3.4,要求原 料液中溶质A的80%进入萃取相,则每公斤稀释剂B需消耗多 少公斤萃取剂S。

化工原理-萃取

化工原理-萃取

N
ln( X F ) XN
ln( 0.333 ) 0.01
3.45
ln(1 1 ) ln(11.76)
A
所需理论级数为N=4 溶剂总用量S总=NS=4×300=1200 kg/h
3.5.4 多级逆流萃取
操作线的斜率为B/S,
当逐步增加萃取剂用量时,斜率逐渐变小,操作线与分 配曲线距离变大,两相间的传质推动力增加,相应地理 论级数减少。
解: 对完全不互溶体系,由已知条件,将质量分数转
变为质量比
XFxF 1 xFFra bibliotek0.25 1 0.25
0.333
XN
xN 1 xN
0.01 0.01 1 0.01

又 S=300kg/h;YS=0

B=F(1- xF)=500×(1-0.25)=375kg/h
1 S K 300 2.2 1.76 A B 375
4.1.6 翻斗式萃取器
4.1.7静态混合器
4.2 液泛现象
4.3界面现象
5 超临界流体萃取
超临界流体萃取利用超临界流体,即温度和压力略超过 或靠近临界温度和临界压力、介于气体和液体之间的流 体,对固体和液体的萃取能力和选择性,在超临界状态 下较之在常温常压条件下可获得极大的提高,而能从固 体或液体中萃取出某种高沸点或热敏性成分,以达到分 离和纯化的目的。
12 固 体
10
8
6
熔融线 液体
超临界流体
B 临界点
4
2
三相点
A
升华线
沸腾线 气体
-60 -40 -20 0 20 40 60
温度 / OC
图 8-20 CO2的相态与温度、压力的关系

化工原理实验-萃取

化工原理实验-萃取
3 6 2
S
4
5
xC xD
1
F xF
1 加料磁力泵
2 水槽
3 煤油槽
4 转子流量计
5 振动筛板塔
6 振动泵
5 实验操作要点
(1) 首先开启连续相(水)的转子流量计(阀门)向塔中灌水,待萃取塔灌 满水后,再开启分散相(煤油)的转子流量计,并按照相比1∶1的要求将 两相的流量计读数调节至适当刻度。建议的连续相流量为4L/h; (2) 启动直流电机,在直流电压30-90伏的范围内适当分布实验点; (3) 待分散相在塔顶分层段凝聚一定厚度的液体后,通过连续相的出口“Π” 形管,将两相界面调节至适当高度; (4) 在某一直流电压(即振动频率)下,待系统稳定约20分钟左右,取样分 析x1和x2; (5) 在振动塔的振动频率和振幅一定时,若增大两相流量,塔内分散相的滞留 量也随之增大,液泛时滞留量可达到最大值。此时可观察到分散相不断合并, 最终导致转相,在塔底(或塔顶)出现第二界面。建议在实验数据测定结束后, 通过实验观察这一现象
振动筛板塔的外加能量以 a
f 为标志。当振幅 a 一定
时,振动频率 f 由外加电压 v 的大小所决定。 在一定的 F : S下(如 4 :4 体积流量刻度值。数据处理 时须换算为重量流率之比),研究外加能量 v 对 响, 实验中做四、五个点。 的影

各套实验装置经验操作数据见后页。
HOR
设备号 1 2 3 4 5 6 7 8
N煤油 (N V ) NaOH V煤油 ( 25ml)
N煤油 M 苯钾酸 ( 122) G% 煤油 ( 800)
4. 数据处理 (1)用重量百分数和重量 流率进行计算。(K = 2.2)
水 K=2.2

