北师大版数学七年级下第六章《概率初步》单元练习题.docx
北师大版七年级数学下册第6章《概率初步》单元测试试卷及答案(1)【精品】
北师大版七年级数学下册第6章《概率初步》单元测试试卷及答案(1)一、选择题1.下列说法正确的是( ).A .抛掷硬币试验中,抛掷500次和抛掷1 000次结果没什么区别B .投掷质量分布均匀的六面体骰子600次,骰子六面分别标有1,2,3,4,5,6,那么出现5点的机会大约为100次C .小丽的幸运数是“8”,所以她抛出“8”的机会比她抛出其他数字的机会大D .某彩票的中奖机会是1%,买1张一定不会中奖2.书包里有数学书3本,英语书2本,语文书5本,从中任意抽取一本,则是数学书的概率是( ).A.110B.35C.310D.153.任意一个事件发生的概率P 的范围是( ). A .0<P <1 B .0≤P <1 C .0<P ≤1D .0≤P ≤14.一个袋中装有3个红球,5个黄球,10个绿球,小强从袋中任意摸出一球是黑球的概率为( ).A .0B .1C.12D.135.三人同行,有两人性别相同的概率是( ). A .1B.23C.13D .06.在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中装有4个红球,且摸出红球的概率为13,那么袋中共有球的个数为( ).A .12B .9C .7D .6 7.用写有0,1,2的三张卡片排成三位数是偶数的概率为( ).A.34B.23C.12D.138.高速公路上依次有A ,B ,C 三个出口,A ,B 之间的距离为m km ,B ,C 之间的距离为n km ,决定在A ,C 之间的任意一处增设一个生活服务区,则此生活服务区设在A ,B 之间的概率为( ).A.n mB.m nC.nm +nD.mm +n9.在一个暗箱里放有a 个除颜色外其他完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( ).A .12B .9C .4D .3二、填空题10.任意抛掷一枚质量均匀的硬币两次,出现两次都为正面朝上的概率为__________,出现两次都为相同的面的概率为__________,出现至少有一面是正面的概率为__________. 11.蓝猫走进迷宫,迷宫中的每一个门都相同,第一道关口有三个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,蓝猫一次就能走出迷宫的概率是__________.12.小兰和小青两人做游戏,有一个质量分布均匀的六面体骰子,骰子的六个面分别标有1,2,3,4,5,6,如果掷出的骰子的点数是偶数,则小兰赢;如果掷出的骰子的点数是3的倍数,则小青赢,那么游戏规则对__________有利.13.有朋友约定明天上午8:00~12:00的任一时刻到学校与王老师会面,王老师明天上午要上三节课,每节课45分钟,朋友到学校时王老师正巧不在上课的概率是__________.14.某商场在“五·一”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个.顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是__________.15.小浩有红,白,蓝三件上衣和黄,黑两条裤子,则他穿白色上衣配黑色裤子的概率是__________.16.在创建国家生态园林城市活动中,某市园林部门为了扩大城市的绿化面积,进行了大量的树木移栽.下表记录的是在相同的条件下移栽某种幼树的棵数与成活棵数:依此估计这种幼树成活的概率是__________.(结果用小数表示,精确到0.1)三、解答题17.如图所示,三个相同的盒子里各放有一个塑料制成的圆环,这三个大小不同的圆环恰好可以按如图所示那样较紧密地套在一起,我们随意从三个盒子中拿出两个,则这两个圆环可以比较紧密地套在一起的概率有多大?18.小红、小丽和小华是同班学生,如果他们3人到校先后次序出现的可能性是一样的,那么小丽比小华先到校的概率是多少呢?(3人不同时到校)19.有四张不透明卡片为2,227,π,2,除正面的数不同外,其余都相同.将它们背面朝上,洗匀后从中随机抽取一张卡片,抽到写有无理数卡片的概率是多少?20.如图是一个可以自由转动的转盘,转盘被分成了6个扇形,其中标有数字1的扇形的圆心角(即∠AOB)为90°;标有数字2,4及6的扇形(即扇形BOC,扇形DOE,扇形FOA)的圆心角(即∠BOC,∠DOE,∠FOA)均为60°;标有数字3,5的扇形(即扇形COD,扇形EOF)的圆心角(即∠COD,∠EOF)均为45°.利用这个转盘甲、乙两人做下列游戏:自由转动转盘,指针指向奇数则甲获胜,而指针指向偶数则乙获胜,你认为这个游戏对甲,乙双方公平吗?为什么?21.杨成家住宅面积为90平方米,其中大卧室18平方米,客厅30平方米,小卧室15平方米,厨房14平方米,大卫生间9平方米,小卫生间4平方米.如果一只小猫在该住宅内地面上任意跑.求:(1)P(在客厅捉到小猫);(2)P(在小卧室捉到小猫);(3)P(在卫生间捉到小猫);(4)P(不在卧室捉到小猫).22.一个袋中装有1个红球,1个黑球和1个黄球,它们除了颜色外都相同,从中任意摸出一球,记录颜色后又放回袋中;充分摇匀后,再任意摸出一球,记录颜色后又将它放回袋中;再一次充分摇匀后,又从中任意摸出一球.试求:(1)三次均摸出黑球的概率;(2)三次中至少有一次摸出黑球的概率.参考答案1.B 点拨:A 中抛掷硬币试验中,抛掷500次和抛掷1 000次出现的结果可能不同,错误;C 中小丽抛出“8”的机会与她抛出其他数字的机会同样大,错误;D 中某彩票的中奖机会是1%,说明中奖的机会较小,机会小不一定不会发生,错误.2.C 点拨:所有机会均等的可能共有10种,而抽到数学书的机会有3种,因此抽到数学书的概率是310.3.D 4.A5.A 点拨:三个人,只有两种性别,所以有两人性别相同是必然的,所以概率是1. 6.A 点拨:设袋中共有球的个数为x ,根据概率公式列出方程:4x =13,解得x =12.7.A 点拨:用写有0,1,2的三张卡片排成三位数有:102,120,201,210四个,是偶数的有3个,所以排成三位数是偶数的概率为34.8.D 点拨:根据题意可得:A ,B 之间距离与总距离的比值为mm +n,故其概率为mm +n.9.A10.14 12 34 11.1612.小兰 点拨:因为骰子的点数是偶数的有2,4,6,其概率为36=12;骰子的点数是3的倍数的有3,6,其概率为26=13;故游戏规则对小兰有利.13.716点拨:上午8:00~12:00共4小时,即240分钟,王老师明天上午要上课135分钟,不在上课的时间为105分钟;则朋友到学校时王老师正巧不在上课的概率是105240=716. 14.13点拨:一次摸出两个球的所有情况有(红1,红2),(红1,白1),(红1,白2),(红2,白1),(红2,白2),(白1,白2)6种,其中两球颜色相同的有2种,所以得奖的概率是26=13.15.16点拨:这是一个两步完成的试验,用列表法可以列举出所有情况,看所求的情况占总情况的多少,根据概率公式即可求解.16.0.917.解:根据题意分析可得:从三个盒子中拿出两个共3种情况,即(1,2;2,3;1,3),其中有2种情况即(1,2和2,3)可使这两个圆环可以比较紧密地套在一起,故其概率是23.18.解:共有6种等可能的结果,其中小丽比小华先到校的有3种,所以所求概率为12.点拨:本题考查概率的概念和求法.用到的知识点为:概率=所求情况数与总情况数之比.19.解:四张卡片,从中任抽一张,所有可能的结果有4种,抽到无理数的结果有2种,∴P (抽到无理数)=24=12.20.解:此游戏对甲、乙双方是公平的.因为奇数点度数:90°+45°+45°=180°,与偶数点所占度数相等.21.解:(1)P (在客厅捉到小猫)的概率为3090=13;(2)P (在小卧室捉到小猫)的概率为1590=16;(3)P (在卫生间捉到小猫)的概率为9+490=1390;(4)P (不在卧室捉到小猫)的概率为=90-18-1590=5790=1930.22.解:一共有27种情况,所以(1)三次均摸出黑球的概率为127;(2)三次中至少有一次摸出黑球的概率为1927.。
北师大版数学七年级下册数学第6章概率初步单元测试题(有答案)
北师大版七年级数学下册第6章概率初步单元测试题一.选择题(共10小题)1.有一个正方体骰子,6个面分别标有1~6这6个整数,投掷这个正方体骰子一次,朝上一面出现奇数的概率是()A.B.C.D.2.下列事件中,属于必然事件的是()A.任意购买一张电影票,座位号是奇数B.明天晚上会看到太阳C.五个人分成四组,这四组中有一组必有2人D.三天内一定会下雨3.一个不透明的盒子中装有5个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大4.下列各选项的事件中,发生的可能性大小相等的是()A.小明去某路口,碰到红灯,黄灯和绿灯B.掷一枚图钉,落地后钉尖“朝上”和“朝下”C.小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上D.小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”5.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.246.某个事件发生的概率是,这意味着()A.在一次试验中没有发生,下次肯定发生B.在一次事件中已经发生,下次肯定不发生C.每次试验中事件发生的可能性是50%D.在两次重复试验中该事件必有一次发生7.点O1、O2、O3为三个大小相同的正方形的中心,一只小虫在如图所示的实线围成的区域内爬行,则小虫停留在阴影区域内的概率是()A.B.C.D.8.某林业部门要考察某幼苗的成活率,于是进行了试验,如表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是()移植总数n400 1500 3500 7000 9000 14000成活数m369 1335 3203 6335 8073 12628成活的频率0.923 0.890 0.905 0.897 0.897 0.902 A.由此估计这种幼苗在此条件下成活的概率约为0.9B.如果在此条件下再移植这种幼苗20000株,则必定成活18000株C.可以用试验次数累计最多时的频率作为概率的估计值D.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率9.如图,转盘的红、黄、蓝、紫四个扇形区域的圆心角分别记为α,β,γ,θ.自由转动转盘,则下面说法错误的是()A.若α>90°,则指针落在红色区域的概率大于0.25B.若α>β+γ+θ,则指针落在红色区域的概率大于0.5C.若α﹣β=γ﹣θ,则指针落在红色或黄色区域的概率和为0.5D.若γ+θ=180°,则指针落在红色或黄色区域的概率和为0.510.掷一枚质地均匀的硬币6次,下列说法正确的是()A.必有3次正面朝上B.可能有3次正面朝上C.至少有1次正面朝上D.不可能有6次正面朝上二.填空题(共8小题)11.王强投掷一枚质地均匀的硬币,连续投3次,硬币落地均是正面向上,他投掷第四次正面向上的概率为.12.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则两枚骰子向上一面的点数之和等于12为事件.13.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.14.一个布袋里放有5个红球,3个球黄球和2个黑球,它们除颜色外其余都相同,则任意摸出一个球是黑球的概率是.15.从51、53、55、57、59、60这6个数中任意抽取一个数,抽到的数能被5整除的可能性的大小是.16.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:日期次数教室星期一星期二星期三星期四星期五A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期的下午找到空教室的可能性最大.17.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.18.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和4个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为.三.解答题(共8小题)19.现有4个红球,请你设计摸球游戏.(1)使摸球事件是个不可能事件;(2)使摸球事件是个必然事件.20.盒中有x枚黑棋和y枚白棋,这些棋除颜色外无其他差别.(1)从盒中随机取出一枚棋子,如果它是黑棋的概率是,写出表示x和y关系的表达式.(2)往盒中再放进10枚黑棋,取得黑棋的概率变为,求x和y的值.21.在硬地上抛掷一枚图钉,通常会出现两种情况:下面是小明和同学做“抛掷图钉实验”获得的数据:抛掷次数n100 200 300 400 500 600 700 800 900 1000 针尖不着地的频数m63 120 186 252 310 360 434 488 549 610针尖不着地的频率0.63 0.60 0.63 0.60 0.62 0.61 0.61(1)填写表中的空格;(2)画出该实验中,抛掷图钉钉尖不着地频率的折线统计图;(3)根据“抛掷图钉实验”的结果,估计“钉尖着地”的概率为.22.如图,是一个被等分成8个扇形的转盘.请在扇形内写上“红、黑”表示涂上相应的颜色,未写表示白色,使得自由转动停止后,指针落在红色区域的概率等于落在黑色区域的概率,且小于落在白色区域的概率.填出两种,再指出“红、黑,白”分别是多少个?23.为弘扬中华传统文化,某学校决定开设民族器乐选修课,为了更适合学生的兴趣,对学生最喜爱的一种民族乐器进行随机抽样调查,收集整理数据后,给出以下未完成的统计图.(1)这次抽样调查中,共调查名学生.(2)扇形统计图(图2),“古筝”部分所对应的圆心角为度,“二胡”部分所对应的圆心角为度.(3)如果从选择“琵琶”选项的学生中,随机抽取15名学生参加“琵琶”乐器选修课,那么被选中的学生的可能性大小是.24.动物学家通过大量的调查估计出,某种动物活到20岁的概率为0.8,活到25岁的概率是0.5,活到30岁的概率是0.3.