材料力学全套

合集下载

材料力学上下册(全)

材料力学上下册(全)
例 1.1 钻床 求:截面m-m上的内力。
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F) 0
FN
Pa M 0
M Pa
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,
即应力的概念。
F A
pm
F A
若:构件横截面尺寸不足或形状
不合理,或材料选用不当
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
在外力作用下,一切固体都将发生变形, 故称为变形固体。在材料力学中,对变形固体 作如下假设: 1、连续性假设: 认为整个物体体积内毫无空隙地充满物质 灰口铸铁的显微组织 球墨铸铁的显微组织
目录
§1.2 变形固体的基本假设
2、均匀性假设: 认为物体内的任何部分,其力学性能相同 普通钢材的显微组织 优质钢材的显微组织
x
切应变(角应变)
M点处沿x方向的应变: M点在xy平面内的切应变为:
x
lim
x0
s x
g lim ( LM N)
MN0 2
ML0
类似地,可以定义 y , z ,g 均为无量纲的量。
目录
§1.5 变形与应变
例 1.2
c
已知:薄板的两条边
四川彩虹桥坍塌
目录
§1.1 材料力学的任务

材料力学教学课本(全套)

材料力学教学课本(全套)

材料力学教学课本(全套)
本教学课本是为研究材料力学的学生而编写的,全套共包含十
二章,分别介绍了材料力学的基础知识以及其在实际工程中的应用。

第一章主要介绍了材料力学的基本概念,包括应力、应变以及
杨氏模量等。

第二章则深入探讨了应力分析的相关知识,包括梁的
受力分析、轴的受力分析等。

第三章介绍了杆件的受力分析方法,
包括静力学、中心法以及位移法等。

第四章至第七章主要介绍了弹性力学的内容,包括弹性力学基
本方程、梁的振动、薄壳的理论以及弯曲理论等。

第八章至第十章
则探讨了材料力学的非弹性部分,包括塑性行为、断裂力学以及蠕
变等。

最后两章则介绍了应用力学中的材料力学应用,包括气压机
的工作原理、空气动力学以及船舶结构力学等。

本教学课本内容丰富,覆盖了材料力学的各个方面,并且将理
论知识和实际应用相结合,有助于学生更好地掌握材料力学的知识
和应用。

在课堂教学中,可以结合本教学课本进行教学,以达到更
好的教学效果。

总之,在学习材料力学的过程中,本教学课本是一本值得阅读和参考的好教材。

材料力学教案(全套)

材料力学教案(全套)

第一章绪论一、教学目标和教学内容1、教学目标⑴了解材料力学的任务和研究内容;(2) 了解变形固体的基本假设;(3) 构件分类,知道材料力学主要研究等直杆;(4)具有截面法和应力、应变的概念。

2、教学内容(1) 构件的强度、刚度和稳定性概念,安全性和经济性,材料力学的任务;(2)变形固体的连续性、均匀性和各向同性假设,材料的弹性假设,小变形假设;(3)构件的形式,杆的概念,杆件变形的基本形式;(4)截面法,应力和应变。

二、重点与难点重点同教学内容,基本上无难点。

三、教学方式讲解,用多媒体显示工程图片资料,提出问题,引导学生思考,讨论。

四、建议学时1~2学时五、实施学时六、讲课提纲1、由结构与构件的工作条件引出构件的强度、刚度和稳定性问题。

强度:构件抵抗破坏的能力;刚度:构件抵抗变形的能力;稳定性:构件保持自身的平衡状态为。

2、安全性和经济性是一对矛盾,由此引出材料力学的任务。

3、引入变形固体基本假设的必要性和可能性连续性假设:材料连续地、不间断地充满了变形固体所占据的空间;均匀性假设:材料性质在变形固体内处处相同;各向同性假设:材料性质在各个方向都是相同的。