化工原理 萃取

化工原理 萃取

化工原理萃取
化工原理中的一种常用技术是萃取。

萃取是一种通过在两个不相溶的相中转移物质的过程。

该过程常用于分离和提取化合物,以及从溶液或混合物中去除杂质。

在萃取中,通常会使用两种相,即有机相和水相。

有机相通常是有机溶剂,可以与待提取物质发生相互作用。

而水相则是用于分离提取物质的溶剂,通常是水或酸碱溶液。

萃取过程的关键是选择合适的有机相和水相,以及调节温度、酸碱度等条件,使得待提取物质能够在两相间分配达到最大程度。

常用的有机相包括醚类、醇类、酮类等,而常用的水相则是酸碱溶液或水。

萃取操作一般分为简单萃取和多级萃取两种方式。

简单萃取是指一次性使用一种有机溶剂进行提取,适用于提取量较少的情况。

而多级萃取则是指使用多种有机相进行多次提取,以提高提取效率和纯度。

在萃取过程中,要注意控制各种条件,如溶剂的选择、溶解度、温度、pH值等。

此外,还需要注意操作的安全性,如通风、
避免火源等。

萃取操作还需要进行后续的分离、过滤、干燥等步骤,以获得纯净的提取物质。

综上所述,萃取是一种常用的化工原理技术,通过在两个不相溶的相中转移物质,实现分离和提取化合物的目的。

在进行萃
取操作时,需要注意选择合适的溶剂、控制条件,并进行后续的分离和处理步骤。

大学化学《化工原理 萃取》课件

大学化学《化工原理 萃取》课件

联结线的斜率<0
kA<1, yA<xA
§12.1 萃取的基本概念
11
2)分配曲线
yA f (xA)
§12.1 萃取的基本概念
12
4. 温度对相平衡关系的影响
物系的温度升高,组分间的互溶度加大
温度升高,分层区面积缩小
T1<T2<T3
§12.1 萃取的基本概念
13
四、三角形相图在单级萃取中的应用
1
§12.1 萃取的基本概念 一、液液萃取简介 1. 萃取原理 利用液体混合液中各组分在萃取剂中的溶解度差异 实现分离的一种单元操作。 溶质 A :混合液中欲分离的组分 稀释剂(原溶剂)B:混合液中的溶剂
§12.1 萃取的基本概念
2
萃取剂S: 所选用的溶剂
2. 基本过程描述
原料液 A+B
萃取剂 S
2. 萃取剂S与稀释剂B的互溶度
组分B与S的互溶度影响溶解度曲线的形状和分层面积。
§12.1 萃取的基本概念
16
Em ax
Em ax
B、S互溶度小,分层区面积大,可能得到的萃取液的最 高浓度ymax’较高。 B、S互溶度愈小,愈有利于萃取分离。
§12.1 萃取的基本概念
17
3. 萃取剂回收的难易
对应
最大 萃取
Em ax
液浓 E

S MF F MS
F●
R R
E RF R EF
E R F
E MR
E
R ME
M
§12.1 萃取的基本概念
14
五、萃取剂的选择
1. 萃取剂的选择性和选择性系数
1)萃取剂的选择性
A在萃取相中的质量分率 B在萃取相中的质量分率

化工原理萃取的原理和过程

化工原理萃取的原理和过程

化工原理萃取的原理和过程
化工原理中的萃取是一种分离技术,通过两种或更多互不溶解的液体相中的溶质分子在物理或化学作用下从一个相转移到另一个相,以实现溶质的分离和纯化。