现年20岁的这种动物活到25岁的概率为多少?现年25岁的这种动物活到30岁的概率为多少?25.如图为一个封闭的圆形装置,整个装置内部为A、B、C三个区域(A、B两区域为圆环,C区域为小圆),具体数据如图.(1)求出A、B、C三个区域三个区域的面积:S A=,S B=,S C=;(2)随机往装置内扔一粒豆子,多次重复试验,豆子落在B区域的概率P B为多少?(3)随机往装置内扔180粒豆子,请问大约有多少粒豆子落在A区域?26.在边长为4的正方形平面内,建立如图1所示的平面直角坐标系.学习小组做如下实验:连续转动分布均匀的转盘(如图2)两次,指针所指的数字作为直角坐标系中P点的坐标(第一次得到的数为横坐标,第二次得到的数为纵坐标).(1)转盘转动共能得到个不同点,P点落在正方形边上的概率是;(2)求P点落在正方形外部的概率.参考答案与试题解析一.选择题(共10小题)1.解:由题意可得,投掷这个正方体骰子一次,朝上一面出现的奇数是1,3,5,故投掷这个正方体骰子一次,朝上一面出现奇数的概率是=,故选:B.2.解:A、任意购买一张电影票,座位号是奇数是随机事件;B、明天晚上会看到太阳是不可能事件;C、五个人分成四组,这四组中有一组必有2人是必然事件;D、三天内一定会下雨是随机事件;故选:C.3.解:A.摸到红球是随机事件,故A选项错误;B.摸到白球是随机事件,故B选项错误;C.根据不透明的盒子中装有5个红球和1个白球,得出摸到红球比摸到白球的可能性大,故C 选项错误;D.根据不透明的盒子中装有5个红球和1个白球,得出摸到红球比摸到白球的可能性大,故D 选项正确;故选:D.4.解:A、∵交通信号灯有“红、绿、黄”三种颜色,但是红黄绿灯发生的时间一般不相同,∴它们发生的概率不相同,∴选项A不正确;B、∵图钉上下不一样,∴钉尖朝上的概率和钉尖着地的概率不相同,∴选项B不正确;C、∵“直角三角形”三边的长度不相同,∴小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上走,他出现在各边上的概率不相同,∴选项C不正确;D、小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”的可能性大小相等,∴选项D正确.故选:D.5.解:根据题意得=0.25,解得:a=18,经检验:a=18是分式方程的解,故选:C.6.解:∵某个事件发生的概率是,∴根据概率的意义:该事件在一次试验中可能发生,也可能不发生,每次试验中事件发生的可能性是50%,故选:C.7.解:由图知:小虫停留在阴影区域内的概率==,故选:B.8.解:A.由此估计这种幼苗在此条件下成活的概率约为0.9,此选项正确;B.如果在此条件下再移植这种幼苗20000株,则大约成活18000株,此选项错误;C.可以用试验次数累计最多时的频率作为概率的估计值,此选项正确;D.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,此选项正确;故选:B.9.解:A、∵α>90°,∴>=0.25,故A正确;B、∵α+β+γ+θ=360°,α>β+γ+θ,∴>=0.5,故B正确;C、∵α﹣β=γ﹣θ,∴α+θ=β+γ,∵α+β+γ+θ=180°,∴α+θ=β+γ=180°,∴=0.5,∴指针落在红色或紫色区域的概率和为0.5,故C错误;D、∵γ+θ=180°,∴α+β=180°,∴=0.5,∴指针落在红色或黄色区域的概率和为0.5,故D正确;故选:C.10.解:掷一枚质地均匀的硬币,可能正面向上,也可能反面向上,可能性是均等的,不会受到前一次的影响,掷一枚质地均匀的硬币6次,不一定3次正面朝上,因此A选项不符合题意,“可能有3次正面朝上”是正确的,因此B选项正确;可能6次都是反面向上,因此C不符合题意,有可能6次正面向上,因此D选项不符合题意;故选:B.二.填空题(共8小题)11.解:∵抛掷一枚质地均匀的硬币一次,可能的结果有:正面向上,反面向上;∴P(正面向上)=P(反面向上)=.故答案为:.12.解:投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则两枚骰子向上一面的点数之和等于12为随机事件,故答案为:随机.13.解:黑色区域的面积=3×5﹣×3×1﹣×2×2﹣×3×1=10,所以击中黑色区域的概率==.故答案为:.14.解:∵在一个布袋里放有5个红球,3个球黄球和2个黑球,它们除了颜色外其余都相同,∴从布袋中任意摸出一个球是黑球的概率为:=.故答案为:.15.解:51、53、55、57、59、60这6个数中能被5整除的有55和60两个,所以抽到的数能被5整除的可能性的大小是=,故答案为:.16.解:观察表格发现星期三下午使用1+0+1=2次,最少,∴本次彩排安排在星期三的下午找到空教室的可能性最大,故答案为:三.17.解:P(中奖)==.故本题答案为:.18.解:由题意可得,×100%=20%,解得,a=15.故答案为:15.三.解答题(共8小题)19.解:(1)在4个白球中摸出一个红球,是不可能事件;(2)在4个白球中摸出一个白球,是必然事件.20.解:(1)∵盒中有x枚黑棋和y枚白棋,∴袋中共有(x+y)个棋,∵黑棋的概率是,∴可得关系式=;(2)如果往口袋中再放进10个黑球,则取得黑棋的概率变为,又可得=;联立求解可得x=15,y=25.21.解:(1):抛掷次数n100 200 300 400 500 600 700 800 900 1000 针尖不着地的频数m63 120 186 252 310 360 434 488 549 610 针尖不着地的频率0.63 0.60 0.62 0.63 0.62 0.60 0.62 0.61 0.61 0.61 (2)(3)通过大量试验,发现频率围绕0.39上下波动,于是可以估计概率是1﹣0.61=0.39.22.解:根据题意画图如下:第一个图红色2份,所占的概率是=,第一个图黑色2份,所占的概率是=,第一个图白色4份,所占的概率是=;第二个图红色1份,所占的概率是,第二个图黑色1份,所占的概率是,第二个图白色6份,所占的概率是=.23.解:(1)根据题意得:20÷10%=200(名),答:一共调查了200名学生;故答案为:20;(2))“古筝”部分所对应的圆心角为:360°×25%=90°;喜欢古琴所占的百分比30÷200=15%,喜欢二胡所占的百分比1﹣10%﹣25%﹣20%﹣15%=30%,二胡部分所对应的圆心角的度数为:30%×360°=108°;故答案为:90,108;(3)被选中的学生的可能性大小是:=;故答案为:.24.解;现年20岁的这种动物活到25岁的概率为=0.625,现年25岁的这种动物活到30岁的概率为=0.6,答:现年20岁的这种动物活到25岁的概率为0.625,现年25岁的这种动物活到30岁的概率为0.6.25.解:(1)S A=π•22=4π,S B=π•42﹣π•22=12π,S C=π•62﹣π•42=20π;故答案为:4π,12π,20π;(2)豆子落在B区域的概率P B为:=;(3)根据题意得:180×=100(粒),答:大约有100粒豆子落在A区域.26.解:(1)列表如下:1 2 3 ﹣1 ﹣2 ﹣31 (1,1)(1,2)(1,3)(1,﹣1)(1,﹣2)(1,﹣3)2 (2,1)(2,2)(2,3)(2,﹣1)(2,﹣2)(2,﹣3)3 (3,1)(3,2)(3,3)(3,﹣1)(3,﹣2)(3,﹣3)﹣1 (﹣1,1)(﹣1,2)(﹣1,3)(﹣1,﹣1)(﹣1,﹣2)(﹣1,﹣3)﹣2 (﹣2,1)(﹣2,2)(﹣2,3)(﹣2,﹣1)(﹣2,﹣2)(﹣2,﹣3)﹣3 (﹣3,1)(﹣3,2)(﹣3,3)(﹣3,﹣1)(﹣3,﹣2)(﹣3,﹣3)根据图表可得:转盘转动共能得到36个不同点,P点落在正方形边上的有12个,则P点落在正方形边上的概率是=;故答案为:36,;(2)根据图表得出:共有36个点,其中落在正方形外部的点共有20个,则P点落在正方形外部的概率是:=.北师大版。
北师大版七年级数学下册《第六章概率初步》单元测试卷-带答案
北师大版七年级数学下册《第六章概率初步》单元测试卷-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列事件中,不可能事件的是()A.投掷一枚均匀的硬币10次,正面朝上的次数为5次B.任意一个五边形的外角和等于C.从装满白球的袋子里摸出红球D.大年初一会下雨2.掷一枚质地均匀的骰子,骰子停止后,在下列四个选项中,可能性最大的是()A.点数小于4 B.点数大于4 C.点数大于5 D.点数小于5 3.从0—9这10个自然数中任取一个,是2的倍数或是3的倍数的概率是()A.B.C.D.4.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.5.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是奇数的概率为()A.B.C.D.6.在一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除了颜色外无其他差别.从中随机摸出一个小球,恰好是黄球的概率为()A.B.C.D.7.为备战中考,同学们积极投入复习,卓玛同学的试卷袋里装有语文试卷2张,藏文试卷3张,英语试卷1张,从中任意抽出一张试卷,恰好是语文试卷的概率是()A.B.C.D.8.行道树是指种在道路两旁及分车带,给车辆和行人遮荫并构成街景的树种.国槐是我市常见的行道树品种。
右图是一批国槐树苗移植成活频率的统计图,由此可估计这种树苗移植成活的概率约为()A.0.95 B.0.90 C.0.85 D.0.80二、填空题9.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为10.有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于11.下表为某中学统计的七年级500名学生体重达标情况(单位:人),在该年级随机抽取一名学生,12.一枚质地均匀的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率是.13.一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色不同外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是.三、解答题14.端午节,妈妈给小明准备了3个粽子,其中豆沙粽、蛋黄粽、肉粽各1个.小明从中任取2个,其中有一个是豆沙粽的概率是多少?15.一个不透明口袋中装有红球个,黄球个,绿球个,这些球除颜色处没有任何其他区别现.从中任意摸出一个球.(1)计算摸到的是绿球的概率.(2)如果要使摸到绿球的概率为,需要在这个口袋中再放入多少个绿球?16.掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率.(1)点数为2.(2)点数为奇数.(3)点数大于1且小于6.17.今年“6.18”互联网促销期间,某网红店开展有奖促销活动,凡进店购物的顾客均有转动8等分圆盘的机会,(如图),如果规定当圆盘停下来时指针指向1就中一等奖,指向3或8就中二等奖,指向2或4或6就中三等奖;指向其余数字不中奖.(1)转动转盘,中一等奖、二等奖、三等奖的概率是分别是多少?(2)顾客中奖的概率是多少?(3)6月18日这天有1600人参与这项活动,估计这天获得一等奖的人数是多少?18.在网格图中,每个方格除颜色外都相同,其中4个方格为黑色,余下方格为白色.(1)涂黑3个白色方格,使整个网格图为轴对称图形(考虑颜色);(2)在(1)的轴对称网格图中任取1个方格,恰好是黑色方格的概率是多少?(3)在(1)的轴对称网格图中,再涂黑若干个白色方格,能否使任取1个方格恰好是白色方格的概率为0.5?参考答案:1.C2.D3.D4.D5.A6.C7.B8.B9.10.11.12.13.m+n=814.解:∵从三个粽子中随机的拿出两个,共有豆沙粽与蛋黄粽,豆沙粽与肉粽,蛋黄粽与肉粽,三种等可能的结果数,其中有一个是豆沙粽的情况数有豆沙粽与蛋黄粽,豆沙粽与肉粽两种∴P(其中有一个是豆沙粽)=.(1)解:根据题意可知,口袋中装有红球6个,黄球9个,绿球3个,共18个球,故;15.(2)解:设需要在这个口袋中再放入x个绿球,得解得.所以需要在这个口袋中再放入2个绿球.16.(1)解:P(点数为2)=(2)解:点数为奇数的有3种可能,即点数为1,3,5,则P(点数为奇数)==(3)解:点数大于1且小于6的有3种可能,即点数为2,3,4,5则P(点数大于2且小于6)== .17.(1)解:由题意知,P(一等奖)=, P(二等奖)=,P(三等奖)=即中一等奖、二等奖、三等奖的概率是分别是,和(2)解:1,3,8,2,4,6份数之和为 6∴转动圆盘中奖的概率为:(3)解:由(1)知,获得一等奖的概率是(人)估计获得一等奖的人数为200人.18.(1)解:如图所示:(答案不唯一)(2)解:图中共有25个方格,黑色的有7个任取1个方格,恰好是黑色方格的概率是(3)解:若能使任取1个方格恰好是白色方格的概率为0.5则白色的方格为个故不能再涂黑若干个白色方格,使任取1个方格恰好是白色方格的概率为0.5。
北师大版七年级数学下册第六章 概率初步 单元测试卷(含答案)
