材料强化基本原理

合集下载

材料强化基本原理

材料强化基本原理

第十章材料的强韧化节材料强化基本原理结合键和原子排列方式的不同,是金属材料、陶瓷材料、高分子材料力学性能不同的根本原因。

通过改变材料的内制材料性能的目的。

不同种类的材料,提高其强度的机理、方法也不同。

一、金属材料的强化原理纯金属经过适当的合金化后强度、硬度提高的现象,称为固溶原因可归结于溶质原子和位错的交互作用,这些作用起源于溶质引发的局变。

固溶体可分为无序固溶体和有序固溶体,其强化机理也不相同。

(1)无序固溶强化固溶强化的实质是溶质原子的长程位错的交互作用导致致错运动受阻。

溶质相位错的交互作用是二者应力场用。

作用的大小要看溶质本身及溶质与基体之间的交互作用,这种作用使成弯曲形状。

如图10—l所示.图中的A、B、C表示溶质原子强烈地钉扎了位错。

x—x',A的乎直位错线,被钉后呈观曲线形状。

处于位错线上的少数溶质原子与位互作用很强,这些原子允许位错线的局部曲率远大于根据平均内应力求出钉扎的第一个效应就是使位错线呈曲折形状。

相对于x—x'的偏离为x在方向的外加切应力τ作用下,由于B点位错张力的协助作用,将使ABC段AB'C,在B'处又被钉扎起来。

位错之所以能够这样弯曲,其原因是因位增加而升高的弹件能被强钉扎所释放的能量抵偿旧有余,位错的弹性能反低.位错经热激活可以脱钉,因而被钉扎时相对处于低能态。

在切应力τ动到AB'C.ABC和AB'C是相邻的平衡位置,阻力最大在位错处于中间位置AC时产生,外加切应力要克服这样的阻。

若AC≈2y,ABC比2y略大,近似地当作2y。

由ABC变为AC方面要脱钉需要能量,另一方面要缩短位错长度释放是位错脱扎所需能量;EI为单位长度位错由于加长而升高的能量,EI与Eb相比小而略去。

由ABC变为AC,平均位力需要做功为τb(2y)·x/2,故1看,沿着xx'方向,单位长度上有1/y个溶质原子。

用柯氏气团的概念,如果位错和溶质原子交互作用能为U0,溶质钉扎将降低的能量为所以设C为溶质原子百分数,在滑移面单位面积上有1/62个原子,其中有C/62个为溶质原子。

金属材料的四大强化机制

金属材料的四大强化机制

金属材料的四大强化机制金属材料的强化机制可真是个让人惊奇的领域,大家有没有想过,金属为什么有的坚固得像铁桶一样,而有的却软得像泥巴?今天就来聊聊这四大强化机制,轻松一下,顺便长长见识。

首先说说固溶强化,这东西听起来挺高大上的,实际上就是把不同的原子混在一起,让金属更坚固。

想象一下,一个本来单打独斗的铁小子,突然被一群不同的小伙伴包围,变得威风凛凛。

这就是固溶强化的魅力,杂质原子进入金属的晶格中,打乱了原本的规律,使得金属的位移变得困难,强度自然就上来了,嘿,这就是一招不错的组合拳。

要知道,金属的晶格就像是一座座房子,杂质原子就像是搬进来的新住户,虽然一开始可能有点不和谐,但久而久之,大家就能和谐共处,形成一种新的平衡。

接下来要说的是第二种,叫做强化相,听起来是不是也很神秘?其实它的原理也不复杂。

想象一下,如果金属的内部长出了“贵族”般的强化相,那就意味着这金属在碰到外力时,不容易被击垮。

强化相就像是战士们在金属的内部组成的小团队,它们能有效阻挡外部的侵袭,像是给金属穿上了一层厚厚的铠甲,让它看起来更强大。

这种机制通常在合金中比较常见,金属与金属之间相互作用,形成不同的相,增强了整体的强度。

这样的金属材料,仿佛就像是一个披着迷彩的超级英雄,随时准备迎接挑战。

再说说第三种机制,叫做析出强化,听上去是不是有点像古代的军队在战斗?其实就是在金属中让一些小颗粒析出来,形成一种“埋伏”,这些颗粒就像是潜伏在战场上的小兵,外力一来,它们就会瞬间出击,增加金属的强度。

这样一来,金属的内部就形成了一个坚固的网络,极大地提升了抗拉强度,嘿,有点像是给金属增添了几分底气。

析出强化的好处在于,不需要太高的温度就能达到预期效果,真是个省事儿的好办法。

最后一个就是叫做晶粒细化,听着是不是像是一道菜的做法?其实这也是强化金属的重要手段。

想象一下,如果金属的晶粒变得更小,就像是把一个大蛋糕切成很多小块,这样一来,每一块蛋糕都更坚韧。

金属材料的四种强化方式

金属材料的四种强化方式

金属材料的四种强化方式固溶强化1. 定义合金元素固溶于基体金属中造成一定程度的晶格畸变从而使合金强度提高的现象。

2. 原理溶入固溶体中的溶质原子造成晶格畸变,晶格畸变增大了位错运动的阻力,使滑移难以进行,从而使合金固溶体的强度与硬度增加。

这种通过溶入某种溶质元素来形成固溶体而使金属强化的现象称为固溶强化。

在溶质原子浓度适当时,可提高材料的强度和硬度,而其韧性和塑性却有所下降。

3. 影响因素溶质原子的原子分数越高,强化作用也越大,特别是当原子分数很低时,强化作用更为显著。

溶质原子与基体金属的原子尺寸相差越大,强化作用也越大。

间隙型溶质原子比置换原子具有较大的固溶强化效果,且由于间隙原子在体心立方晶体中的点阵畸变属非对称性的,故其强化作用大于面心立方晶体的;但间隙原子的固溶度很有限,故实际强化效果也有限。

