高二理科数学圆锥曲线单元测试

合集下载

高二数学选修2—1圆锥曲线单元测试(理科)

高二数学选修2—1圆锥曲线单元测试(理科)

遂溪一中高二数学选修2—1圆锥曲线单元测试(理科)(90分钟完卷,总分100分)一、选择题:(本大题共10小题,每小题4分,共40分)1. 双曲线14322=-x y 的渐近线方程是( ) A. x y 23±= B. x y 332±= C. x y 43±= D. x y 34±= 2、抛物线281x y -=的准线方程是( ). A. 321=x B. 2=y C. 321=y D. 2-=y 3、已知4||=AB ,点P 在A 、B 所在的平面内运动且保持6||||=+PB PA ,则||PA 的最大值和最小值分别是 ( )A .5、3B .10、2C .5、1D .6、44、对于椭圆C 1:12222=+by a x ( a >b >0)焦点为顶点,以椭圆C 1的顶点为焦点的双曲线C 2,下列结论中错误的是( )A. C 2的方程为122222=--b y b a x B. C 1、C 2的离心率的和是1 C. C 1、C 2的离心率的积是1 D.短轴长等于虚轴长 5、抛物线x y 122=上与焦点的距离等于8的点的横坐标是( ) A 、2 B 、3 C 、4 D 、56、若双曲线与64422=+y x 有相同的焦点,它的一条渐近线方程是03=+y x ,则双曲线的方程是( )A.1123622=-y x B. 1123622=-x y C. 1123622±=-y x D. 1123622±=-x y 7.若双曲线的两条渐进线的夹角为060,则该双曲线的离心率为 A.2 B.36 C.2或36D.2或3328、与圆x 2+y 2-4y=0外切, 又与x 轴相切的圆的圆心轨迹方程是 ( ).A. y 2=8xB. y 2=8x (x>0) 和 y=0C. x 2=8y (y>0)D. x 2=8y (y>0) 和 x=0 (y<0)9、若椭圆)1(122>=+m y m x 与双曲线)0(122>=-n y nx 有相同的焦点F 1、F 2,P 是两曲线的一个交点,则21PF F ∆的面积是( )A.4B.2C.1D.1210、已知椭圆222(0)2y x a a +=>与A (2,1),B (4,3)为端点的线段没有公共点,则a 的取值范围是( )A.02a <<B.02a <<或a > C. 103a <<D.a <<一、 选择题:(4分×10=40分)二、填空题:(4分×4=16分)11. 与椭圆22143x y +=具有相同的离心率且过点(2,)的椭圆的标准方程是 。

高二数学圆锥曲线测试题以及详细答案

高二数学圆锥曲线测试题以及详细答案

圆锥曲线测试题一、选择题:1.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对2.设P 是双曲线19222=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )A. 1或5B. 1或9C. 1D. 93、设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P ,若△F1PF2为等腰直角三角形,则椭圆的离心率是( ).A. 2B. 12 C. 2 D.14.过点(2,-1)引直线与抛物线2x y =只有一个公共点,这样的直线共有( )条A. 1B.2C. 3D.45.已知点)0,2(-A 、)0,3(B ,动点2),(y y x P =⋅满足,则点P 的轨迹是 ( )A .圆B .椭圆C .双曲线D .抛物线6.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( )A 02=-y xB 042=-+y xC 01232=-+y xD 082=-+y x7、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是( ) A. 双曲线 B.抛物线 C. 椭圆 D.以上都不对8.方程02=+ny mx )0(122>>=+n m ny mx 的曲线在同一坐标系中的示意图应是( )B 二、填空9.对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题:①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点; ③ 双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同. 其中正确命题的序号是 .10.若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为 11、抛物线2x y -=上的点到直线0834=-+y x 的距离的最小值是 12、抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标 。

高二圆锥曲线单元测试题及答案

高二圆锥曲线单元测试题及答案

《圆锥曲线》单元测试题一、选择题1.已知椭圆方程192522=+y x ,椭圆上点M 到该椭圆一个焦点的距离是2,N 是MF 1的中点,O 是椭圆的中心,那么线段ON 的长是( )A .2B .4C .8D .23 2.从椭圆的短轴的一个端点看长轴的两个端点的视角为120º,那么此椭圆的离心率为( )A .22B .33C .21D .363.设1>k ,则关于x 、y 的方程1)1(222-=+-k y x k 所表示的曲线是( )A .长轴在y 轴上的椭圆B .长轴在x 轴上的椭圆C .实轴在y 轴上的双曲线D .实轴在x 轴上的双曲线4.到定点(7, 0)和定直线x =7716的距离之比为47的动点轨迹方程是( )。

A .116922=+y x B .191622=+y x C .1822=+y x D .1822=+y x 5.若抛物线顶点为(0,0),对称轴为x 轴,焦点在01243=--y x 上那么抛物线的方程为( )A .x y 162= B .x y 162-=; C .x y 122=; D .x y 122-=;6.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是( )A .⎝⎛⎭⎫14,94B .⎝⎛⎭⎫23,1C .⎝⎛⎭⎫12,23D .⎝⎛⎭⎫0,12 7.若椭圆)1(122>=+m y m x 与双曲线)0(122>=-n y nx 有相同的焦点F 1、F 2,P 是两曲线的一个交点,则21PF F ∆的面积是( )A .4B .2C .1D .128.双曲线221(0)x y mn m n-=≠的离心率为2, 有一个焦点与抛物线24y x =的焦点重合,则mn 的值为( ) A .316 B .38 C .163 D .839.设双曲线以椭圆221259x y +=长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( ) A .2± B .43±C .12±D .34± 10.已知椭圆222(0)2y x a a +=>与A (2,1),B (4,3)为端点的线段没有公共点,则a 的取值范围是( )A.02a <<B.02a <<或2a > C .103a <<D.22a << 第Ⅱ卷(非选择题,共90分)二、填空题(本大题共5小题,每小题5分,共25分)11.双曲线8822=-ky kx 的一个焦点是(0,3),那么k 的值为 。

