人教版七年级上册数学有理数的有关概念强化练习

合集下载

人教版七年级数学上册《有理数相关概念》专题训练-附参考答案

人教版七年级数学上册《有理数相关概念》专题训练-附参考答案

人教版七年级数学上册《有理数相关概念》专题训练-附参考答案目录正数和负数 ...................................................................................................................................... 1 有理数概念及其分类 ...................................................................................................................... 2 有理数的分类 .................................................................................................................................. 2 有理数的应用 .................................................................................................................................. 5 数轴的定义 ...................................................................................................................................... 8 数轴上表示有理数 .......................................................................................................................... 9 数轴上表示有理数(带字母) .................................................................................................... 10 数轴的性质 .................................................................................................................................... 12 数轴上的应用 ................................................................................................................................ 13 相反数的定义 ................................................................................................................................ 15 相反数的性质 ................................................................................................................................ 15 相反数与数轴 ................................................................................................................................ 16 绝对值的定义 ................................................................................................................................ 17 含字母的绝对值化简 .................................................................................................................... 18 非负性 ............................................................................................................................................ 20 绝对值求值 (21)【例1】在数1- 0 3.05- π- 2+ 12-中 负数有( )A .1个B .2个C .3个D .4个【解答】解:在数1- 0 3.05- π- 2+ 12-中 负数有1- 3.05- π- 12- 共4个.故选:D .【变式训练1】中国是最早采用正负数表示相反意义的量的国家.某仓库运进小麦6吨 记为6+吨 那么仓库运出小麦8吨应记为( )吨. A .8+B .8-C .8±D .2-【解答】解:仓库运进小麦6吨 记为6+吨∴仓库运出小麦8吨应记为8-吨故选:B .【变式训练2】若收入3元记为3+ 则支出2元记为( )A .2-B .1-C .1D .2【解答】解:由题意知 收入3元记为3+ 则支出2元记为2- 故选:A .【变式训练3】冬残奥会举办最理想的温度是17C ︒-至10C ︒ 若10C ︒表示零上10C ︒ 那么17C ︒-表示()A .零上17C ︒B .零上27C ︒C .零下17C ︒D .零下17C ︒-【解答】解:17C ︒-表示零下17C ︒ 故选:C .【例2】下列各数中属于负整数的是( ) A .0B .3C .5-D . 1.2-【解答】解:A 0为整数 故选项不符合题意B 3为负正整数 故选项不符合题意C 5-为负整数 故选项符合题意D 1.2-为负分数 故选项不符合题意.故选:C .【变式训练1】在 3.5- 227 0.161161116⋯ 2π中 有理数有( )个. A .1B .2C .3D .4【解答】解:A 3.5-是负分数 故是有理数B227是正分数 故为有理数 C 0.161161116⋯是无限不循环小数 是无理数 故不是有理数D2π是含有π的数 是无理数 故不是有理数 所以有理数有两个 故选:B . 【变式训练2】在122- 3.5+ 0 0.7- 5 13-中 负分数有( )A .1个B .2个C .3个D .4个【解答】解:在122- 3.5+ 0 0.7- 5 13-中负分数有0.7- 13- 共有2个故选:B .【变式训练3】下列说法中 正确的是( ) A .正有理数和负有理数统称有理数 B .正分数 零 负分数统称分数 C .零不是自然数 但它是有理数 D .一个有理数不是整数就是分数【解答】解:A .正有理数 零和负有理数统称有理数 故本选项不合题意B .正分数和负分数统称分数 故本选项不合题意C .零是自然数 也是有理数 故本选项不合题意D .一个有理数不是整数就是分数 说法正确 故本选项符合题意.故选:D .有理数的分类 有理数的分类:①按定义 有理数可分为:②按正 负 有理数可分为:【例3】将下列各数填在相应的圆圈里: 6+ 8- 75 0.4- 0 23%37 2006- 1.8- 34-.【解答】解:如图:【变式训练1】把下列各数分别填在相应的集合内:11- 4.8 73 2.7-163.141592634-73正分数集合:{ 4.8 163.141592673}⋯负分数集合:{}⋯非负整数集合:{}⋯非正整数集合:{}⋯.【解答】解:正分数集合:{4.8163.14159267}3⋯负分数集合:{2.7-3} 4-⋯非负整数集合:{730}⋯非正整数集合:{11-0}⋯.故答案为:4.8 163.1415926732.7 -3 4 -73 011-【变式训练2】把下列各数分别填入相应的集合里.224- 5 3.14 π3-0.15.(1)整数集合:{0 5 3-...}(2)分数集合:{...}(3)有理数集合:{...}(4)非负数集合:{...}.【解答】解:(1)整数集合:{0 5 3...}-(2)分数集合:22{4- 3.14 0.15...}(3)有理数集合:{0224- 5 3.14 3-0.15...}(4)非负数集合:{0 5 3.14 π0.15...}.故答案为:0 5 3-224- 3.14 0.150224- 5 3.14 3-0.150 5 3.14 π0.15.【变式训练3】把下列各数分别填入相应的集合:6+0 8-π 4.8-7-2270.658-.整数集合{6+0 8-7-}分数集合{}正有理数集合{}负有理数集合{}非负有理数集合{}自然数集合{}.【解答】解:整数集合{6+0 8-7}-分数集合{4.8-2270.65}8-正有理数集合{6+2270.6}负有理数集合{8- 4.8-7-5} 8 -非负有理数集合{6+0 2270.6}自然数集合{6+0}.故答案为:6+0 8-7- 4.8-2270.658-6+2270.6 8- 4.8-7-58-6+02270.6 6+有理数的应用【例4】某工艺厂计划一周生产工艺品2800个平均每天生产400个但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正减产记为负):(2)已知该厂实行每周计件工资制每生产一个工艺品可得70元若超额完成任务则超过部分每个另奖60元少生产一个扣100元.试求该工艺厂在这一周应付出的工资总额.【解答】解:(1)计划一周生产工艺品2800个=++--+-+-=(个)∴这周生产的数量2800(6261611158)2810(2)由(1)可知本周比计划多生产10个=⨯+⨯=(元).∴这一周应付出的工资2810706010197300【变式训练1】A水果超市最近新进了一批百香果每斤进价10元为了合理定价在第一周试行机动价格卖出时每斤以15元为标准超出15元的部分记为正不足15元的部分记为负超市记录第一周百香果的售价情况和售出情况:)第一周星期三超市售出的百香果单价为15元这天的利润是元.(2)第一周超市出售此种百香果的收益如何?(盈利或亏损的钱数)(3)超市为了促销这种百香果决定从下周一起推出两种促销方式:方式一:购买不超过5斤百香果每斤20元超出5斤的部分每斤降价4元方式二:每斤售价17元.林老师决定下周在A水果超市购买40斤百香果通过计算说明应选择上述两种促销方式中的哪种方式购买更省钱.【解答】解:(1)卖出时每斤以15元为标准表格中的数据表示超出15元的部分记为正不足15元的部分记为负∴星期三超市售出的百香果单价为15元这天的利润是10(1510)50⨯-=(元)故答案为:15(2)12023501013021555450225⨯-⨯+⨯-⨯+⨯+⨯-⨯=-(元)-⨯++++++=⨯=(元)(1510)(2035103015550)5165825-+=(元)(225)825600所以第一周超市出售此种百香果盈利600元(3)方式一:205(405)(204)660⨯+-⨯-=(元)方式二:4017680⨯=(元)660680<∴选择方式一购买更省钱.【变式训练2】体育课上某小组的8名男同学进行了100米测验达标成绩为15秒下表是这个小组8名男生的成绩记录(“+“表示成绩大于15秒).(2)这个小组男生的达标率为多少?(3)这个小组男生的平均成绩是多少秒?【解答】解:(1)15 1.213.8-=(秒).故这个小组男生的最好成绩是13.8秒(2)6100%75%8⨯=.故这个小组男生的达标率为75%(3)0.60.8 1.20.900.60.40.32-+--++--=-15(2)814.75+-÷=(秒).答:这个小组男生的平均成绩是14.75秒.【变式训练3】某粮仓原有大米148吨某一周该粮仓大米的进出情况如下表:(当天运进大米8吨记作8+吨:当天运出大米8吨记作8-吨.)运进或运出大米多少吨?(2)若大米进出库的装卸费用为每吨15元求这一周该粮仓需要支付的装卸总费用.【解答】解:(1)14832262316262198m-+--++-=解得10m=-.答:星期五该粮仓是运出大米运出大米10吨(2)|32|26|23||16||10|26|21|154-++-+-+-++-=154152310⨯=(元).答:这一周该粮仓需要支付的装卸总费用为2310元.【例5】如图是一些同学在作业中所画的数轴其中画图正确的是() A.B.C.D.【解答】解:A刻度不均匀故错误B正确C数据顺序不对故错误D没有正方向故错误.故选:B.【变式训练1】在下列图中正确画出的数轴是()A.B.C.D.【解答】A单位长度不一致故该选项不符合题意B有原点正方向单位长度故该选项符合题意C没有原点故该选项不符合题意D没有正方向故该选项不符合题意.故选:B.【变式训练2】如图所示下列数轴的画法正确的是()A.B.C.D.【解答】解:A单位长度不一致故此选项不符合题意B缺少原点故此选项不符合题意C规定了原点单位长度正方向的直线叫做数轴故此选项符合题意D缺少正方向故此选项不符合题意故选:C.【变式训练3】下列各图是四位同学所画的数轴其中正确的是() A.B.C.D.【解答】解:A选项中数轴缺少原点A∴选项不合题意B选项单位长度不一致B∴选项正确C选项中负方向1-和2-标错了C∴选项不合题意D选项中符合数轴的三要素D∴选项不合题意.故选:D.【例6】如图数轴上一个点被叶子盖住了这个点表示的数可能是() A.2.3B. 1.3-C.3.7D.1.3【解答】解:叶子盖住的点位于2和3之间四个选项中的数只有2.3这个适合这个位置故选:A.【变式训练1】如图在数轴上有M N两点则两点表示的数字之和不可能()A .2B .4-C . 3.45-D .7-【解答】解:设点M N 在数轴上所表示的数为m n 且0n m << 由于点N 离原点的距离比点M 到原点的距离要大0m n ∴<<-0m n ∴+< 即两点表示的数字之和不可能为正数.故选:A .【变式训练2】数32-在数轴上的位置可以是( )A .点A 与点B 之间 B .点B 与点O 之间C .点O 与点D 之间 D .点D 与点E 之间【解答】解:302-< 是负数∴在原点左侧3212-<-<-∴数32-在数轴上的位置可以是点A 与点B 之间 故选:A .【变式训练3】如图 点A 是数轴上一点 则点A 表示的数可能为( )A . 1.5-B . 2.5-C .2.5D .1.5【解答】解:根据图示可得点A 表示的数在2-和1-之间 四个选项中只能是 1.5-. 故选:A .【例7】如图 数轴上A B 两点所对应的有理数分别为a 和b 则a b -的结果可能是( )A .1-B .1C .2D .3【解答】解:由图可知 210.51b a -<<-<<<a b ∴-的结果可能是C .故选:C .【变式训练1】如图 点A B C D 四个点在数轴上表示的数分别为a b c d 则下列结论中 错误的是( )A .0a c +<B .0b a ->C .0ac >D .0b d< 【解答】解:根据数轴上点的位置得:0a b c d <<<< ||||||||c b d a <<<0a c ∴+< 0b a -> 0ac <0bd<. 故选:C .【变式训练2】有理数a b c 在数轴上所对应的点如图所示 则下列结论正确的是( )A .0a b +>B .0a b ->C .0a c +<D .0b c +>【解答】解:由数轴可知0b c a c b <-<<<<-A 0a b +< 故A 不符合题意.B 0a b -> 故B 符合题意.C 0a c +> 故C 不符合题意.D 0b c +< 故D 不符合题意.故选:B .【变式训练3】如图 若数轴上A B 两点对应的有理数分别为a b 则a b +的值可能是( )A .2B .1C .1-D .2-【解答】解:由图可知 32a -<<- 12b <<a b ∴+的结果可能是1-.故选:C .【例8】一只蚂蚁沿数轴从原点向右移动了3个单位长度到达点A则点A表示的数是() A.3B.3-C.0D.3±【解答】解:由题意知蚂蚁沿数轴从原点向右移动了3个单位长度到达点A首先点A表示的数是正数又与原点相距三个单位长度∴点A表示的数是3故选:A.【变式训练1】下列各数在数轴上所对应的点与原点的距离最远的是()A.2B.1C. 1.5-D.3-【解答】解:A.2到原点的距离是2个长度单位不符合题意B.1到原点的距离是1个长度单位不符合题意C. 1.5-到原点的距离是1.5个长度单位不符合题意D.3-到原点的距离是3个长度单位符合题意∴在数轴上所对应的点与原点的距离最远的点表示的数是3-.故选:D.【变式训练2】数轴上表示数为a和4a-的点到原点的距离相等则a的值为() A.2-B.2C.4D.不存在【解答】解:由题意知:a与4a-互为相反数40a a∴+-=解得:2a=.故选:B.【变式训练3】如图A B C D E为某未标出原点的数轴上的五个点且AB BC CD DE===则点C所表示的数是()A.2B.7C.11D.12【解答】解:17(3)20AE=--=又AB BC CD DE===AB BC CD DE AE+++=154DE AE ∴== D ∴表示的数是17512-= C 表示的数是17527-⨯=故选:B . 数轴上的应用【例9】如图 点O 为数轴的原点 点A B 均在数轴上 点B 在点A 的右侧 点A 表示的数是5-65AB OA =.