萃取的基本原理是根据溶质在两相之间的相对溶解度不同,利用两相的不溶性将溶质从原始混合物中分离出来。

萃取过程可以分为以下几个步骤:
1. 选择合适的溶剂:根据待分离的目标溶质的性质,考虑到它在溶剂中的溶解度和选择性,选择的溶剂应与混合物的其他组分无相容性。

2. 混合物与溶剂接触:将混合物与溶剂加入一起,并充分搅拌或搅拌以实现溶质的均匀分配。

3. 平衡:让混合物与溶剂在一定的时间内保持接触,使得溶质在两相之间达到平衡分配。

4. 相分离:通过物理或化学手段,使得混合物与溶剂分成两个不溶的相。

根据溶质的亲疏水性,可以利用重力、离心、过滤或蒸发等方法分离两相。

5. 萃取:溶质会根据其相对溶解度的差异,从一个相转移到另一个相。

适当调
整操作条件,如温度、压力、pH值等,以促进溶质在两相之间的传递。

6. 分离和回收:在萃取过程中,根据溶质在两相之间的分配系数和两相的溶解度,可以通过进一步处理两相来分离和回收溶质。

综上所述,化工原理中的萃取利用两相的不溶性和溶质在两相之间的相对溶解度差异,将溶质从混合物中分离出来。

通过选择合适的溶剂、混合物与溶剂接触、平衡、相分离、调整操作条件、分离和回收等步骤,完成溶质的萃取过程。

化工原理下萃取过程的流程与计算

化工原理下萃取过程的流程与计算

在环保领域应用举例
废水处理
利用萃取技术去除废水中的有机污染物和重金属离子,达到废水排 放标准。
废气处理
通过萃取技术将废气中的有害物质转移到液体中,实现废气的净化 和达标排放。
土壤修复污染物含量。
THANK YOU
经济性评价
对优化后的萃取过程进行经济性评价,包括 投资成本、运行成本、经济效益等方面的分
析,以确定过程的可行性和经济性。
04
萃取设备选型与设计
常见萃取设备类型及特点
混合澄清器
01
适用于处理量大、停留时间长的萃取过程,具有结构简单、操
作方便的特点。
萃取塔
02
适用于处理量较小、要求分离效果高的萃取过程,具有结构紧
凑、分离效率高的特点。
离心萃取机
03
适用于处理量小、要求快速分离的萃取过程,具有分离速度快
、占地面积小的特点。
设备选型依据及注意事项
处理量
根据生产规模和处理量选择合 适的设备类型。
分离要求
根据产品纯度和收率要求选择 合适的设备类型。
设备材质
根据物料性质和工艺要求选择 合适的设备材质,以确保设备 耐腐蚀、耐高压等性能。
萃取作用
分离液体混合物、提纯和回收有用物 质。
萃取原理与分类
萃取原理
利用物质在两种不互溶或部分互溶的溶剂中的溶解度或分配系数的差异,实现 物质的分离。
萃取分类
根据萃取剂和被萃取物的性质,可分为物理萃取和化学萃取。物理萃取是利用 物质在溶剂中的溶解度差异进行分离,而化学萃取则是利用化学反应使被萃取 物转化为易溶于萃取剂的物质进行分离。
剂中的溶解度,但过高的温度可能导致溶剂挥发、分解或产生副反应。
02

化工原理课件(天大版)第七章 萃取

化工原理课件(天大版)第七章 萃取

Ys XF 1 K) n ln( YS ln( 1 Am ) Xn K
2013-5-19
33
3、多级逆流萃取的流程与计算
1、多级逆流萃取的流程
2013-5-19
34
2、多级逆流萃取的计算
1)萃取剂与稀释剂部分互溶的体系
E1 F R1 R2 M
E2 E3

RN
2013-5-19
35
F S M E1 R N
Yn Yo B S N ( X N X N 1 )
——错流萃取每一级的操作线方程
2013-5-19
31
E
Y1 Y2 Y0 O
E1 E2
-B/S2
-B/S3 X2 U X1
-B/S1
V XF
2013-5-19
32
b)解析法 分配曲线: 设: A m
Y KX
KS B
——萃取因子
R

MR ME
S MF F MS
萃余液
2013-5-19
R
萃余相
最小溶剂比
S M'F = F min M ' S
18
7.1.6 、萃取剂的选择
1、萃取剂的选择性和选择性系数
1)萃取剂的选择性
A在萃取相中的质量分率 B在萃取相中的质量分率
A在萃余相中的质量分率 B在萃余相中的质量分率
(X R X F )
——单级萃取的操作线方程
Y
Y1 E1
B S
X1
2013-5-19
XF X
27
(1) 设计型问题。 已知原料液处理量 和组成,给定溶剂 用量和组成 , 在图中 可确定C(XF,Y0), 按斜率(-B/S) 作操作 线, 与分配曲 线的交点D即为该 过程获得的萃取相 和萃余相的组成点 。 (2) 操作型问题。规定单级萃取的分离要求,如萃余相 组成X,求所需溶剂用量,可在图中根据X确定D(X,Y), 连接C、D得到操作线CD,根据操作线斜率即可求出所需 的溶剂用量。

