三相逆变器的建模

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三相逆变器的建模

1.1 逆变器主电路拓扑与数学模型

三相全桥逆变器结构简单,采用器件少,并且容易实现控制,故选择三相三线两电平全桥逆变器作为主电路拓扑,如图 1所示。

图 1三相三线两电平全桥逆变拓扑

图 1中V dc 为直流输入电压;C dc 为直流侧输入电容;Q 1-Q 6为三个桥臂的开关管;L fj (j =a ,b ,c )为滤波电感;C fj (j =a ,b ,c )为滤波电容,三相滤波电容采用星形接法;N 为滤波电容中点;L cj (j =a ,b

,c )就是为确保逆变器输出呈感性阻抗而外接的连线电感

;v oj (j =a ,b ,c )为逆变器的滤波电容端电压即输出电压;i Lj (j =a ,b ,c )为三相滤波电感电流,i oj (j =a ,b ,c )为逆变器的输出电流。

由分析可知,三相三线全桥逆变器在三相静止坐标系abc 下,分析系统的任意状态量如输出电压v oj (j =a ,b ,c )都需要分别对abc 三相的三个交流分量v oa 、v ob 、v oc 进行分析。但在三相对称系统中,三个交流分量只有两个就是相互独立的。为了减少变量的个数,引用电机控制中的Clark 变换到三相逆变器系统中,可以实现三相静止坐标系到两相静止坐标系的变换,即将abc 坐标系下的三个交流分量转变成αβ坐标系下的两个交流分量。由自动控制原理可以知道,当采用PI 控制器时,对交流量的控制始终就是有静差的,但PI 控制器对直流量的调节就是没有静差的。为了使逆变器获得无静差调节,引入电机控制中的Park 变换,将两相静止坐标系转换成两相旋转坐标系,即将αβ坐标系下的两个交流分量转变成dq 坐标系下的两个直流分量。

定义αβ坐标系下的α轴与abc 三相静止坐标系下的A 轴重合,可以得到Clark 变换矩阵为:

11122230Clark

T ⎡

⎤--⎢⎥

=⎢⎢⎣ (1)

两相静止坐标系αβ到两相旋转坐标系dq 的变换为Park 变换,矩阵为:

cos()sin()sin()cos()Park t t T t t ωωωω⎡⎤=⎢⎥-⎣⎦

(2)

对三相全桥逆变器而言,设三相静止坐标系下的三个交流分量为:

cos()cos(2/3)cos(2/3)

a m

b m

c m u U t u U t u U t ωωπωπ==-=+ (3)

经过Clark 与Park 后,可以得到:

d m q u U u ==

(4)

由式(3)与式 (4)可以瞧出,三相对称的交流量经过上述Clark 与Park 变换后可以得到在 d 轴与 q 轴上的直流量,对此直流量进行 PI 控制,可以取得无静差的控制效果。

1.1.1 在abc 静止坐标系下的数学模型

首先考虑并网情况下,微电网储能逆变器的模型。选取滤波电感电流为状态变量,列写方程:

000a a a la b f b b lb c c lc c di dt u u i di L u u r i dt u u i di dt ⎡⎤

⎢⎥

⎡⎤⎡⎤

⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥

⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥

⎢⎥⎣⎦

(5)

其中,f L 为滤波电感,r 为滤波电感寄生电阻,系统中三相滤波电感取值相同。

在abc 三相静止坐标系中,三个状态变量有两个变量独立变量,需要对两个个变量进行分析控制,但就是其控制量为交流量,所以其控制较复杂。

1.1.2 在αβ两相静止坐标系下的数学模型

由于在三相三线对称系统中,三个变量中只有两个变量就是完全独立的,可以应用Clark 变换将三相静止坐标系中的变量变换到αβ两相静止坐标系下,如图 2所示。

A

图 2 Clark 变换矢量图

定义αβ坐标系中α轴与abc 坐标系中a 轴重合,根据等幅变换可以得到三相abc 坐标系到两

相αβ坐标系的变换矩阵:

12

12120

3a b c u u u u u αβ⎡⎤--⎡⎤⎡⎤⎢⎥

=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦

⎢⎥⎣⎦

(6)

联立式(5)与式(6),可以得到微电网储能逆变器在αβ坐标系下的数学模型:

00f di u u i dt L r u u i di dt α

αααββββ⎡⎤

⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦

(7)

从式(7)可以瞧出,与三相静止坐标系下模型相比,减少了一个控制变量,而各变量仍然为交流量,控制器的设计依然比较复杂。

1.1.3 在dq 同步旋转坐标系下的数学模型

根据终值定理,PI 控制器无法无静差跟踪正弦给定,所以为了获得正弦量的无静差跟踪,可以通过Clark 与Park 变换转换到dq 坐标系下进行控制。dq 两相旋转坐标系相对于αβ两相静止坐标系以ω的角速度逆时针旋转,其坐标系间的夹角为θ,图 3给出了Park 变换矢量图。

图 3 Park 变换矢量图

Park 变换矩阵方程为:

cos sin sin cos d q u u t t u u t t αβωωωω⎡⎤⎡⎤

⎡⎤=⎢⎥⎢⎥⎢

⎥-⎣⎦⎣⎦

⎣⎦

(8)

联立式(7)与式(8)可得微电网储能逆变器在dq 坐标系下的数学模型:

00d

f d d f q d q

f q q f d q di L u u L i ri dt

di L u u L i ri dt

ωω⎧

=-+-⎪⎪⎨⎪=---⎪⎩

(9)

在两相旋转坐标系下电路中控制变量为直流量,采用PI 控制能消除稳态误差,大大简化了系统控制器的设计。但就是,由于dq 轴变量之间存在耦合量,其控制需要采用解耦控制,解耦控制方法将在下节介绍。

相关文档
最新文档