第六讲 线性规划与非线性规划

合集下载

精心整理的运筹学重点6.非线性规划N L P

精心整理的运筹学重点6.非线性规划N L P

∂f 2 ( x) ∂f ( x ) ∂x 2 ∂x x 2,0 1 / 2 , 0 0 1 1 2 0 −1 H (X ) = = ,[ H ( X )] = 0,1/50 ∂f ( x) ∂f 2 (x ) 0,50 2 ∂ x x ∂ x 2 1 2
2 r1* (5 − x12 − x2 )=0
r2* (6 − 3 x1 − x2 ) = 0 r1* ≥ 0 r2* ≥ 0
情况 1:假设两约束完全不起作用,此时 r1* = r2* = 0 情况 2:第一个约束起作用,第二个不起作用, r2* = 0 ,检验知是一个 K-T 点。 情况 3:第二个约束起作用,第一个不起作用, r1* = 0 情况 4:两个约束完全起作用, r1* > 0, r2* > 0 2)带约束问题最优化方法-----制约函数法(外点法、内点法) 外点法:将有约束问题转成无约束极值问题,分两种情况 1. 等式约束
∂f ( x) ∂x 2 x 4 ∇f ( x ) = 1 = 1 , ∇ f ( x0 ) = ∂f ( x) 50 x2 100 ∂x 2
0 0 0 0
则 X + λ d = X − λ∇f ( X ) = [ 2 − 4 λ , 2 − 100λ ]
4.带约束问题的最优化方法
min f ( x) s.t g i ( x) ≥ 0
1)最优性条件 K-T 条件(判断最优的条件)
∇f ( x* ) − ∑ rj*∇g j ( x * ) = 0
* r* j g j(x ) = 0
r* j ≥0
2 2 min f ( x) = 2 x1 + 2 x1x2 + x2 −10x1 − 10x 2 2 例求 5 − x12 − x2 ≥0

非线性规划

非线性规划

非线性规划非线性规划是一种涉及非线性目标函数和/或非线性约束条件的优化问题。

与线性规划不同,非线性规划可能存在多个局部最优解,而不是全局最优解。

非线性规划在许多领域都有广泛的应用,如经济学、工程学和管理学等。

非线性规划的一般形式可以表示为:最小化或最大化 f(x),其中 f(x) 是一个非线性函数,x 是决策变量向量。

满足一组约束条件g(x) ≤ 0 和 h(x) = 0,其中 g(x) 和 h(x) 是非线性函数。

为了求解非线性规划问题,可以使用不同的优化算法,如梯度下降法、牛顿法和拟牛顿法等。

这些算法的目标是找到目标函数的最小值或最大值,并满足约束条件。

非线性规划的难点在于寻找全局最优解。

由于非线性函数的复杂性,这些问题通常很难解析地求解。

因此,常常使用迭代算法来逼近最优解。

非线性规划的一个重要应用是在经济学中的生产计划问题。

生产活动通常受到多个因素的限制,如生产能力、原材料和劳动力等。

非线性规划可以帮助确定最佳的生产数量,以最大化利润或最小化成本。

另一个应用是在工程学中的优化设计问题。

例如,优化某个结构的形状、尺寸和材料以满足一组要求。

非线性规划可以帮助找到最佳设计方案,以最大程度地提高性能。

在管理学中,非线性规划可以用于资源分配和风险管理问题。

例如,优化一个公司的广告预算,以最大程度地提高销售额。

非线性规划可以考虑多种因素,如广告投入和市场需求,以找到最佳的广告投放策略。

总之,非线性规划是一种重要的优化方法,用于解决涉及非线性目标函数和约束条件的问题。

它在经济学、工程学和管理学等领域有广泛的应用。

尽管非线性规划的求解难度较大,但通过合适的优化算法,可以找到最佳的解决方案。

第六讲线性规划与非线性规划

第六讲线性规划与非线性规划
f=f(x); •
(2)若有非线性约束条件:c1 x 0 或c2 x 0, 则建立M
文件c.m定义函数c1 x,c2 x, 一般形式为
function [c1,c2]=c(x)
c1=…
c2=… (3)建立主程序。求解非线性规划的函数是fmincon,
调用格式为 x=fmincon(‘fun’,x0,A1,b1);
故它属于一个整数线性规划问题,这里当成一个线 性规划求解,求得最优解刚好是整数x1=9,x2=0, 故它就是该整数规划的最优解.若用线性规划解法求 得的最优解不是整数,将其取整后不一定是相应整 数规划的最优解,这样的整数规划应用专门的方法 求解.
二、非线性规划
1、二次规划

标准形式:min
z
1
xT
x1 4x2 5

x1, x2 0

改写成标准形式:min z
x1 2x2
1 2
x12
1 2
x22
s.t.
2x1 3x2 x1 4x2
6 5
0 0
0 0
x1 x2
❖ 建立M文件fun1.m
❖ 建立主程序(见MATLAB程序(feixianxingguihua1))
工费用如下表.问怎样分配车床的加工任务,才能既满足加
工工件的要求,又使加工费用最低?
车床 类型


单位工件所需加工台时数 工件 1 工件 2 工件 3
0.4
1.1
1.0
0.5
1.2
1.3
单位工件的加工费用 工件 1 工件 2 工件 3
13
9
10
11
12
8
可用台 时数
800