化工原理 液液萃取PPT教案

化工原理 液液萃取PPT教案
kA绝对值越大越有利于萃取分离
第35页/共100页
11.2.2 三角形相图在单级萃取中的应用
萃取相分离设备
原料 F
萃取剂 S 萃取相 E
M
混合器
分层器
萃余相R
S
萃取液 E’
S
萃余相分离设备
萃余液R
单级萃取流程 第36页/共100页
原料 F
萃取剂 S
M
萃取相 E
萃余相R
A
S
萃取液 E’
S
萃余液R’
第13页/共100页
两相接触方式
微 分 接 触
第14页/共100页
级 式 接 触
第15页/共100页
第16页/共100页
第17页/共100页
第18页/共100页
11.2 液-液相平衡关系
11.2.1 三角形坐标及杠杆定律
11.2.1.1 三角形坐标 三元混合液的表示方法:
三角形坐标
等边三角形 直角三角形(等腰直角三角形和不等腰直角三角形)
萃取操作的应用
对于一种液体混合物,究竟是采用蒸馏还是萃取加以 分离,主要取决于技术上的可行性和经济上的合理性。
一般地,在下列情况下采用萃取方法更为有利。 (1) 原料液中各组分间的相对挥发度接近于1或形成恒沸物, 若采用蒸馏方法不能分离或很不经济; (2)原料液中需分离的组分含量很低且为难挥发组分,若采 用蒸馏方法须将大量稀释剂汽化,能耗较大; (3) 原料液中需分离的组分是热敏性物质,蒸馏时易于分 解、聚合或发生其它变化。 (4)其它,如多种金属物质的分离,核工业材料的制取,治 理环境污染等。
联结线
Rn
溶解度曲 线
两相

0 B
En

化工原理下萃取过程的流程与计算

化工原理下萃取过程的流程与计算

化工原理下萃取过程的流程与计算化工原理中的萃取过程是指利用溶剂将目标物质从混合物中分离出来的操作过程。

该过程适用于从可溶液中获得目标物质,或者将两相液体或气体中的目标物质转移至另一相中。

萃取过程的流程一般包括以下几个步骤:1.选择合适的溶剂:根据目标物质的物化性质,选择适合的溶剂。

该溶剂应与混合物中其他成分相互不溶或溶度低。

同时,溶剂的选择还要考虑到需求的目标物质浓度、产率和分离度等因素。

2.混合物预处理:将待萃取的混合物进行预处理,以提高目标物质的相对浓度。

预处理手段可以包括调整溶剂酸碱性、溶剂萃取剂的加入以及混合物的预处理等。

3.萃取过程:在一定温度条件下,将混合物与溶剂充分接触并反应。

在这个过程中,目标物质会从混合物中转移到溶剂中,得到所需的提取液。

4.分离过程:对提取液进行分离,获得目标物质。

分离过程可以采用各类分离工艺,如蒸馏、结晶、过滤等。

萃取过程的计算主要涉及到平衡和热力学方面的内容。

其中,平衡计算主要包括挥发分离计算、浸出平衡计算和溶剂选择计算等。

而热力学计算主要包括传热和传质方面的内容,例如浸出塔传质速率的估算、提取液的热力学性质计算等。

以浸出平衡计算为例,其步骤如下:1.确定混合物的成分:通过实验或其他手段,获得混合物的成分组分,包括所需的目标物质。

2.根据热力学平衡关系,建立分离物质在混合物与溶剂中的分配系数。

该系数表示分离物质在两相中的相对分配情况。

3.在给定温度和溶剂比例下,根据分配系数计算提取液中目标物质浓度。

4.根据计算结果,可以调整溶剂比例、反应温度或溶剂浓度等参数,以提高目标物质的回收率和分离度。

需要注意的是,萃取过程的最终计算结果可能受到外部因素的影响,如反应速率、传质速率、传质过程中的温度变化和浓差极化等。

因此,在进行计算时,需要综合考虑多个因素,进行系统的分析和优化。

综上所述,化工原理中的萃取过程是一种分离技术,其流程包括溶剂选择、混合物预处理、萃取过程和分离过程。

大学课件-化工原理下册-萃取小结

大学课件-化工原理下册-萃取小结

(mS/mB)min
(
mS mB
)m in
XF XN Y1 Y0
溶剂的选择性 要求溶剂具有一定的选择性,即对A的溶解度要大, 对其它组分的溶解度要小。
评价指标——选择性系数
yA / yB xA / xB
kA
xB yB