溶质原子与基体金属的价电子数目相差越大,固溶强化效果越明显,即固溶体的屈服强度随着价电子浓度的增加而提高。

4. 固溶强化的程度主要取决于以下因素基体原子和溶质原子之间的尺寸差别。

尺寸差别越大,原始晶体结构受到的干扰就越大,位错滑移就越困难。

合金元素的量。

加入的合金元素越多,强化效果越大。

如果加入过多太大或太小的原子,就会超过溶解度。

这就涉及到另一种强化机制,分散相强化。

间隙型溶质原子比置换型原子具有更大的固溶强化效果。

溶质原子与基体金属的价电子数相差越大,固溶强化作用越显著。

5. 效果屈服强度、拉伸强度和硬度都要强于纯金属;大部分情况下,延展性低于纯金属;导电性比纯金属低很多;抗蠕变,或者在高温下的强度损失,通过固溶强化可以得到改善。

加工硬化1. 定义随着冷变形程度的增加,金属材料强度和硬度提高,但塑性、韧性有所下降。

2. 简介金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象。

又称冷作硬化。

产生原因是,金属在塑性变形时,晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,金属内部产生了残余应力等。

(word完整版)材料科学导论试题答案

(word完整版)材料科学导论试题答案

材料科学导论试题一、必作题(每题10分,共50分)1)分析材料强化的主要方法及原理。

材料强化的原理:一是提高合金的原子间结合力,提高其理论强度,另一强化途径是向晶体内引入大量晶体缺陷,如位错、点缺陷、异类原子、晶界、高度弥散的质点或不均匀性(如偏聚)等,这些缺陷阻碍位错运动,也会明显地提高材料强度。

材料强化方法主要有:结晶强化、形变强化、固溶强化、相变强化、晶界强化等.其中结晶强化通过控制结晶条件,在凝固结晶以后获得良好的宏观组织和显微组织,从而提高金属材料的性能,包括细化晶粒、提纯强化。

形变强化是指金属材料经冷加工塑性变形可以提高其强度。

这是由于材料在塑性变形后位错运动的阻力增加所致。

固溶强化是指通过合金化(加入合金元素)组成固溶体,使金属材料得到强化。

相变强化是指合金化的金属材料,通过热处理等手段发生固态相变,获得需要的组织结构,使金属材料得到强化,分为沉淀强化、马氏体强化。

在实际生产上,强化金属材料大都是同时采用几种强化方法的综合强化,以充分发挥强化能力。

2)纯铁、低碳钢、中碳钢、高碳钢、铸铁在碳含量上有什么不同.通常碳含量小于0。

02%的为纯铁或熟铁,在0.02—2.1%之间的为钢,钢分为低碳钢、中碳钢和高碳钢:在0.02-0.25%之间的叫低碳钢,强度较低、塑性和可焊性较好;在0。

25~0.60%之间的叫中碳钢,有较高的强度,但塑性和可焊性较差;在0。

60%-2.1%之间的叫高碳钢,塑性和可焊性很差,但热处理后会有很高的强度和硬度。

而碳含量大于2。

1%的为铸铁或生铁.3)晶体中的缺陷有什么?晶体缺陷是指由于晶体形成条件、原子的热运动及其它条件的影响,使得原子的排列往往存在偏离理想晶体结构的区域。

这些与完整周期性点阵结构的偏离就是晶体中的缺陷。

晶体中存在的缺陷种类很多,根据几何形状和涉及的范围常可分为点缺陷、面缺陷、线缺陷几种主要类型。

点缺陷是指三维尺寸都很小,不超过几个原子直径的缺陷。

第十章 材料的强化

第十章      材料的强化

第十部分材料的强化韧性是材料变形和断裂过程中吸收能量的能力,它是强度和塑性的综合表现;强度是材料抵抗变形和断裂的能力,塑性则表示材料断裂时总的塑变程度.材料在塑性变形和断裂全过程中吸收能量的多少表示韧性的高低.金属材料缺口试样落锤冲击试验侧得的韧性指标称为冲击韧性.高分子材料冲击试验的韧性指标通常称为冲击强度或冲击韧度.第一节材料强化基本原理1、固溶强化纯金属经适当的合金化后强度、硬度提高的现象根据强化机理可分为无序固溶体和有序固溶体固溶强化的特点:(1)溶质原子的原子数分数越大,强化作用越大;(2)溶质原子与基体金属原子尺寸相差越大,强化作用越大;(3)间隙型溶质原子比置换原子有更大的固溶强化作用;(3)溶质原子与基体金属的价电子数相差越大,固溶强化越明显。

2、细晶强化多晶体金属的晶粒通常是大角度晶界,相邻取向不同的的晶粒受力发生塑性变形时,部分晶粒内部的位错先开动,并沿一定晶体学平面滑移和增殖,位错在晶界前被阻挡,当晶粒细化时,需要更大外加力才能使材料发生塑性变形,从而达到强化的目的。

霍尔-佩奇公式:σs=σ+K y d-1/23、位错强化(1)晶体中的位错达到一定值后,位错间的弹性交互作用增加了位错运动的阻力。

可以有效地提高金属的强度。

流变应力τ和位错密度的关系:(2)加工硬化定义:金属经冷加工变形后,其强度、硬度增加、塑性降低。

单晶体的典型加工硬化曲线:τ~θ 曲线的斜率θ=d τ/d θ称为“加工硬化速率”·曲线明显可分为三个阶段:I.易滑移阶段:发生单滑移,位错移动和增殖所遇到的阻力很小,θI很低,约为10-4G数量级。

II.线性硬化阶段:发生多系滑移,位错运动困难,θII远大于θI约为G/100—G/300 ,并接近于一常数。

III.抛物线硬化阶段:与位错的多滑移过程有关,θIII随应变增加而降低,应力应变曲线变为抛物线。

4、沉淀相颗粒强化当第二相以细小弥散的微粒均匀分布在基体相中时,将产生显著的强化作用,通常将微粒分成不可变形的和可变形的两类。

金属材料的喷丸强化原理及其强化机理综述

金属材料的喷丸强化原理及其强化机理综述

金属材料的喷丸强化原理及其强化机理综述喷丸强化是一种常用的金属表面处理技术,通过将高速喷射的金属颗粒或研磨料冲击在金属表面上,可以改善金属的表面质量、增强金属的抗疲劳性能和耐蚀性能。