(1)求点B 表示的数(2)将点B 在数轴上平移3个单位 得到点C 点M 是AC 的中点 求点M 表示的数.【解答】解:(1)65AB OA = 5OA =6AB ∴=651BO AB AO ∴=-=-=则点B 表示的数是1(2)当点B 向左平移时 3CB =∴点C 表示的数是2-点M 是AC 的中点∴点M 表示的数是5(2)3.52-+-=- 当点B 向右平移时 3CB =C ∴表示的数是4点M 是AC 的中点M ∴表示的数是54122-+=- 所以点M 表示的数是 3.5-或12-.【变式训练1】在今年720特大洪水自然灾害中 一辆物资配送车从仓库O 出发 向东走了4千米到达学校A 又继续走了1千米到达学校B .然后向西走了9千米到达学校C 最后回到仓库O .解决下列问题:(1)以仓库O 为原点 以向东为正方向 用1个单位长度表示1千米 画出数轴.并在数轴上表示A BC 的位置(2)结合数轴计算:学校C 在学校A 的什么方向 距学校A 多远?(3)若该配送车每千米耗油0.1升 在这次运送物资回仓的过程中共耗油多少升? 【解答】解:(1)如图(2)4(4)8--=(千米)答:学校C 在学校A 的西边 距学校8A 千米 (3)419418+++=(千米)180.1 1.8⨯=(升)答:共耗油1.8升.【变式训练2】出租车司机小刘某天上午营运全是在南北走向的某条大街上进行的 如果规定向北为正 向南为负 他这天上午的行程是(单位:千米):12+ 8- 10+ 13- 10+ 12- 6+ 15- 11+14-.(1)将最后一名乘客送达目的地时 小张距上午出发点的距离是多少千米?在出发点的什么方向? (2)若汽车耗油量为0.6升/千米 出车时 邮箱有油67.4升 若小张将最后一名乘客送达目的地 再返回出发地 问小张今天下午是否需要加油?若要加油至少需要加多少才能返回出发地?若不用加油 请说明理由.【解答】解:(1)(12)(8)(10)(13)(10)(12)(6)(15)(11)(14)13++-+++-+++-+++-+++-=-(千米). 答:小张距上午出发点的距离是13千米 在出发点的南方 (2)(12810131012615111413)0.674.4++++++++++⨯=(升)74.467.47-=(升)答:需要加油 要加7升油.【变式训练3】如图 已知数轴上点O 是原点 点A 表示的有理数是2- 点B 在数轴上 且满足3OB OA =.(1)求出点B 表示的有理数(2)若点C 是线段AB 的中点 请直接写出点C 表示的有理数. 【解答】解:(1)3OB OA = 2AO =326OB ∴=⨯=当点B 在点A 的左侧时 点B 表示的数为6- 当点B 在点A 的右侧时 点B 表示的数为6 综上 点B 表示的有理数是6±.(2)当点B 在点A 的左侧时 点C 表示的有理数为:|6(2)|22242-----=--=- 当点B 在点A 的右侧时|6(2)|222---=故点C 表示的有理数为4-或【例10】2022的相反数是( ) A .2022-B .2022C .12022D .12022-【解答】解:2022的相反数是2022-. 故选:A .【变式训练1】23-的相反数是( )A .32-B .32C .23 D .23-【解答】解:23-的相反数是:23.故选:C .【变式训练2】相反数等于它本身的数是( ) A .1B .0C .1-D .0或1±【解答】解:相反数等于它本身的数是 故选:B .【变式训练3】一个数的相反数是最大的负整数 则这个数为( ) A .1- B .0C .1D .不存在这样的数【解答】解:最大的负整数是1- 根据概念 (1-的相反数)(1)0+-= 则1-的相反数是1 故选:C .【例11】若1x -与2y -互为相反数 则2022()x y -= . 【解答】解:1x -与2y -互为相反数 120x y ∴-+-= 1x y ∴-=-∴原式2022(1)1=-=.故答案为:【变式训练1】若m n 为相反数 则(2021)m n +-+为 2021- . 【解答】解:m n 为相反数0m n ∴+=(2021)(2021)2021m n m n ∴+-+=++-=-.故答案为:2021-.【变式训练2】若a b 互为相反数 则(2)a b --的值为 2- . 【解答】解:因为a b 互为相反数 所以0a b +=所以(2)22022a b a b a b --=-+=+-=-=-. 故答案为:2-.【变式训练3】若a b 互为相反数 则(4)a b +-的值为 4- . 【解答】解:由题意得:0a b +=. (4)4044a b a b ∴+-=+-=-=-.故答案为:4-.相反数与数轴【例12】数轴上点A 表示3- B C 两点所表示的数互为相反数 且点B 到点A 的距离为 3 则点C 所表示的数应是 .【解答】解:设B 点表示的数是x |(3)|3BA x =--=解得0x =或6x =-∴点B 表示0或6-由B C 两点所表示的数互为相反数 得C 点表示的数是0或6故答案为:0或【变式训练1】如图 数轴上表示数2的相反数的点是( )A .点NB .点MC .点QD .点P【解答】解:2的相反数是2- 点N 表示2-∴数轴上表示数2的相反数的点是点N .故选:A .【变式训练2】已知数轴上A B 两点间的距离是6 它们分别表示的两个数a b 互为相反数()a b > 那么a = b = . 【解答】解:a b 互为相反数 ||||a b ∴=A B 两点间的距离是6||||3a b ∴==a b > 3a ∴= 3b =-.故答案为:3 3-.【变式训练3】一个数在数轴上表示的点距原点3个单位长度 且在原点的左边 则这个数的相反数是 .【解答】解:设此数是x 则||3x = 解得3x =±. 此数在原点左边∴此数是3- 3-的相反数是3故答案为:3绝对值的定义【例13】3-的绝对值是( )A .13-B .3C .13D .3-【解答】解:|3|3-=. 故选:B .【变式训练1】有理数2- 12- 0 32中 绝对值最大的数是( )A .2-B .12-C .0D .32【解答】解:2-的绝对值是2 12-的绝对值是12 0的绝对值是0 32的绝对值是32.312022>>> 2∴-的绝对值最大.故选A .【变式训练2】在3- 0.3 0 13这四个数中 绝对值最小的数是( ) A .3-B .0.3C .0D .13【解答】解:|3|3-= |0.3|0.3= |0|0= 11||33=100.333<<<∴绝对值最小的数是故选:C .【变式训练3】下列说法中正确的是( ) A .两个负数中 绝对值大的数就大 B .两个数中 绝对值较小的数就小 C .0没有绝对值D .绝对值相等的两个数不一定相等【解答】解:两个负数比较 绝对值越大 对应的数越小A ∴选项不合题意B 选项不合题意0的绝对值为0 C ∴选项不合题意绝对值相等的两个数可能相等 也可能互为相反数D ∴选项正确故选:D .【例14】有理数x y 在数轴上对应点如图所示:(1)在数轴上表示x - ||y (2)试把xy 0 x - ||y 这五个数从小到大用“<”号连接(3)化简:||||||x y y x y +--+. 【解答】解:(1)如图(2)根据图象 0||x y y x -<<<<(3)根据图象 0x > 0y < 且||||x y >0x y ∴+> 0y x -<||||||x y y x y ∴+--+ x y y x y =++--y =.【变式训练1】有理数a b c 在数轴上的位置如图:(1)判断正负 用“>”或“<”填空:b c - < 0 b a - 0 c a - (2)化简:||||||b c b a c a -+---.【解答】解:(1)观察数轴可知:0a b c <<<0b c ∴-< 0b a -> 0c a ->.故答案为:< > >.(2)0b c -< 0b a -> 0c a ->||||||0b c b a c a c b b a c a ∴-+---=-+--+=.【变式训练2】有理数a b c 在数轴上的位置如图(1)判断正负 用“>”或“<”填空:c b - > 0 a b + 0 a c - (2)化简:||||2||c b a b a c -++--.【解答】解:(1)由图可知 0a < 0b > 0c > 且||||||b a c <<0c b -> 0a b +< 0a c -<故答案为:> < <(2)原式[()][2()]c b a b a c =-+-+---22c b a b a c =---+- 2a b c =--.【变式训练3】已知a b c 三个数在数轴上对应点如图 其中O 为原点 化简|||2|||||b a a b a c c ---+--.【解答】解:根据数轴可得0c b a <<<|||2|||||(2)()20b a a b a c c a b a b a c c a b a b a c c ∴---+--=---+---=--++-+=.【例15】若|3||5|0x y ++-= 那么的值是多少? 【解答】解:由题意得 30x += 50y -= 解得3x =- 5y = 所以 352x y +=-+= 答:x y +的值是【变式训练1】已知|3||5|0a b -++= 求: (1)a b +的值 (2)||||a b +的值.【解答】解:|3||5|0a b -++=30a ∴-= 50b += 3a ∴= 5b =-(1)3(5)2a b +=+-=- (2)|||||3||5|358a b +=+-=+=.【变式训练2】如果|3|a -与|5|b +互为相反数 求a b -的值. 【解答】解:|3|a -与|5|b +互为相反数|3||5|0a b ∴-++=又|3|0a - |5|0b +30a ∴-= 50b +=解得3a = 5b =-3(5)358a b ∴-=--=+=.【变式训练3】已知|2||2|0x y x -+-= 求20202019x y -的值.【解答】解:|2||2|0x y x -+-=20x ∴-= 20y x -=2x ∴= 1y =则202020192020220192021x y -=⨯-=.绝对值求值【例16】已知||3a = ||5b = 且a b > 求2b a -的值.【解答】解:因为||3a = ||5b =所以3a =或3- 5b =或5-.又因为a b >所以3a =或3- 5b =-①当3a = 5b =-时252311b a -=--⨯=-.②当3a =- 5b =-时252(3)1b a -=--⨯-=.综上所述:2b a -的值为11-或【变式训练1】已知||3x = ||7y =.(1)若x y < 求x y +的值(2)若0xy < 求x y -的值.【解答】解:由题意知:3x =± 7y =±(1)x y <3x ∴=± 7y =10x y ∴+=或 4(2)0xy <3x ∴= 7y =-或3x =- 7y =10x y ∴-=±1.如果向东走5米记作:“5+” 那么向西走8米记作( )A .8+B .8-C .5+D .5- 【解答】解:向东走5米记作5+米∴向西走8米记作8-米.故选:B .2.如果水库的水位高于正常水位2m 时 记作2m + 那么低于正常水位3m 时 应记作( )A .3+ mB .3- mC .13+ mD .13- m 【解答】解:如果水库的水位高于正常水位2m 时 记作2m + 那么低于正常水位3m 时 应记作3m -. 故选:B .3.下面两个数互为相反数的是( )A .3-和(3)-+B .|2|-和|2|C .712和127D .14和0.25- 【解答】解:A (3)3-+=- 所以两数相等 不合题意B |2|2-= |2|2= 所以两数相等 不合题意C 712127不互为相反数 不合题意 D10.254= 所以互为相反数 符合题意. 故选:D .4.在0.2 (5)-- 1|2|2-- 15% 0 35(1)⨯- 22- 2(2)--这八个数中 非负数有( ) A .4个 B .5个 C .6个 D .7个【解答】解:0.20> (5)0--> 15%0> 00=是非负数故选:A .5.在一次数学活动课上 某数学老师在4张同样的纸片上各写了一个正整数 从中随机取2张 并将它们上面的数相加 重复这样做 每次所得的和都是5 6 7 8中的一个数 并且这4个数都能取到 根据以上信息 下列判断正确的是( )A .四个正整数中最小的是1B .四个正整数中最大的是8C .四个正整数中有两个是2D .四个正整数中一定有3【解答】解:相加得5的两个整数可能为:1 4或2 3.相加得6的两个整数可能为:1 5或2 4或3 3.相加得7的两个整数可能为:1 6或2 5或3 4.相加得8的两个整数可能为:1 7或2 6或3 5或4 4.每次所得两个整数和最小是5∴最小两个数字为2 3每次所得两个整数和最大是8∴最大数字为4或5当最大数字为4的时四个整数分别为2 3 4 4.当最大数字为5时四个整数分别为2 3 3 5.∴四个正整数中一定有3.故选:D.6.点M N P和原点O在数轴上的位置如图所示点M N P表示的有理数为a b c(对应顺序暂不确定).如果0>那么表示数c的点为()+>ab acbc<0b cA.点M B.点N C.点P D.点O【解答】解:0bc<∴c异号b+>b c所以M表示b c中的负数P表示其中的正数所以M表示数c.这样也符合条件ab ac>故选:A.7.一辆货车从超市出发向东走了3km到达小彬家继续向东走了1.5km到达小颖家然后向西走了9.5km到达小明家最后回到超市.小明家距小彬家()km.A.4.5B.6.5C.8D.13.5【解答】解:由题意画图如下:∴小明家距小彬家9.5 1.58()km -=故选:C .8.下列各组数中 互为相反数的是( )A .43和34-B .13和0.333-C .14和4D .a 和a -【解答】解:A 43和34- 虽然符号相反 但是绝对值不相等 所以它们不是相反数 故A 错误 B13和0.333- 符号相反 但绝对值不相等 所以它们不是相反数 故B 错误 C 14和4 符号相同 所以它们不是相反数 故C 错误 D a 和a - 符号相反 绝对值相等 所以它们互为相反数 故D 正确.故选:D .9.在现代生活中 手机微信支付已经成为一种新型的支付方式.如果微信零钱收入100元记为100+元 那么微信零钱支出36元记为 36-元 .【解答】解:如果微信零钱收入100元记为100+元 那么微信零钱支出36元记为36-元.故答案为:36-元.10.温度升高1C ︒记为1C ︒+ 气温下降9C ︒记为 9C ︒- 【解答】解:温度升高1C ︒记为1C ︒+∴气温下降9C ︒记为:9C ︒-.故答案为:9C ︒-.11.把25%化成小数是 0.25 .【解答】解:把25%化成小数是:0.25故答案为:0.25.12.定义:对于任意两个有理数a b 可以组成一个有理数对(,)a b 我们规定(,)1a b a b =+-.例如(2,5)2512-=-+-=.根据上述规定解决下列问题:(1)有理数对(2,1)-= 0(2)当满足等式(5,32)5x m -+=的x 是正整数时 则m 的正整数值为 .【解答】解:(1)根据题中的新定义得:原式2(1)1110=+--=-=.故答案为:0(2)已知等式化简得:53215x m -++-= 解得:1123m x -= 由x m 都是正整数 得到1129m -=或1123m -=解得:1m =或4.故答案为:1或4.13.测量一幢楼的高度 七次测得的数据分别是:79.8m 80.6m 80.4m 79.1m 80.3m 79.3m 80.5m .(1)以80为标准 用正数表示超出部分 用负数表示不足部分 写出七次测得数据对应的数(2)求这七次测量的平均值(3)写出最接近平均值的测量数据 并说明理由.【解答】解:(1)若以80为标准 用正数表示超出部分 用负数表示不足部分 他们对应的数分别是: 0.2- 0.6+ 0.4+ 0.9- 0.3+ 0.7- 0.5+(2)80(0.20.60.40.90.30.70.5)780()m +-++-+-+÷=答:这七次测量的平均值是80m .(3)参考(1)可得:因为|0.2|0.2-= 在七次测得数据中绝对值最小所以绝对值最接近80m 的测量数据为79.8m答:最接近平均值的测量数据为79.8m .14.暴雨天气 交通事故频发 一辆警车从位于一条南北走向的主干道上的某交警大队出发 一整天都在这条主干道上执勤和处理事故 如果规定向北行驶为正 这辆警车这天处理交通事故行车的里程(单位:千米)如下:4+ 5- 2- 3- 6+ 3- 2- 7+ 1+ 7- 请问:(1)第几个交通事故刚好发生在某交警大队门口?(2)当交警车辆处理完最后一个事故时 该车辆在哪个位置?(3)如果警车的耗油量为每百千米12升 那么这一天该警车从出发值勤到回到交警大队共耗油多少升?【解答】解:(1)(4)(5)(2)(3)(6)0++-+-+-++=∴第5个交通事故刚好发生在某交警大队门口(2)(4)(5)(2)(3)(6)(3)(2)(7)(1)(7)4++-+-+-+++-+-+++++-=-∴当交警车辆处理完最后一个事故时 该车辆在交警大队南边4千米的位置(3)12(|4||5||2||3||6||3||2||7||1||7||4|) 5.28100++-+-+-+++-+-+++++-+-⨯=(升) 答:这一天该警车从出发值勤到回到交警大队共耗油5.28升.15.已知下列各数:5-13 4 0 1.5- 5 133 12-.把上述各数填在相应的集合里: 正有理数集合:{ 13 4 5 133}⋯ 负有理数集合:{ }⋯分数集合:{ }⋯.【解答】解:大于0的有理数称为正有理数 ∴正有理数有13 4 5 133小于0的有理数称为负有理数∴负有理数有5- 1.5- 12- 正分数和负分数都是分数 且小数也是分数 ∴分数有131.5- 133 12-. 故答案为134 5 133 5- 1.5- 12- 13 1.5- 133 12-.。