y
, A
/
y
, B
x
, A
/
xB,
(脱除溶剂后,A ,B组分含量比不变。)
2、溶剂与原溶剂的互溶度
B 、S 互溶度小,两相区大, yB ↓ 也越大,
对萃取有利。
当 B、S 完全不互溶,y =0 →∞,选择性最好。 B
A
E2 F
R2
M
B R1
E1 S
• 萃取液的最大浓度A源自y’Amax yA’ F R
E M
B
S
如果M点在两相区外相交,说明超出萃取范 围,不能进行萃取操作,由R1点确定的溶剂用 量为该操作条件下的最小溶剂用量m S,min
2. 多级错流萃取
设计型计算: 已知分离要求、各级S用量,求N
操作型计算:已知N 、各级S用量,求分离要求 A
Y
分配曲线
Y
D
-mB/mS
操作线
Y0
C
0
X
XF X
(2)给定分离要求X,求S用量 依操作线的斜率求溶剂用量mS。斜率=-mB/mS
Y
分配曲线
Y
D
-mB/mS
Y0
C
0
X
XF
X
• 多级错流萃取
Y
Y1
Y2
Y3
-mB/mS
Y4
Y0
0

化工原理实验—萃取

化工原理实验—萃取

化工原理实验—萃取萃取是化工工程中常见的分离纯化技术,其基本原理是将混合物中的目标化合物转移至另一种不相混溶的可溶剂中,从而实现分离纯化。

萃取广泛应用于化工、生物工程、食品行业等领域,具有操作简便、分离效率高、纯度可控等优点。

本实验旨在通过萃取实验,加深学生对萃取原理及操作技巧的理解,提高学生解决工程问题的能力和综合实验操作技能。

实验一:两相萃取分离苯和甲苯实验原理:苯和甲苯是两种不同的有机物,可以用两相萃取法进行分离。

两相萃取法是指两种可相互溶解的液体用分液漏斗分离,其中一种液体通常为水,称为水相,另一种液体为无水溶液,称为有机相。

以苯和甲苯为例,实验原理如下:苯和甲苯对水不溶,可以用水作为萃取剂,使其溶于水相中,从而完成两相分离。

实验步骤:1. 将5 mL苯和5 mL甲苯混合在干净干燥的锥形瓶中,摇匀后记录混合物体积。

2. 将混合液倒入分液漏斗中,加入等体积的水。

3. 将分液漏斗盖住并轻轻摇动,使两相充分混合。

4. 等两相分离后,打开分液漏斗的滴嘴,放出有机相,记录体积。

5. 重复取两组数据。

6. 根据实验数据计算苯和甲苯在水中的分配系数。

实验结果:实验数据如下表所示:混合物体积/mL 有机相体积/mL10 5.5计算分配系数:由于苯和甲苯对水不溶,可以假设二者在水相中的浓度非常接近于0,因此可以利用分配定律(分配系数=有机相中溶质的摩尔浓度/水相中溶质的摩尔浓度)计算分配系数。

在实验中,混合物体积相同,有机相中苯和甲苯的摩尔浓度分别为:由于苯和甲苯的分子量相似,可将它们的平均摩尔浓度作为计算结果(C=(0.043+0.043)/2=0.043 mol/L)。

水相中溶质的摩尔浓度非常接近于0,可认为不对分配系数产生影响。

Kd = (5.5 mL/10 mL)/(4.5 mL/10 mL) ≈ 1.22实验二:萃取纯化对乙酰氨基酚实验原理:对乙酰氨基酚是一种亲水性较强的化合物,可以通过萃取纯化的方法提高其纯度。

