材料力学课件全套

合集下载

简明材料力学全套精品课件

简明材料力学全套精品课件
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F) 0
FN
Pa M 0
M Pa
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,
即应力的概念。
F
pm

F A
—— 平均应力
A
C
目录
§1.1 材料力学的任务
四、材料力学的研究对象 构件的分类:杆件、板壳、块体
材料力学主要研究杆件
{ 直杆—— 轴线为直线的杆 曲杆—— 轴线为曲线的杆
{等截面杆——横截面的大小 形状不变的杆 变截面杆 ——横截面的大小 或形状变化的杆 等截面直杆 ——等直杆
目录
§1.2 变形固体的基本假设
在外力作用下,一切固体都将发生变形, 故称为变形固体。在材料力学中,对变形固体 作如下假设: 1、连续性假设: 认为整个物体体积内毫无空隙地充满物质 灰口铸铁的显微组织 球墨铸铁的显微组织
杆切开
F1

(2)留下左半段或右半段
F2
(3)将弃去部分对留下部
F5
分的作用用内力代替 F1

(4)对留下部分写平衡方
F2
程,求出内力的值。
m F4

m
F3
F4

F3
目录
§1.4 内力、截面法和应力的概念 例如
F
a
a
F
M FS
FS=F M Fa
目录
§1.4 内力、截面法和应力的概念
例 1.1 钻床 求:截面m-m上的内力。
古代建筑结构
传统具有柱、梁、檩、椽的木 制房屋结构

刘鸿文主编(第4版) 高等教育出版社《材料力学》课件全套

刘鸿文主编(第4版) 高等教育出版社《材料力学》课件全套
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F) 0
FN
Pa M 0
M Pa
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,
即应力的概念。
F A
pm
F A
—— 平均应力
C
p lim F A0 A
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
B 解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆)
F 用截面法取节点B为研究对象
Fx 0 FN1 cos 45 FN2 0
x
Fy 0 FN1 sin 45 F 0
FN1 28.3kN
FN 2 20kN
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F 0 FN F
2、轴力:截面上的内力
F
由于外力的作用线
与杆件的轴线重合,内
力的作用线也与杆件的
轴线重合。所以称为轴
力。 F 3、轴力正负号:
拉为正、压为负
4、轴力图:轴力沿杆 件轴线的变化
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.1
A
F1
若:构件横截面尺寸不足或形状
不合理,或材料选用不当
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。

材料力学(全套课件)单辉祖

材料力学(全套课件)单辉祖

§2-2 轴力与轴力图
求内力的一般方法——截面法
步骤: (1)截开; (2)代替; (3)平衡。
F
m
F
(a)
m
F
(b)
m FN
x m
FN m
F
(c)
m
F
m
F
(a)
m
F
(b)
m FN
x m
FN F
FN m
F
(c)
m
可看出:杆件任一横截面上的内力,其作用线均与 杆件的轴线重合,因而称之为轴力,用记号FN表示。
材料力学
总成绩=考试成绩 ×(70-80)%+平时成 绩(作业、课堂提问、 小测)
第一 章 绪 论
A4复印纸在自重作用 下产生明显变形
折叠后变形明显减小
自行车的主要受力部 件均由薄壁钢管制成
为什么不用实心 的钢筋做呢
§1-1 材料力学的任务与研究对象
1. 研究对象 变形固体 构件 杆件
2. 研究内容
1)静载荷:载荷缓慢地由零增加到某一定 值后,不再随时间变化,保持不变或变动很 不显著。
2)动载荷:载荷随时间而变化。动载荷可分 为构件具有较大加速度、受交变载荷和冲击 载荷三种情况 。
材料在静、动载荷作用下的性能颇不相同, 分析方法有差异。
二、内力和截面法:
1. 内力:构件因受力作用而变形,其内部各
F FS FN AM
M
(a)
d FN
dA
d FS
dA
(b)
FN
dA
A
FS
dA
A
M F A
M
(a)
应力单位 Pa MPa
GPa
(b)