喷丸强化的原理及其强化机理主要有以下几个方面:1.表面清理:喷丸强化过程中,高速喷射的金属颗粒或研磨料冲击在金属表面上,可以将表面的氧化物、油污、锈蚀物等清除干净,从而提高金属表面的清洁度和质量。

2.表面硬化:喷丸强化会在金属表面形成一定深度的冷作硬化层,这是因为金属颗粒或研磨料的冲击会引起金属表面的塑性变形和冷变形,从而产生强化效果。

这种硬化层可以增加金属材料的硬度和耐磨性,提高抗疲劳性能。

3.残余压应力:喷丸强化会在金属表面产生一定的残余压应力,即冲击力的作用下,金属表面产生压缩变形,而内部则产生拉伸变形。

这些残余压应力的存在可以有效地阻止裂纹和缺陷的扩展,提高金属材料的抗拉强度和延伸率。

4.容积效应:喷丸强化可以在金属表面形成很多微小的挤压区,这些微小的挤压区可以有效地增加金属的表面积,增强金属与周围环境的接触,从而提高金属的氧化和腐蚀性能。

5.变形和急冷回火效应:喷丸强化过程中,金属颗粒或研磨料的冲击会引起金属表面的塑性变形和变形加热,而喷射介质的冷却能力很强,会在喷丸后对金属表面进行急冷回火。

这种急冷回火效应可以改善金属的晶粒结构和组织性能,提高金属的韧性和抗疲劳性能。

总之,喷丸强化通过冲击、压缩、冷变形和急冷回火等机制,对金属材料的表面和组织进行改善和增强,从而达到提高金属的性能和延长使用寿命的目的。

这种技术在航空、航天、能源、汽车等领域有着广泛的应用前景。

混凝土固化与强化原理

混凝土固化与强化原理

混凝土固化与强化原理一、引言混凝土是建筑工程中最常见的材料之一,其主要成分为水泥、砂、石子等。

在混凝土的使用过程中,为了提高其强度和耐久性,需要进行固化和强化。

本文将详细介绍混凝土固化与强化的原理。

二、混凝土固化原理在混凝土硬化的过程中,水泥和水发生化学反应,形成硬化产物——水化硬化产物。

水泥硬化产物主要有钙硅酸盐、硅酸盐和铝酸盐等。

这些产物与砂子、石子等骨料紧密结合,形成具有一定强度的固体体系。

混凝土固化过程中,水泥浆体开始变得粘稠,逐渐失去流动性,转变为半固态状态。

这个过程称为凝聚,是混凝土固化的开始。

水泥浆体在凝聚的同时,开始放热,热量的大小与水泥的种类、含量和骨料的热容有关。

随着时间的推移,热量逐渐减少,水泥浆体的温度也逐渐下降。

随着混凝土的固化,水泥浆体中的水逐渐蒸发,固化产物与骨料之间的结合越来越紧密,混凝土的强度逐渐提高。

混凝土的固化时间与水泥的种类、含量、温度、湿度等因素有关。

三、混凝土强化原理混凝土的强化主要有以下几种方式:1.增加水泥的含量水泥是混凝土中的主要成分,增加水泥的含量可以提高混凝土的强度。

水泥的含量增加,混凝土的硬化产物也会增加,从而提高混凝土的强度。

2.控制水泥的水化反应水泥的水化反应是混凝土固化的主要过程,但过于剧烈的水化反应会导致混凝土内部产生微裂缝,从而降低混凝土的强度。

因此,在混凝土的制作过程中,需要控制水泥的水化反应,使混凝土内部产生的应力能够得到释放,从而提高混凝土的强度。

3.加入掺合料掺合料是指在混凝土中添加的一些材料,如粉煤灰、硅灰、矿渣粉等。

掺合料能够改善混凝土的性能,如增强混凝土的流动性、降低混凝土的收缩率等。

此外,掺合料还能够填充混凝土内部的微孔,从而提高混凝土的密实度和强度。

4.加入纤维材料纤维材料是指在混凝土中添加的一些纤维,如钢纤维、玻璃纤维等。

纤维材料能够增强混凝土的韧性和抗裂性,从而提高混凝土的强度和耐久性。

四、混凝土固化与强化的关系混凝土的固化和强化是密不可分的,固化是强化的前提。

材料强化的4种方法原理

材料强化的4种方法原理

材料强化的4种方法原理材料强化是通过各种手段提高材料力学性能的方法,常用的强化方法有四种:一、固溶强化固溶强化是在基体金属内溶解强化元素,生成固溶体的一种强化手段。

由于不同原子大小不同,溶质原子的存在會對基体金属矩阵产生扭曲应力和扰动,增加材料的抗变形能力。

常见的固溶强化系统有:铁素体中的碳原子生成碳素体、铜中的锌生成黄铜、铝中的镁生成的析出硬化铝镁合金等。

固溶强化的机理是:溶质原子置换矩阵原子后,由于原子大小差异,会对周围基体原子产生弹性变形场,使位错运动难度增加,从而提高合金的力学性能。

一般来说,溶质原子与基体原子大小相差不超过15%,溶解度不超过几个原子百分比时,固溶强化效果最好。

二、析出强化析出强化是通过在基体金属中生成细小、分散的第二相颗粒来达到强化目的。

析出相颗粒的存在能够阻碍位错运动,提高合金的强度。

析出相的大小、形态、分布状况等参数对强化效果有重要影响。

析出强化的典型合金系统有铝钢中的硝基碳窜、铝合金中的Mg2Si相等。

析出相颗粒一般维持在10-100纳米大小范围,既能提供强化效果,又不损害塑性。

过度析出会导致合金脆化。

合理控制热处理工艺是获得优良析出强化的关键。

三、纤维强化纤维强化是在基体金属中添加高强度、高模量的纤维材料,利用纤维阻挡裂纹扩展来提高力学性能。

常用的纤维有碳纤维、玻璃纤维等。

根据纤维在基体中的分散情况,可分为不连续增强和连续增强两种。

纤维强化复合材料中,载荷主要由纤维承担,基体起固定纤维、传递载荷的作用。

强化效果与纤维量、长度、取向等参数有关。

纤维与基体的界面粘结力也会显著影响材料强度。

四、粒界强化粒界强化是通过细化晶粒尺寸来提高力学性能。

根据哈尔-佩奇关系,随着晶粒尺寸的减小,合金的屈服强度会提高。

这是因为粒界能阻碍位错在晶粒内的运动,使材料变形难度增加。

常见的粒界强化方法有合金元素微合金化、热处理调质、严重塑性变形等。

新兴的奥氏体不锈钢即采用了超细晶粒结构来达到高强度。

金属材料的喷丸强化原理及其强化机理综述

金属材料的喷丸强化原理及其强化机理综述

金属材料的喷丸强化原理及其强化机理综述1 喷丸强化原理喷丸强化(Peening)是一种表面处理技术,该技术可以使金属或非金属材料表面几乎承受和耐受机械强度的变化和维护的方法。