化工原理萃取

化工原理萃取

化工原理萃取首先,我们来谈谈萃取的基本原理。

萃取是利用两种或多种互不相溶的溶剂对混合物进行分离的方法。

在化工生产中,通常会选择一种有机溶剂和水作为两相,通过它们之间的分配系数差异,实现混合物中组分的分离。

这种分离方法在化工生产中具有广泛的应用,可以用于提取、分离、净化各种化合物。

其次,萃取的操作过程需要注意的一些关键因素。

首先是溶剂的选择,溶剂的选择直接影响到萃取的效果。

其次是溶剂的用量,合理的溶剂用量可以提高萃取效率,降低成本。

另外,萃取的操作条件也需要严格控制,包括温度、压力、搅拌速度等参数的选择。

在进行萃取操作时,需要根据具体的混合物成分和要求,选择合适的操作条件,以达到最佳的分离效果。

在化工原理萃取的应用中,有一些常见的萃取设备。

例如,萃取塔是一种常见的萃取设备,它通常由填料层和萃取剂层组成,通过填料的大表面积接触,实现混合物中组分的分离。

此外,还有萃取离心机、萃取萃取器等设备,它们都在化工生产中发挥着重要的作用。

最后,化工原理萃取在工业生产中具有广泛的应用。

它可以用于石油化工、化学工业、生物工程等领域,实现各种物质的提取、分离和净化。

在石油化工中,萃取可以用于提取石油中的杂质和有用成分;在化学工业中,可以用于有机合成反应中的产物提取和分离;在生物工程中,可以用于生物制品的提取和纯化。

可以说,化工原理萃取在化工生产中发挥着不可替代的作用。

综上所述,化工原理萃取是一种重要的分离技术,它通过溶剂在两种或多种相之间的传质作用,实现混合物中组分的分离。

在化工生产中,萃取具有广泛的应用,需要化工工程师们熟练掌握其基本原理、操作过程和常见设备。

只有深入理解化工原理萃取,才能更好地应用于工业生产中,实现物质的提取、分离和净化,为化工生产的高效运行提供有力支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理第七章萃取
4.2 三元体系的液—液相平衡
4.2.1组成在三角形相图中的表示方法 组分浓度常用质量分率表示,有时也用体 积分率或摩尔分率。
化工原理第七பைடு நூலகம்萃取
①各顶点表示纯组分(A、 B、S);
②任一边上的点表示相 关二元混合物;
习惯上, AB边以A的质量分率作 为标度, BS边以B的质量分率作 为标度, SA边以S的质量分率作 为标度。
化工原理第七章萃取
2. 辅助曲线与临界 混溶点 ① 有限个共轭组成
得到的联结线可按 一定方法作出辅助 曲线; ② 临界混溶点P:过该 点的联结线无限短, 处于分相的临界点。 不一定是顶点(因为
联结线有一定斜率); ③ 临界混溶点需实测, 一般不能外推。
化工原理第七章萃取
3、分配系数和分配曲线 1)分配系数:一定温度下,在平衡的两相 中,某组分在E相与R相中的组成之比称为该 组分的分配系数,以k表示:
化工原理第七章萃取
③三角形内的点代表三 元混合物。 M点的组成: 过M点做BS的平行线, 得ED,则BE(SD)为 含有的溶质A; 过M点做AS的平行线, 得HG,则AH(SG)为 含有的稀释剂B; 过M点做AB的平行线, 得KF,则AK(BF)为 化工原含理第七有章萃的取 萃取剂S。
4.2.2液——液相平衡关系
化工原理第七章萃取
1. 溶解度曲线和联结线 设溶质A可完全溶于B 及S,但B与S部分互溶。
相平衡数据测定:加入 的B 、S适量搅拌均匀, 静止分层,得到互呈平 衡的液-液两相),得到一 组平衡数据。
化工原理第七章萃取
在总组成为F的二元混 合液中加入一定量 A(B、S的质量比不 变),三元混合液的组成 点将沿AF线变化;
化工原理第七章萃取
目的: 分离液-液混合物。 依据: 利用混合物中各组分在某一溶剂中的溶 解度之间的差异。
化工原理第七章萃取
化工原理第七章萃取
混合传质过程:充分接触,相界面传质;
沉降分相过程:密度差分相E、R;
脱除溶剂过程:精馏、蒸发、结晶等。
化工原理第七章萃取