弹性假设:材料在弹性范围内工作。

所谓弹性,是指作用在构件上的荷载撤消后,构件的变形全部小时的这种性质;小变形假设:构件的变形与构件尺寸相比非常小。

4、构件分类杆,板与壳,块体。

它们的几何特征。

5、杆件变形的基本形式基本变形:轴向拉伸与压缩,剪切,扭转,弯曲。

各种基本变形的定义、特征。

几种基本变形的组合。

6、截面法,应力和应变截面法的定义和用法;为什么要引入应力,应力的定义,正应力,切应力;为什么要引入应变,应变的定义,正应变,切应变。

第二章轴向拉伸与压缩一、教学目标和教学内容1、教学目标⑴掌握轴向拉伸与压缩基本概念;⑵熟练掌握用截面法求轴向内力及内力图的绘制;⑶熟练掌握横截面上的应力计算方法,掌握斜截面上的应力计算方法;⑷具有胡克定律,弹性模量与泊松比的概念,能熟练地计算轴向拉压情况下杆的变形;⑸了解低碳钢和铸铁,作为两种典型的材料,在拉伸和压缩试验时的性质。

简明材料力学全套精品课件

简明材料力学全套精品课件
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F) 0
FN
Pa M 0
M Pa
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,
即应力的概念。
F
pm

F A
—— 平均应力
A
C
目录
§1.1 材料力学的任务
四、材料力学的研究对象 构件的分类:杆件、板壳、块体
材料力学主要研究杆件
{ 直杆—— 轴线为直线的杆 曲杆—— 轴线为曲线的杆
{等截面杆——横截面的大小 形状不变的杆 变截面杆 ——横截面的大小 或形状变化的杆 等截面直杆 ——等直杆
目录
§1.2 变形固体的基本假设
在外力作用下,一切固体都将发生变形, 故称为变形固体。在材料力学中,对变形固体 作如下假设: 1、连续性假设: 认为整个物体体积内毫无空隙地充满物质 灰口铸铁的显微组织 球墨铸铁的显微组织
杆切开
F1

(2)留下左半段或右半段
F2
(3)将弃去部分对留下部
F5
分的作用用内力代替 F1

(4)对留下部分写平衡方
F2
程,求出内力的值。
m F4

m
F3
F4

F3
目录
§1.4 内力、截面法和应力的概念 例如
F
a
a
F
M FS
FS=F M Fa
目录
§1.4 内力、截面法和应力的概念
例 1.1 钻床 求:截面m-m上的内力。
古代建筑结构
传统具有柱、梁、檩、椽的木 制房屋结构

刘鸿文主编(第4版) 高等教育出版社《材料力学》课件全套

刘鸿文主编(第4版) 高等教育出版社《材料力学》课件全套
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F) 0
FN
Pa M 0
M Pa
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,
即应力的概念。
F A
pm
F A
—— 平均应力
C
p lim F A0 A
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
B 解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆)
F 用截面法取节点B为研究对象
Fx 0 FN1 cos 45 FN2 0
x
Fy 0 FN1 sin 45 F 0
FN1 28.3kN
FN 2 20kN
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F 0 FN F
2、轴力:截面上的内力
F
由于外力的作用线
与杆件的轴线重合,内
力的作用线也与杆件的
轴线重合。所以称为轴
力。 F 3、轴力正负号:
拉为正、压为负
4、轴力图:轴力沿杆 件轴线的变化
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.1
A
F1
若:构件横截面尺寸不足或形状
不合理,或材料选用不当
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。

材料力学(全套课件)单辉祖

材料力学(全套课件)单辉祖

§2-2 轴力与轴力图
求内力的一般方法——截面法
步骤: (1)截开; (2)代替; (3)平衡。
F
m
F
(a)
m
F
(b)
m FN
x m
FN m
F
(c)
m
F
m
F
(a)
m
F
(b)
m FN
x m
FN F
FN m
F
(c)
m
可看出:杆件任一横截面上的内力,其作用线均与 杆件的轴线重合,因而称之为轴力,用记号FN表示。
材料力学
总成绩=考试成绩 ×(70-80)%+平时成 绩(作业、课堂提问、 小测)
第一 章 绪 论
A4复印纸在自重作用 下产生明显变形
折叠后变形明显减小
自行车的主要受力部 件均由薄壁钢管制成
为什么不用实心 的钢筋做呢
§1-1 材料力学的任务与研究对象
1. 研究对象 变形固体 构件 杆件
2. 研究内容
1)静载荷:载荷缓慢地由零增加到某一定 值后,不再随时间变化,保持不变或变动很 不显著。
2)动载荷:载荷随时间而变化。动载荷可分 为构件具有较大加速度、受交变载荷和冲击 载荷三种情况 。
材料在静、动载荷作用下的性能颇不相同, 分析方法有差异。
二、内力和截面法:
1. 内力:构件因受力作用而变形,其内部各
F FS FN AM
M
(a)
d FN
dA
d FS
dA
(b)
FN
dA
A
FS
dA
A
M F A
M
(a)
应力单位 Pa MPa
GPa
(b)