北师大版七年级数学下册第六章 概率初步 单元测试卷(含答案)一、选择题(30分)1.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50 2.下列事件中,属于必然事件的是( )A .随意抛掷一枚骰子,掷得偶数点B .从一副扑克牌中抽出一张,抽得红桃牌C .任意选择电视的某一频道,正在播放动画片D .在同一年出生的367名学生中,至少有两个人同月同日生3.在相同条件下重复试验,若事件A 发生的概率是7100,则下列说法中正确的是( )A .事件A 发生的频率是7100 B .反复大量做这种试验,事件A 只发生了7次C .做100次这种试验,事件A 一定发生了7次D .做100次这种试验,事件A 可能发生了7次4.(2019·东营)从1,2,3,4中任取两个不同的数,分别记为a 和b ,则a 2+b 2>19的概率是( ) A .12 B .512 C .712 D .135.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是( )A .16B .13C .12D .236.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开旅行箱的概率是( )A .110B .19C .16D .157.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向黄色区域的概率是( )A .16B .13C .12D .238.如图,在空白网格内将某一个小正方形涂成阴影部分,且所涂的小正方形与原阴影图形的小正方形至少有一边重合.小红按要求涂了一个正方形,所得到的阴影图形恰好是轴对称图形的概率为( )A .15B .4115C .49D .139.下列说法正确的是( )A .“明天降雨的概率是60%”表示明天有60%的时间都在降雨B .“抛一枚硬币正面朝上的概率为12”表示每抛两次就有一次正面朝上C .“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D .“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在16附近10.某学习小组在做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的试验最有可能的是( )试验 次数 100 200 300 500 800 1000 2000 频率0.3650.3280.3300.3340.3360.3320.333B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C .抛一个质地均匀的正六面体骰子,向上的面点数是5D .抛一枚硬币,出现反面的概率 二、填空题(16分)11.抛掷一枚质地均匀的硬币,落地后正面朝上的概率是______.12.从分别标有1,2,3,4的四张卡片中任意抽取1张,抽到奇数的概率是______. 13.一个不透明的盒子中装有10个黑球和若干个白球,它们除了颜色不同外,其余均相同,从盒子中随机摸出一球并记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球有________个.14.若将分别写有“生活”“城市”的2张卡片,随机放入“ 让 更美好”中的两个 内(每个 只放1张卡片),则其中的文字恰好组成“城市让生活更美好”的概率是________.15.下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100 ℃;③掷一次骰子,朝上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是________.(填序号)16.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向的数大于6的概率为________.17.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为________.18.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是________.三、简答题(54分)19.(9分)一个口袋中有10个红球和若干个白球,请通过以下试验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中.不断重复上述过程,试验中总共摸了200次,其中有50次摸到红球.20.(9分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A必然事件随机事件m的值(2)于45,求m的值.21.(12分)(2018·苏州期末)暑假将至,某商场为了吸引顾客,设计了可以自由转动的转盘(如图所示,转盘被均匀地分为20份),并规定:顾客每买够200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.若某顾客购物300元.(1)求他此时获得购物券的概率是多少;(2)他获得哪种购物券的概率最大?请说明理由.22.(12分)有一个质地均匀的小正方体,正方体的六个面上分别标有1,2,3,4,5,6这六个数字.现在有甲、乙两位同学做游戏,游戏规则是:任意掷出正方体后,如果朝上的数字是6,甲是胜利者;如果朝上的数字不是6,乙是胜利者.你认为这个游戏规则对甲、乙双方公平吗?为什么?如果不公平,你打算怎样修改才能使游戏规则对甲、乙双方公平?23.(12分)一个小球分别在如图①②所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球停留在白色区域的概率分别是多少?参考答案1~10:ADDDB AACDB 11.1/2 12. 1/2 13. 15 14. 1/2 15. ①③ 16. 1/4 17. 2/3 18. 1/3 19.解:试验中总共摸了200次,其中50次摸到红球,则摸出一球是红球的概率估计值是50200=14,因为红球有10个,则袋中共有球10÷14=40(个),故口袋中白球的个数为40-10=30(个).20. (1)4 2,3(2)解:根据题意得6+m 10=45,解得m =2,所以m 的值为2.21.(1)解:因为转盘被均匀地分为20份,转动转盘获得购物券的有10种情况,所以他此时获得购物券的概率是1020=12.(2)解:他获得50元购物券的概率最大.理由:因为P (获得200元购物券)=120,P (获得100元购物券)=320,P (获得50元购物券)=620=310,所以他获得50元购物券的概率最大.22.解:这个游戏不公平.因为正方体的六个面上分别标有1,2,3,4,5,6这六个数字,其中数字6只有1个,也就是说甲胜利的概率是16;不是6的数字有5个,也就是说乙胜利的概率是56,双方胜利的机会不是均等的,所以说这个游戏不公平.可以把游戏规则改为:任意掷出正方体后,如果朝上的数字是奇数(1,3,5),甲是胜利者;如果朝上的数字是偶数(2,4,6),乙是胜利者,按这样的游戏规则对甲、乙双方是公平的.(答案不唯一) 23.解:图①:P =34;图②:P =23.。
新北师大版七年级数学下第六章《概率初步》单元测试及答案【精品】
北师大版七年级数学下册第六章概率初步单元测试1一、填空题1.给出以下结论①如果一件事发生的机会只有十万分之一,那么它就不可能发生;②二战时期美国某公司生产的降落伞合格率达99.9%,使用该公司的降落伞不会发生危险;③如果一件事不是必然发生的,那么它就不可能发生;④从1、2、3、4、5中任取一个数是奇数的可能性要大于偶数的可能性.其中正确的结论是_____.2.小明和小华做抛硬币的游戏,实验结果如下:在小华的10次实验中,抛出两个正面_____次,出现两次正面的概率为_____,小明抛出两个正面的概率是_____.3.10名学生计划“五一”这天去郊游,任选其中的一人带20根香肠,则10人中的小亮被选中的概率是_____.4.三名同学站成一排,其中小明站在中间的概率是_____,站在两端的概率是_____.5.从8名男医生和7名女医生中选一人作为医疗小组的组长,是男医生的概率是_____,是女医生的概率是_____.6.某科学考察队有3名老队员,3名新队员,考察某溶洞时,任选其中一人下去考察,是老队员的概率是_____.7.小明和小亮各写一张贺卡,先集中起来,然后每人拿一张贺卡,则他们各自拿到对方送出的贺卡的概率是_____.8.从4台A型电脑和5台B型电脑中任选一台,选中A型电脑的概率为_____,B型电脑的概率为_____.9.小亮从3本语文书,4本数学书,5本英语书中任选一本,则选中语文书的概率为_____,选中数学书的概率为_____,选中英语书的概率为_____.10.某停车厂共有12个停车位置,今从中任取一个给某车停放,两端停车位置被选中的概率为_____.11.在标号为1、2、3……19的19个同样的小球中任选一个,则选中标号为偶数的小球的可能性_____选中标号为奇数的小球的可能性.12.从小明、小亮、小丽3名同学中选一人,当语文课代表,选中小丽的可能性_____小丽不被选中的可能性.二、选择题13.黑暗中小明从他的一大串钥匙中,随便选择一把,用它开门,下列叙述正确的是( )A.能开门的可能性大于不能开门的可能性B.不能开门的可能性大于能开门的可能性C.能开门的可能性与不能开门的可能性相等D.无法确定 14.给出下列结论①打开电视机它正在播广告的可能性大于不播广告的可能性 ②小明上次的体育测试是“优秀”,这次测试它百分之百的为“优秀” ③小明射中目标的概率为31,因此,小明连射三枪一定能够击中目标 ④随意掷一枚骰子,“掷得的数是奇数”的概率与“掷得的数是偶数”的概率相等其中正确的结论有( ) A.1个B.2个C.3个D.4个15.一个口袋内装有大小和形状相同的一个白球和两个红球,“从中任取一球,得到白球”这个事件是( )A.必然事件B.不能确定事件C.不可能事件D.不能确定16.有5个人站成一排,则甲站在正中间的概率与甲站在两端的概率的比值为( ) A.21B.2C.21或2 D.无法确定17.如图1,阴影部分表示在一定条件下小明击中目标的概率,空白部分表示小亮击中目标的概率,图形说明了 ( )图1A.小明击中目标的可能性比小亮大B.小明击中目标的可能性比小亮小C.因为小明和小亮击中目标都有可能,且可能性都不是100%,因此,他们击中目标的可能性相等D.无法确定18.将一个各面涂有颜色的正方体,分割成同样大小的27个小正方体,从这些正方体中任取一个,恰有3个面涂有颜色的概率是 ( )A.2719B.2712 C.32D.278 三、解答题19.从男女学生共36人的班级中,选一名班长,任何人都有同样的当选机会,如果选得男生的概率为32,求男女生数各多少? 20.将一枚硬币连掷3次,出现“两正,一反”的概率是多少?21.某同学抛掷两枚硬币,分10级实验,每组20次,下面是共计200次实验中记录下的结果.①在他的每次实验中,抛出_____、_____和_____都是不确定事件.②在他的10组实验中,抛出“两个正面”概率最多的是他第_____组实验,抛出“两个正面”概率最少的是他的第_____组实验.③在他的第1组实验中抛出“两个正面”的概率是_____,在他的前两组(第1组和第2组)实验中抛出“两个正面”的概率是_____.④在他的10组实验中,抛出“两个正面”的概率是_____,抛出“一个正面”的概率是_____,“没有正面”的概率是_____,这三个概率之和是_____.22.以下有三种情况,根据你的实践,用序号字母填写下表(有几种可能情况填写几个字母)A.在三角形的内部B.在三角形的边上C.在三角形的外部图224.准备三张纸片,两张纸片上各画一个三角形,另一张纸片上画一个正方形,如果将这三张纸片放在一个盒子里搅匀,那么,随机地抽取两张纸片,可能拼成一个菱形(取出的是两张画三角形的纸片),也可能拼成一个房子(取出的是一张画三角形,一张画正方形的纸片),这个游戏的规则是这样的:若拼成一个菱形甲赢,若拼成一个房子乙赢,你认为这个游戏是公平的吗?请玩一玩这个游戏,用你的数据说明你的观点.参考答案一、1.④ 2.2 20% 10% 3.101 4. 61 315.158 157 6.21 7.21 8.94 95 9.41 31 125 10.6111.小于 12.二、13.B 14.A 15.B 16.A 17.B 18.D三、19.男生24人,女生1220.83 21.①“两个正面” “一个正面” “没有正面” ②7 9③103 51 ④20053 20043 2513 122.AAA AAA AAA AAA AAA AAA AAA ABB ACC23.证:∵AB ∥CD∴∠BAC +∠DCA =180 又∵AE 为∠BAC∴∠CAE =21∠CAB同理∠ACE =21∠DCA 即:∠CAE +∠ACE =90∴AE ⊥CE*24.。
北师大版七年级数学下册单元测试卷第六章 概率初步附答案
第六章概率初步一、选择题(共18小题;共54分)1. 一条信息可以通过如图的网络线由上(点)往下向各站点传送,例如:信息到点可由经的站点送达,也可由经的站点送达,共有两条途径传送,则信息由点到达的不同途径共有A. 条B. 条C. 条D. 条2. 从件不同款式的衬衣和条不同款式的裙子中分别取一件衬衣和一条裙子搭配,可能的情况有A. 种B. 种C. 种D. 种3. 从标号分别为,,,,的张卡片中,随机抽取张.下列事件中,必然事件是A. 标号小于B. 标号大于C. 标号是奇数D. 标号是4. 一个暗箱里装有个黑球,个白球,个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是C. D.5. 盒子中装有个红球和个绿球,每个球除颜色外都相同,从盒子中任意摸出一个球,是绿球的概率是A. B. C. D.6. 太阳绕地球转,这是的.A. 可能B. 不可能C. 一定7. 下列事件中,是必然事件的是A. 打开电视机,正在播放新闻B. 父亲年龄比儿子年龄大C. 通过长期努力学习,你会成为数学家D. 下雨天,每个人都打着雨伞8. 某篮球运动员在同一条件下,进行投篮训练,共投次,其中投中次,据此估计,这名球员投篮一次投中的概率约是A. B. C. D.9. 下列成语所描述的事件概率为的是A. 水中捞月B. 守株待兔C. 瓮中捉鳖D. 十拿九稳10. 下列说法正确的是A. 某种彩票的中奖率为千分之一,一次买一千张彩票一定中奖B. 一批零件的合格率为百分之九十九,任意抽查一个一定合格C. 下雨天走在路上不太可能被雷电击倒D. 抛掷两枚一元的硬币,出现一正一反的可能性比出现两个正面的可能性小11. 小明训练上楼梯赛跑,他每步可上阶或者阶(不上阶),那么小明上阶楼梯的不同方法共有(注:两种上楼梯的方法只要一步所踏楼梯的阶数不同,便认为是不同的方法)A. 种B. 种C. 种D. 种12. 在投掷一枚硬币的游戏过程中,已知“正面朝上”的概率为,那么下列说法正确的是A. 投掷次必有次“正面朝上”B. 投掷很多次的时候,极有可能出现“正面朝上”C. 投掷次可能有次“正面朝上”D. 投掷很多次的时候,极少出现“正面朝上”13. 下列事件中最有可能发生的是A. 刚买回来的新手机不能打电话B. 足球比赛比分为C. 北方的冬天下雪D. 买彩票中了一等奖14. 下列事件中,属于随机事件的是A. 在十进制中B. 