它通过喷丸装置形成的动态压痕来改善材料的性能,以降低环境和表面潜在的威胁,从而提高整体结构的强度和寿命。

喷丸强化是在表面处理中使用力学加工的过程,可以应用于铝合金、碳钢、不锈钢和双向淬火钢等金属材料,它可以有效地提高材料的表面硬度和强度。

喷丸强化的原理是,使用压痕和动能来改变和完善表面,从而改善该表面的性能和机械性能,可以解决多种结构和断裂的问题,并可以提高外形精度和耐磨持久性。

2 喷丸强化机理喷丸强化机理涉及多种因素,如极化物质,弹性能,光反射表面,颗粒聚集度,弹性和摩擦力等。

其中,极化物质是喷丸强化的重要机理,极化物质可以将形成的压痕向四周传播以改善表面外观,并增强表面的硬度。

通过电荷分布模式的形成,还可以改变结构的几何维度,使表面形成不同形状的压痕,从而改善材料的表面硬度和耐久性。

弹性能的改善是另一个重要的强化机理,喷丸可以形成压痕磨损表面,从而改善不同表面的弹性能,降低撞击速度对材料的损失,使材料的表面更加平滑,增强材料的机械强度和耐久性。

光反射表面的改善是另一个喷丸强化机理,由于喷丸刻蚀表面形成了凹凸不平表面,使反射光线传播和反射更多,以提高表面的亮度和抗反射能力。

最后,喷丸强化还可以改变表面的密度,材料的密度是影响机械强度的重要因素。

而喷丸处理可以改变表面结构和形状,从而提高表面的密度,并使其结构更加均匀,从而提高材料的机械强度和耐久性。

3 总结喷丸强化是一种常用的表面处理技术,可以有效地提高金属材料表面的硬度和强度,对材料表面的耐磨性有良好的改善作用。

它主要依靠极化物质、弹性能、光反射表面和密度等机制来改善材料表面的性能,从而提高材料的用途和加工性。

二强玻璃强化原理

二强玻璃强化原理

二强玻璃强化原理二强玻璃是一种具有更高强度和耐冲击性能的特种玻璃材料。

它在建筑、汽车和电子设备等领域得到广泛应用。

那么,二强玻璃的强化原理是什么呢?二强玻璃的强化原理主要涉及到热处理过程中的快速冷却和表面压应力的形成。

下面我们将详细介绍二强玻璃的强化原理。

二强玻璃的制备过程中需要进行热处理。

热处理是通过加热和冷却玻璃来改变其物理特性的一种方法。

在二强玻璃的制备中,玻璃首先被加热到接近软化温度,然后迅速冷却。

这种快速冷却过程被称为淬火。

淬火可以使玻璃表面形成压应力,从而增强其强度。

淬火过程中形成的压应力是二强玻璃强化的关键。

在加热过程中,玻璃表面的温度升高,而内部温度升高相对较慢。

当玻璃迅速冷却时,内部和表面的温度差异导致玻璃表面形成压应力。

这种压应力可以抵消外部冲击力,使玻璃具有更高的抗冲击性能。

二强玻璃的强化原理还涉及到玻璃化转变温度。

玻璃化转变温度是指玻璃从液态过渡到固态的温度范围。

在加热过程中,当玻璃的温度超过玻璃化转变温度时,玻璃的分子排列会发生改变,形成一种类似于固态的非晶态结构。

这种非晶态结构具有更高的强度和硬度。

二强玻璃的强化原理主要包括快速冷却和表面压应力的形成。

通过加热和迅速冷却的方式,使玻璃表面形成压应力,从而增强玻璃的强度和耐冲击性能。

这种强化原理使得二强玻璃在各个领域得到广泛应用,为人们的生活和工作带来了更大的安全性和便利性。

值得注意的是,虽然二强玻璃具有更高的强度和耐冲击性能,但在使用过程中仍需注意避免过度冲击和剧烈温度变化,以免造成破裂或损坏。

此外,在二强玻璃的制备和使用过程中,也需要控制好热处理的温度和时间,以确保玻璃的质量和性能。

二强玻璃的强化原理是通过加热和快速冷却的方式,使玻璃表面形成压应力,从而增强其强度和耐冲击性能。

这种强化原理使得二强玻璃成为一种重要的特种玻璃材料,在建筑、汽车和电子设备等领域得到广泛应用。

在使用二强玻璃时,我们需要注意避免过度冲击和剧烈温度变化,以确保其安全性和可靠性。

金属材料的强化机理

金属材料的强化机理

材料结构与性能读书报告--金属材料的强化机理综合论述金属材料强化原理,基本途径,文章从宏观性能—微观组织结构—材料强化三者的相互依存关系,叙述了材料强化的本质、原理与基本途径作了论述。

金属的强化可以改善零件的使用性能,提高产品的质量,充分发挥材料的性能潜力,延长工件的使用寿命,在实际应用中,有着非常重要的意义。

对工程材料来说,一般是通过综合的强化效应以达到较好的综合性能。

具体方法有固溶强化、形变强化、沉淀强化和弥散强化、晶界强化、位错强化、复相强化、纤维强化和相变强化等。

关键词:强化;细晶;形变;固溶;弥散;相变In this paper a summary is made on the principle of material strengthening,basis way and new technology of heat treatment.The essence,principle and basis ways of strengthening various materials were expounded in terms of their microscope properties,microstructure and material strengthening technology.:Metal strengthening can improve the performance of parts, improve the quality of products, give full play to the properties of materials, extend the use of workpiece potential life, in practical applications, has a very important significance. A systematic discussion was made about the explantation of the potential of materials.For engineering materials, it is usually by the strengthening effect comprehensive to achieve good comprehensive performance. Specific methods have solid-solution strengthening,distortion and deposition strengthening ,he complex phase strengthening,fiber reinforced and phase change aggrandizement, etc.Keywords:strengthen; fine grain; deformation; solution; dispersion; phase transition一、金属的强化通过合金化、塑性变形和热处理等手段提高金属材料的强度,称为金属的强化。