二次规划ppt课件

二次规划ppt课件

• 满足约束条件的点称可行点,可行点集合构成可行域
2
线性规划与非线性规划
• 非线性规划(Nonlinear Programming)
• 非线性规划的数学模型可以表示为
min f x
xRn
s.t. gi x 0 i hj x 0 j
• 在目标函数或者约束函数中至少有一个函数是非线性的 • 当非线性规划问题的可行域为整个实数域时,称为无约束优化问题,
0
优化问题无界或者不可行
• output.a lgorithm
output.iterations
优化算法类型 算法的迭代次数
• lambda.ineqlin
不等式约束的乘子
lambda.eqlin
等式约束的乘子
14
lambda.lower / upper 变量下界和上界
案例分析
• 假设有四种投资1,2,3,4,第i种投资的收益率 ri 的预期收益均值为 i E ri ,
• 在满足收益率条件下最小化风险模型:
min f x 1 xTQx 2
2 s.t. uT x M
4
xi 1, x 0
1
16
案例分析
Q 社保债券 技术交易中心 管理咨询中心 游乐中心 预期收益
社保债券 2 0.4 0.1 0 7
技术交易中心 管理咨询中心
0.4
0.1
4
3
3
6
-1
1
8
10
游乐中心 0 -1 1 10 14
方差
2 iBiblioteka Erii2
表示投资的风险大小,即收益率关于均值的偏离程度
• 令 xi 为第i个项目的投资额占总投资的比例,向量 x x1, x2, x3, x4 T表示一个

线性规划

线性规划
饲料 蛋白质(g) A1 0.3 A2 2 A3 1 A4 0.6 A5 1.8
矿物质(g)
维生素(mg)
0.1
0.05
0.05
0.1
0.02
0.02
0.2
0.2
0.05
0.08
希望建立数学模型,既能满足动物需要,又使总成 本最低的饲料配方
模型
饲料 符号 A1 x1 A2 x2 A3 x3 A4 x4 A5 x5
约 l2 : 12x1 8x2 480 束 12x1 8x2 480 l4 条 3x1 100 l3 : 3x1 100 件 c l4 : x1 0, l5 : x2 0 x1 , x2 0 目标 函数
l1 : x1 x2 50
x2 A
l1 B l2 C Z=3600 l3
线性规划问题的数学模型的一般形式
( 1)列出约束条件及目标函数 (2)画出约束条件所表示的可行域 (3)在可行域内求目标函数的最优解及最优值
线性规划问题的标准形式
{
max y=cTx s.t. Ax=b x≥0
求解方法: (1)单纯形法 (2)软件求解:Lindo, Lingo, matlab,sas
RANGES IN WHICH THE BASIS IS UNCHANGED: OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X1 X2 ROW 72.000000 24.000000 8.000000
Max z 72x1 64x2
z=c (常数) ~等值线
0
l5
Z=0
x1 D Z=2400

线性规划与非线性规划

线性规划与非线性规划
21
求解例一
max z 7x1 5x2
3x1 2x2 90 4x1 6x2 200
7x2 210
x1 0, x2 0
min z 7x1 5x2
3x1 2x2 90 4x1 6x2 200
7x2 210
x1 0, x2 0
min z f T x
s.t. A x b
单位。若一吨甲和一吨乙的经济价值分别为7 万元和5万元,三中资源分别为90吨、200 m3 和210个单位,试决定应生产这两种产品各多 少吨才能创造总经济价值最高?
3
(1)假定自变量(决策变量)
x1 :生产产品甲的数量(吨)
x2 :生产产品乙的数量(吨)
(2)分析并表达限制条件(约束条件)
资源A 限制: 3x1 2x2 90 资源B 限制: 4x1 6x2 200 资源C 限制: 7x2 210
三个问题
1. 什么是线性规划问题? 2. 如何求解线性规划问题? 3. 求解线性规划问题的注意事项。
1
一、什么是线性规划问题?
线性规划是研究在一组线性约束条件下,某 一个线性函数的最大值或最小值问题。一般 线性规划问题数学模型为:
min(或 max)z f1x1 f2 x2 L fn xn s.t. a11x1 a12 x2 L a1n xn (或 ,或 )b1
非负条件: x1 0, x2 0
4
(3)分析目标
以Z表示生产甲和乙两种产品各为x1 和 (x2吨)
时产生的经济价值,则有:
z 7x1 5x2
综上可得: max z 7x1 5x2
3x1 2x2 90 4x1 6x2 200
7x2 210
x1 0, x2 0
5

第6讲整数规划、非线性规划模型

第6讲整数规划、非线性规划模型

一、模型准备 该问题是在原料数量一定的限制条件下,求商店生产三种口味 蛋糕各多少时,可获得最大收益. 二、模型假设 1.假设在生产过程中没有材料的浪费. 2. 假设生产的面包能全部售出, 且不考虑影响销售价格的因素. 三、变量假设 设商店生产草莓、蓝莓、柠檬三种口味的蛋糕的数量分别为
x1 , x2 , x3 ,获得的总收益为 R 元.
x=intvar(1,2); C=[240 378]; a=[1 0;0 1;1 1];b=[8 6 10]; f=C*x'; F=set(0<=x<=inf); F=F+set(a*x'<=b')+set(96*x(1)+120*x(2)>=720); solvesdp(F,f) double(f)
double(x)