1_2_1 有理数的概念 课时训练(含答案)人教版(2024)数学七年级上册

1_2_1 有理数的概念 课时训练(含答案)人教版(2024)数学七年级上册

1.2.1 有理数的概念 课时训练一、单选题1.下列四个数中,负整数是( )A .2024B .C .0D .2.下列数中不是有理数的是( )A .﹣3.14B .0C .D .π3.下列说法不正确的是( )A .0既不是正数,也不是负数B .1是绝对值最小的正数C .整数和分数统称有理数D .圆周率π精确到百分位约是3.144.在-4, ,0, ,3.14159, ,0.1010010001…有理数的个数有( )A .2个B .3个C .4个D .5个5.在,,1.23,0这四个数中,属于无理数的是( )A .B .C .1.23D .06.实数,,2,-6中,为负整数的是( )A .B .C .2D .- 67.大于-2.5而不大于3的整数有( ).A .4个B .5个C .6个D .7个二、填空题8.若 表示最小的正整数,表示最大的负整数, 表示绝对值最小的有理数,则 .9.,这7个数中非负数的个数为 .10.在,3.14159,,-8,,0.6,0,,中是无理数的个数有 个.11.设三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为4、、b的形式,则(b-a)3的值为 .三、解答题12.把下列各数填入相应的横线上:,,,,,负数:{ };非负数:{ };整数:{ };分数:{ }。