简述金属材料的四种强化机制

简述金属材料的四种强化机制

简述金属材料的四种强化机制金属材料的强化机制是材料科学中重要的研究方向,在提高金属材料性能和使用寿命方面发挥着重要作用。

目前,已经有许多种金属材料强化机制,可以归纳为四种:增强断裂硬度机制、晶界界面机制、体积变形机制和宏观变形机制。

下面将对这四种机制进行详细介绍。

首先,增强断裂硬度机制是金属材料增韧的主要机制之一。

通过增强断裂硬度机制,可以使材料的断口断裂硬度达到更高的水平,从而增加材料的抗弯损伤能力。

增强断裂硬度机制的主要方法包括加强断口的低温组织处理、改变断口的冷变形水平以及高温析出处理。

其次,晶界界面机制也是金属材料增韧的重要机制之一。

它主要是通过改变体系中晶界强度和界面晶粒尺寸,从而改善晶界组织,降低晶界间交界强度,并减少材料的断口断裂硬度,从而达到增韧的目的。

改变体系中晶界界面机制的方法包括合金化、热处理、冷处理、电子束处理等。

第三,体积变形机制是金属材料增韧的主要机制之一,它的基本原理是通过改变金属材料的内部晶粒结构,使材料具有良好的抗压强度和抗弯强度,从而达到增韧的目的。

改变金属材料体积变形机制的方法可以分为晶粒细化、塑性变形和残余应力处理。

最后,宏观变形机制也是金属材料强化的重要机制之一。

通过宏观变形机制可以改变材料的晶粒结构,从而改善材料的力学性能,增强材料的抗弯强度和断裂硬度,从而达到增韧的目的。

改变金属材料宏观变形机制的常见方法有冷变形和热变形处理,以及压力处理、冲击处理和电渣处理等。

综上所述,金属材料的强化机制主要有四种,即增强断裂硬度机制、晶界界面机制、体积变形机制、宏观变形机制,通过使用这些机制可以提高金属材料的性能和使用寿命。

为此,科学家们需要继续研究这些机制,努力为社会提供更安全、可靠的金属材料。

金属材料强化机制是材料科学中重要的研究方向,在提高金属材料性能和使用寿命方面发挥着重要作用。

目前,主要有四种金属材料强化机制,即增强断裂硬度机制、晶界界面机制、体积变形机制和宏观变形机制。

化学强化玻璃的基本原理

化学强化玻璃的基本原理

化学强化玻璃的基本原理
化学强化玻璃的基本原理是通过控制玻璃表面的离子交换使其变得更加耐用和强化。

具体原理如下:
1. 离子交换:在化学强化过程中,玻璃表面会接触到一种离子交换介质,通常是钠离子(Na+)和钾离子(K+)。

这些离子会与玻璃表面的钠离子发生交换反应,将表面的钠离子替换为更大的钾离子,使玻璃表面形成一个压缩层。

2. 压缩层形成:通过离子交换,形成的压缩层可以增加玻璃表面的压缩应力。

压缩层的存在可以增加玻璃的强度和耐冲击性能。

3. 热处理:经过离子交换后,玻璃会经过热处理。

在高温下,玻璃表面的改变会扩散到整个玻璃体,进一步增加玻璃的强度和耐用性。

这个过程被称为热强化。

化学强化玻璃的基本原理是利用离子交换和热处理来增强玻璃的性能,使其更加耐用和强化。

这种玻璃常用于高档电子设备的屏幕和手机的保护层等需要高度耐刮和耐冲击的应用场合。

材料的强化

材料的强化

1. 材料强化的类型:主要有晶界强化、固溶强化、位错强化、沉淀强化和弥散强化、相变强化等。

2. 强化机制:(1) 晶界强化:晶界分为大角度晶界(位向差大于10o)和小角度晶界(亚晶界,位向差1~2o)。

晶界两边相邻晶粒的位向和亚晶块的原子排列位向存在位向差,处于原子排列不规则的畸变状态。

晶界处位错密度较大,对金属滑移(塑性变形)、位错运动起阻碍作用,即晶界处对塑性变形的抗力较晶内为大,使晶粒变形时的滑移带不能穿越晶界,裂纹穿越也困难。

因此,当晶粒越细,晶界越多,表现阻碍作用也越大,此时金属的屈服强度也越高。

方法:根据晶界强化的原理,在热处理工艺方法上发展了采用超细化热处理的新工艺,即细化奥氏体(A)晶粒或碳化物相,使晶粒度细化到十级以上。

由于超细化作用,使晶界面积增大,从而对金属塑性变形的抗力增加,反映在力学性能方面其金属强韧性大大提高。

如果奥氏体晶粒细化在十级以上,则金属的强韧性将大大提高,为达此目的,现代发展的热处理新技术方法有以下三种。

①利用极高加热速度的能量密度进行快速加热的热处理。

由于极高的加热能量密度,使加热速度大大提高,在10-2~1s 的时间内,钢件便可加热到奥氏体(A)状态,此时A 的起始晶粒度很小,继之以自冷淬火(冷速达104℃/s 以上),可得极细的马氏体(M)组织,与一般高频淬火比较硬度可高出Hv50,而变形只有高频淬火的1/4~1/5,寿命可提高1.2~4倍。

