三角、反三角函数图像
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角、反三角函数图像
(附:资料全部来自网络,仅对排版做了改动,以方便打印及翻阅,其中可能出现错误,阅者请自行注意。)
1.六个三角函数值在每个象限的符号:
sinα·cscα cosα·secα tanα·cotα
2.三角函数的图像和性质:
1-1y=sinx
-3π2
-5π2
-7π2
7π2
5π
2
3π2
π2
-π2
-4π-3π
-2π4π
3π
2ππ
-π
o
y x
1-1y=cosx
-3π
2
-5π2
-7π
2
7π2
5π2
3π2
π2
-π2
-4π-3π-2π4π
3π
2π
π
-π
o
y
x
y=tanx
3π2
π
π2
-
3π2
-π
-
π2
o
y
x
y=cotx
3π2
π
π2
2π
-π
-
π2
o
y
x
函数 y=sinx y=cosx y=tanx
y=cotx
定义域
R
R
{x |x ∈R 且x≠kπ+
2
π
,k ∈Z } {x |x ∈R 且x≠kπ,k ∈Z }
值域
[-1,1]x=2kπ+
2π 时
y max =1
x=2kπ-2
π
时y min =-1
[-1,1] x=2kπ时y max =1 x=2kπ+π时
y min =-1
R 无最大值 无最小值
R
无最大值 无最小值 周期性 周期为2π 周期为2π 周期为π 周期为π 奇偶性 奇函数
偶函数
奇函数
奇函数
单调性在[2kπ-
2
π
,2kπ+
2
π
]
上都是增函数;在
[2kπ+
2
π
,2kπ+
3
2
π]
上都是减函数(k∈Z)
在[2kπ-
π,2kπ]
上都是增函数;
在[2kπ,2kπ+π]
上都是减函数
(k ∈Z)
在(kπ-
2
π
,
kπ+
2
π
)内都是增
函数(k∈Z)
在(kπ,kπ+π)内
都是减函数
(k∈Z)
3.反三角函数的图像和性质:
arcsinx arccosx
arctanx arccotx
名称反正弦函数反余弦函数反正切函数反余切函数
定义
y=sinx(x∈
〔-
2
π
,
2
π
〕的反函
数,叫做反正弦函
数,记作x=arsiny
y=cosx(x∈
〔0,π〕)的反函
数,叫做反余弦
函数,记作
x=arccosy
y=tanx(x∈(-
2
π
,
2
π
)的反函数,叫
做反正切函数,记作
x=arctany
y=cotx(x∈(0,π))
的反函数,叫做
反余切函数,记
作x=arccoty
理解
arcsinx表示属于
[-
2
π
,
2
π
]
且正弦值等于x的
角
arccosx表示属
于[0,π],且
余弦值等于x的
角
arctanx表示属于
(-
2
π
,
2
π
),且正切值
等于x的角
arccotx表示属于
(0,π)且余切值等
于x的角
性
质
定义域[-1,1][-1,1](-∞,+∞)(-∞,+∞)
值域[-
2
π
,
2
π
][0,π](-
2
π
,
2
π
) (0,π)单调性
在〔-1,1〕上是增
函数
在[-1,1]上是
减函数
在(-∞,+∞)上是增
数
在(-∞,+∞)上是
减函数奇偶性
arcsin(-x)=-arcsinx arccos(-x)=π-ar
ccosx
arctan(-x)=-arctanx arccot(-x)=π-arc
cotx 周期性都不是周期函数