13.有一位同学对老师说,因为像2,+2.37,…等正数是有理数,﹣1,﹣3,﹣6,…等负数也是有理数,同样0也是有理数,因此得出结论:有理数包括正数、0和负数.请问这位同学得出的结论是否正确?若不正确,请说明理由14.七(2)班两位同学在打羽毛球,一不小心球落在离地面高为6米的树上.其中一位同学赶快搬来一架长为7米的梯子,架在树干上,梯子底端离树干2米远,另一位同学爬上梯子去拿羽毛球.问:梯子顶端到地面的距离是有理数还是无理数?这位同学能拿到球吗?答案解析部分1.【答案】D2.【答案】D3.【答案】B4.【答案】D5.【答案】B6.【答案】D7.【答案】C8.【答案】-19.【答案】410.【答案】311.【答案】0或-812.【答案】,;,,,;,,;,,13.【答案】解:不正确.理由:如π是正数,但π不是有理数,所以不能说有理数包括正数和负数,应该为有理数包括正有理数、0和负有理数.14.【答案】解:设梯子顶端到地面的距离为x米,由题意,得x2=72-22=45.因为45既不是整数的平方,也不是分数的平方,所以x是无理数,所以梯子顶端到地面的距离是无理数.因为62=36,45>62.所以这位同学能拿到球.。

第一章 有理数 章末强化练 数学人教版七年级上册

第一章 有理数 章末强化练 数学人教版七年级上册

第一章 有理数 章末强化练 数学人教版七年级上册一、单选题1.下列说法不正确的是( )A .在小学学过的数前面添上“–”,就是负数B .–5°C 比–6°C 高1°CC .比0小的数都是负数D .比0大的数都是正数2.在下列选项中、具有相反意义的量是( )A .收入20元与支出30元B .上升了6米和后退了7米C .向东走3千米与向南走4千米D .足球比赛胜5场与平2场3.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③正整数、负整数、正分数、负分数统称为有理数;④非负数就是正数; ⑤2π-不仅是有理数,而且是分数;⑥带“-”号的数一定是负数;⑦无限小数不都是有理数;⑧正数中没有最小的数,负数中没有最大的数;其中错误的说法的个数为( )A .7个B .6个C .5个D .4个4.对于下列各数:5-,0,92,0.2-,10%,8,其中说法错误..的是( ) A .5-,0,8都是整数B .分数有92,0.2-,10%C .正数有92,10%,8D .0.2-是负有理数,但不是分数5.已知小红、小刚,小明、小颖四人自南向北依次站在同一直线上,如果把直线看作数轴,四人所在的位置如图所示,则下列描述不正确的是( )A .数轴是以小明所在的位置为原点B .数轴采用向北为正方向C .小刚所在的位置对应的数有可能是53- D .小颖和小红间的距离为76.如图,比数轴上的点A 表示的数大1的数是( )A .1-B .0C .1D .27.在数轴上,表示5-的点到原点的距离是( )A .5B .5-C .10D .10-8.下面说法正确的有( )①符号相反的数互为相反数;②()3.8--的相反数是3.8;③一个数和它的相反数不可能相等;④正数与负数互为相反数.A .0个B .1个C .2个D .3个9.下列各组数中:①-0.5与1.5;②34与43-;③a 与()a --;④2a b -与2a b -+;互为相反数的有( )A .1组B .2组C .3组D .4组 10.如果a 与13为相反数,则a 的值为( )A .3B .﹣3C .13 D .13- 11.若0a <,则()a a --等于( )A .a -B .0C .2aD .2a -12.如果x 为有理数,式子20232x -+存在最大值,这个最大值是( )A .2025B .2024C .2023D .2022二、填空题13.《九章算术》中对正负数的概念注有“今两算得失相反,要令正负以名之”.如:粮库把运进30吨粮食记为“30+”,则“30-”表示 .14.泗阳10月3日早上的温度是12℃,中午上升了6℃ ,下午由于冷空气南下,到夜间又下降了7℃,则这天的温差是 ℃. 15.如图1,点A 、B 、C 是数轴上从左到右排列的三个点,分别对应的数为5-,b ,3,某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A ,发现点B 对应刻度2.4cm ,点C 对齐刻度6.4cm ,则数轴上点B 所对应的数b 为 .16.已知点P 在数轴上,且到原点的距离大于2,写出一个点P 表示的负数: . 17.在数轴上表示数a 的点与原点的距离是4,那么a = .18.a 为最小的正整数,b 为a 的相反数,c 为相反数等于它本身的数,则()a b c ---= . 19.若(){}3x ⎡⎤----=-⎣⎦,则x 的相反数是 .20.一个数的绝对值是23,那么这个数为 .若|-5|=|-a |则a = 三、解答题21.一辆货车从货场A 出发,向西走了3千米到达批发部B ,继续向西走了1.5千米到达商场C ,又向东走了7.5千米到达超市D ,最后回到货场.(1)用一个单位长度表示1千米,以东为正方向,货场A 为原点,画出数轴并在数轴上标明A B C D ,,,的位置;(2)超市D 距货场A 多远?(3)货车一共行驶了多少千米?22.如果5m =,4=n ,且m n <,求m n +的值.23.如图,以0.5厘米为1个单位长度用直尺画数轴时,数轴上的点A ,B ,C 刚好对着直尺上的刻度2,刻度8和刻度10.设点A ,B ,C 所表示的数的和是p ,该数轴的原点为O .(1)点A 到点C 之间有_____个单位长度;若点A 表示的数是1-,求点C 表示的数;(2)若点A ,B 所表示的数互为相反数,直接写出此时数轴的原点O 对应直尺上的刻度;并求此时p 的值;(3)若点C ,O 之间的距离为4个单位长度,求p 的值.24.出租车司机李师傅某日上午8:009:20-一直在某市区一条东西方向的公路上营运,共连续运载八批乘客.若规定向东为正,向西为负,李师傅营运八批乘客里程如下:(单位:千米)8+,6-,3+,4-,8+,4-,4+,3-(1)将最后一批乘客送到目的地时,李师傅位于第一批乘客出发地的什么方向?距离多少千米?(2)这时间段李师傅开车的平均速度是多少千米每小时?参考答案:1.AA 、在小学学过的数前面添上“–”,就是负数(0除外),故本选项错误;B 、–5°C 比–6°C 高1°C ,故本选项正确;C 、比0小的数都是负数,故本选项正确;D 、比0大的数都是正数,故本选项正确;2.A解:A 、收入20元与支出30元是一对相反意义的量,故本选项符合题意;B 、上升了6米和后退了7米不是一对相反意义的量,故本选项不符合题意;C 、向东走3千米与向南走4千米不是一对相反意义的量,故本选项不符合题意;D 、足球比赛胜5场与平2场不是一对相反意义的量,故本选项不符合题意.3.B解:因为负数小于0,0不是最小的整数,故①是错误的;因为0是有理数,但0既不是正数,也不是负数,故②是错误的;因为正整数、0、负整数、正分数、负分数统称为有理数,故③是错误的;因为非负数包括0和正数,故④是错误的; 因为2π-不是有理数,故⑤是错误的;因为带“-”号的数可以是0-,但00-=,0不是负数,故⑥是错误的;因为无限小数包括无限不循环小数,无限不循环小数不是有理数,故⑦是正确的; 因为正数中没有最小的数,负数中没有最大的数,故⑧是正确的;其中错误的说法的个数为6个,4.D解:A. 5-,0,8都是整数,该说法正确,不符合题意;B. 分数有92,0.2-,10%,该说法正确,不符合题意; C. 正数有92,10%,8,该说法正确,不符合题意; D. 0.2-是负有理数,也是分数,本选项说法不正确,符合题意.5.C解:A.小明所在的位置表示数0,故此项结论正确;B.四人自南向北,且由南向北表示的数越来越大,所以向北为正方向,故此项结论正确;C.小刚所在的之位置对应的数在3-与2-之间,而53-在2-与1-之间,故此项结论错误; D.小颖和小红间的距离为()257--=,故此项结论正确;6.B解:由数轴可知,点A 表示的数是1-,∴比数轴上的点A 表示的数大1的数是110-+=,7.A解:在数轴上,表示数a 的点到原点的距离可表示为||a ,∴数轴上表示5-的点到原点的距离为|5|5-=.8.A解:①只有符号相反的数互为相反数,故此选项错误;②()3.8 3.8--=,3.8的相反数是 3.8-;故此选项错误;③0的相反数等于0,故此选项错误;④正数与负数不一定互为相反数,故此选项错误;故正确的有0个,9.A①-0.5+1.5=1,不是互为相反数; ②34+4()03-≠,不是互为相反数; ③a ()2a a --=,不是互为相反数;④2a b - (2)0a b +-+=,互为相反数互为相反数共1组10.D解:∵a 与13为相反数,∴a 的值为:﹣13.11.D解:∵0a <,∴()22a a a a a a --=+==-;12.C解:∵x 为有理数式子20232x -+存在最大值,∴当20x +=,20232x -+最大为2023,13.运出30吨粮食解: 粮库把运进30吨粮食记为“30+”,根据正数和负数是一组具有相反意义的量. ∴ “30-”表示粮库运出30吨粮食,故答案为:粮库运出30吨粮食.14.7做高温度为12℃+6℃=18℃,最低温度为18℃-7℃=11℃,则温差为18℃-11℃=7℃. 15.2-解:∵[]6.43(5)0.8cm ÷--=,∴数轴的单位长度是0.8厘米,∵2.40.83÷=,∴在数轴上,A B 的距离是3个单位长度,∴点B 所对应的数b 为532-+=-.16.3-解:依题意,当点P 在数轴的负半轴上,即点P 表示为3-,满足“到原点的距离大于2,还是负数”故答案为:3-17.4±解:在数轴上表示数a 的点与原点的距离是4,那么a =4±,故答案为:4±.18.0解:∵a 为最小的正整数,b 为a 的相反数,c 为相反数等于它本身的数,∴110a b c ==-=,,,则()1100a b c ---=--=.故答案为:0.19.3(){}[]{}{}3x x x x ⎡⎤----=--=--==-⎣⎦∴-3的相反数是3故答案为3.20. 或23-/23-或/23± 5或-5/-5或5/5± 解:一个数的绝对值是23,那么这个数为23或2,3- 5,a -=- 即5,a =5a ∴=或 5.a =-故答案为:23或2,3-5或-5 21.(1)作图见详解(2)3千米(3)15km(1)解:货车从货场A 出发,用一个单位长度表示1千米,以东为正方向,∴以货场A 为原点,根据题意,货车行驶到各点的位置如图所示,(2)解:由(1)中数轴图示可知,超市D 距货场A 的距离为3千米.(3)解:货车行驶的路程为3 1.57.5315(km)+++=.22.m n +的值为9-或1-解:∵5m =,4=n,∴5,4m n =±=±,∵m n <,∴5,4m n =-=±,当5,4m n =-=-时,5(4)9m n +=-+-=-;当5,4m n =-=时,541m n +=-+=-; ∴m n +的值为9-或1-.23.(1)16,15;(2)数轴的原点O 对应直尺上的刻度5,10p =(3)8p =-或32p =-(1)根据直尺上A 、C 对应的刻度可知1028(cm)AC =-=,∵数轴以0.5厘米为1个单位长度,80.516÷=,∴点A 到点C 之间有16个单位长度;故答案为:16.∵点A 表示的数是1-,∴点C 表示的数是11615-+=;(2)∵A ,B 所表示的数互为相反数,∴A 、B 的中点即为数轴的原点,对应直尺上的刻度5;此时点A ,B ,C 所表示的数分别是6-,6,10,因此661010p =-++=;(3)考虑两种情况进行计算:①原点O 在点C 左边,则点B 与点O 重合,此时点A ,B ,C 所表示的数分别是12-、0、4,因此12048p =-++=-;②原点O 在点C 右边,此时点A ,B ,C 所表示的数分别是20-、8-、4-,因此208432p =---=-.24.(1)在出发地东方,距离6千米(2)平均速度为30千米/小时(1)863484436+-+-+-+-=千米,答:在出发地东方,距离6千米;(2)()80863484433060++-+++-+++-+++-÷=千米/小时, 答:平均速度为30千米/小时.。