材料力学全套ppt课件

材料力学全套ppt课件

___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
目录
10
§1.1 材料力学的任务
四、材料力学的研究对象
m F4

m
F3
F4

F3
目录
17
§1.4 内力、截面法和应力的概念 例如
F
a
a
F
M FS
FS=F M Fa
目录
18
§1.4 内力、截面法和应力的概念
例 1.1 钻床 求:截面m-m上的内力。
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
列平衡方程:
M
Y 0 FN P
灰口铸铁的显微组织 球墨铸铁的显微组织
目录
12
§1.2 变形固体的基本假设
2、均匀性假设: 认为物体内的任何部分,其力学性能相同 普通钢材的显微组织 优质钢材的显微组织
目录
13
§1.2 变形固体的基本假设
3、各向同性假设: 认为在物体内各个不同方向的力学性能相同
(沿不同方向力学性能不同的材料称为各向异性 材料。如木材、胶合板、纤维增强材料等)
材料力学
目录
1
第一章 绪论
§1.1 材料力学的任务 §1.2 变形固体的基本假设 §1.3 外力及其分类 §1.4 内力、截面法及应力的概念 §1.5 变形与应变 §1.6 杆件变形的基本形式
目录

材料力学全套刘鸿文版

材料力学全套刘鸿文版
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F0 FN F
1、截面法求内力
F (1)假想沿m-m横截面将
杆切开
(2)留下左半段或右半段
F (3)将弃去部分对留下部分
的作用用内力代替
(4)对留下部分写平衡方程 求出内力即轴力的值
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
圣 维 南 原 理
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.2
A 1
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
45° B
C
2
FN1
F
y
F N 2 45° B x
Fx 0
FN3F425kN
x 2、绘制轴力图。
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
杆件的强度不仅与轴力有关,还与横截面面 积有关。必须用应力来比较和判断杆件的强度。
在拉(压)杆的横截面上,与轴
力FN对应的应力是正应力 。根据连
续性假设,横截面上到处都存在着内 力。于是得静力关系:
x
lim x0
s x
g lim(LMN)
2 MN0
M L0
类似地,可以定义 y , z ,g 均为无量纲的量。
目录
§1.5 变形与应变
例 1.2
c

刘鸿文版材料力学课件全套1-101页PPT资料

刘鸿文版材料力学课件全套1-101页PPT资料

F5
杆切开
F1

(2)留下左半段或右半段
F2
(3)将弃去部分对留下部
F5
分的作用用内力代替 F1

(4)对留下部分写平衡方
F2
程,求出内力的值。
m F4

m
F3
F4

F3
目录
§1.4 内力、截面法和应力的概念 例如
F
a
a
F
M FS
F S= FM F a
目录
§1.4 内力、截面法和应力的概念
固定,变形后a'b, a'd
仍为直线。
250
b
200 0.025
求:ab 边的m 和 ab、ad 两边夹
角的变化。
a
解:
m
d
a'b ab 0.025 125106
ab
200
g
a'
ab, ad 两边夹角的变化:
即为切应变g 。
gtagn 0.025 100106 (rad )
F
FN1 28.3kN FN2 20kN
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
A
FN1 28.3kN FN2 20kN
1
2、计算各杆件的应力。
45° B
C
2
FN1
F
y
F N 2 45° B x
F
1