最优化问题中的所有变量均为整数时,这类 问题称为整数规划问题。
如果线性规划中的所有变量均为整数时,称 这类问题为线性整数规划问题。 整数规划可分为线性整数规划和非线性整数 规划 ,以及混合整数规划等。 如果决策变量的取值只能为0或1,则这样的 规划问题称为0-1规划。
double(f)
double(x)
非线性规划
非线性规划问题的一般数学模型:
min
f ( x) h j ( x) 0, j 1, 2, , l.
s.t. gi ( x) 0, i 1, 2,, m,
其中, x E n ,
f (x) 为目标函数,
g i ( x), h j ( x) 为约束函数,这些函数中至少有
最优化模型(2)
一、一般的线性规划模型 二、整数规划模型

chapter 6 非线性规划

chapter 6 非线性规划
(3)若f(X),g(X)均为为凸集R上的凸函数,则 f(X)+g(X)也为为凸集R上的凸函数;
– 3. 函数的凸性的判别 – 定理6.1(一阶条件) 设R是n维欧式空间上的开凸
集,f(X)在R上具有一阶连续偏导数,则f(X)为R上 的凸函数的充分必要条件是,对于任意两个不同点 X(1)∈R和X(2)∈R,恒有
– 此外,若将上述关于凸函数定义中两个不等式中 的不等号改为“≥”和“>”,则分别称f(X)为凸集R 上的凹函数和严格凹函数。
– 2. 凸函数的性质
(1)若f(X)为凸函数,则-f(X)必为凹函数,反之亦 然;
(2)若f(X)为凸集R上的凸函数,则对于任意非负实 数α,函数αf(X)亦为凸集R上的凸函数;
chapter 6 非线性规划
chapter 6 非线性规划
概述
一、问题提出
– 生产管理中很多问题的运行过程都是以非线性形式运 行的,如生产成本往往是生产量的非线性函数,产品 的需求量是其价格的非线性函数等等。这样,我们在 建立一个决策问题的数学模型时,目标函数或者约束 条件常常会出现非线性形式。
f ( X (2) ) f ( X (1) ) f ( X (1) )T ( X (2) X (1) )
定理6.2(二阶条件) 设R是n维欧式空间上的某一 开凸集,f(X)在R上具有二阶连续偏导数,则f(X)为 R上的凸函数的充分必要条件是:f(X)的海森矩阵 H(X)在R上处处半正定。
– 6. 全局最优解——对于非线性规划min f = f(X),gi(X) ≥ 0 (i = 1,2,…,l;),设X0∈R,对于任何X∈R均有f(X0) ≤ f(X), 则称X0为非线性规划问题在R上的一个全局最优解。若
X0≠X时,f(X0) < f(X)严格成立,称X0为严格全局最优解。

线性规划和非线性规划

线性规划和非线性规划

线性规划和⾮线性规划线性规划:线性规划在matlab中的标准形式:其中c和x为n维向量,A、Aeq为适当维数的列向量。

[x,fval]=linprog(c,A,b,Aeq,beq,LB,UB,X0,OPTIONS)favl返回⽬标函数的值,LB和UB分别为变量的下界和上界,是的初始值,OPTIONS是控制参数。

⼀、运输问题(产销平衡,运费最省)某商品有个产地、个销地,各产地的产量分别为,各销地的需求量分别为。

若该商品由产地运到销地的单位运价为,问应该如何调运才能使总运费最省?引⼊变量,其取值为由i产地运往销地的该商品数量。

数学模型为:可直接⽤标准法求解。

对于产销平衡的运输问题,有关系:因约束矩阵⽐较特殊,可⽤。

⼆、指派问题拟分配⼈去⼲项⼯作,每⼈⼲且仅⼲⼀项⼯作,若分配第⼈去⼲第项⼯作,需花费单位时间,问应如何分配⼯作才能使⼯⼈花费的总时间最少?引⼊变量,若分配⼲⼯作,则取,否则取。

数学模型为:因最终为0-1矩阵,可⽤匈⽛利算法。

链接中变换矩阵后为:(不过最终更新的矩阵为:)从变换后的矩阵就已经可以看出最优指派矩阵了(独⽴0元素):即,带⼊最初的矩阵,即:就可求出:三、对偶理论原始问题:对偶问题:基本性质:对称性:对偶问题的对偶是原问题。

弱对偶性:若是原问题的可⾏解,是对偶问题的可⾏解。

则存在。

⽆界性:若原问题(对偶问题)为⽆界解,则其对偶问题(原问题)⽆可⾏解。

可⾏解是最优解时的性质:设是原问题的可⾏解,是对偶问题的可⾏解,当时,是最优解。

对偶定理:若原问题有最优解,那么对偶问题也有最优解;且⽬标函数值相同。

互补松弛性:若分别是原问题和对偶问题的最优解,则。

⾮线性规划:如果线性规划的优解存在,其优解只能在其可⾏域的边界上达到(特别是可⾏域的顶点上达到);⽽⾮线性规划的优解(如果优解存在)则可能在其可⾏域的任意⼀点达到。