从长度分别为厘米,厘米,厘米,厘米的根小木棒中,取根为边拼成一个三角形C. 方程在实数范围内有解D. 在装有个红球的口袋内,摸出一个白球15. 如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是A. B. C. D.16. 某班学生中随机选取一名学生是男生的概率是,那么该班男女生的人数比是17. 现有,,,,共五个数,从中取若干个数分给A,B两组,两组都不能放空,要使得B组中最小的数比A组中最大的数都大,则有分配方法A. 种B. 种C. 种D. 种18. 小明在一天晚上帮妈妈洗三个只有颜色不同的有盖茶杯,这时突然停电了,小明只好将茶杯和杯盖随机搭配在一起,那么三个茶杯颜色全部搭配正确的概率是D.二、填空题(共7小题;共31分)19. 现有张扑克牌,牌面分别是方块,,和草花,,,小红从草花和方块里各摸张牌,摸到张牌上的数之和是的概率是.20. 三条任意长的线段可以组成一个三角形,这一事件是事件.21. 某班要选名同学代表参加班级间的交流活动.现在按下面的办法选取:把全班同学的姓名分别写在没有明显差别的纸片上,把纸片混放在一个盒子里,充分搅拌后,随机抽取张,按照纸片上所写的名字选取名同学.你觉得上面的选取过程是简单随机抽样吗? (填“是”或“不是”).22. 甲、乙、丙、丁、戊五位同学参加一次活动,很幸运的是他们都得到了一件精美的礼品(如图),他们每人只能从其中一串的最下端取一件礼品,直到礼物取完为止,甲第一个取得礼物,然后乙,丙,丁,戊依次取得第到第件礼物,当然取法各种各样,那么他们共有种不同的取法.23. 一道选择题有A,B,C,D 个选项,只有个选项是正确的.若两位同学随意任选个答案,则同时选对的概率为.24. 若一事件发生的概率是,则它发生(填“必然”、“可能”或“不可能”).25. 从学校任选一位同学,事件:该同学是八年级的,事件:该同学是九年级()班的,事件:该同学是男的,用,,分别表示事件,,发生的可能性大小,按从小到大的顺序排列是.三、解答题(共5小题;共65分)26. 如图,圆盘分成大小相等的扇形,分别写有数字,任意转动圆盘,比较下列事件的可能性大小,并按照从大到小的顺序排列(当指针落在扇形边界时,统计在逆时针方向相邻的扇形区域内).()指针落在数字区域内,可能性记为;()指针落在奇数区域内,可能性记为;()指针落在的倍数区域内,可能性记为.27. 请你设计一个游戏,其中包括“不太可能”发生的事件、“很有可能”发生的事件、“不可能发生”的事件.28. 有一个质地均匀的正方体,一面涂上红色,两面涂上黄色,三面涂上绿色.用依次表示抛掷出“红”“黄”“绿”“红或黄或绿”“蓝”的可能性大小,请你将它们的可能性大小按照从小到大的顺序排列.29. 小明有双黑袜子和双白袜子,假设袜子不分左右,那么从中随机抽取只恰好配成一双的概率是多少?如果袜子分左右呢?30. 在袋中装有大小、形状、质量完全相同的个白球和个红球,甲、乙两人从中进行摸球游戏,在游戏之前两人就各有分,然后从中轮番摸球,每次摸三个球,然后放回袋中搅匀,再由另一个人摸球,得分规则如下:最后以得分高者为胜者,请问这个游戏对甲、乙双方公平吗?如果不公平,谁更有利;如果公平,请说明理由.答案第一部分1. C 【解析】经的只有条,经的有条,经的只有条,经的有条,所以总共有条.2. D3. A4. C5. C6. B7. B8. B9. A10. C11. C 【解析】根据题意可知,上阶楼梯的方法数为,上阶楼梯的方法数为,上阶楼梯的方法数为,上阶楼梯的方法数为,上阶楼梯的方法数为,,上阶楼梯的方法数为.12. B13. C14. B15. C【解析】在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有种等可能的结果,与图中阴影部分构成轴对称图形的有②④⑤,共种情况,所以与图中阴影部分构成轴对称图形的概率是.16. A17. B18. B 【解析】如图,基本事件是,颜色都对号了的事件是,所以答案是第二部分【解析】摸到张牌上的数之和是的情况有:,;,;,.故摸到张牌上的数之和是的概率是.20. 随机21. 是22.【解析】甲、乙、丙、丁、戊取礼物的顺序有种,为:①A,B,C,D,E;②A,C,D,E,B;③A,C,D,B,E;④A,C,B,D,E;⑤C,D,E,A,B;⑥C,D,A,B,E;⑦C,D,A,E,B;⑧C,A,B,D,E;⑨C,A,D,B,E;⑩C,A,D,E,B.23.【解析】一个同学任取一个的概率为个答案同时选对的概率为.24. 可能25.第三部分26. .27. 略28. .29. 共有种等可能的结果数,若袜子不分左右,从中随机抽取只恰好配成一双的结果数为,所以袜子不分左右,那么从中随机抽取只恰好配成一双的概率;若袜子分左右,从中随机抽取只恰好配成一双的结果数为,所以袜子分左右,那么从中随机抽取只恰好配成一双的概率.30. 这个游戏对双方公平.理由:在三红三白六个球中,任意摸出三个球,是三红的概率为,同理三个球都为白球的概率也为,若摸出的球是二红一白,则有三种情况:红,红,白;红,白,红;白,红,红,摸出球为二红一白概率为,同理二白一红的概率也为,所以(分),(分),所以,所以摸一次球甲、乙两人所得的平均分相等,因此这个游戏公平.。
北师大版七年级数学(下)第六章【概率初步】单元测试卷(一)含答案与解析
北师大版七年级数学(下)第六章单元测试卷(一)概率初步学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分一、单选题(共30分)1.(本题3分)(2020·浙江绍兴市·七年级月考)下列说法中,正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间在降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%表示买100张彩票一定有1张会中奖D.在同一年出生的367名学生中,至少有两人的生日是同一天2.(本题3分)下列说法错误的是()A.李老师要从包括小明在内的四名班委中,随机抽取2名学生参加学生会选举,抽到小明的概率是1 2B.一组数据6,8,7,8,8,9,10的众数和中位数都是8C.对甲、乙两名运动员某个阶段的比赛成绩进行分析,甲的成绩数据的方差是S甲2=0.01,乙的成绩数据的方差是S乙2=0.1,则在这个阶段甲的成绩比乙的成绩稳定D.一个盒子中装有3个红球,2个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,两次摸到相同颜色的球的概率是8 253.(本题3分)(2020·全国七年级单元测试)对“某市明天下雨的概率是80%”这句话,理解正确的是()A.某市明天将有80%的时间下雨B.某市明天将有80%的地区下雨C.某市明天一定会下雨D.某市明天下雨的可能性较大4.(本题3分)(2020·沈阳市虹桥中学七年级期中)下列事件中是必然事件的是()A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为415,买10 000张该种彩票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上5.(本题3分)(2020·全国七年级单元测试)在一副52张的扑克牌(没有大、小王)中任意抽取一张牌,抽出的这张牌是方块的概率是( )A.B.C.D.06.(本题3分)(2020·全国七年级课时练习)如图,转动转盘,指向阴影部分的可能性为a,指向空白部分的可能性为b,则( )A.a>b B.a<b C.a=b D.无法确定7.(本题3分)(2020·全国七年级课时练习)某市民政部门五一期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这些彩票中,设置如下奖项:奖金(元) 1000 500 100 50 10 2数量(个) 10 40 150 400 1000 10000如果花2元钱购买1张彩票,那么所得奖金不少于50元的概率是()A.B.C.D.8.(本题3分)(2020·深圳市龙岗区龙岗街道新梓学校七年级期中)假如小猫在如图所示的地板上自由地走来走去,并随意停留在某块方砖上,它最终停留在黑色方砖上的概率是()A.18B.14C.34D.129.(本题3分)(2020·山西七年级期末)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )实验100 200 300 500 800 1000 2000次数频0.365 0.328 0.330 0.334 0.336 0.332 0.333率A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率10.(本题3分)(2020·全国七年级单元测试)某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.掷一个质地均匀的正方体骰子,落地时面朝上的点数是6C.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上D.用2,3,4三个数字随机排成一个三位数,排出的数是偶数二、填空题(共24分)11.(本题3分)下列事件是必然事件的是________.(填序号)①3个人分成两组,一定有2人分在一组;②随意掷两个完好的骰子,朝上一面的点数之和不小于2;③明天北京会刮大风,出现沙尘暴;④你百米可跑5秒.12.(本题3分)(2020·山东烟台市·烟台开发区实验中学七年级月考)在一个不透明的口袋中,装有4个红球和若干个白球,它们除颜色外其它完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,从口袋中任意摸出一个球,估计它是红球的概率是_____.13.(本题3分)(2020·全国七年级单元测试)从1,2,3,…,10这10个自然数中任取一个数,则它是4的倍数的概率是________.14.(本题3分)(2020·全国七年级单元测试)五张分别写有3,4,5,6,7的卡片,现从中任意取出一张卡片,则该卡片上的数字为奇数的概率是________15.(本题3分)(2020·全国七年级单元测试)一个袋子中装有5个白球和3个红球,甲摸到白球胜,乙摸到红球胜,为使甲、乙两人获胜的可能性一样大,那么必须往袋中再放入___个___球(只能再放入同一颜色的球).16.(本题3分)(2020·全国七年级单元测试)如图,线段AB被等分成5段,在图上任取一点,这一点取在粗线段上的概率是____.17.(本题3分)(2020·全国七年级课时练习)如果x=y,那么12+2x=12+2y的可能性是________.18.(本题3分)(2020·辽宁锦州市·七年级期末)小明将飞镖随意投中如图所示的正方体木框中,那么投中阴影部分的概率为_____.三、解答题(共46分)19.(本题9分)(2020·佛山市顺德区杏坛梁銶琚初级中学七年级月考)(2017·广东佛山禅城区期末)一个口袋中装有3个白球、5个红球,这些球除了颜色外完全相同,充分摇匀后随机摸出一球,发现是白球.(1)如果将这个白球放回,再摸出一球,它是白球的概率是多少?(2)如果将这个白球不放回,再摸出一球,它是白球的概率是多少?20.(本题9分)(2020·山西七年级期末)在一个不透明的袋子中装有3个红球和6个黄球,这些球除颜色外都相同,将袋子中的球充分摇匀后,随机摸出一球.(1)分别求出摸出的球是红球和黄球的概率.(2)为了使摸出两种球的概率相同,再放进去7个同样的红球或黄球,那么这7个球中红球和黄球的数量分别应是多少?21.(本题9分)(2020·全国七年级单元测试)如图,在一个大的圆形区域内包含一个小的圆形区域,大圆的半径为2,小圆的半径为1.一只在天空自由飞翔的小鸟要落在它的上面,那么小鸟落在小圆区域外大圆区域内(阴影部分)的概率是多少?22.(本题9分)(2020·全国七年级单元测试)用10个球分别设计一个摸球游戏(这些球除颜色不同外其余均相同):(1)使从中摸一个球,摸到红球的概率为15;(2)使从中摸一个球,摸到红球和白球的概率都是2 5 .23.(本题10分)(2020·全国七年级单元测试)在一个不透明的袋中有除颜色外其他完全相同的3个球,每次从袋中摸出一个球,记下颜色后放回搅匀再摸,在摸球试验中得到下表中部分数据:摸球总次数40 80 120 160 200 240 280 320 360 400摸到黄球的次数14 23 38 52 67 86 97 111 120 136摸到黄球的频率35% 32% 33% 35% 35%(1)请将上表补充完整(结果精确到1%);(2)制作折线统计图表示摸到黄球的频率的变化情况;(3)估计从袋中摸出一个球是黄球的概率是多少.参考答案与试题解析一、单选题(共30分)1.(本题3分)(2020·浙江绍兴市·七年级月考)下列说法中,正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间在降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%表示买100张彩票一定有1张会中奖D.在同一年出生的367名学生中,至少有两人的生日是同一天【答案】D【解析】试题解析:A、“明天降雨的概率是80%”表示明天有降雨的可能性,故错误;B、“抛一枚硬币正面朝上的概率是0.5”表示抛一枚硬币正面朝上与反面朝上的机会是一样的,故错误;C、“彩票中奖的概率是1%”表示在设计彩票时,有1%的机会中奖,但不一定买100张彩票一定有1张会中奖,故错误;D、在同一年出生的367名学生,而一年中至多有366天,因而至少有两人的生日是同一天.故选D.2.(本题3分)下列说法错误的是()A.李老师要从包括小明在内的四名班委中,随机抽取2名学生参加学生会选举,抽到小明的概率是1 2B.一组数据6,8,7,8,8,9,10的众数和中位数都是8C.对甲、乙两名运动员某个阶段的比赛成绩进行分析,甲的成绩数据的方差是S甲2=0.01,乙的成绩数据的方差是S乙2=0.1,则在这个阶段甲的成绩比乙的成绩稳定D.