②利用奥氏体(A)的逆转变钢件加热到 A 后,淬火成M,然后快速(20s)内重新加热到 A 状态,如此反复3~4 次,晶粒可细化到13~14级。

③采用A-F两相区交替加淬火采用亚温淬火(F+A 双相区加热),在提高材料强韧性的同时显著降低临界脆化温度,抑制回火脆性。

在A-F两相区交替加热,可使A/F相界面积大大增加,因而使奥氏体形核率大大增多,晶粒也就越细化。

(2) 固溶强化:是利用金属材料内部点缺陷(间隙原子置换原子)对金属基体(溶剂金属)进行强化。

材料强化基本原理

材料强化基本原理

第十章 材料的强韧化第一节 材料强化基本原理结合键和原子排列方式的不同,是金属材料、陶瓷材料、高分子材料力学性能不同的根本原因。

通过改变材料的内部结构可以达到控制材料性能的目的。

不同种类的材料,提高其强度的机理、方法也不同。

一、金属材料的强化原理1.固溶强化纯金属经过适当的合金化后强度、硬度提高的现象,称为固溶强化。

其原因可归结于溶质原子和位错的交互作用,这些作用起源于溶质引发的局部点阵畸变。

固溶体可分为无序固溶体和有序固溶体,其强化机理也不相同。

(1)无序固溶强化 固溶强化的实质是溶质原子的长程应力场和位错的交互作用导致致错运动受阻。

溶质相位错的交互作用是二者应力场之间的作用。

作用的大小要看溶质本身及溶质与基体之间的交互作用,这种作用使位错截交成弯曲形状。

如图10—l所示.图中的A、B、C表示溶质原子强烈地钉扎了位错。

x—x',A未被钉扎的乎直位错线,被钉后呈观曲线形状。

处于位错线上的少数溶质原子与位错线的相互作用很强,这些原子允许位错线的局部曲率远大于根据平均内应力求出的曲率。

钉扎的第一个效应就是使位错线呈曲折形状。

相对于x—x'的偏离为x在受到垂直方向的外加切应力τ作用下,由于B点位错张力的协助作用,将使ABC段位错移到AB'C,在B'处又被钉扎起来。

位错之所以能够这样弯曲,其原因是因位错长度的增加而升高的弹件能被强钉扎所释放的能量抵偿旧有余,位错的弹性能反而有所降低.位错经热激活可以脱钉,因而被钉扎时相对处于低能态。

在切应力τ的作用下,ABC 段移动到AB'C.ABC和AB'C是相邻的平衡位置,阻力最大在位错处于中间位置AC时产生,外加切应力要克服这样的阻力方可使位错移动。

若AC≈2y,ABC比2y略大,近似地当作2y。

由ABC变为AC方面要脱钉需要能量,另一方面要缩短位错长度释放能量。

总共需要式中:Eb是位错脱扎所需能量;EI为单位长度位错由于加长而升高的能量,EI与Eb相比小而略去。

材料强化的主要方法及原理

材料强化的主要方法及原理

材料强化的主要方法及原理
材料强化的主要方法包括以下几种:
1. 冷加工强化:通过冷加工方式,如冷轧、冷拔等,改变材料的晶粒结构,增强材料的强度和硬度。

原理是通过改变晶粒的形态和排列方式,使材料的位错密度增加,从而提高材料的本构行为。

2. 固溶强化:将一个或多个溶质原子溶解到固溶体中,使固溶体的晶格产生畸变,从而增加材料的抗变形能力。

原理是溶质原子破坏固溶体晶格的完整性,增加位错的形成难度。

3. 相变强化:通过相变反应改变材料的组织结构和性能。

例如固相变形成亚稳相,亚稳相具有较高的硬度和强度。

原理是相变过程中晶界和位错的动力学效应导致材料性能的变化。

4. 织构强化:通过控制材料的晶粒取向和排列,使材料获得相对较高的强度和塑性。

原理是材料的晶体取向决定了其各向异性和织构,织构的优化可提高材料的性能。

5. 粒度强化:通过控制材料的晶粒尺寸,增加晶界的数量和分布,从而提高材料的抗变形能力。

原理是晶界的能量和阻碍位错运动的效应导致材料的强化。

以上方法主要通过改变材料的微观结构和组织来实现材料的强化,从而提高其强度、硬度和耐磨性等性能。

不同的强化方法适用于不同的材料和应用场景,综合运用这些方法可以获得优化的材料性能。

材料强化的主要方法及原理

材料强化的主要方法及原理

材料强化的主要方法及原理
材料强化是指通过改变材料的微观结构和化学成分,使其在力学性能、物理性能、化学性能等方面得到提高。

以下是材料强化的主要方法及其原理:
1. 结晶强化:通过控制材料的结晶行为,使晶体排列更加有序,晶界更加清晰,从而提高材料的强度和硬度。

原理是通过晶格的距离和位错的形成,阻碍位错的移动,使材料更加耐用。

2. 勉强性:向基体中引入大小不同的相,使它们在外力作用下发生位移,从而减缓裂纹的扩展速度,提高材料的韧性。

原理是通过位移的能量吸收和裂纹扩展路径的复杂性,增加材料的弹性变形能力。

3. 相界强化:利用多个相之间的相互作用,使材料在力学性能和物理性能方面获得提高。

例如,在合金中添加合适的合金元素,形成强化相,阻碍位错和裂纹的传播,提高强度和韧性。

原理是通过相间的相互作用,引发位错的弯曲和退行,从而增加材料的抗剪强度和抗拉强度。

4. 织构强化:通过改变材料的晶体取向和结构排列,使材料在力学性能和物理性能方面得到提高。

例如,通过冷轧、拉伸等工艺,使晶体产生优势取向,从而提高材料的塑形能力和强度,减少材料的晶界移动。

原理是通过晶体取向的改变,增加材料的晶体间的结合力和内聚力,提高材料的抗拉强度和硬度。

5. 化学强化:通过调整材料的化学成分,改变材料的组织结构
和物理性能,使其达到所需的强化效果。

例如,在硅酸盐陶瓷中添加改性剂,形成稳定的成分和结构,提高材料的耐磨性和耐腐蚀性。

原理是通过化学反应和元素的配比,改变材料的成分和结构,增加材料的力学和化学稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章材料的强韧化第一节材料强化基本原理结合键和原子排列方式的不同,是金属材料、陶瓷材料、高分子材料力学性能不同的根本原因。