FN1 A1


28.3103 202 106

4
90106 Pa 90MPa
d

A
1.9m
W
F m ax

F m axA

刘鸿文版材料力学全套-资料

刘鸿文版材料力学全套-资料

A 1
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
45° B
C
2
FN1
yF
F N 2 45° B x
解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆) 用截面法取节点B为研究对象
Fx 0 FN1co4s5FN20 Fy 0 FN1si4 n5F0
在拉(压)杆的横截面上,与轴
力FN对应的应力是正应力 。根据连
续性假设,横截面上到处都存在着内 力。于是得静力关系:
FN dA
A
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
观察变形:
ac
F
a
c
b
d
bd
横向线ab、cd 仍为直线,且
仍垂直于杆轴
线,只是分别
F 平行移至
a’b’、 c’d’。
在外力作用下,一切固体都将发生变形, 故称为变形固体。在材料力学中,对变形固体 作如下假设: 1、连续性假设: 认为整个物体体积内毫无空隙地充满物质 灰口铸铁的显微组织 球墨铸铁的显微组织
目录
§1.2 变形固体的基本假设
2、均匀性假设: 认为物体内的任何部分,其力学性能相同 普通钢材的显微组织 优质钢材的显微组织
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
Hale Waihona Puke mF mF
FN
FN
Fx 0
FN F0 FN F
1、截面法求内力
F (1)假想沿m-m横截面将
杆切开
(2)留下左半段或右半段
F (3)将弃去部分对留下部分

材料力学(全套课件P)孙训方版_图文

材料力学(全套课件P)孙训方版_图文

§2 材料力学与生产实践的关系
人类历史有多久,力学的历史就 有多久。
“力”是人类对自然的省悟。
经计算,符合现代力学原理.
用竹索做成悬索桥,以充分利用竹材的拉伸强度。
物理和理论力学: 运动的一般规律(质点 刚体) 质点:只有质量,没有大小. 刚体:有质量,有大小,但没有变形. 变形体:有质量,有大小,有变形. 质点----刚体----变形体, 人类认识的深化.
静力关系
几何变形
平面假设
原为平面的横截面在 杆变形后仍为平面
σ——正应力 FN——轴力 A——横截面面积 σ的符号与FN轴力符号相同

例题2.5
试计算图示杆件1-1、2-2、和3-3截面上的正 应力.已知横截面面积A=2×103mm2
1
2
3
20KN
20KN
40KN 40KN
1
2
3
40kN
20kN
建立力学模型:
认 销 C处为钉的B重、螺量C栓W理连位想接于化,构为其架光约A滑B束C销既平钉不面。像内光,滑因销此钉可可作自为由平转面动力,系也问不题像来固定端那 处 样理毫。无转动的可能,而是介于两者之间,并与螺栓的紧固程度有关。
§1 轴向拉伸与压缩的概念
受力特征:外力合力的作用线与杆件的轴线重合 变形特征:轴向伸长或缩短
实验:
设一悬挂在墙上的弹簧秤,施加初拉 力将其钩在不变形的凸缘上。
若在弹簧的下端施加砝码,当所加砝 码小于初拉力时,弹簧秤的读数将保 持不变;当所加砝码大于初拉力时, 则下端的钩子与凸缘脱开,弹簧秤的 读数将等于所加砝码的重量。
实际上,在所加砝码小于初拉力时, 钩子与凸缘间的作用力将随所加砝码 的重量而变化。凸缘对钩子的反作用 力与砝码重量之和,即等于弹簧秤所 受的初拉力。

材料力学(全套精)单辉祖ppt课件

材料力学(全套精)单辉祖ppt课件
稳 定 问 题
.
工程构件的强度、刚度和稳定问题
稳 定 问 题
.
工程构件的强度、刚度和稳定问题
强 稳刚 度 定度
问 题
.
工程构件的强度、刚度和稳定问题
强度—不因发生断裂或塑性变形而失效; 刚度—不因发生过大的弹性变形而失效; 稳定性—不因发生因平衡形式的突然转 变而失效。
.
折断 轴 齿轮
齿轮 轴
内力)及变形。
F
FN
F
.
如何简化出火车车 轮轴的计算模型?
如何设计车轮轴 的横截面?
.
2)材料力学的特点:逻辑性强、概念丰富 3)学习方法:吃透概念、加强练习 4)本门课程的地位
是土木、机械和力学等专业的技术基础课; 是了解和学习相关专业知识和技术的第一门 重要课程。
.
§1-2 材料力学的基本假设
正确答案为[B]。负重爬坡时,链条在强大的拉力的作用下产生很大的变形, 并且超出齿轮和链条能够正常啮合的范围,导致链条打滑;打滑发生后自行 车又能正常骑行,说明打滑后链条完全恢复原状,所发生的变形为弹性变形。
2. 自行车负重爬坡出现“链条脱落”现象,并且无法安 装和继续前行,从力学的角度分析,此现象表明链条的
p
裂纹
虽然不折断,但变形过大, 影响正常传动。
P
失去原来的直线平衡状态
P
材料力学就是在满足强度、刚度 和稳定性要求的前提下,为设计既经 济又安全的构件,提供必要的理论基 础和计算方法。
本门课程的特点与地位 1)与理论力学的关系 理论力学研究刚体的外部效应(构件受到的外力)
A
B
FA
FB
F
F
材料力学研究变形固体的内部效应(构件受到的