高中数学选修《圆锥曲线图》单元测试题

高中数学选修《圆锥曲线图》单元测试题

《圆锥曲线》单元测试一、选择题:每小题8分,共40分1.设圆锥曲线C 的两个焦点分别为12,F F ,若曲线上存在点P 满足1122||:||:||4:3:2PF F F PF =,则曲线C 的离心率等于 A.1322或B.23或2 C.12或2 D.3223或2.已知两个正数,a b 的等差中项是92,一个等比中项是,b a >则双曲线22221x y ab-=的离心率为A.53 B.4C.5453.已知椭圆22:12xC y +=的右焦点为F ,右准线为l ,点A l ∈,线段A F 交C 于点B ,若3FA FB =,则||AF =B.2 D.34.下列命题中假命题是A. B. 双曲线2228x y -=的虚轴长是 C.抛物线22y x =的焦点到准线的距离为1 D.2222135x y +=的两条准线之间的距离为2545.设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F ,且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为A.24y x =±B.28y x =±C.24y x =D.28y x =6.已知直线(2)(0)y k x k =+>与抛物线2:8C y x =相交A 、B 两点,F 为C 的焦点。

若||2||FA FB =,则k = A.322 B.32 C.32D. 317.已知双曲线2221(0)2xy b b-=>的左、右焦点分别是12,F F ,其一条渐近线方程为y x =,点0)P y 在双曲线上.则12PF PF ⋅=A.4B.0C.2-D.12-8.已知双曲线22122xy-=的准线过椭圆22214xy b+=的焦点,则直线2y kx =+与椭圆至多有一个交点的充要条件是A.11[,]22k ∈-B.11(,][,)22k ∈-∞-⋃+∞C.[22k ∈-D.(,])22k ∈-∞-⋃+∞ 二、填空题:每小题5分,共30分9.曲线C 是平面内与两个定点12(1,0),(1,0)F F -的距离的积等于常数2(1)a a >的点的轨迹.给出下列三个结论:① 曲线C 过坐标原点;② 曲线C 关于坐标原点对称;③若点P 在曲线C 上,则12F PF D 的面积不大于22a;其中,所有正确结论的序号是 .10.若双曲线22221(,)x y a b R a b+-=∈的离心率2]e ∈,则一条渐近线与实轴所构成的角的取值范围_ _.11.已知双曲线C 的两个焦点及虚轴的两个端点构成一个内角为60 的菱形,那么双曲线C 的离心率为 .12.若抛物线22y px =的焦点与双曲线22163xy-=的右焦点重合,则p 的值为 .13.若椭圆22221x y ab+=的焦点在x 轴上,过点1(1,)2作圆221x y +=的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是 . 14.已知椭圆22221(0)x y a b ab+=>>的左、右焦点分别为12(,0),(,0)F c F c -,若椭圆上存在一点P 使1221sin sin a c PF F PF F =∠∠,则该椭圆的离心率的取值范围为 .三、解答题:须写出演算过程、文字说明等,满分48分15.(10分)求与椭圆x 2144+y 2169=1有共同焦点,且过点()0,2的双曲线方程,并且求出这条双曲线的实轴长、焦距、离心率.16.(12分)在平面直角坐标系xoy 中, 已知点(0,1)A -,B 点在直线3y =-上,M 点满足//,M B O A M A ABM B BA ?,M 点的轨迹为曲线C .(I )求C 的方程;(II )若00(,)P x y 为C 上一动点,l 为过P 点的直线且斜率为02x ,求O 点到l 距离的最小值.17.(12分)在平面直角坐标系xOy 中,已知椭圆1C :22221xy ab+=(0a b >>)的左焦点为1(1,0)F -,且点(0,1)P 在1C 上. (1)求椭圆1C 的方程;(2)设直线l 同时与椭圆1C 和抛物线2C :24y x =相切,求直线l 的方程.18.(14分)如下图,椭圆的中心为原点O ,离心率2e =,一条准线的方程为x =.(Ⅰ)求该椭圆的标准方程; (Ⅱ)设动点P 满足:2OP OM ON =+,其中,M N 是椭圆上的点,直线O M 与O N 的斜率之积为12-,问:是否存在两个定点12,F F ,使得12||||PF PF +为定值?若存在,求12,F F 的坐标;若不存在,说明理由.班级姓名座号得分圆锥曲线单元测试答题卡9. 10. 11.12. 13. 14.三、解答题:满分48分15.(10分)16.(12分)17.(12分)18.(14分)圆锥曲线单元测试参考答案1-8:ADAD BABA 9.②③10. [π4,π3].2c a ≤≤,∴2224c a ≤≤,即22224a b a -≤≤,∴2213b a≤≤,得1b a ≤≤,∴43ππθ≤≤11.212.6 13.22154xy+=14.)1,1-因为在12P F F ∆中,由正弦定理得1211a c P F P F =,知12c P F P F a=由椭圆的定义知 212222222c aPF PF a PF PF a PF ac a+=+==+则即,由椭圆的几何性质知22222,,20,aPF a c a c c c a c a<+<++->+则既所以2210,e e +->11(0,1)e e e <<∈或,又,故椭圆的离心率1,1)e ∈-15.解:椭圆221114169xy +=的焦点是(0,5),(0,5)-,焦点在y 轴上, 设双曲线的方程为22221(0,0)y x a b ab-=>>又因为双曲线过点(0,2),把这个点代入方程可得224,21a b == 所以双曲线的方程为221421yx-=,双曲线的实轴长为4,焦距为10,离心率为2.5.16. 解: (Ⅰ)设(,)M x y 由已知得(,3),(0,1)B x A --.所以 (,1),(0,3),(,2)M A x y M B y AB x =---=--=-再由题意可知()0M A M B AB +?即(,42)(,2)0x y x ---?=,故曲线C 的方程式为224xy =-.(Ⅱ)因为00(,)P x y ,l 的斜率为02x 因此直线l 的方程为000()2xy y x x -=-,即2000220x x y y x -+-=.则O 点到l的距离2d =.又20024x y =-,所以2014122x d +==,当200x =时取等号,故O 点到l 距离的最小值为2.17. 解:(1)因为椭圆1C 的左焦点为1(1,0)F -,所以1c =,点(0,1)P 代入椭圆22221x y ab+=,得211b=,即1b =,所以2222a b c =+=,所以椭圆1C 的方程为2212xy +=.(2)直线l 的斜率显然存在,设直线l 的方程为y kx m =+,2212x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 并整理得222(12)4220k x km x m +++-=,因为直线l 与椭圆1C 相切,所以2222164(12)(22)0k m k m ∆=-+-=,整理得22210k m -+= ①24y xy kx m⎧=⎨=+⎩,消去y 并整理得222(24)0k x km x m +-+=。