人教版七年级数学上册《有理数的加减法》强化训练卷【含答案】

人教版七年级数学上册《有理数的加减法》强化训练卷【含答案】

人教版七年级数学上册《有理数的加减法》强化训练卷1.计算(1)(﹣6)+(﹣13).(2)(﹣)+.2.计算(1)(﹣4)+9 (2)13+(﹣12)+17+(﹣18)3.在横线上填写每步运算的依据.解:(﹣6)+(﹣15)+(+6)=(﹣6)+(+6)+(﹣15)( )=[(﹣6)+(+6)]+(﹣15)( )=0+(﹣15)( )=﹣15( )4.计算:(1);(2).5.先将下列各式写成省略加号的和的形式,再按括号内要求交换加数的位置.(1)(+16)+(﹣28)﹣(﹣6)﹣(﹣13)﹣(+7)= (写成省略加号的和)= (使符号相同的加数在一起)= (运算结果);(2)(﹣3.1)﹣(﹣4.5)+(4.4)﹣(+1.3)+(﹣2.5)= (写成省略加号的和)= (使和为整数的加数在一起)= (运算结果).6.计算(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7(2)(﹣)+13+(﹣)+17.7.阅读下面文字对于(﹣5)+(﹣9)+17+(﹣3)可以如下计算:原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)=﹣1上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:(1)﹣1+(﹣2)+7+(﹣4)(2)(﹣2019)+2018+(﹣2017)+20168.计算:(1)(2)9.用适当的方法计算(能用简便运算的就用简便运算)(1)﹣6﹣7+19﹣11+3;(2)|﹣1|﹣(﹣1)﹣|﹣1|﹣(﹣);(3)﹣(﹣1)+(﹣1)﹣.10.已知|a|=8,b2=36,且b>a,求a+b的值.11.若x2=9,|y|=2,且x<y,求x+y的值.12.已知|m|=4,|n|=6,且|m+n|=m+n,求m﹣n的值.13.若x是最大的负整数,|y|=5,z是相反数等于本身的数,求:x+y+z的值.14.已知|m|=4,|n|=3.(1)当m、n同号时,求m﹣n的值;(2)当m、n异号时,求m+n的值.15.在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如:|6+7|=6+7;|6﹣7|=7﹣6;|7﹣6|=7﹣6;|﹣6﹣7|=6+7(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7﹣21|= ;②|﹣﹣0.8|= ;③|﹣|= :(2)数a在数轴上的位置如图所示,则|a﹣2.5|= .A.a﹣2.5B.2.5﹣aC.a+2.5D.﹣a﹣2.5(3)利用上述介绍的方法计算或化简:①|﹣|+|﹣|﹣|﹣|+;②|﹣|+|﹣|﹣|﹣|+2(),其中a>2.16.若,…,照此规律试求:(1)= ;(2)计算;(3)计算.答案1.解:(1)(﹣6)+(﹣13)=﹣(6+13).=﹣19;(2)(﹣)+=﹣+=﹣+=﹣.2.解:(1)(﹣4)+9=5;(2)13+(﹣12)+17+(﹣18)=13+17+(﹣12)+(﹣18)=30+(﹣30)=0.3.解:(﹣6)+(﹣15)+(+6)=(﹣6)+(+6)+(﹣15)(加法交换律)=[(﹣6)+(+6)]+(﹣15)(加法交结合律)=0+(﹣15)(互为相反数的两个数相加得零)=﹣15(一个数与零相加仍得这个数)故加法交换律;加法结合律;互为相反数的两个数相加得零;一个数与零相加仍得这个数4.解:(1)=﹣4(2)=4.5+(﹣54)=﹣49.55.解:(1)原式=16﹣28+6+13﹣7=16+6+13+(﹣28﹣7)=0;(2)原式=﹣3.1+4.5+4.4﹣1.3﹣2.5=(4.4﹣3.1﹣1.3)+(4.5﹣2.5)=2.故(1)16﹣28+6+13﹣7;16+6+13+(﹣28﹣7);0.(2)﹣3.1+4.5+4.4﹣1.3﹣2.5;(4.4﹣3.1﹣1.3)+(4.5﹣2.5);2.6.解:(1)原式=﹣10.7+5.7=﹣5;(2)原式=﹣1+30=29.7.解:(1)﹣1+(﹣2)+7+(﹣4)=(﹣1﹣)+(﹣2﹣)+(7+)+(﹣4﹣)=(﹣1﹣2+7﹣4)+(﹣﹣+﹣)=0﹣=﹣;(2)(﹣2019)+2018+(﹣2017)+2016=(﹣2019﹣)+(2018+)+(﹣2017﹣)+(2016+)=(﹣2019+2018﹣2017+2016)+(﹣+﹣+)=﹣2﹣=﹣2.8.解:(1)原式==10﹣6=4;(2)原式==﹣100.9.解:(1)﹣6﹣7+19﹣11+3=﹣6﹣7﹣11+19+3=﹣24+22=﹣2;(2)===;(3)===.10.解:∵|a|=8,b2=36∴a=±8,b=±6,由b>a,得a=﹣8,b=±6,所以a+b=6+(﹣8)=﹣2 或a+b=﹣6+(﹣8)=﹣14.11.解:∵x2=9,|y|=2,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=2或x=﹣3,y=﹣2,∴x+y=﹣1或﹣5.12.解:∵|m|=4,|n|=6,∴m=±4,n=±6,∵|m+n|=m+n,∴m+n≥0,∴m=±4,n=6,∴当m=4,n=6时,m﹣n=﹣2,当m=﹣4,n=6时,m﹣n=﹣10,综上:m﹣n=﹣2或﹣10.13.解:根据题意得:x=﹣1,y=±5,z=0,则x+y+z=﹣1﹣5+0=﹣6或x+y+z=﹣1+5+0=4.14.解:(1)∵|m|=4,|n|=3,∴当m、n同号时,m=4,则n=3,故m﹣n=1;m=﹣4时,n=﹣3,故m﹣n=﹣1;(2))∵|m|=4,|n|=3,∴当m、n异号时,m=4,则n=﹣3,故m+n=1;m=﹣4时,n=3,故m+n=﹣1.15.解:(1)①|7﹣21|=21﹣7;②|﹣﹣0.8|=;③|﹣|=﹣;故①21﹣7;②+0.8;③﹣;(2)由数轴得:a<2.5,则|a﹣2.5|=2.5﹣a,故选:B;(3)利用上述介绍的方法计算或化简:①|﹣|+|﹣|﹣|﹣|+;=+﹣+,=﹣+,=,②|﹣|+|﹣|﹣|﹣|+2(),其中a>2.当2<a<5时,原式=﹣+﹣﹣+,=﹣+,=,当a≥5时,原式=+﹣﹣+,=.16.解:(1)=.故;(2)原式===;(3)原式===.。