一个盒子中装有3个红球,2个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,两次摸到相同颜色的球的概率是8 25【答案】D【解析】【分析】根据概率的意义,可判断A;根据众数的定义、中位数的定义,可判断B;根据方差的性质,可判断C;根据频率表示概率,可判断D【详解】A、李老师要从包括小明在内的四名班委中,随机抽取2名学生参加学生会选举,抽到小明的概率是21 =42,故A正确;B、一组数据6,8,7,8,8,9,10的众数和中位数都是8,故B正确;C、对甲、乙两名运动员某个阶段的比赛成绩进行分析,甲的成绩数据的方差是S甲2=0.01,乙的成绩数据的方差是S乙2=0.1,则在这个阶段甲的成绩比乙的成绩稳定,故C正确;D、一个盒子中装有3个红球,2个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,两次摸到相同颜色的球的概率是1325,故D错误.【点睛】本题的考点是概率的意义及有关计算;众数和中位数的定义;方差的性质;熟练掌握其基础知识是解题的关键.3.(本题3分)(2020·全国七年级单元测试)对“某市明天下雨的概率是80%”这句话,理解正确的是()A.某市明天将有80%的时间下雨B.某市明天将有80%的地区下雨C.某市明天一定会下雨D.某市明天下雨的可能性较大【答案】D【分析】概率它反映随机事件出现的可能性大小,随机事件是指在相同条件下,可能出现也可能不出现的事件.【详解】A选项,某市明天将有80%的时间下雨不符合对概率意义的理解,B选项,某市明天将有80%的地区下雨不符合对概率意义的理解,C选项,某市明天一定会下雨不符合对概率意义的理解,D选项,某市明天下雨的可能性较大符合对概率意义的理解.故选D.【点睛】本题主要考查概率的意义,解决本题的关键是要掌握对概率意义的理解.4.(本题3分)(2020·沈阳市虹桥中学七年级期中)下列事件中是必然事件的是()A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为415,买10 000张该种彩票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上【答案】D【解析】【分析】必然事件就是一定发生的事件,根据定义即可解答.【详解】A.小菊上学乘坐公共汽车是随机事件,不符合题意;B.买10000张一定会中奖也是随机事件,尽管中奖率是415,不符合题意;C.一年中大月份有7个,小月份有5个,不相等,是不可能事件,不符合题意;D.常温下豆油的密度<水的密度,所以豆油一定会浮在水面上,是必然事件,符合题意.故选D.【点睛】用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(本题3分)(2020·全国七年级单元测试)在一副52张的扑克牌(没有大、小王)中任意抽取一张牌,抽出的这张牌是方块的概率是( )A.B.C.D.0【答案】B【分析】让方块的总张数13除以牌的总张数52即为任抽一张牌是方块的机会.【详解】P(方块)=.故选B.【点睛】解答此题关键是要明白在一副52张扑克牌中(没有大小王)有方块,红桃,黑桃,梅花各13张,再根据概率公式计算即可.用到的知识点为:概率=所求情况数与总情况数之比.6.(本题3分)(2020·全国七年级课时练习)如图,转动转盘,指向阴影部分的可能性为a,指向空白部分的可能性为b,则( )A.a>b B.a<b C.a=b D.无法确定【答案】C【解析】由图可知,阴影部分与空白部分的面积相等,故a=b.故选C.7.(本题3分)(2020·全国七年级课时练习)某市民政部门五一期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这些彩票中,设置如下奖项:奖金(元)100050010050102数量(个)1040150400100010000如果花2元钱购买1张彩票,那么所得奖金不少于50元的概率是()A.B.C.D.【答案】C【解析】【分析】让所得奖金不少于50元的彩票张数除以彩票的总张数就是所得奖金不少于50元的概率.【详解】因为从10万张彩票中购买一张,每张被买到的机会相同,因而有10万个结果,奖金不少于50元的共有10+40+150+400=600(个),所以所得奖金不少于50元的概率=.故选:C.【点睛】本题考查了概率公式,解决关键是理解列举法求概率的条件,事件有有限个结果,每个结果出现的机会相等.用到的知识点为:概率=所求情况数与总情况数之比.8.(本题3分)(2020·深圳市龙岗区龙岗街道新梓学校七年级期中)假如小猫在如图所示的地板上自由地走来走去,并随意停留在某块方砖上,它最终停留在黑色方砖上的概率是()A.18B.14C.34D.12【答案】B【分析】先求出阴影的面积在整个地面中所占的比值,再根据其比值即可得出结论.【详解】观察这个图可知:黑色区域(4块)的面积占总面积(16块)的14,故其概率为14.故选B.【点睛】本题考查的是几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.9.(本题3分)(2020·山西七年级期末)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率【答案】B【分析】根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,然后进行判断.【详解】解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为14,不符合题意;B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是13,符合题意;C、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为16,不符合题意;D、抛一枚硬币,出现反面的概率为12,不符合题意,故选B.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.10.(本题3分)(2020·全国七年级单元测试)某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.掷一个质地均匀的正方体骰子,落地时面朝上的点数是6C.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上D.用2,3,4三个数字随机排成一个三位数,排出的数是偶数【答案】B【解析】【分析】根据统计图可知,试验结果在0.15到0.20之间波动,即:这个实验的概率大约为0.17,分别计算四个选项的概率,大约为0.17即为正确答案.【详解】A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为13,故本选项不符合题意;B.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率为160.17,故本选项符合题意;C.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是14=0.25,故本选项不符合题意;D.由于用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;且排出的数是偶数的有:234,324,342,432,∴排出的数是偶数的概率为:4263.故本选项不符合题意.故选B.【点睛】本题是利用频率估计概率,主要考查了学生的观察频数(率)分布折线图,利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.二、填空题(共24分)11.(本题3分)下列事件是必然事件的是________.(填序号)①3个人分成两组,一定有2人分在一组;②随意掷两个完好的骰子,朝上一面的点数之和不小于2;③明天北京会刮大风,出现沙尘暴;④你百米可跑5秒.【答案】①②【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】①3个人分成两组,一定有2人分在一组,是必然事件;②随意掷两个完好的骰子,朝上一面的点数之和不小于2,是必然事件;③明天北京会刮大风,出现沙尘暴,是随机事件;④你百米可跑5秒,是不可能事件.故答案为①②【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.(本题3分)(2020·山东烟台市·烟台开发区实验中学七年级月考)在一个不透明的口袋中,装有4个红球和若干个白球,它们除颜色外其它完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,从口袋中任意摸出一个球,估计它是红球的概率是_____.【答案】1 4【解析】【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率即可.【详解】解:∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,即1 4 .故答案为1 4 .【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.13.(本题3分)(2020·全国七年级单元测试)从1,2,3,…,10这10个自然数中任取一个数,则它是4的倍数的概率是________.【答案】1 5【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.本题先找出4的倍数只有4和8这两个数,然后用2除以10即可.【详解】∵1,2,3,…,10这10个自然数中只有4和8是4的倍数,因此从1,2,3,…,10这10个自然数中任取一个数,则它是4的倍数的概率是21= 105.故答案为15.【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn,难度适中.14.(本题3分)(2020·全国七年级单元测试)五张分别写有3,4,5,6,7的卡片,现从中任意取出一张卡片,则该卡片上的数字为奇数的概率是________【答案】35.【解析】试题分析:根据题意可知一共有5个数,奇数有3个,因此根据概率的意义可得P (数字为奇数)=35. 15.(本题3分)(2020·全国七年级单元测试)一个袋子中装有5个白球和3个红球,甲摸到白球胜,乙摸到红球胜,为使甲、乙两人获胜的可能性一样大,那么必须往袋中再放入___个___球(只能再放入同一颜色的球).【答案】2; 红 【解析】 【分析】甲、乙两人获胜的可能性一样大,即甲摸到白球的概率等于乙摸到红球的概率,设必须往袋中再放入x 个红球,根据概率公式列出方程,解方程即可. 【详解】设必须往袋中再放入x 个红球,由题意,得:535353xx x+=++++ 解得:x =2. 故答案为:2,红. 【点睛】本题考查了概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )m n=. 16.(本题3分)(2020·全国七年级单元测试)如图,线段AB 被等分成5段,在图上任取一点,这一点取在粗线段上的概率是____.【答案】25【解析】 【分析】先求出粗线段的长,然后根据概率公式即可得出答案. 【详解】∵线段AB 被等分成5段,粗线段有2段,∴在图上任取一点,这一点取在粗线段上的概率为25. 故答案为25. 【点睛】本题考查了概率公式,关键是求出粗线段的长,用到的知识点为:概率=粗线段长与总线段长之比. 17.(本题3分)(2020·全国七年级课时练习)如果x=y,那么12+2x=12+2y 的可能性是________. 【答案】1 【解析】试题解析:当x y =时,112222x y +=+必然成立. 必然事件发生的可能性是1 . 故答案为:1.18.(本题3分)(2020·辽宁锦州市·七年级期末)小明将飞镖随意投中如图所示的正方体木框中,那么投中阴影部分的概率为_____.【答案】518【分析】根据题意,设每个小正方形面积为1,观察图形并计算可得阴影部分的面积与总面积之比即为所求的概率. 【详解】设小正方形面积为1,观察图形可得,图形中共36个小正方形,则总面积为36, 其中阴影部分面积为:2+2+3+3=10, 则投中阴影部分的概率为:1036=518. 故答案为518. 【点睛】本题考查几何概率,解题的关键是熟练掌握几何概率的求法.三、解答题(共46分)19.(本题9分)(2020·佛山市顺德区杏坛梁銶琚初级中学七年级月考)(2017·广东佛山禅城区期末)一个口袋中装有3个白球、5个红球,这些球除了颜色外完全相同,充分摇匀后随机摸出一球,发现是白球. (1)如果将这个白球放回,再摸出一球,它是白球的概率是多少? (2)如果将这个白球不放回,再摸出一球,它是白球的概率是多少?【答案】(1)38 ;(2)27【解析】试题分析:(1)摸出一个白球放回对第二次摸到白球没有影响,直接利用概率公式求解即可; (2)如果这个白球不放回,则总数减少1,再利用概率公式求解即可. 试题解析:解:(1)因为P (白球)=353+=38,所以它是白球的概率是38. (2)因为P (白球)=31531-+-=27,所以它是白球的概率27.20.(本题9分)(2020·山西七年级期末)在一个不透明的袋子中装有3个红球和6个黄球,这些球除颜色外都相同,将袋子中的球充分 摇匀后,随机摸出一球.(1)分别求出摸出的球是红球和黄球的概率.(2)为了使摸出两种球的概率相同,再放进去7个同样的红球或黄球,那么这7个球中红球和黄球的 数量分别应是多少? 【答案】(1)12,33;(2) 5个和2 个 【解析】试题分析:(1)直接利用概率公式计算即可求出摸出的球是红球和黄球的概率,(2)设放入红球x 个,则黄球为(7-x )个,由摸出两种球的概率相同建立方程,解方程即可求出7个球中红球和黄球的数量分别是多少,试题解析:(1)因为袋子中装有3个红球和6个黄球,所以随机摸出一球是红球和黄球的概率分别是31633=+,62633=+, (2)设放入红球x 个,则黄球为()7x -个,由题意列方程得:3679797x x++-=++,解得5x =, 所以这7个球中红球和黄球的数量分别应是5个和2个.21.(本题9分)(2020·全国七年级单元测试)如图,在一个大的圆形区域内包含一个小的圆形区域,大圆的半径为2,小圆的半径为1.一只在天空自由飞翔的小鸟要落在它的上面,那么小鸟落在小圆区域外大圆区域内(阴影部分)的概率是多少?【答案】小鸟落在小圆区域外大圆区域内(阴影部分内)的概率为34.【解析】【分析】求出阴影部分的面积(大圆面积减去小圆面积)与大圆的面积之比,就是小鸟落在小圆区域外大圆区域内(阴影部分内)的概率.【详解】小鸟落在小圆区域外大圆区域内(阴影部分内)的概率是:22221324πππ⋅-⋅=⋅.【点睛】本题考查了几何概率的计算公式,用到的知识点为:概率=相应的面积与总面积之比.22.(本题9分)(2020·全国七年级单元测试)用10个球分别设计一个摸球游戏(这些球除颜色不同外其余均相同):(1)使从中摸一个球,摸到红球的概率为15;(2)使从中摸一个球,摸到红球和白球的概率都是2 5 .【答案】(1)10个球中有2个红球,8个黄球;(2)10个球中有4个红球,4个白球,2个绿球.【解析】【分析】(1)利用概率公式,要使摸到红球的概率为15,则红球有2个,然后设计摸球游戏;(2)利用概率公式,要使摸到红球和白球的概率都是25.则红球有4个,白球有4个,然后设计摸球游戏.【详解】(1)10个除颜色外均相同的球,其中2个红球,8个黄球;(2)10个除颜色外均相同的球,其中4个红球,4个白球,2个绿球.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.23.(本题10分)(2020·全国七年级单元测试)在一个不透明的袋中有除颜色外其他完全相同的3个球,每次从袋中摸出一个球,记下颜色后放回搅匀再摸,在摸球试验中得到下表中部分数据:。