高二数学圆锥曲线综合测试题(使用)含答案!

高二数学圆锥曲线综合测试题(使用)含答案!

高二数学圆锥曲线综合测试题(考试时间:120分钟,共150分)一、选择题(本大题共12小题,每小题5分,共60分.)1.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是 ( ) A.|a |4 B.|a |2 C .|a | D .-a 22.过点A (4,a )与B (5,b )的直线与直线y =x +m 平行,则|AB |= ( )A .6 B.2 C .2 D .不确定3.已知双曲线x 24-y 212=1的离心率为e ,抛物线x =2py 2的焦点为(e,0),则p 的值为( )A .2B .1 C.14 D.1164.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b的最小值为( )A .1B .5C .4 2D .3+2 2 5.若双曲线x 2a2-y 2=1的一个焦点为(2,0),则它的离心率为 ( )A.255B.32C.233D .26.△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是 ( )A.x 29-y 216=1B.x 216-y 29=1C.x 29-y 216=1(x >3)D.x 216-y 29=1(x >4)7.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =5e5x (e 为双曲线离心率),则有( )A .b =2aB .b =5aC .a =2bD .a =5b 8.抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是 ( )A.1716B.1516 C .-1516 D .-17169.若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是( )A .(315,315-) B .(315,0) C .(0,315-) D .(1,315--) 10.双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r =( )A. 3 B .2 C .3 D .611.已知双曲线x 22-y 2b 2=1(b >0)的左、右焦点分别为F 1、F 2,其一条渐近线方程为y =x ,点P (3,y 0)在该双曲线上,则1PF ·2PF = ( )A .-12B .-2C .0D .4 12.抛物线22x y =上两点),(11y x A 、),(22y x B 关于直线m x y +=对称,且2121-=⋅x x ,则m 等于( ) A .23 B .2 C .25D .3 1 2 34 5 6 7 8 9 10 11 12二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.已知点(x 0,y 0)在直线ax +by =0(a ,b 为常数)上,则(x 0-a )2+(y 0-b )2的最小值为________. 14.过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________.15.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的焦点为椭圆的焦点作椭圆,那么具有最短长轴的椭圆方程为______________.16.双曲线221tx y -=的一条渐近线与直线210x y ++=垂直,则这双曲线的离心率为__ _。

人教A版选修2-1:圆锥曲线单元理科测试题(含答案)

人教A版选修2-1:圆锥曲线单元理科测试题(含答案)