数学人教版(2024)版七年级初一上册 1.2.1 有理数的概念 课时练 含答案01

数学人教版(2024)版七年级初一上册 1.2.1 有理数的概念 课时练 含答案01

第一章 有理数1.2.1 有理数的概念一、选择题(共12小题)1.下列四个数中,是负数的是( )A .|1|-B .2(2)-C .(3)--D .|4|--2.下列四个数中,属于负整数的是( )A . 2.5-B .3-C .0D .63.在12,4-,0,73-这四个数中,属于负整数的是( )A .73-B .12C .0D .4-4.在2(1)-,42-,31()2-+,0,|3|--,(5)--中,非负数的个数是( )A .2个B .3个C .4个D .5个5.在18-,192,0,12%,7.2-,34-,p ,7中,非负数有( )A .6个B .5个C .4个D .3个6.关于4-,227,0.41,116-,0,3.14这六个数,下列说法错误的是( )A .4-,0是整数B .227,0.41,0,3.14是正数C .4-,227,0.41,116-,0,3.14是有理数D .4-,116-是负数7.下列各数中,负整数是( )A .3B .0C .2-D . 2.5-8.下列四个有理数中,既是分数又是正数的是( )A .3B .132-C .0D .2.49.零一定是( )A .整数B .负数C .正数D .奇数10.下列关于有理数的分类正确的是( )A .有理数分为正数和负数B .有理数分为正整数、负整数、正分数、负分数C .有理数分为正有理数、0、负有理数D .有理数分为自然数、分数11.下列说法中,正确的是( )A .有最大的负数,也没有最小的正数B .没有最大的有理数,也没有最小的有理数C .有最大的非负数,没有最小的非负数D .有最小的负数,没有最大正数12.下列论述正确的个数为( )①0是正数;②0是整数;③0是最小的有理数;④0是非负数;⑤0是偶数;⑥0是非正数;⑦一个有理数不是正数就是负数;⑧一个有理数不是整数就是分数;⑨有理数可分为整数、分数、正有理数、0、负有理数这五类.A .3个B .4个C .5个D .6个二、填空题(共12小题)13.在227,5p ,0,3.14%, 4.733-¼,100,1823-,7151551¼中,正数是 ,分数是 .14.下列各数:1-,2p,1.01001¼(每两个1之间依次多一个0),0,227,3.14,其中有理数有 个.15.零是 数,还是 数,但不是 数,也不是 数.16.在有理数:12-,71, 2.8-,16,0,172,34%,0.67,34-,127,95-中,非负数有 .17.已知下列8个数: 3.14-,24,17+,172-,516,0.01-,0,12-,其中整数有 个,负分数有 个,非负数有 个.18.在有理数中,既不是正数也不是负数的数是 .19.请按要求填出相应的2个有理数:(1)既是正数也是分数: ;(2)既不是负数也不是分数: ;(3)既不是分数,也不是非负数: .20.下列各数:2,1.0010001,53-,0,p ,2021-,其中有理数有 个.21.有理数0,6,5-,227-,9中整数有 ;负数有 .22.在73,0,p , 3.142-,4+,3中,有理数有 个.23.下列各数中:0.75,2-,9.25-, 1.3-&,8+,715-,9%,负分数有 个.24.以下8个数:12-,73,0,3,4.3&,p , 2.4-,132,是分数的共有 个.三、解答题(共4小题)25.把下面各数填在相应的大括号里(将各数用逗号分开):18-,3.14,0,2024,35-,80%,2p,|5|--,(7)--.负整数集合{ }¼整数集合{ }¼正分数集合{ }¼非负整数集合{ }¼有理数{ }¼26.把下列各数填到相应的集合中.1,13,0.5,7+,0,p -, 6.4-,9-,613,0.3,5%,26-,1.010010001¼.正数集合:{ }¼;负数集合:{ }¼;整数集合:{ }¼;分数集合:{ }¼.27.将有理数 2.5-,0,122,2023,35%-,0.6分别填在相应的大括号里.整数:{ }¼;负数:{ }¼;正分数:{ }¼.28.把6-,0.3,15,9,65-分成两类,使两类的数具有不同的特征,写出你的分法.参考答案一、选择题1.D2.B3.D4.B5.B6.B7.C8.D9.A10.C11.B12.C二、填空题13.227,5p,3.14%,100,7151551¼,227,3.14%, 4.733-¼,1823-14.415.整,有理,正,负16.71,16,0,172,34%,0.67,12717.4,3,4 18.019.(1)12、13;(2)1、3;(3)1-、2-.(答案不唯一)20.521.0,6,5-,9;5-,227-22.523.324.4三、解答题25.解:|5|5--=-Q ,(7)7--=,73.14350=,480%5=,\这些数可按如下分类,负整数集合{18-,|5|}--¼¼整数集合{18-,0,2024,|5|--,(7)}--¼¼正分数集合{3.14,80%}¼¼非负整数集合{0,2024,(7)}--¼¼有理数{18-,3.14,0,2024,35-,80%,|5|--,(7)}--¼¼.26.解:正数集合:{1,13,0.5,7+,613,0.3,5%,1.010010001}¼;负数集合:{p -, 6.4-,9-,26}-;整数集合:{1,7+,0,9-,26}-;分数集合:1{3,0.5, 6.4-,613,0.3,5%}.27.解:整数:{0,2023}¼;负数:{ 2.5-,35%}-¼;正分数:1{22,0.6}¼.28.解:分成整数和分数,即整数:6-,9;分数:0.3,15,65-;分成正数与负数,即正数:0.3,15,9;负数:6-,65-.。