材料力学课件PPT

材料力学课件PPT

梁的剪力与弯矩
1
梁的剪力
解析剪力对梁的影响和剪切应力。
2
梁的弯曲
讨论梁的弯曲行为和弯曲应力。
3
横截面性能
探索截面形状对梁的强度和刚度的影响。
梁的挠度
1 挠度与刚度
2 梁的支撑条件
3 挠度计算
研究梁的弯曲变形和挠度。
解释梁的不同支撑条件对 挠度的影响。
介绍计算梁挠度的工程方 法。
杆件的稳定性
1
稳定性概念
材料力学课件PPT
材料力学课件PPT是一个全面的教学工具,涵盖了力学基础、应力与变形、杆 件的轴向受力、梁的剪力与弯矩、梁的挠度、杆件的稳定性以及结构稳定裂 解和破坏形态。
力学基础
1
牛顿力学原理
解释物体运动和力的相互作用。
2
力的向量和标量
了解力量的方向和大小。
3
运动和加速度
讨论物体的运动和加速度。
应力与变形
应力
探讨物体所受力的影响。
塑性变形
讲解材料在超出弹性范围时的塑性行为。
弹性变形
解析材料的弹性性质和应变量。
断裂
探索材料的破裂过程和强度。
杆件的轴向受力
拉力
描述由拉力引起的变形和破坏。
压力
研究由压力引起的压缩变形和破坏。
剪力
解释由剪切力引起的变形和破坏。
扭矩
探讨由扭转力引起的变形和破坏。
介绍杆件的稳定性和失稳行为。
2
纯压杆件
研究纯压杆件的稳定性和临界长度。
பைடு நூலகம்
3
压弯杆件
探讨压弯杆件的稳定性和稳定方程。
结构稳定裂解和破坏形态
稳定性裂解
解释结构在突然失去稳定性时的裂解过程。

材料力学课件PPT

材料力学课件PPT

力学性质:在外力作用下材料在变形和破坏方面所 表现出的力学性能













材料拉伸时的力学性质
材料拉伸时的力学性质
二 低 碳 钢 的 拉 伸
材料拉伸时的力学性质
二 低碳钢的拉伸(含碳量0.3%以下)
e
b
f 2、屈服阶段bc(失去抵抗变 形的能力)
b
e P
a c s
s — 屈服极限
(二)关于塑性流动的强度理论
1.第三强度理论(最大剪应力理论) 这一理论认为最大剪应力是引起材料塑性流动破坏的主要
因素,即不论材料处于简单还是复杂应力状态,只要构件危险 点处的最大剪应力达到材料在单向拉伸屈服时的极限剪应力就 会发生塑性流动破坏。
这一理论能较好的解释塑性材料出现的塑性流动现象。 在工程中被广泛使用。但此理论忽略了中间生应力 2的影响, 且对三向均匀受拉时,塑性材料也会发生脆性断裂破坏的事 实无法解释。
许吊起的最大荷载P。
CL2TU8
解: N AB
A [ ]
0.0242 4
40 106
18.086 103 N 18.086 kN
P = 30.024 kN
6.5圆轴扭转时的强度计算
圆轴扭转时的强度计算
▪ 最大剪应力:圆截面边缘各点处
max
Tr
Ip
max
Wp T
Wp
Ip r

抗扭截面模量
3、强化阶段ce(恢复抵抗变形
的能力)
o
b — 强度极限
4、局部径缩阶段ef
明显的四个阶段
1、弹性阶段ob

材料力学全套ppt课件

材料力学全套ppt课件

___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
目录
10
§1.1 材料力学的任务
四、材料力学的研究对象
m F4

m
F3
F4

F3
目录
17
§1.4 内力、截面法和应力的概念 例如
F
a
a
F
M FS
FS=F M Fa
目录
18
§1.4 内力、截面法和应力的概念
例 1.1 钻床 求:截面m-m上的内力。
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
列平衡方程:
M
Y 0 FN P
灰口铸铁的显微组织 球墨铸铁的显微组织
目录
12
§1.2 变形固体的基本假设
2、均匀性假设: 认为物体内的任何部分,其力学性能相同 普通钢材的显微组织 优质钢材的显微组织
目录
13
§1.2 变形固体的基本假设
3、各向同性假设: 认为在物体内各个不同方向的力学性能相同
(沿不同方向力学性能不同的材料称为各向异性 材料。如木材、胶合板、纤维增强材料等)
材料力学
目录
1
第一章 绪论
§1.1 材料力学的任务 §1.2 变形固体的基本假设 §1.3 外力及其分类 §1.4 内力、截面法及应力的概念 §1.5 变形与应变 §1.6 杆件变形的基本形式
目录