圆锥曲线单元测试(理)一、选择题:本大题共10小题,每小题4分,共40分. 在每小题的4个选项中,只有一项是符合题目要求的.1.直线过抛物线24y x =的焦点,与抛物线交于A(x 1, y 1)、B(x 2, y 2)两点,如果x 1 + x 2 = 6,那么AB 等于 ( )A.10B.8C.7D.62.已知双曲线12222=-by a x 的一条渐近线方程为x 43y =,则双曲线的离心率为 ( )A.35B.34C.45D.23 3.以(-6,0),(6,0)为焦点,且经过点(-5,2)的双曲线的标准方程是( )A.1201622=-y x B.1201622=-x y C.1162022=-y x D.1162022=-x y 4.方程22125-16x y m m +=+表示焦点在y 轴上的椭圆,则m 的取值范围是 ( ) A.1625m -<< B.9162m -<<C.9252m <<D.92m > 5.过双曲线22149x y -=的右焦点F 且斜率是32的直线与双曲线的交点个数是( )A.0个B.1个C.2个D.3个6.抛物线2y x =上的点到直线24x y -=的最短距离是( )A.35B.553 C.552 D.1053 7.抛物线x y 122=截直线12+=x y 所得弦长等于( ) A.15 B.152C.215D.158.设12,F F 是椭圆1649422=+y x 的两个焦点,P 是椭圆上的点,且3:4:21=PF PF ,则 21F PF ∆的面积为( )A.4B.6C.22D.24 9.如图,圆O 的半径为定长r ,A 是圆O 外一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和直线OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是( ) A.圆 B.椭圆 C.双曲线 D.抛物线10.设P 为椭圆22221x y a b+=(0)a b >>上一点,两焦点分别为21F ,F ,如果1275PF F ∠=2115PF F ∠=,则椭圆的离心率为 ( ) A.36二、填空题:本大题共6小题,每小题4分,共24分.将答案填在题中横线上.11.抛物线261x y -=的准线方程为 .12.中心在原点,对称轴为坐标轴,离心率为21,长轴为8的椭圆的标准方程为________.13.以椭圆22185x y +=的焦点为顶点,以椭圆的顶点为焦点的双曲线方程为 .14.过椭圆141622=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,则这条弦所在的直线方程是 .15.动点P 在曲线221y x =+上移动,则点P 和定点(0,1)A -连线的中点的轨迹方程是 . 16.如图,已知1F 、2F 是椭圆2222:1x y C a b += (0)a b >> 的左、右焦点,点P 在椭圆C 上,线段2PF 与圆222x y b +=相切于点Q ,且点Q 为线段2PF 的中点,则12PF PF ?uuu r uuu r;椭圆C 的离心率为 .三、解答题:本大题共3小题,共36分. 解答应写出文字说明、证明过程或演算步骤. 17.(本题共两小题满分10分,每小题5分) (1)求离心率36=e ,并且过点(3,0)的椭圆的标准方程;(2)双曲线C 和椭圆2241x y +=有相同的焦点,它的一条渐近线为y =,求双曲线C 的方程.18.(本题满分12分)已知椭圆22221(0)x y a b a b +=>>的离心率2e =,过(,0),(0,)AaB b -的直线到原点的距离是554. (1)求椭圆的方程;(2)已知直线1(0)y kx k =+≠交椭圆于不同的两点,E F 且,E F 都在以B 为圆心的圆上 ,求k 的值.19.(本题满分14分)给定抛物线x y C 4:2=,F 是C 的焦点,过点F 的直线l 与C 相交于,A B 两点,记O 为坐标原点. (1)求⋅的值;(2)设]52[,,的面积当三角形∈=S OAB FB AF λ时,求λ的取值范围.圆锥曲线测试理科答案一、选择题(满分40分,每题4分)二、填空题(满分24分,每题4分)11. 23y = 12.11216112162222=+=+x y y x 或 (丢解扣2分)13. 22135x y -= 14. 042=-+y x 15. 24y x = 16.0 , 3(每空2分) 三、解答题(满分36分)17.(本小题满分10分)(1) 13922=+y x 或192722=+x y …………………5分(丢解扣2分) (2)椭圆的焦点坐标为(0, ,…………………6分由双曲线的一条渐近线为y =,可得ab=,…………………7分 解得12b =,2a =, …………………9分 则双曲线方程为22241y x -= …………………10分 18. (本小题满分12分) 解(1)∵,c a=222a b c -= .∴ a = 2b , …………2分 ∵ 原点到直线AB :1x y a b-=的距离d ==.∴ b = 2 ,∴ 故所求椭圆方程为 221164x y+= . …………………5分(2)把2211164x yy kx =++=代入中消去y ,整理得22(14)8120k x kx ++-=.可知0∆>…………………7分设3344(,),(,),E x y F x y EF 的中点是00(,)M x y ,则 340002241,1,21414x x k x y kx k k +-===+=++……9分 0021.BM y k x k +==-……10分 ∴0020,x ky k ++=即 224201414k kk k k -++=++ .又 k ≠ 0 ,∴ 2k =18.故所求k=±4…………………12分 19. (本小题满分12分)(1)解:根据抛物线方程x y 42=可得F (1,0)………………………………1分设直线l 的方程为,1+=my x 将其与C 的方程联立,消去x 得0442=--my y ……3分 设A ,B 的坐标分别为),)(,(2211y x y x ,则y 1y 2=-4…………4分 因为1161,4,4222121222121====y y x x x y x y 所以………………5分 故32121-=+=⋅y y x x ……………………………………6分 (2)解:因为,FB AF λ=所以),1(),1(2211y x y x -=--λ,即12121(1)(2)x x y y λλλ-=-⎧⎨-=⎩……8分又1214x y = ③2224x y = ④由②、③、④消去22121,x x y y λ=后得, 将其代入①,注意到λλ1,02=>x 解得从而可得λλ2,212=-=y y ……………………………………11分故三角形OAB 的面积λλ1||||2121+=-⋅=y y OF S ………………12分 因为5121≤+≥+λλλλ恒成立,所以只要解即可,解得253253+≤≤-λ……………………………………………………14分。

圆锥曲线单元测试题

圆锥曲线单元测试题

圆 锥 曲 线 单 元 测 试 题四川省邻水中学(国家级示范高中) 特级教师 杨才荣 638500一、选择题 (每小题3分,共36分) .1、双曲线x a 22-y b22=1的两条渐近线互相垂直,则此双曲线的离心率是 ( ) (A)2 (B)2 (C)22 (D)32、方程mx 2+ny 2+mn=0 (m<n<0) 所表示的曲线的焦点坐标是 ( ) (A) (0,±-m n ) (B) (0,±-n m) (C) (±-m n ,0) (D) (±-n m,0) 3、椭圆)0(12222>>=+b a b y a x 与双曲线)(12222+∈=-R n m ny m x 、有公共焦点,P 是椭圆与双曲线的交点,则|PF 1|·|PF 2|的值为 ( )(A) a 2+m 2 (B) b 2-n 2 (C) a 2-m 2 或b 2+n 2 (D) a 2+m 2 或b 2-n 24、设x 2-y 2=4,则xy x -21的取值范围是 ( ) (A)(-∞,0)∪(0,+∞) (B)(-1,1)(C)(-8,45) (D)(-∞,-2)∪[2,+∞] 5、设双曲线的左、右焦点是F 1、F 2,左、右顶点为M 、N ,若△PF 1F 2的顶点P 在双曲线上,则△PF 1F 2的内切圆与边F 1F 2的切点位置 ( )(A)不能确定 (B)在线段MN 的内部(C)在线段F 1M 内部或在线段NF 2内部 (D)是点M 或点N6、方程11662222=--+-+k k y k k x 表示双曲线的必要但非充分条件是 ( )(A)21<k <2 (B)-3<k <-31 (C) 21<k <2 或-3<k <-31 (D)-3<k <2 7、直线x -y -1=0与实轴在y 轴上的双曲线x 2-y 2=m 的交点在以原点为中心,边长为2且边平行于坐标轴的正方形内部,那么m 的取值范围是 ( )(A) 0<m <1 (B) m >-1 (C) m <0 (D) -1<m <08、过点P(-3,-4)的直线与双曲线116922=-y x 有一个公共点,则直线l 的方程为 ( ) (A) 4x -3y=0 (B) 4x +3y +24=0(C) x +3=0 (D) x +3=0或4x +3y +24=09、双曲线1251622=-y x 的两条渐近线所夹的锐角是 ( ) (A) 45arctg (B) 45arctg -π (C) 245arctg (D) 452arctg -π 10、过点A(1,1)作双曲线1222=-y x 的弦MN ,使A 为MN 的中点,则直线MN 的方程是 ( ) (A) 2x -y -1=0 (B )x -2y +1=0(C) 2x +y -3=0 (D) 不存在11、焦点在x 轴上,实轴长为8,一条渐近线方程是3x -2y=0的双曲线的标准方程是 ( ) (A) 191622=-y x (B) 11441622=-y x (C) 1361622=-y x (D) 1163622=-y x 12、以椭圆)0(12222>>=+b a by a x 的顶点为焦点、焦点为顶点的双曲线方程为 ( ) (A) 12222=-by a x (B) 122222=--b y b a x(C) 122222=--b a y a x (D) 12222=-ay b x 二、填空题(每小题4分,共24分).13、双曲线离心率为2,则渐近线夹角为________。