某企业有个项⽬可供选择投资,并且⾄少要对其中⼀个项⽬投资。

已知该企业拥有总资⾦A元,投资于第个项⽬需花资⾦元,并预计可收益元。

非线性规划

非线性规划

非线性规划什么是非线性规划?非线性规划(Nonlinear Programming,简称NLP)是一种数学优化方法,用于求解包含非线性约束条件的优化问题。

与线性规划不同,非线性规划中的目标函数和约束条件都可以是非线性的。

非线性规划的数学表达式一般来说,非线性规划可以表示为以下数学模型:minimize f(x)subject to g_i(x) <= 0, i = 1, 2, ..., mh_j(x) = 0, j = 1, 2, ..., px ∈ R^n其中,f(x)是目标函数,g_i(x)和h_j(x)分别是m个不等式约束和p个等式约束,x是优化变量,属于n维实数空间。

非线性规划的解法由于非线性规划问题比线性规划问题更为复杂,因此解决非线性规划问题的方法也更多样。

以下列举了几种常用的非线性规划求解方法:1. 数值方法数值方法是最常用的非线性规划求解方法之一。

它基于迭代的思想,通过不断优化目标函数的近似解来逼近问题的最优解。

常见的数值方法有梯度下降法、牛顿法、拟牛顿法等。

2. 优化软件优化软件是一类针对非线性规划问题开发的专用软件,它集成了各种求解算法和优化工具,可以方便地求解各种类型的非线性规划问题。

常见的优化软件有MATLAB、GAMS、AMPL等。

3. 线性化方法线性化方法是一种将非线性规划问题转化为等价的线性规划问题的求解方法。

它通过线性化目标函数和约束条件,将非线性规划问题转化为线性规划问题,然后利用线性规划的求解方法求解得到最优解。

4. 分类方法分类方法是一种将非线性规划问题分解为若干个子问题求解的方法。

它将原始的非线性规划问题分解为多个子问题,然后将每个子问题分别求解,并逐步逼近原始问题的最优解。

以上仅是非线性规划求解方法的一小部分,实际上还有很多其他的方法和技巧可供选择。

在实际应用中,选择合适的方法和工具是非常重要的。

非线性规划的应用非线性规划在实际生活和工程中有着广泛的应用。

非线性规划

非线性规划

1.非线性规划我们讨论过线性规划,其目标函数和约束条件都是自变量的线性函数。

如果目标函数是非线性函数或至少有一个约束条件是非线性等式(不等式),则这一类数学规划就称为非线性规划。

在科学管理和其他领域中,很多实际问题可以归结为线性规划,但还有另一些问题属于非线性规划。

由于非线性规划含有深刻的背景和丰富的内容,已发展为运筹学的重要分支,并且在最优设计,管理科学,风险管理,系统控制,求解均衡模型,以及数据拟合等领域得到越来越广泛的应用。

非线性规划的研究始于三十年代末,是由W.卡鲁什首次进行的,40年代后期进入系统研究,1951年•库恩和.塔克提出带约束条件非线性规划最优化的判别条件,从而奠定了非线性规划的理论基础,后来在理论研究和实用算法方面都有很大的发展。

非线性规划求解方法可分为无约束问题和带约束问题来讨论,前者实际上就是多元函数的极值问题,是后一问题的基础。

无约束问题的求解方法有最陡下降法、共轭梯度法、变尺度法和鲍威尔直接法等。

关于带约束非线性规划的情况比较复杂,因为在迭代过程中除了要使目标函数下降外,还要考虑近似解的可行性。

总的原则是设法将约束问题化为无约束问题;把非线性问题化为线性问题从而使复杂问题简单化。

求解方法有可行方向法、约束集法、制约函数法、简约梯度法、约束变尺度法、二次规划法等。

虽然这些方法都有较好的效果,但是尚未找到可以用于解决所有非线性规划的统一算法。

非线性规划举例[库存管理问题]考虑首都名酒专卖商店关于啤酒库存的年管理策略。

假设该商店啤酒的年销售量为A箱,每箱啤酒的平均库存成本为H元,每次订货成本都为F元。

如果补货方式是可以在瞬间完成的,那么为了降低年库存管理费用,商店必须决定每年需要定多少次货以及每次订货量。

A A我们以Q表示每次定货数量,那么年定货次数可以为 -,年订货成本为F -。

由于平Q Q均库存量为Q,所以,年持有成本为2H Q ,2,年库存成本可以表示为A HC(Q)F QQ2将它表示为数学规划问题:A Hmin C(Q) F QQ 2s.t. Q 0其中Q为决策变量,因为目标函数是非线性的,约束条件是非负约束,所以这是带约束条件的非线性规划问题。

《非线性规划》课件

《非线性规划》课件
非线性规划的优化目标是找到使目标函数达到最大值或最小值的最优解。这些目标可以是经济、社会或 科学领域中的实际问题。
非线性规划的约束条件
非线性规划的约束条件是指限制问题解的一组方程或不等式。这些约束条件可以包括物理限制、资源约 束和行为限制等。
非线性规划的求解方法
线性化方法
将非线性问题转化为等价的 线性问题,然后使用线性规 划方法求解。
牛顿法
使用牛顿迭代法逐步逼近最 优解。
拟牛顿法
使用近似Hessian矩阵的方法 优化牛顿法。
变尺度法、全局优化方法
1
变尺度法
通过改变尺度,将问题转化为更易求解的形式。
2
全局优化方法
使用启发式算法寻找全局最优解。
非线性规划的应用领域
生产计划问题
优化生产计划,提高效率和利润。
交通运输问题
优化交通网络和运输流程。
优化电力系统
使电力系统运行更加高效和可靠。
决策支持系统
为决策者提供优化建议和决策支持。
医资源分配和治疗方案。
非线性规划的挑战
复杂的问题结构和求解困难。
未来的研究方向
未来的研究方向包括改进算法性能、适用于大规模问题的方法和考虑不确定性的优化模型等。
《非线性规划》PPT课件
在这个《非线性规划》PPT课件中,我们将深入探讨非线性规划的各个方面, 并介绍其在不同领域的应用。让我们一起开启这个激动人心的学习之旅!
什么是非线性规划?
非线性规划是一种在优化问题中寻找最优解的数学方法。它处理的是有非线 性约束条件和目标函数的优化问题。
非线性规划的优化目标