通过改变材料的内部结构可以达到控制材料性能的目的。

不同种类的材料,提高其强度的机理、方法也不同。

一、金属材料的强化原理纯金属经过适当的合金化后强度、硬度提高的现象,称为固溶强化。

其原因可归结于溶质原子和位错的交互作用,这些作用起源于溶质引发的局部点阵畸变。

固溶体可分为无序固溶体和有序固溶体,其强化机理也不相同。

(1)无序固溶强化固溶强化的实质是溶质原子的长程应力场和位错的交互作用导致致错运动受阻。

溶质相位错的交互作用是二者应力场之间的作用。

作用的大小要看溶质本身及溶质与基体之间的交互作用,这种作用使位错截交成弯曲形状。

如图10—l所示.图中的A、B、C表示溶质原子强烈地钉扎了位错。

x—x',A未被钉扎的乎直位错线,被钉后呈观曲线形状。

处于位错线上的少数溶质原子与位错线的相互作用很强,这些原子允许位错线的局部曲率远大于根据平均内应力求出的曲率。

钉扎的第一个效应就是使位错线呈曲折形状。

相对于x—x'的偏离为x在受到垂直方向的外加切应力τ作用下,由于B点位错张力的协助作用,将使ABC段位错移到AB'C,在B'处又被钉扎起来。

位错之所以能够这样弯曲,其原因是因位错长度的增加而升高的弹件能被强钉扎所释放的能量抵偿旧有余,位错的弹性能反而有所降低.位错经热激活可以脱钉,因而被钉扎时相对处于低能态。

在切应力τ的作用下,ABC 段移动到AB'C.ABC和AB'C是相邻的平衡位置,阻力最大在位错处于中间位置AC时产生,外加切应力要克服这样的阻力方可使位错移动。

若AC≈2y,ABC比2y略大,近似地当作2y。

由ABC变为AC方面要脱钉需要能量,另一方面要缩短位错长度释放能量。

总共需要式中:Eb是位错脱扎所需能量;EI为单位长度位错由于加长而升高的能量,EI与Eb相比小而略去。

由ABC 变为AC,平均位移为x/2,外加切应力需要做功为τb(2y)·x/2,故从图10—1看,沿着xx'方向,单位长度上有1/y个溶质原子。

用柯氏气团的概念,如果位错和溶质原子交互作用能为U0,则单位长度位错受溶质钉扎将降低的能量为所以设C为溶质原子百分数,在滑移面单位面积上有1/62个原子,其中有C/62个为溶质原子。

又注意到面积xy上只摊上一个原子,所以C/b2≈1/xy,所以式(10—4)可写为此式表明在强钉扎下,推动位错所需的临界切应力既与溶质-位错相互作用能U0。

成正比也与溶质浓度C 成正比。

实验表明面心立方合金在常温下的固溶强化符合这样的规律。

(2)有序固溶强化当一个位错在具有短程有序因溶体中运动时,由异类原子对构成的局部有序受到破坏,引起能量升高,必须付出破坏短程有序提高能量的代价,位错才能运动。

若位错扫过单位面积而增高的能量为E,则位错运动的阻力是设固溶体短程有序度为a,N为二元合金的原子总数,x为B组元的摩尔分数,l-x为A组元的摩尔分数,w是原子对作用能差值,即对于面心立方结构的短程有序固溶体,位错扫过(111)上的单位面积提高的能量是式中:a位晶胞参数。

位错所遇到的阻切应力应等于E/b,故注意b=a/21/2。

这是面心立方结构二元合金具有短程有序度a时所产生的强化作用。

2.细晶强化多晶体金属的晶粒边界通常是大角度晶界,相邻的不同取向的晶粒受力产生塑性变形时,部分施密特(Schmid,E.)因子大的晶粒内位错源先开动,并沿一定晶面产生滑移和增殖。

滑移至晶界前的位错被晶界阻挡。

这样一个晶粒的塑性变形就无法直接传播到相邻的晶粒中去,且造成塑变晶粒内位错塞积。

在外力作用下,晶界上的位错塞积产生一个应力场,可以作为激活相邻晶粒内位错源开动的驱动力。

当应力场作用于位错源的作用力等于位错开动的临界应力时,相邻晶粒内的位错源开动、滑移与增殖,造成塑件形变。

塞积位错应力场强度与塞积位错数目和外加切应力值有关,而塞积位错数目正比于晶粒尺寸,因此当金属材料的晶粒变细时,必须加大外加作用力以激活相邻晶粒内位错源,这就意味着,细晶粒产生塑性受形要求更高的外加作用力,也就体现了细晶粒对金属材料强化的贡献。

在霍尔—佩奇(Hall,E,O-Petch,N.J.)公式。

中为晶粒平均直径,Ky反映了位错被溶质原子特别是C、N等原子的订扎程度和塑性形变时可以参加滑移的滑移系数目,滑移系少则Ky大。

应该指出,霍尔—佩奇(Hall,E,O-Petch,N.J.)公式适用的晶粒尺寸有一个界限,例如0.3—400μm。

因为d<0.3μm的非常细小的晶粒内提供不出足够数量的位错,以构成足够强度的应力集中应力场,而比400μm更为粗大的晶粒再多些塞积位错数目,对应力集中应力场强度的影响也不大。

3.位错强化从金属晶体完整的概念出发.提高强度最为直接的方法是消除其中所存在的缺陷,主要是消除位错,制造完整晶体。

但金属晶体的缺陷理论又指出,晶体中的位错密度ρ达到一定值后也可以有效地提高金属的强度。

位借间的弹性交互作用可造成位错运动的阻力,表现为强度的增高。

通过热处理和冷塑性变形以提高位错密度是钢材强化的重要手段之一。

当晶体中的位错的分布比较均匀时,流变应力τ和位错密度间存在培莱-赫许(Bailey,J.E-Hirsch,P.B)关系式.即(10—13)式中:ρ为位错密度;G为切变模量;b为柏氏矢量;a为系数,多晶体铁素体a=0.4;参量τ0表示位错交互作用以外的因素对位错运动所造成的阻力。