高二数学理科圆锥曲线测试题及答案

高二数学理科圆锥曲线测试题及答案

高二数学(理科)圆锥曲线单元卷答案一、选择题(本大题共10小题,每小题5分,共50分).1. 已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 (D )A .2B .3C .5D .72。

曲线221(6)106x y m m m +=<--与曲线221(59)59x y m m m+=<<--的( A) (A )焦距相等 (B ) 离心率相等 (C )焦点相同 (D )准线相同3.已知21,F F 是椭圆)0(12222>>=+b a by a x 的两个焦点,AB 是过1F 的弦,则2ABF ∆的周长是 ( B)A.a 2 B 。

a 4 C.a 8 D 。

b a 22+4.一动圆与圆221x y +=外切,同时与圆226910x y x +--=内切,则动圆的圆心在(B ).A 一个椭圆上 .B 一条抛物线上 .C 双曲线的一支上 .D 一个圆上5.已知方程11222=-+-k y k x 的图象是双曲线,那么k 的取值范围是(C ) A.k <1 B.k >2 C.k <1或k >2 D.1<k <26.抛物线y 2=4px (p >0)上一点M 到焦点的距离为a ,则M 到y 轴距离为 (A )A 。

a -p B.a+p C.a -2p D.a+2p 7.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( C )A .(7,B .(14,C .(7,±D .(7,-±8。

(全国卷I )抛物线2y x =-上的点到直线4380x y +-=距离的最小值是(A )A .43B .75C .85D .3 9.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为(D ) A .2- B .2 C .4- D .410。

我们把离心率12e =的椭圆叫做“优美椭圆”。

(完整word版)高二理科数学圆锥曲线单元测试

(完整word版)高二理科数学圆锥曲线单元测试

高二年单元考试试卷(圆锥曲线)一、选择题(60分)1.已知双曲线()222:1016x y C a a -=>的一个焦点为()5,0,则双曲线C 的渐近线方程为( )A. 4312x y ±=B. 40x ±=C. 1690x y ±=D. 430x y ±=2.平面直角坐标系中,已知O 为坐标原点,点A 、B 的坐标分别为(1,1)、()3,3-. 若动点P 满足OP OA OB λμ=+,其中λ、R μ∈,且1λμ+=,则点P 的轨迹方程为 A. 0x y -= B. 0x y +=C. 230x y +-=D. ()()22125x y ++-=3.抛物线22(0)y px p =>上横坐标为6的点到焦点的距离是10,则焦点到准线的距离是( )A. 4B. 8C. 16D. 324.椭圆221mx y += ) A. 1 B. 1或2 C. 2 D. 2或45.设经过点()2,1M 的等轴双曲线的焦点为12,F F ,此双曲线上一点N 满足12NF NF ⊥,则12NFF ∆的面积为( )A.B. C. 2 D. 36.抛物线有如下光学性质:由焦点的光线经抛物线反射后平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点()3,1M 射出,经过抛物线上的点A反射后,再经抛物线上的另一点B 射出,则直线AB 的斜率为( ) A. 43-B. 43C. 43±D. 169- 7.已知点12,F F 是椭圆2222x y +=的左、右焦点,点P 是该椭圆上的一个动点,那么12PF PF +的最小值是( )A. 2B. 2C. 0D. 18.椭圆22221x y a b +=(0a b >>)上存在一点P 满足F 2π∠AP =, F 为椭圆的左焦点,A 为椭圆的右顶点,则椭圆的离心率的范围是( )A. 10,2⎛⎫⎪⎝⎭B. 0,2⎛ ⎝⎭C. 1,12⎛⎫⎪⎝⎭D. ,12⎛⎫⎪ ⎪⎝⎭9.把离心率12e =的曲线()2222:10,0x y C a b a b-=>>称之为黄金双曲线.若以原点为圆心,以虚半轴长为半径画圆O ,则圆O 与黄金双曲线C ( )A. 无交点B. 有1个交点C. 有2个交点D. 有4个交点10.已知,则方程是与在同一坐标系内的图形可能是( )A B C D11.设直线()1y k x =+与抛物线24y x =相交于M 、N 两点,抛物线的焦点为F ,若F 2F M =N ,则k 的值为( )A. 23±B. 3±C. 2±D. 12.已知椭圆和双曲线有共同焦点是它们的一个交点,且,记椭圆和双曲线的离心率分别为,则的最大值是( )A. B. C. 2 D. 3二、填空题(20分)13.已知是抛物线 的焦点,是上一点,的延长线交轴于点.若为的中点,则____________.14.抛物线的焦点为F ,其准线与双曲线相交于两点,若△为等边三角形,则=________15.已知椭圆 离心率为,双曲线的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形面积为16,则椭圆的方程为_______________16.设椭圆2222x :1(a b 0)y C a b+=>>的左右焦点为12,F F ,过2F 作x 轴的垂线与C 相交于,A B 两点,1F B 与y 轴相交于D ,若1A D F B ⊥,则椭圆C 的离心率等于 .三、解答题17(10分).设命题p :方程221231x y k k -=++表示双曲线;命题q :斜率为k 的直线l 过定点()2,1,P -且与抛物线24y x =有两个不同的公共点.若p q ∧是真命题,求k 的取值范围.18(12分).(1)已知椭圆的离心率为,短轴一个端点到右焦点的距离为4,求椭圆的标准方程。