非线性规划

非线性规划

非线性规划报告一、什么是非线性规划?因为在实际问题求解中,很多情况下,目标函数以及约束条件不可能都是线性的,往往包含非线性函数,那么这时就是非线性规划问题。

简单概括,非线性规划研究一个n 元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。

二、非线性规划和线性规划的区别是什么?除了目标函数和约束条件的形式不同外,线性规划的最优解只可能在可行域的边界达到(特别是顶点处),而非线性规划可能在可行域的任意一点达到。

三、非线性规划的一般模型:min f(x)()0,j 1,...q s.t. ()0,i 1,...j i h x g x p≤=⎧⎪⎨==⎪⎩ 其中:1,2,,[...]n x x x x =称为决策变量,f 为目标函数,j h 和i g 称为约束函数,()0i g x =称为等式约束,()0j h x ≤称为不等式约束。

四、非线性规划的两类问题 1、无约束的极值问题我们一般都将求解的非线性规划问题都转化为无约束的最优化问题。

这里主要介绍求解无约束问题的解析法,解析法就是通过计算()fx 的一阶,二阶偏导数及其函数的解析性质来实现极值的求解方法。

这里介绍牛顿法(详见手写稿件)。

2、有约束的极值问题带有约束条件的极值问题称为约束极值问题,求解约束极值问题要比求解无约束极值问题困难得多。

为了简化优化工作,通常采取以下解题思路: (1) 将约束极值问题转化为无约束极值问题。

(2) 将非线性规划问题转化为线性规划问题。

(3) 将复杂的问题分解为若干简单问题。

这里主要介绍二次规划模型。

二次规划的显著特征是“目标函数”是二次函数,且约束条件又是线性的。

在matlab 中二次规划模型表示如下:1min2,.. ,.TT x Hx f x Ax b s t Aeq x beq lb x ub +≤⎧⎪⋅=⎨⎪≤≤⎩其中:H 表示实对称矩阵;f ,b ,beq ,lb ,ub 是列向量;A ,Aeq 是相应维数矩阵。

非线性规划课件

非线性规划课件
得 X(1)=(x₁ (0),x₂ (1))T,S(1)=f(X(1))
②再固定x₂=x₂ (1): 求以x₁为单变量的目标函数的极值点,
得 X(2)=(x,(2),x₂ (1))T ,S(2)=f(X(2))
此时S(2)优于S(1), 且搜索区间缩短为x₁*∈[x,(2),b,],x₂*∈[x₂ (1),b₂] 第二步:如此交替搜索,直至满足给定精度ε为止
否则,继续缩短区间,
直至满足给定的精度为
①f(x₂)≥f(xq), 取[aq=ao,b,=x,]
X₁ =X2
x'2=b₁-λ(b₁-aq) ②f(x₂)<f(x₁), 取[a=x2,b,=b,]
x=aq+λ(b₁-aq)
10
x₂ =x₁
例 求 解 f(x)=-18x²+72x+28 的极大值点,δ≤0.1,起始搜索区间为[0,3] 解:①用间接法:令 f'(x)=-36x+72=0, 得驻点 x=2
xq*∈[aq,b,],x²*∈[a₂ ,b₂ ],.,x*∈[an,b,]
1、原理: ①从起点 X(0) 出发,沿平行于 x, 轴的方向P(1)进行一维搜索,
求得 f(X) 在该方向P(1)上近似极值点 X(1);
②从点 X(1) 出发,沿平行于 x₂ 轴的方向P(2)进行一维搜索,
求得 f(X) 在该方向P(2)上近似极值点 X(2); ③从点 X(2) 出发,照此交替进行下去,直至满足给定的精度ε为止
六、 寻优方法概述:
1、N.L.P.问题分类
① 无约束条件的NLP问题。 ② 有约束条件的NLP问题。 2、寻优方法
① 间接法(解析法):适应于目标函数有简单明确的数学表达式。

线性与非线性

线性与非线性

线性规划与非线性规划线性linear,指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数;非线性non-linear则指不按比例、不成直线的关系,一阶导数不为常数。

如问:两个眼睛的视敏度是一个眼睛的几倍?很容易想到的是两倍,可实际是6-10倍!这就是非线性。

激光也是非线性的!天体运动存在混沌;电、光与声波的振荡,会突陷混沌;地磁场在400万年间,方向突变16次,也是由于混沌。

甚至人类自己,原来都是非线性的:与传统的想法相反,健康人的脑电图和心脏跳动并不是规则的,而是混沌的,混沌正是生命力的表现,混沌系统对外界的刺激反应,比非混沌系统快。

非线性规划nonlinear programming具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。