材料力学课件全套

材料力学课件全套
目录
§2 2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F0 FN F
1 截面法求内力
F 1假想沿mm横截面将
杆切开
2留下左半段或右半段
F 3将弃去部分对留下部分
的作用用内力代替
4对留下部分写平衡方程 求出内力即轴力的值
目录
§2 2 轴向拉伸或压缩时横截面上的内力和应力
1kPa=103N/m2 1MPa=106N/m2 1GPa=109N/m2
目录
§1 5 变形与应变
1 位移 MM'
M'
刚性位移; 变形位移
2 变形
M
物体内任意两点的相对位置发生变化
取一微正六面体
y
g
两种基本变形:
线变形
L
—— 线段长度的变化
角变形
——线段间夹角的变化 o
M
x
L'
x+s
M'
N'
N
x
圣 维 南 原 理
目录
§2 2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2 2 轴向拉伸或压缩时横截面上的内力和应力
例题2 2
A 1
图示结构;试求杆件AB CB的应
力 已知 F=20kN;斜杆AB为直径
20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
45° B
C
2
FN1
F
y
F N 2 45° B x
建于隋代605年的河北赵州桥桥长64 4米;跨径37.02米,用石2800吨
目录
§1 1 材料力学的任务

材料力学PPT课件

材料力学PPT课件

通常用
MPa=N/mm2 = 10 6 Pa
有些材料常数 GPa= kN/mm2 = 10 9 Pa
工程上用 kg/cm2 = 0.1 MPa
正应力s
剪应力
二、轴向拉压时横截面上应力
dA
dN dA •s
N
s dN
N dN s dA
A
A
求应力,先要找到应力在横截面上的分布情况。
应力是内力的集度,而内力与变形有关,所以
绘轴力图
(2)求应力 AB段:A1=240240mm=57600mm2
BC段:A2=370370mm=136900mm2
s1
N1 A1
50 103 57600
0.87 N
/ mm 2
0.87MPa
s2
N2 A2
150 103 136900
1.1N
/ mm 2
1.1MPa
应力为负号表示柱受压。正应力的正负号与轴力N相同。
Nl
A
l
————虎克定律(Hooke)
EA
l Pl
EA
计算中用得多
lE——N——弹性s横量(Mpa,
Gpa)
s
E
l EA E
实验中用得多
计算变形的两个实例:
1.一阶梯轴钢杆如图,AB段A1=200mm2,BC和CD段截面积相同A2=A3= 500mm2;l1= l2= l3=100mm。弹性模量E=200GPa,荷载P1=20kN,P2 =40kN 。试求:(1)各段的轴向变形;(2)全杆AD的总变形;
N1=-20kN(压) N2=-10kN(压) N3=+30kN(拉)
§3 应力
一、应力:
内力在杆件截面上某一点的密集程度

材料力学全ppt课件

材料力学全ppt课件
x
切应变(角应变)
M点处沿x方向的应变: M点在xy平面内的切应变为:
x
lim
x0
s x
g lim ( LM N)
MN0 2
ML0
类似地,可以定义 y , z ,g 均为无量纲的量。
目录
§1.5 变形与应变
例 1.2
c
已知:薄板的两条边
4、稳定性:
在载荷 作用下,构 件保持原有 平衡状态的 能力。
强度、刚度、稳定性是衡量构件承载能力 的三个方面,材料力学就是研究构件承载能力 的一门科学。
目录
§1.1 材料力学的任务
三、材料力学的任务
材料力学的任务就是在满足强度、刚度 和稳定性的要求下,为设计既经济又安全的构 件,提供必要的理论基础和计算方法。
目录
§1.3 外力及其分类
按外力与时间的关系分类
静载: 载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著, 称为静载。
动载: 载荷随时间而变化。
如交变载荷和冲击载荷
交变载荷
冲击载荷
目录
§1.4 内力、截面法和应力的概念
内力:外力作用引起构件内部的附加相互作用力。 求内力的方法 — 截面法
传统具有柱、梁、檩、椽的木 制房屋结构
建于隋代(605年)的河北赵州桥桥 长64.4米,跨径37.02米,用石2800 吨
目录
§1.1 材料力学的任务
古代建筑结构
建于辽代(1056年)的山西应县佛宫寺释迦塔 塔高9层共67.31米,用木材7400吨 900多年来历经数次地震不倒,现存唯一木塔
目录
§1.1 材料力学的任务
架的变形略去不计。计算得到很大的简
化。
C
δ1