圆锥曲线单元测试卷

圆锥曲线单元测试卷

圆锥曲线单元测试卷一、选择题(每题3分,共30分)1. 椭圆的标准方程是:A. \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) (a > b)B. \( \frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \) (a > b)C. \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) (a < b)D. \( \frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \) (a < b)2. 双曲线的离心率 e 的定义是:A. \( e = \frac{c}{a} \)B. \( e = \frac{a}{c} \)C. \( e = \frac{b}{a} \)D. \( e = \frac{c}{b} \)3. 抛物线的焦点到准线的距离是:A. 焦距B. 准线长度C. 顶点到焦点的距离D. 顶点到准线的距离4. 以下哪个方程不是圆锥曲线的方程?A. \( x^2 + y^2 = r^2 \)B. \( \frac{x^2}{a^2} + y^2 = 1 \)C. \( x^2 - y^2 = 1 \)D. \( x^2 + y^3 = 1 \)5. 椭圆的离心率 e 的取值范围是:A. \( 0 < e < 1 \)B. \( -1 < e < 0 \)C. \( e > 1 \)D. \( e = 0 \)6. 抛物线 \( y^2 = 4ax \) 的准线方程是:A. \( x = -a \)B. \( x = a \)C. \( x = 0 \)D. \( y = -a \)7. 双曲线 \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) 的渐近线方程是:A. \( y = \pm a \)B. \( y = \pm \frac{b}{a}x \)C. \( y = \pm \frac{a}{b}x \)D. \( x = \pm \frac{a}{b}y \)8. 椭圆的参数方程可以表示为:A. \( \begin{cases} x = a \sin t \\ y = b \cos t\end{cases} \)B. \( \begin{cases} x = a \cos t \\ y = b \sin t\end{cases} \)C. \( \begin{cases} x = a \tan t \\ y = b \cot t\end{cases} \)D. \( \begin{cases} x = a \sec t \\ y = b \csc t\end{cases} \)9. 以下哪个点不在椭圆 \( \frac{x^2}{a^2} + \frac{y^2}{b^2} =1 \) 上?A. \( (a, 0) \)B. \( (0, b) \)C. \( (-a, 0) \)D. \( (0, -b) \)10. 抛物线 \( x^2 = 4py \) 的焦点坐标是:A. \( (0, p) \)B. \( (0, -p) \)C. \( (p, 0) \)D. \( (-p, 0) \)二、填空题(每空2分,共20分)11. 椭圆的长轴长度是 \( 2a \),其中 \( a \) 是椭圆的________。

高二数学《圆锥曲线》单元测试题及答案

高二数学《圆锥曲线》单元测试题及答案

高二数学《圆锥曲线》单元测试题一、选择题(每小题5分,共60分)1.下列曲线中离心率为26的是( )A 14222=-y xB 12422=-y xC 16422=-y xD 110422=-y x 2.椭圆221102x y m m +=--的长轴在y 轴上,若焦距为4,则m 的值为( ) A .4 B .5 C .7 D .83.设焦点在x 轴上的双曲线的虚轴长为2,焦距为32,则该双曲线的渐近线方程是( ) A x y 2±= B x y 2±= C x y 22±= D x y 21±= 4.抛物线y x 412=上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A. 1617B. 1615C. 0D. 875.已知1F 、2F 分别为椭圆221169x y +=的左、右焦点,椭圆的弦DE 过焦点1F ,若直线DE 的倾斜角为(0)a α≠,则2DEF ∆的周长为( )A .64B .20C .16D .随α变化而变化6.若双曲线222116x y b-=(b >0)的一条准线恰好为圆0222=++x y x 的一条切线,则b 的值等于( )A. 4B. 8C. 32D. 437.已知P 是椭圆192522=+y x 上的点,F 1、F 2分别是椭圆的左、右焦点,若121212||||PF PF PF PF ⋅=⋅u u u r u u u u r u u u r u u uu r ,则△F 1PF 2的面积为( )A .3 3B .2 3C . 3D .338.如图, 直线MN 与双曲线C: x 2a 2 - y 2b 2 = 1的左右两支分别交于M 、N 两点,与双曲线C 的右准线相交于P 点, F 为右焦点,若|FM|=2|FN|, 又= λ (λ∈R),则实数λ的取值为( ) A. 12 B. 1 C.2 D. 139.若双曲线22221(0,0)x y a b a b-=>>的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线的离心率的取值范围是( )A .(1,2]B .(1,21]+C .[2,)+∞D .[21,)++∞10.如图,圆F :1)1(22=+-y x 和抛物线42y x =,过F 的直线与抛物线和圆依次交于A 、B 、C 、D 四点,求CD AB ⋅的值是 ( )A 1B 2C 3D 无法确定11. 椭圆22221(1)x y m m +=-的准线平行于向量(,0)n m =r ,则m 的取值范围是( ) A .12m <B .12m >C .12m <且0m ≠D .12m >且0m ≠ 12.下列命题:(1) 动点M 到二定点A 、B 的距离之比为常数),10(≠>λλλ且则动点M 的轨迹是圆;(2) 椭圆)0(12222>>=+b a by a x 的离心率为22,则c b =;(3) 双曲线)0,0(12222>>=-b a by a x 的焦点到渐近线的距离是b ;(4) .已知抛物线)0(22>=p px y 上两点OB OA y x B y x A ⊥且),(),,(2211(O 是坐标原点),则221p y y -=.以上命题正确的是( )A .(2)、(3)、(4) B. (1)、(4) C. (1)、(3) D. (1)、(2)、(3) 二、填空题(每小题4分,共16分)13. 已知椭圆G 的中心在坐标原点,长轴长在y 轴上,离心率为23,且G 上一点到G 的两个焦点的距离之和是12,则椭圆的方程是—————————————————— 14. 动圆M 与圆C 1:()1222=++y x 和圆C 2:()1222=+-y x 都外切,则动圆M圆心的轨迹方程是————————————————15. 设已知抛物线C 的顶点在坐标原点,焦点是F (1,0),直线l 与抛物线C 相交于A 、B 两点,若AB 的中点为(2,2),则直线l 的方程是—————————————————————16.已知双曲线1422=-y x ,点A (0,5-),B 是圆()1522=-+y x 上一点,点M在双曲线右支上,则MB MA +的最小值是—————————————— 三、解答题17.经过双曲线1322=-y x 的左焦点F 1作倾斜角为6π的弦AB , 求(1)线段AB 的长; (2)设F 2为右焦点,求AB F 2∆的周长。