非线性规划研究一个n元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。

目标函数和约束条件都是线性函数的情形则属于线性规划。

简史非线性规划是20世纪50年代才开始形成的一门新兴学科。

1951年H.W.库恩和A.W.塔克发表的关于最优性条件(后来称为库恩-塔克条件)的论文是非线性规划正式诞生的一个重要标志。

在50年代还得出了可分离规划和二次规划的n种解法,它们大都是以G.B.丹齐克提出的解线性规划的单纯形法为基础的。

50年代末到60年代末出现了许多解非线性规划问题的有效的算法,70年代又得到进一步的发展。

非线性规划在工程、管理、经济、科研、军事等方面都有广泛的应用,为最优设计提供了有力的工具。

实例下面通过实例归纳出非线性规划数学模型的一般形式,介绍有关非线性规划的基本概念。

例1 (投资决策问题)某企业有n个项目可供选择投资,并且至少要对其中一个项目投资。

已知该企业拥有总资金A元,投资于第i个项目需花资金ai元,并预计可收益bi元。

试选择最佳投资方案。

解设投资决策变量为则投资总额为∑aixi,投资总收益为∑bixi。

运筹学―第六章非线性规划精品PPT课件

运筹学―第六章非线性规划精品PPT课件

F1 1 Fn1 Fn2
, n 2,3,
n 0 1 2 3 4 5 6 7 8 9 10 11 12 …
Fn 1 1 2 3 5 8 13 21 34 55 89 144
23 3

Fn1
1 2 3 5 8 13 21 34 55 89 144
Fn
1
2
3
5
8
13
21
34
55
89
144
… 233
hj (x) 0, j 1,...q
(NLP)
X
x
Rn
gi (x) hj (x)
0, i 1,..., p 0, j 1,..., q
约束集
如果(NLP)的约束集X是凸集,目标函数f是 X上的凸函数,则(NLP)叫做非线性凸规划, 或简称为凸规划。
凸规划的性质
定理 6.3 对于非线性规划(NLP),若 gi ( x), i 1,..., p 皆为 Rn 上的凸函数, h j ( x), j 1,..., q 皆为线性函数, 并且 f 是 X 上的凸函数,则 NLP 是凸规划。
性质 6.2 设 S Rn 是非空凸集, f : Rn R 是凸函数, c R ,则集合
H S ( f , c) x S f ( x) c
是凸集。
凸函数的判 定
定理 6.1 设 S Rn 是非空开凸集, f : S R 可微,则
(1) f 是 S 上的凸函数的充要条件是
f ( x1 )T ( x 2 x1 ) f ( x 2 ) f ( x1 ) , x1 , x 2 S
试获得 n 组 与 t 之间的实验数据 (ti , i ) ,
i=1,2,…,n。试确定参数 c1 , c 2 , c 3 ,

线性规划及非线性规划

线性规划及非线性规划
第一年: x11x14 100 第二年: x2 1x2 3x2 4 1 .0 2 5 x 1 4 第三年: x 3 1 x 3 2 x 3 4 1 .0 6 x 1 1 1 .0 2 5 x 2 4 第四年: x 4 1 x 4 4 1 .0 6 x 2 1 1 .0 2 5 x 3 4 第五年: x5 41 .0 6x3 1 1 .0 2 5x4 4
例 求解线性规划
m a xz 2 0 x 1 3 0 x 2 4 7 x 3 ,
s.t.x1 x3 60,
x2
50,
x1
2x2
3x3
120,
x1,x2,x3 0.
35
解 启动Lingo,
在主窗口中输入
主窗口
model :
m a x 2 0 * x 1 3 0 * x 2 4 7 * x 3 ; x1x360; x250; x 1 2 * x 2 3 * x 3 1 2 0 ;
此时
c
8 10
,
2
A
1
1
2
,
b
11
1
0
.
25
输入语句
结果为
不能省略!!
即原问题的最优解为
x
4 3
,
f
62.
26
例 求解线性规划
m ax f 2 x1 3 x2 5 x3
s
.t
.
2
x1 x1
x2 5x
x3 2x
3
7 1
0
xi 0, i 1, 2, 3
a
2
1
x
1
a22 x2
b2 ,
a
m
1
x
1
am 2 x2

运筹学课件第六章 非线性规划

运筹学课件第六章 非线性规划

或 x
k 1
x tk p , tk 0
k k
称p k 为 第k轮 搜 索 方 向 , 为 第k轮 沿 搜 索 方 向 tk p k的 步 长 。
第11页
n n n 定义3 设f : R R, x R , p R , p 0, 0,使得 若
f ( x tp) f ( x ), t (0, )
2 1
令 0 得: f ( x1 )T ( x 2 x1 ) f ( x 2 ) f ( x1 )
f ( x 2 ) f ( x1 )
第23页
x1 , x 2 S f ( x ) ( x x ) f ( x ) f ( x )
1 T 2 1 2 1
1 T 2 1 2 1
证 (1) 必要性.设f是S上的凸函数,则对 (0,1), 有
f ( x 2 (1 ) x1 ) f ( x 2 ) (1 ) f ( x1 )
x1 , x 2 S
f ( x 1 ( x 2 x 1 )) f ( x1 )
第14页
全局优化算法概述
全局优化方法可分为随机性方法和确定性方法. 确定性方法充分利用了问题的解析性质, 如函数的 凸性、单调性、稠密性等, 产生一个确定性的有限 或无限点序列, 使得该点序列收敛于全局最优解. 包 括分枝定界算法、区间算法、填充函数法、割平面 法、顶点枚举法等,这类算法在理论上有较强的可行 性, 但对较为复杂的大型优化问题却难于应用.
如果有 f ( x* ) f ( x), x D, x x* 则称 x * 是(P)的严格全局最优解或严格全局极小点, 称 f ( x * ) 是(P)的严格全局最优值或严格全局极小值。