材料力学全套刘鸿文版

材料力学全套刘鸿文版

2020年3月4日星期三
材料力学
Mechanics of Materials
§1-1 材料力学的任务
材料力学研究什么?
工程材料的力学性能和构件的安全问题。
工程结构或机械的各组成部分统称为构件
1. 材料力学主要研究构件的强度、刚度和稳定性等 问题,
2. 以理论分析为基础,培养学生将工程实际问题提 炼成力学问题(即力学建模),
Mechanics of Materials
三、应力:内力系在某点
的内力集度,反映内力系
在该点的强弱。
FN
C
A
p FN m A
p

lim
A0
pm

lim
A0
FN A

dFN dA
2020年3月4日星期三
材料力学
Mechanics of Materials
应力p可分解:
正应力—— ; 切应力——。
p


应力单位:牛/米2(N/m2),称为帕斯卡或简称帕 ( Pa ) 。 通 常 使 用 的 是 兆 帕 , 即 MPa ( 1MPa=106Pa)
2020年3月4日星期三
材料力学
Mechanics of Materials
§1-5 变形和应变
y
L’
M’ M
L
M’
N’
x+ s
M x N
x
2020年3月4日星期三
到了很大的简化。
B
C
δ2
F
2020年3月4日星期三
材料力学
Mechanics of Materials

FN1
FN2

P

材料力学(全套483页PPT课件)-精选全文

材料力学(全套483页PPT课件)-精选全文
三、构件应有足够的稳定性
稳定性(stability)—构件承受外力时, 保持原有平衡状态的能力
4
材料力学的任务: 在满足强度、刚度和稳定性的要
求下,为设计既经济又安全的构件提 供必要的理论基础和计算方法。
5
1.2 变形固体的基本假设
1.连续性假设
假设在变形体所占有的空间内毫无空隙地充满了物质。即认 为材料是密实的。这样,构件内的一些力学量(如各点的位 移)可用坐标的连续函数表示,并可采用无限小的数学分析 方法。
2、横向变形、泊松比
横向线应变: b b1 b
bb
称为泊松比
32
是谁首先提出弹性定律? 弹性定律是材料力学中一个非常重要的基础定
律。一般认为它是由英国科学家胡克(1635一1703) 首先提出来的,所以通常叫做胡克定律。其实,在 胡克之前1500年,我国早就有了关于力和变形成正 比关系的记载。
1-1截面
A
X 0 N1 40 30 20 0 N1 N1 50kN(拉)
2-2截面
X 0 N 2 30 20 0
1 B 2C 3D 40 kN 30 kN 20 kN
N2
30 kN 20 kN
N2 10kN(拉)
3-3截面
N 50 kN
N3
20 kN
X 0
N 3 20 0 N 3 20 kN(压)
10 103 100 103 500 106
10 103 100 103 200 106
mm
0.015mm
计算结果为负,说明整根杆发生了缩短
35
静定汇交杆的位移计算,以例题说明。 例3 图示结构由两杆组成,两杆长度均为 l,B 点受垂直荷 载 P 作用。(1) 杆①为刚性杆,杆②刚度为 EA ,求节点 B 的位移;(2) 杆①、杆②刚度均为 EA,求节点 B 的位 移。