材料力学课件全

材料力学课件全
塑性力学分析方法的特点:塑性力学分析方法考虑了材料在受力过程中发生的塑性变形,能够更准确地预测材料 的力学行为。
塑性力学分析方法的基本原理:塑性力学分析方法基于弹塑性理论,通过建立材料的本构关系,描述材料在受力 过程中的弹性和塑性行为。
塑性力学分析方法的应用:塑性力学分析方法广泛应用于金属材料、复合材料、陶瓷材料等领域的力学分析和设 计。
弹性与塑性的应用:在工程中如何利用材料的弹性与塑性性质来提高结构性能和安全性
强度与韧性
强度:材料抵抗外力破坏的能力,分为抗拉、抗压、抗弯等强度 韧性:材料在冲击、振动等外力作用下抵抗破坏的能力 影响因素:材料成分、组织结构、温度、环境等 实际应用:设计制造各种结构件,选择合适的材料,提高产品性能和安全性
航空航天领域
飞机设计:材料力学在飞机设计中发挥着重要作用,包括机身、机翼和尾翼的设计。 航天器设计:材料力学在航天器设计中同样重要,如卫星、火箭和空间站的结构设计。
飞行器材料选择:材料力学研究飞行器材料的性能,如强度、刚度和耐腐蚀性等,以确保飞行器的安全和可靠性。
飞行器结构优化:通过材料力学的研究,可以对飞行器的结构进行优化,提高飞行器的性能和效率。
土木工程领域
桥梁工程:利用材料力学原理设计桥梁结构,确保桥梁的稳定性和安全性。
房屋建筑:通过材料力学知识,合理设计房屋结构,提高房屋的抗震性能和承载能力。
水利工程:应用材料力学理论,研究水工结构的应力分布、变形和稳定性,保障水利工程的 安全运行。
交通工程:利用材料力学知识,研究道路、铁路、机场等交通设施的荷载分布、路基设计及 路面材料选择。
智能制造技术:结合人工智能、大数据、物联网等技术,实现制造过程 的自动化、智能化和数字化。
绿色制造技术:采用环保材料和工艺,减少制造过程中的能源消耗和环 境污染。

材料力学(全套精)单辉祖ppt课件

材料力学(全套精)单辉祖ppt课件
稳 定 问 题
.
工程构件的强度、刚度和稳定问题
稳 定 问 题
.
工程构件的强度、刚度和稳定问题
强 稳刚 度 定度
问 题
.
工程构件的强度、刚度和稳定问题
强度—不因发生断裂或塑性变形而失效; 刚度—不因发生过大的弹性变形而失效; 稳定性—不因发生因平衡形式的突然转 变而失效。
.
折断 轴 齿轮
齿轮 轴
内力)及变形。
F
FN
F
.
如何简化出火车车 轮轴的计算模型?
如何设计车轮轴 的横截面?
.
2)材料力学的特点:逻辑性强、概念丰富 3)学习方法:吃透概念、加强练习 4)本门课程的地位
是土木、机械和力学等专业的技术基础课; 是了解和学习相关专业知识和技术的第一门 重要课程。
.
§1-2 材料力学的基本假设
正确答案为[B]。负重爬坡时,链条在强大的拉力的作用下产生很大的变形, 并且超出齿轮和链条能够正常啮合的范围,导致链条打滑;打滑发生后自行 车又能正常骑行,说明打滑后链条完全恢复原状,所发生的变形为弹性变形。
2. 自行车负重爬坡出现“链条脱落”现象,并且无法安 装和继续前行,从力学的角度分析,此现象表明链条的
p
裂纹
虽然不折断,但变形过大, 影响正常传动。
P
失去原来的直线平衡状态
P
材料力学就是在满足强度、刚度 和稳定性要求的前提下,为设计既经 济又安全的构件,提供必要的理论基 础和计算方法。
本门课程的特点与地位 1)与理论力学的关系 理论力学研究刚体的外部效应(构件受到的外力)
A
B
FA
FB
F
F
材料力学研究变形固体的内部效应(构件受到的