人教版七年级数学上册《1.2有理数》专题训练-附带答案

人教版七年级数学上册《1.2有理数》专题训练-附带答案

人教版七年级数学上册《1.2有理数》专题训练-附带答案【名师点睛】1 有理数的概念:整数和分数统称为有理数.2 有理数的分类:【典例剖析】【例1】(2021秋•越城区校级月考)把下列各数填入相应的大括号里: ﹣1 +514 ﹣6 +8 −312 0 ﹣0.72 ①正数:{ +514+8 …} ②整数:{ ﹣1 ﹣6 +8 0 …} ③负分数:{ −312 ﹣0.72 …} ④非负数:{ +514 +8 0 …}.【分析】利用正数 整数 负分数以及非负数定义判断即可. 【解析】①正数:{+514 +8…} ②整数:{﹣1 ﹣6 +8 0 …} ③负分数:{−312 ﹣0.72 …} ④非负数:{+514+8 0 …}.故答案为:+514 +8 ﹣1 ﹣6 +8 0 −312 ﹣0.72 +514 +8 0. 【变式】(2020秋•郫都区校级月考)把下列各数的序号填到相应的括号中: ①﹣0.3⋅②3.1415 ③﹣10 ④0.28 ⑤−27 ⑥18 ⑦0 ⑧﹣2.3 ⑨213.(1)整数集合:{ ③⑥⑦⑨ …}(2)负数集合:{ ①③⑤⑧ …} (3)非正数集合:{ ①③⑤⑦⑧ …} (4)分数集合:{ ①②④⑤⑧ …} (5)非负整数集合:{ ⑥⑦⑨ …}.【分析】根据正数 负数 整数及分数的定义 结合所给数据进行解析即可. 【解析】(1)整数集合:{﹣10 18 0213⋯}(2)负数集合:{﹣0.3⋅﹣10 −27 ﹣2.3…} (3)非正数集合:{﹣0.3⋅﹣10 −27 0 ﹣2.3…} (4)分数集合:{﹣0.3⋅ 3.1415 0.28 −27﹣2.3…} (5)非负整数集合:{18 0 213⋯}.故答案为:(1)③⑥⑦⑨ (2)①③⑤⑧ (3)①③⑤⑦⑧ (4)①②④⑤⑧ (5)⑥⑦⑨.【满分训练】一.选择题(共10小题)1.(2022•冠县二模)下列各数是负分数的是( ) A .﹣7B .12C .﹣1.5D .0【分析】理解负分数的定义.【解析】A .﹣7是负整数 故A 错误 不符合题意 B .12是正分数 故B 错误 不符合题意C .﹣1.5=−32是负分数 故C 正确 符合题意 D .0既不是正数也不是负数 故D 错误 不符合题意. 故选:C .2.(2022春•开州区期中)在﹣1 0 1 −513这四个数中 属于负整数的是( ) A .﹣1B .0C .1D .−513【分析】根据负整数的定义即可求解.【解析】在﹣1 0 1 −513这四个数中 属于负整数的是﹣1. 故选:A .3.(2021秋•雁峰区校级期末)下列各数25﹣6 25 0 3.14 20%中 分数的个数是( )A .1B .2C .3D .4【分析】根据整数和分数统称为有理数 即可解析. 【解析】下列各数25 ﹣6 25 0 3.14 20%中是分数的有:253.14 20%所以 共有3个分数 故选:C .4.(2022春•沙坪坝区校级月考)在12 ﹣4 0 −73这四个数中 属于负整数的是( )A .−73B .12C .0D .﹣4【分析】根据实数分类的相关概念 可辨别此题结果. 【解析】∵−73 12都是分数∴选项A B 不符合题意 ∵0既不是正数 也不是负数 ∴选项C 不符合题意 ∵﹣4是负整数 ∴选项D 符合题意 故选:D .5.(2021秋•原阳县期末)在﹣3.5 2270.161161116… π2中 有理数有( )个.A .1B .2C .3D .4【分析】有理数包括整数和分数 无理数包括三类:一是无限不循环小数 二是含有π的数 三是开方开不尽的数 可知答案. 【解析】A ﹣3.5是负分数 故是有理数 B227是正分数 故为有理数C 0.161161116…是无限不循环小数 是无理数 故不是有理数D π2是含有π的数 是无理数 故不是有理数 所以有理数有两个 故选:B .6.(2021秋•常宁市期末)在﹣3 π3 1.62 0四个数中 有理数的个数为( )A .4B .3C .2D .1【分析】根据有理数的定义进行判断即可.【解析】∵在﹣3 π3 1.62 0四个数中 ﹣3 1.62 0是有理数∴有理数的个数为3 故选:B .7.(2021秋•宜城市期末)下列说法错误的是( ) A .正分数一定是有理数B .整数和分数统称为有理数C .整数包括正整数 0 负整数D .正数和负数统称为有理数【分析】根据有理数的定义逐一判断即可.【解析】A .正分数一定是有理数 说法正确 故本选项不合题意 B .整数和分数统称为有理数 说法正确 故本选项不合题意 C .整数包括正整数 0 负整数 说法正确 故本选项不合题意 D .正数 零和负数统称为有理数 原说法错误 故本选项符合题意. 故选:D .8.(2021秋•南阳期末)下列说法中正确的是( ) A .正分数和负分数统称为分数 B .正整数 负整数统称为整数 C .零既可以是正整数 也可以是负整数 D .一个有理数不是正数就是负数【分析】分别根据有理数的定义以及正数和负数的定义逐一判断即可. 【解析】A .正分数和负分数统称为分数 说法正确 故本选项符合题意 B .正整数 零和负整数统称为整数 原说法错误 故本选项不符合题意 C .零既不是正整数 也不是负整数 原说法错误 故本选项不符合题意D .零是有理数 但零既不是正数 也不是负数 原说法错误 故本选项不符合题意 故选:A .9.(2021秋•道里区期末)下列各组数中相等的是( ) A .π和3.14 B .25%和14C .38和0.625D .13.2%和1.32【分析】比较各个选项两个数的大小即可作出选择. 【解析】A π>3.14 故A 不符合题意. B 25%=14 故B 符合题意.C 38<0.625 故C 不符合题意.D 13.2%<1.32 故D 不符合题意. 故选:B .10.(2021秋•农安县期末)下列说法正确的个数为( ) ①0是整数 ②﹣0.2是负分数 ③3.2不是正数 ④自然数一定是正数. A .1B .2C .3D .4【分析】按照实数分类逐个判断即可. 【解析】∵0为整数 故①正确 ∵﹣0.2为负分数 故②正确 ∵3.2>0∴3.2为正数 故③错误∵自然数里面包括0 但0不是正数 故④错误. 故正确的有:①②. 故选:B .二.填空题(共6小题)11.(2021秋•顺义区期末)在有理数﹣3 13 0 −72 ﹣1.2 5中 整数有 0 ﹣3 5负分数有 −72 ﹣1.2 .【分析】根据有理数的分类进行填空即可. 【解析】整数有:0 ﹣3 5 负分数有:﹣1.2 −72故答案为:0 ﹣3 5 ﹣1.2 −72.12.(2021秋•门头沟区期末)在有理数﹣0.5 ﹣3 0 1.2 2 312中 非负整数有 02 .【分析】找出有理数中非负整数即可.【解析】在0.5 ﹣3 0 1.2 2 312中 非负整数有0 2.故答案为:0 2.13.(2021春•徐汇区校级期中)在﹣15 13 ﹣0.23 0.51 0 ﹣0.65 7.6 2 −35 314%中 非负数有 6 个.【分析】根据利用符号对有理数分类求解即可.【解析】∵13 0.51 0 7.6 2 314%是非负数 ﹣15 ﹣0.23 ﹣0.65 −35是负数∴非负数共有6个 故答案为:6.14.(2021秋•凉州区校级月考)在﹣512 0 ﹣1.5 ﹣5 2114中 整数是 0 ﹣5 2 .【分析】利用整数的定义判断即可. 【解析】在﹣512 0 ﹣1.5 ﹣5 2114中 整数有:0 ﹣5 2故答案为:0 ﹣5 2.15.(2021秋•靖江市月考)下列各数:−741.010010001 0 ﹣π ﹣2.626626662…(每两个2之间多一个6) 0.1222… 其中有理数有 4 个. 【分析】根据有理数的定义逐一判断即可.【解析】下列各数:−74 1.010010001 0 ﹣π ﹣2.626626662…(每两个2之间多一个6) 0.1222… 其中有理数有−74 1.010010001 0 0.1222… 共4个. 故答案为:4.16.(2021秋•潢川县期中)有理数−15 0 ﹣1.8 ﹣3 32 4中整数有3 个 负分数有 2 个.【分析】根据有理数的分类进行填空即可. 【解析】整数有:0 ﹣3 4 共3个 负分数有:−15﹣1.8 共2个 故答案为:3 2. 三.解析题(共6小题)17.(2020秋•香洲区校级月考)把下列各数分别填在相应的大括号里. 13 −67﹣31 0.21 ﹣3.14 0 21% 13﹣2020.负有理数:{ −67﹣31 ﹣3.14 ﹣2020 …} 正分数:{ 0.21 21% 13 …}非负整数:{ 13 0 …}.【分析】根据负有理数 正分数 非负整数的定义即可求解. 【解析】负有理数:{−67 ﹣31 ﹣3.14 ﹣2020…}正分数:{0.21 21%13⋯}非负整数:{13 0…}.故答案为:−67 ﹣31 ﹣3.14 ﹣2020 0.21 21% 1313 0.18.(2021秋•沈河区校级期中)把下列各数填到相应的集合中. 1 13 0.5 +7 0 ﹣π ﹣6.4 ﹣96130.3 5% ﹣26 1.010010001….正数集合:{ 1 130.5 +76130.3 5% 1.010010001… …}负数集合:{ ﹣π ﹣6.4 ﹣9 ﹣26 …} 整数集合:{ 1 +7 0 ﹣9 ﹣26 …} 分数集合:{130.5 ﹣6.46130.3 5% …}.【分析】利用正数 负数 整数以及分数定义判断即可. 【解析】正数集合:{1 13 0.5 +76130.3 5% 1.010010001…}负数集合:{﹣π ﹣6.4 ﹣9 ﹣26} 整数集合:{1 +7 0 ﹣9 ﹣26} 分数集合:{13 0.5 ﹣6.4613 0.3 5%}.故答案为:1 130.5 +76130.3 5% 1.010010001…﹣π ﹣6.4 ﹣9 ﹣26 1 +7 0 ﹣9 ﹣26130.5 ﹣6.46130.3 5%.19.(2019秋•昭平县期中)把下列各数分别填在相应的括号内: ﹣0.1 0 +2 12 ﹣3.整数:{ 0 +2 ﹣3 } 分数:{ ﹣0.1 12 }正数:{ +2 12}负数:{ ﹣0.1 ﹣3 }有理数:{ ﹣0.1 0 +2 12 ﹣3 }【分析】根据有理数的分类即可解析. 【解析】整数:{0 +2 ﹣3}分数:{﹣0.1 12}正数:{+2 12}负数:{﹣0.1 ﹣3}有理数:{﹣0.1 0 +2 12 ﹣3}故答案为:0 +2 ﹣3 ﹣0.1 12+2 12﹣0.1 ﹣3 ﹣0.1 0 +2 12﹣3.20.把下列各数填在相应的位置:2019 ﹣6 +2 ﹣0.9 120 0.2020 −13 1410%.正数: 2019 +2 120.2020 1410%负数: ﹣6 ﹣0.9 −13正分数:120.2020 14 10%负分数: ﹣0.9 −13 整数: 2019 ﹣6 +2 0有理数: 2019 ﹣6 +2 ﹣0.9 120 0.2020 −131410% .【分析】根据有理数的分类把数分类即可. 【解析】正数:2019 +2 120.2020 1410%负数:﹣6 ﹣0.9 −13正分数:120.2020 1410%负分数:﹣0.9 −13整数:2019 ﹣6 +2 0有理数:2019 ﹣6 +2 ﹣0.9 120 0.2020 −131410%.。

1_2_1 有理数的概念 同步练习(含详解)人教版(2024)数学七年级上册

1_2_1 有理数的概念 同步练习(含详解)人教版(2024)数学七年级上册
1.2.1 有理数的概念
一、单选题
1.既不是正数也不是负数的数是( )
A. 2
B. 1
C.0
D.1
2.下列各数中,负整数是( )
A.3
B.0
C. 2
D. 2.5
3.在 1,0, 5 , 6.8 和 2024 这五个有理数中,正数有( ) 3
A.1 个
B.2 个
C.3 个
D.4 个
4.下列各数: 4 ,1,8.6, 7 ,0, 5 , 4 2 , 101 , 0.05 , 9 中,下列说法正确的
16.下列各数哪些属于非负数集合?哪些属于正整数集合?哪些是负分数集合?
3 , 2 , 1 , 0.21,0, 3.010010001, 3.14159 , 10 7
非负数:{
,...}
正整数:{
,...}
负分数:{
,...}
1.C
参考答案:
解:A、 2 是负数,故本选项不符合题意;
B、 1是负数,故本选项不符合题意;
C、互为相反数的两个数和为 0,互为倒数的两个数乘积为 1,故本选项不符合题意;
D、非负有理数是指正有理数,还有零,故本选项不符合题意;
6.B
解:A、0 不是正数,也不是负数,原说法正确,不符合题意;
B、0 是有理数,是整数,原说法错误,符合题意;
C、0 是整数,也是有理数,原说法正确,不符合题意;
个.
14.给出下列各数: 4.443, 0 , 3.1159 , 1000 , 7 ,其中分数的个数是 m ,非正数的 22
个数是 n ,则 m n