北师大版数学七年级下册数学第6章概率初步单元练习卷含解析
第6章概率初步一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.14.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A .B .C.D.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子个数187 282 435 624 718 814 901发芽种子频率0.935 0.940 0.870 0.891 0.898 0.904 0.901下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:日期次数教室星期一星期二星期三星期四星期五A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期的下午找到空教室的可能性最大.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:五星四星三星及三星以下合计评价条数等级酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34根据以上信息,回答下列问题:(1)m的值为,n的值为;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为;若乙企业生产的某批产品共5万件,估计质量优秀的有万件;(3)根据图表数据,你认为企业生产的产品质量较好,理由为.(从某个角度说明推断的合理性)19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40 求“厨余垃圾”投放正确的概率.参考答案与试题解析一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:A、直角三角形的两个锐角互余是必然事件,符合题意;B、买一张电影票座位号是偶数号,是随机事件,不合题意;C、投掷一个骰子正面朝上的点数是7,是随机事件,不合题意;D、打开“学习强国APP”,正在播放歌曲《我和我的祖国》是随机事件,不合题意.故选:A.2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖【分析】事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.依据概率的意义进行判断即可.【解答】解:A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次不一定抛掷出5点,本选项错误;B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等,本选项正确;C.明天降雨的概率是80%,表示明天不一定有80%的时间降雨,本选项错误;D.某种彩票中奖的概率是1%,因此买100张该种彩票不一定会中奖,本选项错误;故选:B.3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.1【分析】根据概率=所求情况数与总情况数之比解答即可.【解答】解:∵共3个素数,分别是5,7,11,∴抽到的数是7的概率是;故选:C.4.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生【分析】根据不可能事件、随机事件、必然事件的有关概念和题意分别对每一项进行判断即可.【解答】解:A、可能性很大的事件在一次试验中不一定会发生,故本选项错误;B、可能性很大的事件在一次试验中不一定会发生,正确;C、必然事件在一次实验中一定会发生,故本选项错误;D、不可能事件在一次实验中不可能发生,故本选项错误;故选:B.5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【解答】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故错误.故选:B.6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,【分析】利用概率公式求得概率后即可解得本题.【解答】解:∵白色的有30颗,橘色的有10颗,∴摇匀后倒出一颗,是白色的可能性为,橘色的可能性为,故选:B.7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A.B.C.D.【分析】首先设设正方形的面积,再表示出阴影部分面积,然后可得概率.【解答】解:设“东方模板”的面积为4,则阴影部分三角形面积为1,平行四边形面积为,则点取自黑色部分的概率为:=,故选:C.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子187 282 435 624 718 814 901 个数0.935 0.940 0.870 0.891 0.898 0.904 0.901发芽种子频率下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④【分析】根据某农科所在相同条件下做某作物种子发芽率的试验表,可得大量重复试验发芽率逐渐稳定在0.9左右,于是得到种子发芽的概率约为0.9,据此求出1000kg种子中大约有100kg种子是不能发芽的即可.【解答】解:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率大约是0.891;故错误;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);故正确;③实验的种子个数最多的那次实验得到的发芽种子的频率不一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽,故正确;其中合理的是②④,故选:D.9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.【分析】分别求出背面印有“改革”字样的卡片数和总的卡片数,再根据概率公式计算即可.【解答】解:∵背面印有“改革”字样的卡片有2张,共有6张卡片,∴从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是=.故选:A.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2【分析】设袋中绿球的个数有x个,根据概率公式列出算式,求出x的值即可得出答案.【解答】解:设袋中绿球的个数有x个,根据题意得:=,解得:x=5,答:袋中绿球的个数有5个;故选:B.二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.【分析】根据掷得面朝上的点数大于4情况有2种,进而求出概率即可.【解答】解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的点数大于4的概率是:=;故答案为:.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:星期一星期二星期三星期四星期五日期次数教室A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期三的下午找到空教室的可能性最大.【分析】找到使用次数最少的一天下午即可得到答案.【解答】解:观察表格发现星期三下午使用1+0+1=2次,最少,∴本次彩排安排在星期三的下午找到空教室的可能性最大,故答案为:三.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.【分析】直接利用概率公式求解即可求得答案.【解答】解:∵有6张质地、大小、背面完全相同的卡片,在它们正面分别写着:“我”“参”“与”“我”“快”“乐”这6个汉字,∴抽出的卡片正面写着“我”字的可能性是:=.故答案为:.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.【分析】根据题意分析可得:摇奖箱内装有20个小球,所以随机抽取一个小球共20种情况,其中有5种情况是小球中奖,故其概率是=.【解答】解:P(中奖)==.故本题答案为:.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【解答】解:根据题意可得:标号小于4的有1,2,3三个球,共5个球,任意摸出1个,摸到标号小于4的概率是.故答案为:16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:④①③②.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:∵有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,∴①取到凉白开的概率是=,②取到白糖水的概率是,③取到矿泉水的概率是=,④没有取到矿泉水的概率是=,∴按事件发生的可能性从大到小排列:④①③②;故答案为:④①③②.三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:评价条数等级五星四星三星及三星以下合计酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?【分析】(1)用1000减去五星和四星的条数,即可得出x的值;(2)①根据概率公式先求出A、B、C获得良好用餐体验的可能性,再进行比较即可得出答案;②根据概率的意义分析即可.【解答】解:(1)x=1000﹣412﹣388=200(条);(2)①选择A酒店获得良好用餐体验的可能性为=0.8,选择B酒店获得良好用餐体验的可能性为=0.81,选择C酒店获得良好用餐体验的可能性为=0.7,∵0.81>0.8>0.78,∴选择B酒店获得良好用餐体验的可能性最大.②不一定,根据可能性只能说明享受到良好用餐体验可能性大,但不一定能够享受到良好用餐体验.18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34 根据以上信息,回答下列问题:(1)m的值为10 ,n的值为0.64 ;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为0.96 ;若乙企业生产的某批产品共5万件,估计质量优秀的有 3.5 万件;(3)根据图表数据,你认为甲企业生产的产品质量较好,理由为甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.(从某个角度说明推断的合理性)【分析】(1)根据题意和频数分布表中的数据,可以先求的n的值,然后再求m的值;(2)根据频数分布表可以求得从甲企业生产的产品中任取一件,估计该产品质量合格的概率,根据频数分布直方图可以求得乙企业生产的某批产品共5万件,质量优秀的有的件数;(3)根据频数分布直方图和分布表可以解答本题,注意本题答案不唯一,只要合理即可.【解答】解:(1)n=32÷50=0.64,m=50×(1﹣0.04﹣0.64﹣0.12﹣0.00)=10,故答案为:10,0.64;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为:1﹣0.04=0.96,乙企业生产的某批产品共5万件,估计质量优秀的有:5×=3.5(万件),故答案为:0.96,3.5;(3)我认为甲企业生产的产品质量较好,理由:甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好,故答案为:甲,甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40求“厨余垃圾”投放正确的概率.【分析】(1)根据题意画出树状图得出所有情况数,再求出垃圾投放正确的情况数,最后根据概率公式计算即可.(2)用厨余垃圾数量除以总的数量即可.【解答】解:(1)四类垃圾随机投入四类垃圾箱的所有结果用树状图表示如下:。
北师大版初中数学七年级下册第六单元《概率初步》单元测试卷(较易)(含答案解析)