由上式可见.当ρ增高时,τ也增大。

在金属晶体受到外力作用时,内部增殖大量位错。

位错的增殖是塑性变形造成的,所以流变应力的增大率与塑性应变的增大率有关,即流变应力的增大率取决于塑性形变引起的位错密度的增大率。

4.沉淀相颗粒强化多相合金的高强度基础是由位错与沉淀析出相的交互作用而产生的,弥散分布的沉淀相颗粒是阻碍位错运动的最有效的障碍物。

当强化效果等效于固溶强化时,它对塑性的削弱作用用比较小。

沉淀相颗粒强化效果视颗粒在钢材屈服时本身可否塑变而定,另外,第二相的分布方式也可有不同的强化效应。

(1)可形变颗粒的强化作用所谓可形变颗粒系指这沉淀相通常处于与母相共格状态。

颗粒尺寸小<15nm,可为运动的位错所切割。

因此可变形颗粒的强化效应与以下几个方面有关:①第二相颗粒具有不同于基体的点阵结构和点阵常数,当位错切过共格颗粒时,在滑移面上造成错配的原子排列,因而增大位错运动的作功;②沉淀相颗粒的共格应力场与位错的应力场之间产生弹性交互作用,位错通过共格应变区时,会产生一定的强化效应;③位错切过颗粒后形成滑移台阶,增加界面能,加大位错运动的能量消耗;④当颗粒的弹性切变模量高于基体时,位错进入沉淀相便增大位错自身的弹性畸变能,引起位错的能量和线张力变大,位错运动遇到更大的阻力.述分析表明:与基体相完全共格的沉淀相颗粒具有显著的强化效应。

(2)不可形变颗粒的强化作用不可变形颗粒具有较高硬度和一定尺寸并与母相部分共格或非共格的沉淀相颗粒。

位错遇到这类颗粒无法切过颗粒,只能沿着颗粒围绕,绕过的最大角θ可达到π,每一条位错绕过粒颗后留下一个位错圈(环),面后恢复平直状态,继续向前推移。

位错的能量是正比于其长度的,因此位错遇到颗粒,滑移受到阻碍面发生弯曲时,必须增高外加切应力以克服位错弯曲而引起的位错线张力的加大。

作用于位错线的切应力增值△τbs与位错线张力增量2Tsinθ的平衡表明,附加切应力τ是以补偿位错线弯成曲线长度,和绕过角θ所引起的能量增大,于是可有,当θ很小时sin/θ/2≈θ/2,s≈λp=rθ,λp为有效的颗粒间距,r为位错弯曲线的曲率半径,又T=1/2·Gb2得到△T=Gb/rθ,b为柏氏矢量.当位错弯曲得使r1=λp/2时,τ将为最大,或者说要使位错围绕颗粒所需要的最大附加切应力,即临界切应力为这就是不可变形颗粒对屈服强度的贡献。

这个位错围绕颗粒的强化机制是由奥罗万(Orowan,E)提出的,是一个比较成功的理论,也得到实验上的证实。

可见位错绕过粒子所需的切应力反比于颗粒间距.故当沉淀相颗粒的半径为r,体积分数为f,且在基体上是弥散分布时,那么可导出沉淀相颗粒强化对合金屈服强度的贡献,即f很小时可简化为综上所述,不可变形颗粒的强化作用反比于颗粒尺寸,而正比于其数目。

(3)粗大的沉淀相群体的强化作用在钢中粗大的沉淀相颗粒成群分布,如奥氏体不锈钢的δ相和碳钢或低合金钢中的珠光体会产生显著的强化作用。

当两个相所组成的组织是一种不同晶粒尺寸的多晶体时,一个相晶粒的预先形成可以明显地影响另一个相晶粒的成长,可以规定另一个相的生长范围,并有可能引起另一个相晶粒细化,沉淀相的作用大小与沉淀相的形态、分布和数量,以及每一沉淀物承受外力的能力有关。

由两个相混合组成的组织的强化主要是由于:①纤维强化;②—个相对另一个相起阻碍塑性变形的作用,从而导致另一个相更大的塑性形变和加工硬化,直到末形变的相开始形变为止;③在沉淀相之间颗粒可由不同的位错增殖机制效应引入新的位错。

5.强化作用的更加如上所述,各个强化机制的作用对强度贡献虽有不同,但所起作用是一致的,而对其他性能,特别是塑性则有差异。

从此也可以看出,霍尔—佩奇(Hall,E,O-Petch,N.J.)公式中的σ1内容是很复杂的,它包含着除开细晶强化作用以外的其他的所有强化因子,可写为式中;σ1取决于温度和形变速率,是与P—N力密切相关的.σ2是为组织因素决定的,可有式中:△σsh、△σph和△σdh相应的为固溶强化、沉淀强化和位错强化所引起的强度增量。

影响△σsh、△σph和△σdh的因素是多方面的,在当前要准确计算尚有不少困难。

但对于具体钢种可以通过实验予以测定。

图l0—6为铁素体+珠光体型C—Mn钢于不同C量时各个强化因子对强度的贡献。

二、高聚物的强化原理高分子材料的强化主要有以下几个方面:(1)引入极性基链间作用力对高聚物的机械强度有着很大的影响,对不同的高聚物,为了比较它们分子链间的作用力的大小,一般取长度为0.5nm,配位数为4时计算出来的作用能数值。

链上极性部分越多,极性越强,链间作用力就越大;(2)链段交联在环境温度高于玻璃温度Tg时,随着交联程度的增加,交联键的平均距离缩短,高分子材料的断裂强度将会进一步增大,屈服强度和弹性模量也会大幅度提高;(3)结晶度和取向结晶性高分子材料的结晶度和大分子取向对其强度有着明显的影响.实际的结晶性尚聚物中存在着晶区和非晶区,一个大分子链可以贯穿好几个晶区和非晶区。

在非晶区分子链是卷曲和互相缠结的,因而当结晶性高聚物受力时,可使应力分散并导致分子微晶取向化,使强度得到提高。

结晶度的增大使高分子的密度增大,而且微晶还会起到物理交联的作用,使应力均匀分布,断裂强度上升;(4)定向聚合定向聚合是提高高分子材料结构上均一性的有效方法,能使高聚物的密度、拉伸弹性模量和物理性能、机械性能都有了提高。

相关文档
最新文档