数学建模线性和非线性规划

数学建模线性和非线性规划
• John Von Neumann
George B. Dantzig
• George B. Dantzig(19142005),美国人,线性规划单 纯形法的创始人,被誉为” 线性规划之父”.美国科学 院三院院士,美国军方数学 顾问,教授.并以其名字设立 Dantzig奖.数学规划的三大 创始人之一.
• 目的是什么? • 有哪些重要的因素? • 这些因素和你的目标之间有什么样的关系?
二,优化问题的表述
• 目标函数 对应决策者而言,对其有利的程度必须定量的测度, 在
商业应用中,有效性的测度经常是利润或者成本, 但对于 政府,更经常的使用投入产出率来测度.
表示有效性测度的经常称为目标函数.目标函数要表出 测度的有效性, 必须说明测度和导致测度改变的变量之间 的关系. 系统变量分为决策变量和参数.决策变量是指能由 决策者直接控制的变量. 而参数是指不能由决策者决定的 量.实际上,数学模型很少有能表达变量和有效性测度之 间的精确关系的. 实际上,运筹学分析者的任务就是找出 对测度有最重要影响的变量 然后找出这些变量和测度之间 的数学关系.这个数学关系也就是目标函数.
a 1.25 8.75 0.5 5.75 3 7.25
b 1.25 0.75 4.75 5
6.5 7.75
d
3
5
4
7
6
11
二,优化问题建模的基本步骤介绍
在我们的生活中,始终有这样的问题:为 了一定的目的做一些事情,我们可能要考虑 有哪些重要的因素,这些因素和要完成的目 标之间有什么样的关系.也就是说,我们在做 一个决定时,
建立数学模型
① 决策变量:在混合饲料中,每天所需第j种饲料的 磅数xj,j = 1,2,3,4,5;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

min z f ( x)
x
(1)
*
s.t. g i ( x) 0, i 1, 2, m (2)

只满足(2)的解 x 称为可行解,同满足(1)(2)的解 x x 称最
优解。

优化模型的分类 数学规划
线性规划(LP) 二次规划(QP) 非线性规划(NLP) 0-1整数规划 一般整数规划
[2] x0表示初始解。 (4) 命令: [x,fval,ef,out,lambda]=linprog(c,A1,b1,A2,b2,v1,v2,x0) 输出x为最优解,fval为最优值,ef为程序停止的标志,out 为个结构变量,包括程序运行的有关信息,lambda也是结 构变量,对应于相应的约束的Lagrange乘子。
min z 13 x1 9 x2 10 x3 11x4 12 x5 8 x6 s.t. x1 x4 400 x2 x5 600 x3 x6 500 0.4 x1 1.1x2 x3 800 0.5 x4 1.2 x5 1.3 x6 900 xi 0, i 1, 2, 6
min z (32 x1 24 x2 ) (8 x1 12 x2 ) 40 x1 36 x2 s.t. 8 25 x1 8 15 x2 1800 8 25 x1 1800 8 15 x2 1800 x1 0, x2 0 5 x1 3x2 45 x1 9 x2 15 x1 0, x2 0
见MATLAB程序 (xianxingguihua300个工件2,在乙机床上加工400 个工件1、500个工件3,可在满足条件的情况下使 总加工费最小为13800.

例4:问题二的解答 x1 改写为 min z (40 36) x
2 x1 s.t. 5 3 45 x2 1 0 x1 9 x1 x , x 0 0 1 2 15 2
s.t. 0.01x1 0.01x2 0.01x3 0.03x4 0.03x5 0.03x6 850
见MATLAB程序 (xianxingguihua1)
x1 min z 6 x1 3 x2 4 x3 min z (6 3 4) x2 例2: x 3 x1 1 1 1 120 s.t. s.t. x1 x2 x3 120 x2 0 1 0 50 x1 30 x3 0 x2 50 30 x1 x3 20 0 x2 20 x 3
纯整数规划(PIP)
混合整数规划(MIP)
连续规划
整数规划(IP)
一、线性规划
1、引例

问题一:任务分配问题:某车间有甲、乙两台机床,可用 于加工三种工件.假定这两台车床的可用台时数分别为800 和900,三种工件的数量分别为400、600和500,且已知 用三种不同车床加工单位数量不同工件所需的台时数和加 工费用如下表.问怎样分配车床的加工任务,才能既满足加 工工件的要求,又使加工费用最低?
见MATLAB程序 (xianxingguihua2)

例3:问题一的解答 改写为 min z (13 9 10
11 12 8) x
0 0 0.4 1.1 1 0 800 s.t. x 0 0 0 0.5 1.2 1.3 900 x1 x2 1 0 0 1 0 0 400 x3 0 1 0 0 1 0 x 600 , x x 0 4 0 0 1 0 0 1 500 x5 x 6
二、非线性规划
1、二次规划 1 T 标准形式:min z x Hx cT x
s.t. 2 A 1 x b1 A2 x b2 v1 x v2