刘鸿文版材料力学课件全套

刘鸿文版材料力学课件全套

e
Mel EI
M e 2l 2EI
M 2l 2EI
横力弯曲:V
l
M 2 (x) dx 2E I ( x)
13-3 变形能的普遍表达式
F3
1
F2
F1
2 3
V
W
1 2
F11
1 2
F2 2
1 2
F3 3
即:线弹性体的变形能等于每一外力与其相应位移乘积的二分之一的 总和。
M (x)
M (x)
N ( x)
目录
疲劳极限
将若干根尺寸、材质相同的标准试样,在疲劳试验机上依次进行r = -1 的常幅疲劳试验。各试样加载应力幅 均不同,因此疲劳破坏所经历 的应力循环次数N 各不相同。
以 为纵坐标,以N 为横坐标(通常为对数坐标),便可绘出该材料的应 力—寿命曲线即S-N 曲线如图(以40Cr钢为例)
注:由于在r =-1时,max = /2,故S-N 曲线纵坐标也可以采用max 。
M e L2 2EI
A
( A ) F
( A ) Me
FL2 2EI
MeL EI
V
W
1 2
FwA
1 2
M
e
A
F 2 L3 6EI
MeF2 2EI
M
2 e
L
2EI
§13-4 互等定理
F1
F2
1
2
F1
11
21
F2
12
22
ij
荷载作用点
•位移发生点
F1
11
21
F2
12
22
先作用 F1,后作用 F2,外力所作的功:
1F 2
Fl EA

刘鸿文版材料力学(第五版全套356页)