三、解答题 15.如图,两个圈分别表示正数集和整数集,请你从 3 ,9,0, 10%,3.14, 2 ,1300 这

人教版七年级上册数学期中考试考前复习考前集训《有理数的相关概念》专题提升练习

人教版七年级上册数学期中考试考前复习考前集训《有理数的相关概念》专题提升练习

人教版七年级上册数学期中考试考前复习考前集训《有理数的相关概念》专题提升练习类型一:有理数的分类1.下列说法正确的是( )A.正整数和正分数统称正有理数B.正整数和负整数统称整数C.正整数、负整数、正分数、负分数统称有理数D.0不是有理数2.在-8,2 020,3,0,-5,+13,,-6.9中,正整数有m个,负分数有n个,则m+n的值为.3.把下列各数填入相应的集合里:2,-3.12,0,23%,3,-1,-25,-.(1)正有理数集合:{…};(2)负有理数集合:{…};(3)分数集合:{…};(4)非负整数集合:{…}.类型二:数轴的相关概念1.如果一个数到原点的距离等于5,那么这个数是( )A.5B.-5C.5或-5D.以上都不是2.在数轴上,点A表示的数是-3.从点A出发,沿数轴移动5个单位长度到达点B,那么点B表示的数为.3.写出1,-|-3|,-2.5,-(-4)四个数的相反数,并将这四个数连同它们的相反数一并在数轴上表示出来.4.在数轴上表示出,,,,,这五个数所对应的点.类型三:相反数的相关知识1.-8的相反数是( )A.-B.-8C.8D.2.化简下列各式的符号,并回答问题:(1)-(-2);(2)+;(3)-[-(-4)];(4)-[-(+3.5)];(5)-{-[-(-5)]};(6)-{-[-(+5)]}.问:①当+5前面有2 019个负号时,化简后结果是多少?②当-5前面有2 020个负号时,化简后结果是多少?你能总结出什么规律? 3化简:(1)-[-(+4)]; (2)-.类型四:绝对值的相关概念1.-的绝对值是( )A.-B.C.-D.2.-8的绝对值是( )A.8B.C.-8D.-3.已知a,b是不为0的有理数,且|a|=-a,|b|=b,|a|>|b|,那么用数轴上的点来表示a,b时,正确的是( )4.绝对值等于9的数是.5.若|x+3|=2,则x=.类型五:有理数大小的比较1.下列各数中,最大的数是()A.-B.C.0D.-22.在3,-|-3.5|,-,0中,最小的数是( )A.3B.-|-3.5|C.-D.03.如图所示,A,B,C,D四点在数轴上分别表示有理数a,b,c,d,则大小顺序正确的是 ( )A.-a<-b<-c<-dB.-b<-a<-d<-cC.-a<-b<-d<-cD.-c<-d<-a<-b4.若a是小于1的正数,试将a,-,1,-1由小到大排成一列,并用“<”连接起来.人教版七年级上册数学期中考试考前复习考前集训《有理数的相关概念》专题提升练习(答案版)类型一:有理数的分类1.下列说法正确的是( A)A.正整数和正分数统称正有理数B.正整数和负整数统称整数C.正整数、负整数、正分数、负分数统称有理数D.0不是有理数2.在-8,2 020,3,0,-5,+13,,-6.9中,正整数有m个,负分数有n个,则m+n的值为3.3.把下列各数填入相应的集合里:2,-3.12,0,23%,3,-1,-25,-.(1)正有理数集合:{2,23%,3…};(2)负有理数集合:{-3.12,-1,-25,-…};(3)分数集合:{-3.12,23%,-…};(4)非负整数集合:{2,0,3…}.类型二:数轴的相关概念1.如果一个数到原点的距离等于5,那么这个数是( C)A.5B.-5C.5或-5D.以上都不是2.在数轴上,点A表示的数是-3.从点A出发,沿数轴移动5个单位长度到达点B,那么点B表示的数为-8或2.3.写出1,-|-3|,-2.5,-(-4)四个数的相反数,并将这四个数连同它们的相反数一并在数轴上表示出来.【解析】1的相反数为:-1;-|-3|的相反数为:3;-2.5的相反数为:2.5;-(-4)的相反数为:-4.如图所示:4.在数轴上表示出,,,,,这五个数所对应的点.【解析】如图,分别以点A,B,C,D,E表示,,,,这五个数.类型三:相反数的相关知识1.-8的相反数是( C)A.-B.-8C.8D.2.化简下列各式的符号,并回答问题:(1)-(-2);(2)+;(3)-[-(-4)];(4)-[-(+3.5)];(5)-{-[-(-5)]};(6)-{-[-(+5)]}.问:①当+5前面有2 019个负号时,化简后结果是多少?②当-5前面有2 020个负号时,化简后结果是多少?你能总结出什么规律?【解析】(1)-(-2)=2;(2)+=-;(3)-[-(-4)]=-4;(4)-[-(+3.5)]=3.5;(5)-{-[-(-5)]}=5;(6)-{-[-(+5)]}=-5;①当+5前面有2 019个负号时,化简后结果是-5;②当-5前面有2 020个负号时,化简后结果是-5,总结规律:一个数的前面有奇数个负号,化简的结果等于它的相反数,有偶数个负号,化简的结果等于它本身.3化简:(1)-[-(+4)]; (2)-.【解析】(1)-[-(+4)]=4.(2)-=-.类型四:绝对值的相关概念1.-的绝对值是( B)A.-B.C.-D.2.-8的绝对值是( A)A.8B.C.-8D.-3.已知a,b是不为0的有理数,且|a|=-a,|b|=b,|a|>|b|,那么用数轴上的点来表示a,b时,正确的是( C)4.绝对值等于9的数是±9.5.若|x+3|=2,则x=-5或-1.类型五:有理数大小的比较1.下列各数中,最大的数是(B)A.-B.C.0D.-22.在3,-|-3.5|,-,0中,最小的数是( B)A.3B.-|-3.5|C.-D.03.如图所示,A,B,C,D四点在数轴上分别表示有理数a,b,c,d,则大小顺序正确的是 ( D)A.-a<-b<-c<-dB.-b<-a<-d<-cC.-a<-b<-d<-cD.-c<-d<-a<-b4.若a是小于1的正数,试将a,-,1,-1由小到大排成一列,并用“<”连接起来. 【解析】因为a是小于1的正数,所以取a=,所以-=-2,因为-2<-1<<1,所以-<-1<a<1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的有关概念
一、选择题
1.下列各数中,-19,0,0.7,57,-99整数的个数是( )
A . 2个
B . 3个
C . 4个
D . 5个
2.在,-5,0,-
3.1415926这四个数中,属于负分数的是(
) A . B . -5 C . 0 D . -3.1415926
3.既是分数又是正有理数的是( )
A . +2
B . -35
C . 0
D . 2.015
4.在有理数-3,0,19,-3
1,3.6,-2015中,属于非负数的有(
) A . 4个 B . 3个 C . 2个 D . 1个
5.下面各数中,既是分数,又是正数的是( )
A . 5
B . -2.25
C . 0
D . 8.3
6.下列各数中,负分数有( )个.
-3.4,-0.3,13,0,-12,-6,-20%,34.
A . 3
B . 4
C . 5
D . 6
7.在下列各数:-3,+8,3.14,0,π,13,,-0.4,2.75%中,有理数的
个数是( )
A . 6个
B . 7个
C . 8个
D . 9个
8.对于下列各数说法错误的是( )
7,23,-6,0,3.1415,-512,-0.62,-11.
A . 整数4个
B . 分数4个
C . 负数5个
D . 有理数8个
9.下列说法不正确的是( )
A . 0既不是正数,也不是负数
B . π是负数
C . 0是整数
D . 一个有理数不是整数就是分数
10.下列说法正确的是( )
A . 整数包括正整数和负整数
B . 分数包括正分数和负分数
C . 正有理数和负有理数组成有理数集合
D . 0既是正整数也是负整数 二、填空题
11.在1,-56,6.8,−8,0,−3.8,89,+12,3.14,−π8
十个数中,正数有___________个,负数有___________个,有理数有_____________个.
12.零是(写出所有正确答案前的序号):________________.
①正数;②整数;③分数;④有理数;⑤自然数;⑥最小的整数;⑦绝对值最小的数
13.在有理数-3,4,-0.5,-1
3,0.8,0,-5
6
,2016,负分数的个数为x,
正整数的个数为y,则x+y的值等于________________.
14.我们可以把-1,9,10,-5,7,-8分为正整数和________________
15.写出三个有理数,使它们满足:①是负数;②是整数;③能被2,3,5整除,它们是________________.
16.有理数中,是整数而不是正数的数是 __________,是负数而不是分数的是_____________.
三、解答题
17.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,3,5},…,我们称之为集合,其中的每一个数都叫做这个集合的元素,在某一集合中,有理数x是它的一个元素,如果6-x也是它的一个元素,那么我们把这样的集合又称为黄金集合.
(1)判断{1,2}和{1,3,5}是不是黄金集合?请说明集合;
(2)请你写出两个黄金集合(不能与上面出现过的集合重复).
18.操作题:公元初,中美洲玛雅人使用的一种数字系统与其他计数方式都不相同,它采用二十进位制但只有3个符号,用点“•”划“―”、卵形“”来表示我们所使用的自然数,如自然数1~19的表示见下表,另外在任何数的下方加一个卵形,就表示把这个数扩大到它的20倍,如表中20和100的表示.
(1)玛雅符号表示的自然数是________________;
(2)请你在右边的方框中画出表示自然数280的玛雅符号:.
答案解析
1.【答案】B
【解析】整数包括正整数、负整数和0,所以整数有:-19,0,-99 2.【答案】D
【解析】-3.1415926是负分数,故选D.
3.【答案】D
【解析】既是分数又是正有理数的是2.015.
4.【答案】B
,3.6是非负数.
【解析】0,1
9
5.【答案】D
【解析】A、是正整数,故A错误;
B、是负分数,故B错误;
C、既不是正数也不是负数,故C错误;
D、是正分数,故D正确.
6.【答案】B
,-20%是负分数.
【解析】-3.4,-0.3,-1
2
7.【答案】B
【解析】有理数有:-3,+8,3.14,0,13,-0.4,2.75%,共7个, π不是有理数.故选B
8.【答案】C
【解析】整数有:7,-6,0,-11,共4个;分数有:23,3.1415,-512,-0.62,共4个;
负数有:-6,-512,-0.62,-11,共4个;
有理数有7,23,-6,0,3.1415,-512,-0.62,-11,共8个.
9.【答案】B
【解析】0既不是正数,也不是负数,说法正确,A 不合题意;
π是负数,说法错误,B 符合题意;0是整数,说法正确,C 不合题意; 一个有理数不是整数就是分数,说法正确,D 不合题意.
10.【答案】B
【解析】整数包括正整数、负整数和0,所以A 错误;分数包括正分数和负分数,所以B 正确;有理数包括正有理数、负有理数和0,所以C 错误;0不是正数也不是负数,所以D 错误.
11.【答案】5;4;9
【解析】在1,-56,6.8,−8,0,−3.8,89,+12,3.14,−π8
十个数中, 正数有1,6.8,89,+12,3.14,共5个,负数有-56,-8,-3.8,-π8共4个,
有理数有:1,6.8,89,+12,3.14,-56,-8,-3.8,0共9个.
12.【答案】②④⑦
【解析】0既不是正数,也不是负数,故①错误;0是整数,是有理数,故②④正确,③错误;没有最小的整数,故⑥错误;0是绝对值最小的数,故⑦正确.
13.【答案】5
【解析】负分数为:−0.5,-13,-56,共3个.正整数为:4,2016,共2个. 所以x +y =3+2=5.
14.【答案】负整数
【解析】9,10,7为正整数,-1,-5,-8为负整数,
所以把-1,9,10,-5,7,-8分为正整数和负整数.
15.【答案】-30,-60,-90(答案不唯一)
【解析】负数是小于0的数,整数包括正整数、负整数和0,
再找到是2,3,5的倍数的数,如-30,-60,-90等,答案不唯一.
16.【答案】0和负整数;负整数
【解析】零既不是正数也不是负数.故在理数中,是整数而不是正数的数是 0和负整数;是负数而不是分数的是负整数.故答案为:0和负整数;负整数
17.【答案】(1){1,2}不是黄金集合;
理由:因为6-1=5,而5不是集合{1,2}的元素;6-2=4,而4也不是集合{1,2}的元素,所以{1,2}不是黄金集合;{1,3,5}是黄金集合;
理由:因为6-1=5,而5是集合{1,3,5}的元素;6-3=3,而3也是集合{1,3,5}的元素;6-5=1,而1也是集合{1,3,5}的元素,所以{1,3,5}是黄金集合;
(2)写出两个黄金集合如:{0,6}和{2,3,4}.
【解析】(1)根据黄金集合的定义分别进行分析,即可得出答案;
(2)根据黄金集合的定义写出符合题意的集合即可,答案不唯一.
18.【答案】(1)18;(2)
【解析】(1)根据玛雅符号与自然数的关系确定出玛雅符号表示的自然数即可;
(2)280=14×20,画出表示自然数280的玛雅符号即可.。

相关文档
最新文档