MATLAB调用格式: (1) x=quadprog(H,C,A1,b1); (2)x=quadprog(H,C,A1,b1,A2,b2,v1,v2); (3)[x,fval,exitflag,output]= quadprog(H,C,A1,b1, A2,b2 ,v1,v2,x0,options);
v1 x v2
(1)首先建立M文件fun.m,用来定义目标函数f(x),形 式为 function f=fun(x) f=f(x); c (2)若有非线性约束条件:1 x 0 或c2 x 0, 则建立M 文件c.m定义函数c1 x , c2 x , 一般形式为 function [c1,c2]=c(x) c1=… c2=… (3)建立主程序。求解非线性规划的函数是fmincon, 调用格式为 x=fmincon(„fun‟,x0,A1,b1); [x,fv,ef,out,lag,grad,hess]=fmincon(„fun‟,x0,A1,b1,A2 ,b2,v1,v2,‟c‟,opt,P1,P2,…)

例1:
min f ( x1 , x2 ) 2 x12 3x1 x2 3x2 2 3x1 x2 s.t. x1 2 x2 3 2 x1 x2 3 x1 3x2 4 x1 2, x2 0

改写成标准形式:
1 min z ( x1 2
4 3 x1 3 x1 x2 ) x x 3 6 2 1 2 2 1 x1 3 s.t. x 1 3 2 4 x1 1 2 3 x2 2 x1 x 2 0
第六讲
线性规划与 非线性规划
线性规划与非线性规划


最优化是人们在工程技术、科学研究和经济管理等领域常 见的问题。要表述一个最优化问题,一般需要确定三个要 素:一是决策变量,通常是要求解的未知量 x ;二是目标 函数,通常是要优化(最小或最大)的那个目标的数学表达 式,是决策变量的函数f ( x);三是约束条件,对决策变量 的限制条件,即 x 允许取值的范围,称为可行域。 一般地,优化模型可表述为
(3) 模型3:
min z cT x s.t. A1 x b1 A2 x b2


v1 x v2 命令: [1] x=linprog(c,A1,b1,A2,b2,v1,v2) [2] x=linprog(c,A1,b1,A2,b2,v1,v2,x0) A 注:[1] 若没有等式约束: 2 x b2 ,令 A2 [], b2 [].
见MATLAB程序 (xianxingguihua4)

结果:

即只需聘用9个一级检验员。 注:本问题应还有一个约束条件:x1、x2取整数, 故它属于一个整数线性规划问题,这里当成一个线 性规划求解,求得最优解刚好是整数x1=9,x2=0, 故它就是该整数规划的最优解.若用线性规划解法求 得的最优解不是整数,将其取整后不一定是相应整 数规划的最优解,这样的整数规划应用专门的方法 求解.

注意: (1) fmincon函数提供了大型优化算法和中型优化算 法。当options参数的GradObj设置为’on‟时必须 给出fun函数的梯度,并且只有上下界约束或只有 等式约束,fmincon函数将选择大型算法。当既有 等式约束又有梯度约束时,使用中型算法。
(2) fmincon函数的中型算法使用的是序列二次规划 法(SQP方法)。在每一步迭代中求解二次规划子问 题,并用BFGS法更新拉格朗日Hesse矩阵。 (3)fmincon函数可能会给出局部最优解,这与初值 x0的选取有关。
车床 类 型 甲 乙 单位工件所需加工台时数 工件 1 0.4 0.5 工件 2 1.1 1.2 工件 3 1.0 1.3 单位工件的加工费用 工件 1 13 11 工件 2 9 12 工件 3 10 8 可用台 时数 800 900

模型 设在甲车床上加工工件1、2、3的数量分别为 x1 , x2 , x3 , 在乙车床上加工工件1、2、3的数量分别为 x4 , x5 , x6 .


问题二:某厂每日8小时的产量不低于1800件.为了进行质 量控制,计划聘请两种不同水平的检验员.一级检验员的标 准为:速度25件/小时,正确率98%,计时工资4元/小时; 二级检验员的标准为:速度15件/小时,正确率95%,计时 工资3元/小时.检验员每错检一次,工厂要损失2元.为使总 检验费用最省,该工厂应聘一级、二级检验员各几名? 模型 设需要一级、二级检验员的人数分别为 x1 , x2人, 应付检验员工资为 8 4 x1 8 3x2 32 x1 24 x2 , 因检验员错检而造成的损失为 (8 25 2% x1 8 15 5% x2 ) 2 8 x1 12 x2
T

编程(见MATLAB程序(erciguihua1))

结果:
2、一般非线性规划 标准形式: min z
s.t.
f ( x)
c2 x 0 A1 x b1 A2 x b2

c1 x 0

c1 其中 x 为n维变元向量, ( x), c2 x 均为非线性函数组 成的向量,其他变量的含义与线性规划、二次规划 中相同. 用MATLAB求解上述问题,基本步骤分三步。

例1: max z 0.4 x1 0.28x2 0.32 x3 0.72 x4 0.64 x5 0.6 x6
0.02 x1 0.05 x4 700 0.02 x2 0.05 x5 100 0.03x3 0.08 x6 900 x j 0, j 1, 2, 6
m n 是约束
mn
3、线性规划模型的实用形式 (1) min z cT x (2) min z cT x
相关文档
最新文档