北师大版初中数学七年级下册第六单元《概率初步》单元测试卷(较易)(含答案解析)考试范围:第六单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. “明天是晴天”这个事件是( )A. 确定事件B. 不可能事件C. 必然事件D. 随机事件2. 一枚质地均匀的骰子,它的六个面上分别有1到6的点数.下列事件中,是不可能事件的是( )A. 掷一次这枚骰子,向上一面的点数小于5B. 掷一次这枚骰子,向上一面的点数等于5C. 掷一次这枚骰子,向上一面的点数等于6D. 掷一次这枚骰子,向上一面的点数大于63. 一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是( )A. 摸到红球是必然事件B. 摸到黄球是不可能事件C. 摸到白球与摸到黄球的可能性相等D. 摸到红球比摸到黄球的可能性小4. 一枚质地均匀的骰子,它的六个面上分别有1到6的点数.下列事件中,是不可能事件的是( )A. 掷一次这枚骰子,向上一面的点数小于5B. 掷一次这枚骰子,向上一面的点数等于5C. 掷一次这枚骰子,向上一面的点数等于6D. 掷一次这枚骰子,向上一面的点数大于65. 如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果,下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是( )A. ①B. ②C. ①②D. ①③6. 口袋中有9个球,其中4个红球,3个蓝球,2个白球,在下列事件中,发生的可能性为1的是( )A. 从口袋中拿一个球恰为红球B. 从口袋中拿出2个球都是白球C. 拿出6个球中至少有一个球是红球D. 从口袋中拿出的球恰为3红2白7. 为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x<160160≤x<170170≤x<180x≥180人数5384215根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是( )A. 0.85B. 0.57C. 0.42D. 0.158. 一个不透明的袋子中只装有1个黄球和3个红球,它们除颜色外完全相同,从中随机摸出一个球.下列说法正确的是( )A. 摸到黄球是不可能事件B. 摸到黄球的概率是34C. 摸到红球是随机事件D. 摸到红球是必然事件9. 一个布袋里放有3个红球和2个白球,它们除颜色外其余都相同.从布袋中任意摸1个球,摸到红球的概率是( )A. 13B. 23C. 25D. 3510. 不透明袋中装有除颜色外完全相同的a个白球、b个红球,则任意摸出一个球是红球的概率是( )A. ba+b B. baC. aa+bD. ab11. 一副扑克牌有54张,(黑桃、红桃、方片、草花各13张,大小王各一张)从牌中任意摸出一张牌是红桃的概率是( )A. 1352B. 1354C. 12D. 132712. 如图,小颖有一个卡片藏在9块瓷砖中的某一块下面(每块瓷砖除图案外其它均相同),那么卡片藏在瓷砖下的概率为( )A. 59B. 16C. 13D. 12第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 一副52张的扑克牌(无大王、小王),从中任意取出一张,抽到“K”的可能性的大小是______.14. 下列事件:①太阳从东方升起;②三条线段能组成一个三角形;③a是实数,|a|<0;④购买一张大乐透彩票,中大奖500万.其中确定事件是______ (填写序号).15. 林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:移植的棵数n10001500250040008000150002000030000成活的棵数m8651356222035007056131701758026430成活的频率mn0.8650.9040.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为.16. 在一个不透明的袋子中装有4个白球,a个红球.这些球除颜色外都相同.若从袋子中随,则a=.机摸出1个球,摸到红球的概率为23三、解答题(本大题共9小题,共72.0分。
北师大版七年级下册数学第六章概率初步单元测试题含答案
北师大版七年级下学期数学第六章 概率初步 单元测试题(时间:120分钟 满分:150分)一、选择题(本大题共15小题,每小题3分,共45分)1.下列事件中,是必然事件的为(C )A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩 2.对“某市明天下雨的概率是75%”这句话,理解正确的是(D )A .某市明天将有75%的时间下雨B .某市明天将有75%的地区下雨C .某市明天一定下雨D .某市明天下雨的可能性较大3.有两个事件,事件A :掷一次骰子,向上的一面是3;事件B :篮球队员在罚球线上投篮一次,投中,则(C ) A .只有事件A 是随机事件 B .只有事件B 是随机事件 C .事件A 和B 都是随机事件 D .事件A 和B 都不是随机事件4.某市举办了首届中学生汉字听写大赛,从甲、乙、丙、丁4套题中随机抽取一套训练,抽中甲的概率是(C ) A.32 B.13 C.14 D .15.掷一枚质地均匀的硬币10次,下列说法正确的是(A )A .可能有5次正面朝上B .必有5次正面朝上C .掷2次必有1次正面朝上D .不可能10次正面朝上6.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是(D )A .3个B .不足3个C .4个D .5个或5个以上7.为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是(C )A.110B.15C.310D.258.有5张大小、背面都相同的扑克牌,正面上的数字分别是4,5,6,7,8.若将这5张牌背面朝上洗匀后,从中任意抽取1张,那么这张牌正面上的数字为偶数的概率是(B ) A.45 B.35 C.25 D.159.小狗在如图所示的方砖上走来走去,最终停在黑色方砖上的概率为(C )A.18B.79C.29D.71610.如图,让圆形转盘自由转动一次,指针落在灰色区域的概率是(B ) A.12 B.13 C.23 D.3411.一次抽奖活动中,印发奖券1 000张,其中一等奖20张,二等奖80张,三等奖200张,那么第一位抽奖者(仅买一张奖券)中奖的机会是(D )A.150B.225C.15D.31012.如果小王将镖随意投中如图所示的正方形木板,那么镖落在阴影部分的概率为(C ) A.16 B.18 C.19 D.11213.图中有四个可以自由转动的转盘,每个转盘被分成若干等份,转动转盘,当转盘停止后,指针指向白色区域的概率相同的是(D )A .转盘2与转盘3B .转盘2与转盘4C .转盘3与转盘4D .转盘1与转盘414.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于(A )A .1B .2C .3D .415.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,它们的形状、大小、质地等完全相同.小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球试验后,小新发现其中摸出红球的频率稳定于0.2,摸出黑球的频率稳定于0.5.对此试验,他总结出下列结论:①若进行大量摸球试验,摸出白球的频率应稳定于0.3;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球. 其中说法正确的是(B )A .①②③B .①②C .①③D .②③ 二、填空题(本大题共5小题,每小题5分,共25分)16.七年级(1)班共有学生54人,其中有男生30人,女生24人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性大(填“大”或“小”).17.抛掷一枚质地均匀的硬币15次,有6次出现正面朝上,则出现正面朝上的频率是0.4.18.把标有号码1,2,3,…,10的10个乒乓球放在一个箱子中,摇匀后,从中任意取一个,号码为小于7的奇数的概率是310.19.在一个暗箱里放有a 个除颜色外其他完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在0.25,那么可以推算出a 大约是12.20.如图所示是一条线段,AB 的长为10厘米,MN 的长为2厘米,假设可以随意在这条线段上取一个点,那么这个点取在线段MN 上的概率为15.三、解答题(本大题共7小题,共80分)21.(8分)下列事件中,哪些是确定事件?哪些是不确定事件?确定事件中,哪些是必然事件?哪些是不可能事件?(1)打开电视机,正在播动画片;(2)任意掷一枚质地均匀的骰子,朝上的点数是6; (3)在一个平面内,三角形三个内角的和是190度; (4)线段垂直平分线上的点到线段两端的距离相等. 解:(1)(2)是不确定事件;(3)是确定事件,也是不可能事件;(4)是确定事件,也是必然事件.22.(10分)如图,某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据.(1)计算并完成表格;(2)请估计,当n 很大时,频率将会接近多少? (3)假如你去转动转盘一次,你获得铅笔的概率是多少? 解:(1)如表. (2)接近0.7. (3)0.7.23.(10分)用10个球设计一个摸球游戏: (1)使摸到红球的概率为15;(2)使摸到红球和白球的概率都是25.解:(1)10个球中,有2个红球,8个其他颜色球.(2)10个球中,有4个红球,4个白球,2个其他颜色球.24.(12分)如图1,2,3,三个相同的盒子里各放有一个塑料制成的圆环,这三个大小不同的圆环恰好可以按左图所示那样较紧密地套在一起,我们随意从三个盒子中拿出两个,则这两个圆环可以比较紧密地套在一起的概率有多大?图1 图2 图3解:根据题意分析可得:从三个盒子中拿出两个共3种情况,即(1,2;2,3;1,3),其中有2种情况即(1,2;2,3)可使这两个圆环可以比较紧密地套在一起,故其概率是23.25.(12分)研究“掷一枚图钉,钉尖朝上”的概率,两个小组用同一个图钉做试验进行比较,他们的统计数据如下:(1)请你估计第一小组和第二小组所得的概率分别是多少? (2)你认为哪一个小组的结果更准确?为什么? 解:(1)根据题意,因为次数越多,就越精确,所以选取试验次数最多的进行计算可得:第一小组所得的概率估计是160400=0.4;第二小组所得的概率估计是164400=0.41. (2)不知道哪一个更准确.因为试验数据可能有误差,不能准确说明.26.(14分)米奇家住宅面积为90平方米,其中客厅30平方米,大卧室18平方米,小卧室15平方米,厨房14平方米,大卫生间9平方米,小卫生间4平方米.如果一只小猫在该住宅内地面上任意跑.求: (1)P (在客厅捉到小猫); (2)P (在小卧室捉到小猫); (3)P (在卫生间捉到小猫); (4)P (不在卧室捉到小猫). 解:(1)P (在客厅捉到小猫)=3090=13. (2)P (在小卧室捉到小猫)=1590=16.(3)P (在卫生间捉到小猫)=9+490=1390.(4)P (不在卧室捉到小猫)=90-18-1590=5790=1930.27.(16分)有一组互不全等的三角形,它们的三边长均为整数,每个三角形有两条边的长分别为5和7. (1)请写出其中一个三角形的第三边的长; (2)设组中最多有n 个三角形,求n 的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率. 解:(1)第三边长取3(2到12之间的任意整数均可,不包括2,12). (2)设第三边长为x ,则7-5<x <7+5,即2<x <12.又因为x 为整数,所以x =3,4,5,6,7,8,9,10,11.所以n =9.(3)因为5+7=12,为偶数,所以只需第三边长为偶数,所以此时x=4,6,8,10.所以P(三角形周长为偶数)=4 9.。
北师大版七年级数学下学期第6章概率初步单元卷包含答案
第6章概率初步一.选择题〔共12小题〕1.以下事件中为必然事件的是〔〕.翻开电视机,正在播放茂名新闻.早晨的太阳从东方升起C.随机掷一枚硬币,落地后正面朝上.下雨后,天空出现彩虹2.以下事件中,是不可能事件的是〔〕.买一张电影票,座位号是奇数B.射击运发动射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°3.袋中有红球4个,白球假设干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是〔〕A.3个B.缺乏3个C.4个D.5个或5个以上4.“a是实数,|a|≥0〞这一事件是〔〕A.必然事件B.不确定事件C.不可能事件D.随机事件5.以下说法中不正确的选项是〔〕.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意翻开七年级下册数学教科书,正好是97页是确定事件D.一个盒子中有白球m个,红球6个,黑球n个〔每个球除了颜色外都相同〕.如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是6 6.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,假设每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,那a的值约为〔〕么A.12B.15C.18D.217.从长为10cm、7cm、5cm、〕3cm的四条线段中任选三条能够组成三角形的概率是〔A.B.C.D.8.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影局部构成轴对称图形的概率是〔〕A.B.C.D.9.对“某市明天下雨的概率是75%〞这句话,理解正确的选项是〔〕A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨.某市明天下雨的可能性较大10.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为〔〕A.B.C.D.11.如图,飞镖游戏板中每一块小正方形除颜色外都相同.假设某人向游戏板投掷飞镖一次〔假设飞镖落在游戏板上〕,那么飞镖落在阴影局部的概率是〔〕A.B.C.D.12.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,那么n的值为〔〕A.3B.5C.8D.10二.填空题〔共5小题〕13.一个不透明的盒子里装有除颜色外无其他差异的白珠子6颗和黑珠子假设干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过屡次试验发现摸到白珠子的频率稳定在左右,那么盒子中黑珠子可能有颗.14.