几个概念: 萃取剂(溶剂)S:所用的溶剂 原料液F:所处理的混合液( A+B ) 溶质A:原料液中易溶于溶剂的组分; 原溶剂(稀释剂)B:难溶或不溶组分。
化工原理第七章萃取
化工原理第七章萃取
4.2.3杠杆规则
①杠杆规则
A
E、R(差点)与混合总组
成点M(和点)共线;
各物相的量符合
杠杆规则:
F
MR E ME R
E M R
B
S
化工原理第七章萃取
于A、B二元原料液F中
加入纯溶剂S,则混合
液总组成的坐标M点沿
A
SF线而变,具体位置
由杠杆规则确定:
MF S MS F
化工原理第七章萃取
化工原理第七章萃取
2、萃取分离的适用场合 ① α≈ 1:如芳烃与脂肪烃; ② 混合物蒸馏时形成恒沸物; ③ 欲回收的物质为热敏性物料; ④稀溶液,精馏能耗大:如稀 醋酸制备无水醋酸; ⑤ 稀有元素及环境治理:废水脱酚; ⑥ 分离极难分离的金属:核燃料等。
化工原理第七章萃取
3、萃取操作的特点 ① 外界加入萃取剂形成第二相,故萃取剂与 混合液只能部分互溶或完全不溶; ② 不能直接得到纯产品——过渡操作; ③ 常温操作,适合热敏性组分且节能; ④ 三元或多元体系,相平衡关系复杂,通常 需在三角形相图上表示;
F
E M R
B
S
化工原理第七章萃取
4.2.4萃取剂的选择
1. 萃取剂的选择性和选择性系数
① 溶剂要具有一定选择性,对A溶解度要大,对其
它组分溶解度要小。
萃取相:
萃余相:
评价指标——选择性系数。
有一对组分部分互溶时的分配曲线
化工原理第七章萃取
kA>1,联结线斜率>0,曲线在y=x上方; kA<1,联结线斜率<0,曲线在y=x下方; 若联结线倾斜方向变化,则与相交。这类物 系称为等溶度体系。
化工原理第七章萃取
采用同样方法可作出有两对组分部分互溶时的分配曲线
化工原理第七章萃取
4、温度对相平衡的影响 ① T↑→B及S中A溶解↑,分相区缩小; ② T影响曲线形状、联结线斜率及两相区的 面积,从而影响分配曲线形状; ③ 温度↑,Ⅱ类物系→Ⅰ类物系。
kA
yA xA
kB
yB xB
yA、yB——萃取相E中组分A、B的质量分数; xA、xB——萃余相R中组分A、B的质量分数。
化工原理第七章萃取
kA表明了组分在共轭相中的分配关系; kA=f(物系,T,浓度)。T↑ 、浓度↑→kA ↓; 恒温、恒压、低浓时, kA =可视为常数。
化工原理第七章萃取
2)分配曲线yA~xA图
A的量逐渐增加,直至 不再分相—混溶点(分 层点)。
化工原理第七章萃取
改变总组成,重复上述步骤,得到溶解度曲线。
两相区内的混合物为两个液相,达到平衡时,两
个液层称为共轭相,连接共轭液相组成坐标的直
线称为联结线。
化工原理第七章萃取
化工原理第七章萃取
化工原理第七章萃取
通常联结线的斜率随混合液的组成而变,但 同一物系其联结线的倾斜方向一般是一致 的,有少数物系,例如吡啶–氯苯–水,当混 合液组成变化时,其联结线的斜率会有较大 的改变
按组分互溶度,将三元混合液分为: ① A完全溶于B及S中,而B、S不互溶; ② A完全溶于B及S中,而B、S部分互溶; ③ A与B互溶,B与S和A与S部分互溶。
习惯上,将①、②两种情况的物系称为第Ⅰ 类物系,而将③情况的物系称为第Ⅱ类物 系。
化工原理第七章萃取
工业上常见的第Ⅰ类物系有: 丙酮(A)–水(B)–甲基异丁基酮(S)、 醋酸(A)–水(B)–苯(S) 丙酮(A)–氯仿(B)–水(S); 第Ⅱ类物系有: 甲基环己烷(A)–正庚烷(B)–苯胺(S)、 苯乙烯(A)–乙苯(B)–二甘醇(S)。 在萃取操作中,第Ⅰ类物系较为常见,以下 主要讨论这类物系的相平衡关系。
—液萃取
化工原理第七章萃取
§1 概述 §2 三元体系的液—液相平衡 §3 萃取过程的计算 §5 液—液萃取设备
化工原理第七章萃取
4.1 概述
1、萃取操作的基本原理和过程 液液萃取(抽提):在液体混合物中加入一 种与其不溶或部分互溶的液体溶剂,经过充 分混合,分相,利用混合液中各组分在溶剂 中溶解度的差异而实现分离的一种单元操 作。又称溶剂萃取。
相关文档
最新文档