刘鸿文版材料力学(第五版全套356页)
精品课件
§1.2 变形固体的基本假设
3、各向同性假设: 认为在物体内各个不同方向的力学性能相同
(沿不同方向力学性能不同的材料称为各向异性材料。如 木材、胶合板、纤维增强材料等)
普通钢材的显微组织 优质钢材的显微组织
精品课件
§1.3 外力及其分类
外力:来自构件外部的力(载荷、约束反力)
按外力作用的方式分类
g lim(LMN)
2 MN0
M L0
类似地,可以定义 y , z ,g 均为无量纲的量。
精品课件
目录
§1.5 变形与应变
例 1.2
c
已知:薄板的两条边
若:构件横截面尺寸不足或形状
不合理,或材料选用不当
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的
力学性能。因此在进行理论分析的基础上,实验研究是 完成材料力学的任务所必需的途径和手段。
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F)0
FN
Pa M0
MPa
精品课件
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,即
应力的概念。 F A F 4 C F3
pm
F A
—— 平均应力
p lim F A0 A
—— C点的应力
应力是矢量,通常分解为 pF4 C F3
精品课件
§1.1 材料力学的任务
四、材料力学的研究对象
构件的分类:杆件、板壳*、块体*
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
程,求出内力的值。
F5
F1
F2
F5
F2
m F4
m
F3
F4
F3
.
目录
§1.4 内力、截面法和应力的概念 例如
F
a
a
F
M FS
F S= FM F a
.
目录
§1.4 内力、截面法和应力的概念
例 1.1 钻床 求:截面m-m上的内力。
解: 用截面m-m将钻床截为两部分,取上半部 分为研究对象,
受力如图:
表面力:
分布力:
连续分布于物体表面上的力。如油缸内壁 的压力,水坝受到的水压力等均为分布力
集中力:
若外力作用面积远小于物体表面的尺寸,可 作为作用于一点的集中力。如火车轮对钢轨 的压力等
.
目录
§1.3 外力及其分类
按外力与时间的关系分类
静载: 载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著, 称为静载。
.
目录
§1.1 材料力学的任务
比萨斜塔
美国纽约马尔克大桥坍塌
.
§1.1 材料力学的任务
二、基本概念 1、构件:工程结构或 机械的每一组成部分。 (例如:行车结构中的 横梁、吊索等)
理论力学—研究刚体,研究力与运动的关系。 材料力学—研究变形体,研究力与变形的关系。 2、变形:在外力作用下,固体内各点相对位置的 改变。(宏观上看就是物体尺寸和形状的改变)
4、稳定性:
在载荷 作用下,构 件保持原有 平衡状态的 能力。
强度、刚度、稳定性是衡量构件承载能力 的三个方面,材料力学就是研究构件承载能力 的一门科学。
.
目录
§1.1 材料力学的任务
三、材料力学的任务
材料力学的任务就是在满足强度、刚度 和稳定性的要求下,为设计既经济又安全的构 件,提供必要的理论基础和计算方法。
动载: 载荷随时间而变化。
如交变载荷和冲击载荷
交变载荷
冲击载荷
.
目录
§1.4 内力、截面法和应力的概念
内力:外力作用引起构件内部的附加相互作用力。
求内力的方法 — 截面法
(1)假想沿m-m横截面将 杆切开
(2)留下左半段或右半段 (3)将弃去部分对留下部
分的作用用内力代替 F1 (4)对留下部分写平衡方
灰口铸铁的显微组织 球墨铸铁的显微组织
.
目录
§1.2 变形固体的基本假设
2、均匀性假设: 认为物体内的任何部分,其力学性能相同 普通钢材的显微组织 优质钢材的显微组织
.
目录
§1.2 变形固体的基本假设
3、各向同性假设: 认为在物体内各个不同方向的力学性能相同
(沿不同方向力学性能不同的材料称为各向异性 材料。如木材、胶合板、纤维增强材料等)
4、小变形与线弹性范围
AБайду номын сангаас
认为构件的变形极其微小,
比构件本身尺寸要小得多。
如右图,δ远小于构件的最小尺寸,
所以通过节点平衡求各杆内力时,把支
架的变形略去不计。计算得到很大的简
化。
C
δ1
B δ2
F
.
目录
§1.3 外力及其分类
外力:来自构件外部的力(载荷、约束反力)
按外力作用的方式分类
体积力:连续分布于物体内部各点 的力。如重力和惯性力
列平衡方程:
M
Y 0 FN P
Mo(F)0
FN
Pa M0
MPa
.
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,
即应力的概念。
pm
F A
—— 平均应力
F A
C
p lim F A0 A
—— C点的应力
p
F4
F3
F4
应力是矢量,通常分解为
C
— 正应力 — 切应力
.
目录
§1.1 材料力学的任务
{弹性变形 — 随外力解除而消失 塑性变形(残余变形)— 外力解除后不能消失 刚度:在载荷作用下,构件抵抗变形的能力。 3、内力:构件内由于 发生变形而产生的相 互作用力。(内力随 外力的增大而增大) 强度:在载荷作用下, 构件抵抗破坏的能力。
.
目录
§1.1 材料力学的任务
若:构件横截面尺寸不足或形状
不合理,或材料选用不当
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
.
目录
§1.1 材料力学的任务
四、材料力学的研究对象
构件的分类:杆件、板壳*、块体*
材料力学主要研究杆件
{ 直杆—— 轴线为直线的杆 曲杆—— 轴线为曲线的杆
{等截面杆——横截面的大小 形状不变的杆
变截面杆——横截面的大小 或形状变化的杆
等截面直杆 ——等直杆
.
目录
§1.2 变形固体的基本假设
在外力作用下,一切固体都将发生变形, 故称为变形固体。在材料力学中,对变形固体 作如下假设: 1、连续性假设: 认为整个物体体积内毫无空隙地充满物质
类似地,可以定义 y , z ,g 均为无量纲的量。
.
目录
§1.5 变形与应变
例 1.2
c
已知:薄板的两条边
F3
应力的国际单位为 Pa(帕斯卡) 1Pa= 1N/m2
1kPa=103N/m2 1MPa=106N/m2 1GPa=109N/m2
.
目录
§1.5 变形与应变
1.位移 MM'
M'
刚性位移; 变形位移。
2.变形
M
物体内任意两点的相对位置发生变化。
取一微正六面体
y
g
两种基本变形:
线变形
L
—— 线段长度的变化
角变形
——线段间夹角的变化 o
M
x
L'
x+s
M'
N'
N
x
.
目录
§1.5 变形与应变 y
g
3.应变 L'
正应变(线应变)
x方向的平均应变:
xm
s x
L
o M x
x+s
M'
N'
N
x
切应变(角应变)
M点处沿x方向的应变: M点在xy平面内的切应变为:
x
lim x0
s x
g lim(LMN)
2 MN0
M L0
建于隋代(605年)的河北赵州桥桥 长64.4米,跨径37.02米,用石2800 吨
.
目录
§1.1 材料力学的任务
古代建筑结构
建于辽代(1056年)的山西应县佛宫寺释迦塔 塔高9层共67.31米,用木材7400吨
900多年来历经数次地震不倒,现存唯一木塔
.
目录
§1.1 材料力学的任务
四川彩虹桥坍塌
材料力学
刘鸿文主编(第4版) 高等教育出版社
.
目录
第一章 绪论
§1.1 材料力学的任务 §1.2 变形固体的基本假设 §1.3 外力及其分类 §1.4 内力、截面法及应力的概念 §1.5 变形与应变 §1.6 杆件变形的基本形式
.
目录
§1.1 材料力学的任务
一、材料力学与工程应用
古代建筑结构
传统具有柱、梁、檩、椽的木 制房屋结构
相关文档
最新文档