材料力学(全套通用课件)单辉祖

材料力学(全套通用课件)单辉祖
的振动、变形和破坏。
动力分析方法通常采用有限元 法、有限差分法等数值计算方 法进行求解。
动力分析方法广泛应用于各种 工程领域,如地震工程、机械 振动等。
稳定性分析方法
稳定性分析方法是指对结 构在各种载荷作用下的稳 定性进行评估和分析的方 法。
稳定性分析方法通常采用 有限元法、有限差分法等 数值计算方法进行求解。
总结词
飞行器的热防护与声学降噪设计
详细描述
在飞行器的热防护与声学降噪设计中,材料力学可用于分 析材料的热性能和声学性能,例如对高温环境下材料的强 度和变形行为进行分析,以及对飞行器噪声的产生和传播 进行控制。
THANKS
感谢观看
总结词
建筑结构的稳定性与安全性
详细描述
在建筑结构设计中,材料力学主要应用于分析结构的稳定 性与安全性,确保建筑在承受风、地震等载荷时能够保持 稳定,防止发生倒塌等事故。
总结词
建筑结构的优化设计
详细描述
通过材料力学,可以优化建筑结构设计,例如优化梁、柱 、墙等结构件的设计,以提高建筑的经济性、美观性和节 能性。
详细描述
弯曲准则指出,当材料受到弯曲应力作用时,会产生弯曲变形。根据弯曲准则,弯曲应力和弯曲变形之间的关系 可以用以下公式表示:M=EIρmathbf{M} = EIρM=EIρ,其中Mmathbf{M}M是弯矩,EIEIEI是弯曲刚度, ρrhoρ是曲率。
扭转准则
总结词
扭转准则是描述材料在扭转应力作用下的行为准则。
许用应力
在一定条件下,材料所能承受的最 大应力。
03
02
刚度
材料抵抗变形的能力,通常指材料 在受力时发生的变形量。
安全系数
根据材料的许用应力确定的用于工 程设计的安全系数。

材料力学(全套483页PPT课件)-精选全文

材料力学(全套483页PPT课件)-精选全文
三、构件应有足够的稳定性
稳定性(stability)—构件承受外力时, 保持原有平衡状态的能力
4
材料力学的任务: 在满足强度、刚度和稳定性的要
求下,为设计既经济又安全的构件提 供必要的理论基础和计算方法。
5
1.2 变形固体的基本假设
1.连续性假设
假设在变形体所占有的空间内毫无空隙地充满了物质。即认 为材料是密实的。这样,构件内的一些力学量(如各点的位 移)可用坐标的连续函数表示,并可采用无限小的数学分析 方法。
2、横向变形、泊松比
横向线应变: b b1 b
bb
称为泊松比
32
是谁首先提出弹性定律? 弹性定律是材料力学中一个非常重要的基础定
律。一般认为它是由英国科学家胡克(1635一1703) 首先提出来的,所以通常叫做胡克定律。其实,在 胡克之前1500年,我国早就有了关于力和变形成正 比关系的记载。
1-1截面
A
X 0 N1 40 30 20 0 N1 N1 50kN(拉)
2-2截面
X 0 N 2 30 20 0
1 B 2C 3D 40 kN 30 kN 20 kN
N2
30 kN 20 kN
N2 10kN(拉)
3-3截面
N 50 kN
N3
20 kN
X 0
N 3 20 0 N 3 20 kN(压)
10 103 100 103 500 106
10 103 100 103 200 106
mm
0.015mm
计算结果为负,说明整根杆发生了缩短
35
静定汇交杆的位移计算,以例题说明。 例3 图示结构由两杆组成,两杆长度均为 l,B 点受垂直荷 载 P 作用。(1) 杆①为刚性杆,杆②刚度为 EA ,求节点 B 的位移;(2) 杆①、杆②刚度均为 EA,求节点 B 的位 移。