高二数学圆锥曲线测试题及参考答案

高二数学圆锥曲线测试题及参考答案

高二数学圆锥曲线测试题一.选择题:本大题共10小题,每小题5分,共50分.1.椭圆22146x y +=的长轴长为( )A .2BC .4D .622. 设椭圆1422=+m y x 的离心率为21,则m 的值是( ) A .3 B .316或3 C .316 D .316或2 3.抛物线24y x =的焦点坐标是( ) A .(1,0) B .(0,1) C .1(,0)16 D .1(0,)164.双曲线221916x y -=右支上一点P 到右焦点的距离是4,则点P 到左焦点的距离为( ) A.10 B.16 C.9 D.155. 顶点在原点,焦点在对称轴上的抛物线过圆096222=++-+y x y x 的圆心,则其方程为( ) A .23x y =或23x y -= B .23x y = C .x y 92-=或23x y = D .23x y -=或x y 92=6.已知双曲线)0,0(12222>>=-b a by a x 的离心率为2 )A .2y x =±B .x y 2±=C .x y 22±= D .12y x =± 7.曲线21x xy +=的图像关于( )A .x 轴对称B .y 轴对称C . 坐标原点对称D . 直线x y =对称8.若点A 的坐标为(3,2),F 是抛物线x y 22=的焦点,点M 在抛物线上移动时,使MA MF +取得最小值的M 的坐标为( )A .()0,0B .⎪⎭⎫⎝⎛1,21 C .()2,1 D .()2,2 二.填空题:本大题共4小题,每小题5分,满分20分.9.双曲线22x y k -=的一个焦点为,则k 的值为_________.10.如果方程224kx y +=表示焦点在x 轴上的椭圆,那么实数k 的取值范围是 .11.与椭圆2216x y +=共焦点且过点Q 的双曲线方程是 .12.双曲线221169x y -=的左、右焦点分别为F 1,F 2,在左支上过点F 1的弦AB 的长为5,那么△ABF 2的周长是 .13.椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为________.14.若直线l 与抛物线216y x =交于点A ,B ,且弦AB 的中点为(2,2),则直线l 的方程为__________. 三.解答题:本大题共6小题,满分80分.15.(本小题满分12分)已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15,求抛物线的方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F , F 为椭圆的左焦点, 2
为椭圆的右顶点,则椭圆的离心率的范围是(

1 A. 0,
2
2 B. 0,
2
1 C. ,1
2
2
D.
,1
2
9 .把离心率 e
51
x2 y2
2 的曲线 C : a 2 b2 1 a 0, b 0 称之为黄金双曲线.若以
原点为圆心,以虚半轴长为半径画圆 O ,则圆 O 与黄金双曲线 C ( )
的渐近线方程为
∵ 以 这 四 个 交 点 为 顶 点 的 四 边 形 的 面 积 为 16 , 故 边 长 为 4 ,
在椭圆
上,
, ∴椭圆方程为:
故答案为:
16. 3 3
【解析】
试题分析: 连接 AF1,∵ OD ∥ AB ,O 为 F1F2 的中点, ∴ D 为 BF1 的中点, 又 AD F1B ,
26
2 , 1, 所 以
学习必备
欢迎下载
从而 NF1 |2 NF2 |2 2 NF1 | NF2 12 F1F2 |2 2 NF1 NF2 12
24 2 NF1 NF2 12
NF1 NF2 6
1 S NF1 NF2 3 , 选 D.
2
6. A
【解析】令
y=1,
代入
2
y
4x ,得 x
1
1
,即 A( ,1), 由抛物线的光学性质可知,直线
2
11
则:
m 1
m
② 1 1时 m
3 解得: m=1 进一步得长轴长为 4
4
4
椭圆的离心率 3 , 则:长轴长为 2 2
故选: D 点睛:在椭圆和双曲线中,焦点位置不确定时,勿忘分类讨论 .
5. D
【 解 析 】 设 等 轴 双 曲 线 方 程 为 x2 y2
, 因为过点
22 1 3 N F1
N 2F 2 3 1,F 2F
AB
4
4
经过焦点 F(1,0), 所以 直线 AB 的斜率为 k
【答案】 A
10 1
1 4
4 ,故选 A 3
【解析】 椭圆 x 2 2 y 2
x2 2 ,即为
y2
1 ,则椭圆的 a
2
2, b 1,则由 OP 为 PF1F2
的中线, 即有 PO
1 PF1 PF2 ,则 PF1 PF2
2
x2 2 PO ,可设 P x, y ,则
动点 P 满足 OP OA OB ,其中 、 R ,且
1 ,则点 P 的轨迹方程为
A. x y 0
B. x y 0
C. x 2 y 3 0
2
2
D. x 1 y 2 5
3.抛物线 y2 2 px( p 0) 上横坐标为 6 的点到焦点的距离是 10,则焦点到准线的距
离是( A. 4
) B. 8
C. 16
A. 无交点
B. 有 1 个交点
C. 有 2 个交点
D. 有 4 个交点
10 .已知
(

,则方程是

在同一坐标系内的图形可能是
A
11.设直线 y
B
k x 1 与抛物线 y2
C
4x 相交于
D
、 两点,抛物线的焦点为 F ,若
F 2 F ,则 k 的值为(

23
A.
3
22
B.
3
32
C.
2
33
D.
2
12 .已知椭圆和双曲线有共同焦点
点,当点 A 的纵坐标为 1 时, AF 2 .
( 1)求抛物线 C 的方程; ( 2)若直线 l 的斜率为 2,问抛物线 C 上是否存在一点
理由 .
M ,使得 MA
MB ,并说明
3 21( 12 分).已知椭圆 C 过点 A 1,
,两个焦点为
2
1,0 , 1,0 .
( 1)求椭圆 C 的方程;
( 2) E , F 是椭圆 C 上的两个动点,①如果直线 AE 的斜率与 AF 的斜率之和为 2,证
交 于 A, B 两 点 , F1B 与 y 轴 相 交 于 D , 若 A D

.
F1 B, 则 椭 圆 C 的 离 心 率 等
三、解答题
x2 17( 10 分).设命题 p :方程
y2
1表示双曲线;命题 q :斜率为 k 的直线
2 k 3k 1
l 过定点 P
2
2,1 , 且与抛物线 y
4 x 有两个不同的公共点. 若 p
A. 2
B. 3
C. 2
D. 3
6.抛物线有如下光学性质:由焦点的光线经抛物线反射后平行于抛物线的对称轴;反
之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点
. 已知抛物线
2
y 4x 的焦点为 F ,一条平行于 x 轴的光线从点 M 3,1 射出,经过抛物线上的点 A
反射后,再经抛物线上的另一点 B 射出,则直线 AB 的斜率为(
3 ,点 ( 3 , 0) 是双曲线的一
个顶点。 (1) 求双曲线的方程; (2) 经过双曲线右焦点 点,求 AB的长。
F2 作倾斜角为 30°的直线 l ,直线 l 与双曲线交于不同的
A, B两
学习必备
欢迎下载
20( 12 分).过抛物线 C : x2 2 py p 0 的焦点 F 作直线 l 与抛物线 C 交于 A, B 两
,由于△ 为等边三角形,设 AB 与 y 轴交于
M,FM=P,
,
【点睛】 对于圆锥曲线要先定位,

,填 。
再定量, 本题的抛物线焦点是在 y 轴正半径。 所以求出抛物线的焦
学习必备
欢迎下载
点坐标与准线方程, 再把准线方程与双曲线组方程组算出 P,
B 点坐, 再由等边三角形, 可解的
15.
【解析】由题意,双曲线
q 是真命题, 求 k 的
ห้องสมุดไป่ตู้
取值范围.
18( 12 分).(1)已知椭圆的离心率为 ,短轴一个端点到右焦点的距离为 4,求椭圆
的标准方程。
( 2)已知双曲线过点 4, 3 , 且渐近线方程为 y
1 x , 求该双曲线的标准方程。
2
x2 y2 19( 12 分).已知双曲线 C: a 2 b 2 1 的离心率为
( 抛物线上的点到焦点的距
离、抛物线上的点到准线的距离 )进行等量转化.如果问题中涉及抛物线的焦点和准线,又
能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦
问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.
14.
【解析】由抛物线可知焦点
,准线
D. 32
4.椭圆 mx2 y 2 1 的离心率是 3 ,则它的长轴长是(

2
A. 1
B. 1 或 2
C. 2
D. 2 或 4
5 . 设 经 过 点 2, 1 的 等 轴 双 曲 线 的 焦 点 为 F1 , F2 , 此 双 曲 线 上 一 点 N 满 足
NF1 NF2 ,则 NF1F2 的面积为( )
x1 2, y1
12. A
22 k
y1
x1 1
2 2 ,选 B. 3
【解析】
如图,设椭圆的长半轴长为
,双曲线的半实轴长为 ,则根据椭圆及双曲线的定义:
, ,
设 则,在
, 中根据余弦定理可得到
化简得:
学习必备
欢迎下载
该式可变成:
, 故选
点睛:本题综合性较强, 难度较大, 运用基本知识点结合本题椭圆和双曲线的定义给出
椭圆 C 交于 M , N 两点,求 MON 面积的最大值.
学习必备
欢迎下载
1. D
参考答案
【解析】 由题得 c=5, 则 a 2 c2 16 9 ,即 a=3, 所以双曲线的渐近线方程为 y
即 4x 3y 0 ,故选 D
2. C
【解析】设 P x, y
因此 x y y x
2
6
3. B
【解析】∵横坐标为
与 、 的数量关系,然后再利用余弦定理求出与 得范围。
的数量关系,最后利用基本不等式求
13.【解析】 如图所示, 不妨设点 M位于第一象限, 设抛物线的准线与 轴交于点 ,

与点 ,
与点 ,由抛物线的解析式可得准线方程为
,则
,在直角梯形 ,结合题意,有
中,中位线 ,故
,由抛物线的定义有: .
点睛 :抛物线的定义是解决抛物线问题的基础,它能将两种距离

4
A.
3
4
B.
3
4
C.
3
16
D.
9
7.已知点 F1, F2 是椭圆 x 2 2 y 2 2 的左、右焦点,点 P 是该椭圆上的一个动点,那
么 PF 1 PF2 的最小值是( )
A. 2
B. 2 2
C. 0
D. 1
学习必备
欢迎下载
x2 8.椭圆 a 2
y2 b2 1( a b 0 )上存在一点
满足
明:直线 EF 恒过定点 .
22( 12 分).已知椭圆 C 的离心率为 3 ,点 A , B , F 分别为椭圆的右顶点、上 2
顶点和右焦点,且 S ABF 1
3

2
( 1)求椭圆 C 的方程;
( 2)已知直线 l : y kx m 被圆 O : x2 y2 4 所截得的弦长为 2 3 ,若直线 l 与
c2
a, a 2e2 e 1 0
相关文档
最新文档