刘鸿文版材料力学课件全套

刘鸿文版材料力学课件全套

e
Mel EI
M e 2l 2EI
M 2l 2EI
横力弯曲:V
l
M 2 (x) dx 2E I ( x)
13-3 变形能的普遍表达式
F3
1
F2
F1
2 3
V
W
1 2
F11
1 2
F2 2
1 2
F3 3
即:线弹性体的变形能等于每一外力与其相应位移乘积的二分之一的 总和。
M (x)
M (x)
N ( x)
目录
疲劳极限
将若干根尺寸、材质相同的标准试样,在疲劳试验机上依次进行r = -1 的常幅疲劳试验。各试样加载应力幅 均不同,因此疲劳破坏所经历 的应力循环次数N 各不相同。
以 为纵坐标,以N 为横坐标(通常为对数坐标),便可绘出该材料的应 力—寿命曲线即S-N 曲线如图(以40Cr钢为例)
注:由于在r =-1时,max = /2,故S-N 曲线纵坐标也可以采用max 。
M e L2 2EI
A
( A ) F
( A ) Me
FL2 2EI
MeL EI
V
W
1 2
FwA
1 2
M
e
A
F 2 L3 6EI
MeF2 2EI
M
2 e
L
2EI
§13-4 互等定理
F1
F2
1
2
F1
11
21
F2
12
22
ij
荷载作用点
•位移发生点
F1
11
21
F2
12
22
先作用 F1,后作用 F2,外力所作的功:
1F 2
Fl EA

材料力学PPT课件

材料力学PPT课件
动荷载:随时间做急剧变化的荷载,以及作加速运动或 转动的系统中构件的惯性力。 在动荷载作用下,构件内部各点均有加速度。
动应力:构件中因动荷载而引起的应力。
实验证明,在动荷载作用下,如构件的应 力不超过比例极限,胡克定律仍然适用。
目录
3
§6.2 构件作等加速直线运动或等速转动时的动应力计算
I、构件作等加速直线运动时的动应力
P
Q
l
PQ
Q Q
M (PQ)l 4
绳子:
st
Q A
目录
5
I、构件作等加速直线运动时的动应力
2. 物体匀速地向上提升 与第一个问题等价
?
目录
6
I、构件作等加速直线运动时的动应力
3. 物体以加速度a向上提升
F Nd
按牛顿第二定律,或者说,
按达朗贝尔原理(动静法):
质点上所有力同惯性力形成平
a
衡力系。
4. 物体匀速地向上提升中改为以加速度a匀减速
F Nd
a Q
FNd
QaQ0 g
a
FNd
(1
)Q g
a
Kd
(1
) g
目录
9
I、构件作等加速直线运动时的动应力
5. 物体以匀速向下中改为以加速度 a 匀减速
F Nd
Q FNd(gaQ)0
a
FNd
(1
a)Q g
Q
Kd
(1
a) g
目录 10
I、构件作等加速直线运动时的动应力
Kd
(1
a) g
动荷因数
则 FNdKdFNst,d Kdst
强度条件: dKdst[]
目录 13
§6.2 构件作等加速直线运动或等速转动时的动应力计算
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列平衡方程:
M
Y 0 FN P
Mo(F)0
FN
P aM0
MPa
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,
即应力的概念。
pm
F A
—— 平均应力
F A C
p lim F A0 A
—— C点的应力
p
F4
F3
F4
应力是矢量,通常分解为
C
— 正应力 — 切应力
表面力:
分布力:
连续分布于物体表面上的力。如油缸内壁 的压力,水坝受到的水压力等均为分布力
集中力: 若外力作用面积远小于物体表面的尺寸,可 作为作用于一点的集中力。如火车轮对钢轨 的压力等
目录
§1.3 外力及其分类
按外力与时间的关系分类
静载: 载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著, 称为静载。
程,求出内力的值。
F5
F1
F2
F5
F2
m F4
m F3 F4 F3
目录
§1.4 内力、截面法和应力的概念 例如
F
a
a
F
M FS
F S= FM F a
目录
§1.4 内力、截面法和应力的概念
例 1.1 钻床 求:截面m-m上的内力。
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
ML0
类似地,可以定义 y , z ,g 均为无量纲的量。
目录
§1.5 变形与应变
例 1.2
c
已知:薄板的两条边
固定,变形后a'b, a'd
仍为直线。
250
b
200 0.025
角变形
——线段间夹角的变化 o
M
x
L'
x+s
M' N
N'x
目录
§1.5 变形与应变 y
g
3.应变
L'
正应变(线应变)
x方向的平均应变:
xm
s x
L o M x
x+s
M' N
N'x
切应变(角应变)
M点处沿x方向的应变: M点在xy平面内的切应变为:
x
s
lim
x0 x
g lim(LMN)
2 MN0
二、基本概念 1、构件:工程结构或 机械的每一组成部分。 (例如:行车结构中的 横梁、吊索等) 理论力学—研究刚体,研究力与运动的关系。 材料力学—研究变形体,研究力与变形的关系。 2、变形:在外力作用下,固体内各点相对位置的 改变。(宏观上看就是物体尺寸和形状的改变)
目录
§1.1 材料力学的任务
目录
§1.2 变形固体的基本假设
2、均匀性假设: 认为物体内的任何部分,其力学性能相同 普通钢材的显微组织 优质钢材的显微组织
目录
§1.2 变形固体的基本假设
3、各向同性假设: 认为在物体内各个不同方向的力学性能相同
(沿不同方向力学性能不同的材料称为各向异性 材料。如木材、胶合板、纤维增强材料等)
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
目录
§1.1 材料力学的任务
四、材料力学的研究对象 构件的分类:杆件、板壳*、块体*
4、小变形与线弹性范围
A
认为构件的变形极其微小,
比构件本身尺寸要小得多。
如右图,δ远小于构件的最小尺寸,
所以通过节点平衡求各杆内力时,把支
架的变形略去不计。计算得到很大的简
化。
C
δ1
B δ2
F
目录
§1.3 外力及其分类
外力:来自构件外部的力(载荷、约束反力)
按外力作用的方式分类
体积力:连续分布于物体内部各点 的力。如重力和惯性力
{弹性变形 — 随外力解除而消失 塑性变形(残余变形)— 外力解除后不能消失 刚度:在载荷作用下,构件抵抗变形的能力。 3、内力:构件内由于 发生变形而产生的相 互作用力。(内力随 外力的增大而增大) 强度:在载荷作用下, 构件抵抗破坏的能力。
目录
§1.1 材料力学的任务
4、稳定性:
在载荷 作用下,构 件保持原有 平衡状态的 能力。
目录
§1.1 材料力学的任务
古代建筑结构
建于辽代(1056年)的山西应县佛宫寺释迦塔 塔高9层共67.31米,用木材7400吨 900多年来历经数次地震不倒,现存唯一木塔
目录
§1.1 材料力学的任务
四川彩虹桥坍塌
目录
§1.1 材料力学的任务
比萨斜塔
美国纽约马尔克大桥坍塌
§1.1 材料力学的任务
第一章 绪论
§1.1 材料力学的任务 §1.2 变形固体的基本假设 §1.3 外力及其分类 §1.4 内力、截面法及应力的概念 §1.5 变形与应变 §1.6 杆件变形的基本形式
目录
§1.1 材料力学的任务
一、材料力学与工程应用
古代建筑结构
传统具有柱、梁、檩、椽的木 制房屋结构
建于隋代(605年)的河北赵州桥桥 长64.4米,跨径37.02米,用石2800 吨
F3
应力的国际单位为 Pa(帕斯卡) 1Pa= 1N/m2
1kPa=103N/m2 1MPa=101.5 变形与应变
1.位移 MM'
M'
刚性位移; 变形位移。
2.变形
M
物体内任意两点的相对位置发生变化。
取一微正六面体
y
g
两种基本变形:
线变形
L
—— 线段长度的变化
强度、刚度、稳定性是衡量构件承载能力 的三个方面,材料力学就是研究构件承载能力 的一门科学。
目录
§1.1 材料力学的任务
三、材料力学的任务
材料力学的任务就是在满足强度、刚度 和稳定性的要求下,为设计既经济又安全的构 件,提供必要的理论基础和计算方法。
若:构件横截面尺寸不足或形状
不合理,或材料选用不当
动载: 载荷随时间而变化。
如交变载荷和冲击载荷
交变载荷
冲击载荷
目录
§1.4 内力、截面法和应力的概念
内力:外力作用引起构件内部的附加相互作用力。
求内力的方法 — 截面法
(1)假想沿m-m横截面将 杆切开
(2)留下左半段或右半段 (3)将弃去部分对留下部
分的作用用内力代替 F1 (4)对留下部分写平衡方
材料力学主要研究杆件
{ 直杆—— 轴线为直线的杆 曲杆—— 轴线为曲线的杆
{等截面杆——横截面的大小 形状不变的杆 变截面杆——横截面的大小 或形状变化的杆 等截面直杆 ——等直杆
目录
§1.2 变形固体的基本假设
在外力作用下,一切固体都将发生变形, 故称为变形固体。在材料力学中,对变形固体 作如下假设: 1、连续性假设: 认为整个物体体积内毫无空隙地充满物质 灰口铸铁的显微组织 球墨铸铁的显微组织
相关文档
最新文档