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为〔精确到〕.投篮次数〔n〕50100150200250300500投中次数〔m〕286078104123152251投中频率〔m/n〕15.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.16.某校学生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,那么他遇到绿灯的概率为.17.袋中装有6个黑球和n个白球,经过假设干次试验,发现“假设从袋中任摸出一个球,恰是黑球的概率为〞,那么这个袋中白球大约有个.三.解答题〔共5小题〕18.一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.假设红球个数是黑球个数的2倍多40个.从袋中任取一个球是白球的概率是.〔1〕求袋中红球的个数;〔2〕求从袋中任取一个球是黑球的概率.19.如下列图的正三角形区域内投针〔区域中每个小正三角形除颜色外完全相同〕,针随机落在某个正三角形内〔边线忽略不计〕1〕投针一次,针落在图中阴影区域的概率是多少?(2〕要使针落在图中阴影区域和空白区域的概率均为,还要涂黑几个小正三角形?请在图中画出.20.超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖时机.摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、40元.一次性购物满300元者,如果不摇奖可返还现金15元.〔1〕摇奖一次,获一等奖的概率是多少?〔2〕老李一次性购物满了300元,他是参与摇奖划算还是领15元现金划算,请你帮他算算.21.如图是一个涂有红、黄两种颜色的旋转转盘.有几个同学做转盘实验,他们将实验中获得的数据填入下面的统计表中.〔1〕请将统计表补充完整;转动次1001502005008001000200数n落在681081365607001400“红〞的次数落在“红〞的频率〔2〕请你估计:当n很大时,频率将会接近%〔保存两个有效数字〕.22.〔实践创新题〕小明在操场上做游戏,他发现地上有一个不规那么的封闭图形ABC如图所示,为了求其面积,小明在封闭的图中找出了一个半径为1米的圆,在不远处向圈内掷石子,且记录如下:掷石子次数50次150次300次石子落在区域石子落在⊙O内〔含⊙O上〕次数m144393石子落在阴影内次数n2985186你能否求出封闭图形ABC的面积?试试看.参考答案一.选择题〔共12小题〕1.B.2..3..4.A.5.C.6.B.7.C.8.C.9..10.B.11.C.12.C.二.填空题〔共5小题〕13.14.14..15..16..17.2.三.解答题〔共5小题〕18.解:〔1〕290×=10〔个〕,290﹣10=280〔个〕,280﹣40〕÷〔2+1〕=80〔个〕,280﹣80=200〔个〕.故袋中红球的个数是200个;〔2〕80÷290=.答:从袋中任取一个球是黑球的概率是.19.解:〔1〕因为阴影局部的面积与三角形的面积的比值是=,所以投针一次击中阴影区域的概率等于.〔2〕如下列图:要使针落在图中阴影区域和空白区域的概率均为,还要涂黑2个小正三角形.20.解:〔1〕整个圆周被分成了16份,红色为1份,∴获得一等奖的概率为:,〔2〕转转盘:60×+50×+40×=20元,20元>15元,∴转转盘划算.21.解:〔1〕请将统计表补充完整;转动次1001502005008001000200数n落在681081363455607001400“红〞的次数落在“红〞的频率〔2〕频率将会接近70%〔保存两个有效数字〕.22.解:由记录=1:2,可见P〔落在⊙O内〕==,又P〔落在圆O内〕=,所以=,AB C 2〕.S=3π〔m。
北师大版七年级数学下册《概率初步》单元测试卷及答案解析
北师大版七年级数学下册《概率初步》单元测试卷一、选择题1、下列成语所描述的事件为不可能事件的是()A.水到渠成 B.空中楼阁 C.木已成舟 D.日行千里2、一个事件的概率不可能是()。
A.0 B. C.1 D.3、关于概率,下列说法正确的是()A.莒县“明天降雨的概率是75%”表明明天莒县会有75%的时间会下雨;B.随机抛掷一枚质地均匀的硬币,落地后一定反面向上;C.在一次抽奖活动中,中奖的概率是1%,则抽奖100次就一定会中奖D.同时抛掷两枚质地均匀硬币,“一枚硬币正面向上,一枚硬币反面向上”的概率是4、下列事件是必然事件的是()A.抛掷一枚硬币四次,有二次正面朝上 B.打开电视频道,正在播放《我是歌手》C.射击运动员射击一次,命中十环 D.方程x2-2x-1=0必有实数根5、如图,在空白网格内将某一个小正方形涂成阴影部分,且所涂的小正方形与原阴影图形的小正方形至少有一边重合.小红按要求涂了一个正方形,所得到的阴影图形恰好是轴对称图形的概率为()A. B. C. D.6、一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,然后放回,再随机摸出一个小球,两次摸出的小球标号的和为5的概率是()。
A. B. C. D.7、一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为().A. B. C. D.8、质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是()A.点数都是偶数 B.点数的和为奇数C.点数的和小于13 D.点数的和小于29、掷一枚普通的硬币三次,落地后出现两个正面一个反面朝上的概率是()A. B. C. D.10、如图是小鹏自己制作的正方形飞镖盘,并在盘内画了两个小正方形,则小鹏在投掷飞镖时,飞镖扎在阴影部分的概率为()A. B. C. D.二、填空题11、一个均匀的立方体各面上分别标有数字1,2,3,4,6,8,其表面展开图是如图,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面上的数字的2倍的概率是12、一个不透明的盒子中装有3个红球,2个黄球,这些球除了颜色外其余都相同,从中随机摸出3个小球,则事件“所摸3个球中必含一个红球”是(填“必然事件”、“随机事件”或“不可能事件”)13、在m2□6m□9的“□”中任意填上“+”或“﹣”号,所得的代数式为完全平方式的概率为______.14、小明正在玩飞镖游戏,如果他将飞镖随意投向如图所示的正方形网格中,那么投中阴影部分的概率是___________;15、在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是。
北师大版七年级下册第6章概率初步单元检测数学试题
北师大版七年级下第六单元《概率初步》单元检测一、单选题1. 不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是必然事件的是()A. 3个球中至少有1个黑球B. 3个球中至少有1个白球C. 3个球中至少有2个黑球D. 3个球中至少有2个白球2. 下列说法中,正确的是()A. 任意投掷一枚质地均匀的硬币30次,出现正面朝上的次数一定是15次B. 为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图C. “太阳东升西落”是不可能事件D. 调查某班40名学生的身高情况宜采用普查3. 在“石头、剪刀、布”游戏中,对方出“剪刀”.这个事件是()A. 必然事件B. 随机事件C. 不可能事件D. 确定性事件4. 下列说法中:①如果一个事件发生的可能性很小,那么它的概率为0;②如果一个事件发生的可能性很大,那么它的概率为1;③如果一个事件可能发生,也可能不发生,那么它的概率介于0与1之间;其中,正确的说法有()A. 1个B. 2个C. 3个D. 0个5. 在写有1至10的10张卡片中,如果第1次抽出写有3的卡片后(不放回),第2次任意抽取1张是奇数卡片的可能性是()A. 59B.49C.25D. 126. 在抛掷硬币的试验中,下列结论正确的是()A. 经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定B. 抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率相同C. 抛掷50000次硬币,可得“正面向上”的频率为0.5D. 若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率也为0.5187. 在4个相同的袋子中,装有除颜色外完全相同的10个球,任意摸出1个球,摸到红球可能性最大的是()A. 1个红球,9个白球B. 2个红球,8个白球C. 5个红球,5个白球D. 6个红球,4个白球8. 小明做了3次掷均匀硬币的实验,其中有1次正面朝上,2次正面朝下,再掷一次,正面朝上的概率是()A. 13B.23C. 12D. 19. 在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球和黑球共()A. 12个B. 16个C. 20个D. 30个10. “文明丰都·幸福你我”,丰都正在积极创建全国文明城市.丰都宏运公司楼顶公益广告牌上“文明丰都”几个字是霓红灯,几个字一个接一个亮起来(亮后不熄灭)直至全部亮起来再循环,当路人一眼望去,能够看到几个字全在的概率是()A. 13B.14C.15D.16二、填空题11. 下列事件是必然事件的是________.①射击一次,中靶;②100件某种产品中有2件次品,从中任取1件恰好是次品;③太阳从东方升起;④一只不透明的袋子中有10个红球,从中任意摸出一个球是红球.12. 某公交车站共有1路、3路、16路三路车停靠,已知1路车8分钟一辆;3路车5分钟一辆、16路车10分钟一辆,则在某一时刻,小明去公交车站最先等到______路车的可能性最大.13. 在一个不透明的袋子里,装有2个红球和3个白球,这些球除颜色外没有任何区别,现从这个袋子中随机摸出一个球,摸到红球的概率是_____.14. 一个不透明的箱子中有4个红球和若干个黄球,若任意摸出一个球,摸出红球的概率是25,则黄球个数是_____个.15. 某公司组织内部抽奖活动,共准备了100张奖券,设一等奖10个,二等奖20个,三等奖30个.若每张奖券获奖的可能性相同,则随机抽一张奖券中一等奖的概率为______.16. 一个不透明的口袋中装有红色、黄色、蓝色玻璃球共200个,这些球除颜色外都相同.小明通过大量随机摸球试验后,发现摸到红球的频率稳定在30%左右,则可估计红球的个数约为________.17. 有一个样本共有50个数据,分成若干组后,其中有一小组的频率是0.4,则该组的频数是_____.18. 如图,甲、乙、丙3人站在55 网格中的三个格子中,小王随机站在剩下的空格中,与图中3人均不在同一行或同一列的概率是__________.19. 不透明的口袋中有黑白围棋子若干颗,已知随机摸出一颗是白棋子的概率为310,若加入10颗白棋子,随机摸出一颗是白棋子的概率为13,口袋中原来有______颗围棋子.20. 在一个不透明的布袋中有白球和黑球共20个,这些球除颜色外都相同.小明将布袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回布袋中.不断重复这一过程,共摸了100次球,发现有40次摸到黑球,则布袋中黑球的个数可能为________.三、解答题21. 目前某市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如图所示的统计图:(1)这次调查的家长总数为__________人,家长表示“不赞同”的人数为__________人;(2)请把条形统计图补充完整;(3)表示家长“无所谓”的扇形圆心角的度数是__________;(4)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是多少?22. 某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:转动转盘的次数n1002004005008001000落在“可乐”区域的次数60122240298604m落在“可乐”区域的频率0.60.610.60.590.604mn(1)完成上述表格;(结果全部精确到0.1)(2)请估计当n很大时,频率将会接近 ,假如你去转动该转盘一次,你获得“可乐”的概率约是 ;(结果全部精确到0.1)(3)转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少度?23. 某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其他项目(每位同学仅选一项).根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数频率篮球300.25羽毛球m0.20乒乓球36n跳绳180.15其他120.10请根据以上图表信息,解答下列问题:(1)频数分布表中的m=_________,n=_________;(2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为_________.24. 某校在“爱心捐款”活动中,同学们都献出了自己的爱心,他们的捐款额有5元、10元、15元、20元四种情况,根据随机抽样统计数据绘制了图1和图2两幅尚不完整的统计图.请你根据图中信息解答下列问题:(1)本次抽样的学生人数是________,捐款10元的人数是________;(2)本次捐款金额的中位数是________元;(3)已知捐款金额为5元的6名同学中有4名男生和2名女生,若从这6名同学中随机抽取一名进行访谈,且每一名同学被抽到的可能性相同,则恰好抽到男生的概率是________;(4)该校学生总人数为1000人,请估计该校一共捐款________元.25. 2022年10月12日“天宫课堂”第三课在中国空间站开讲并直播,神舟十四号三位航天员相互配合,生动演示了微重力环境下的四个实验:A .毛细效应实验;B .水球变“懒”实验;C .太空趣味饮水;D .会调头的扳手.某校九年级数学兴趣小组成员为研究“九年级学生对这四个实验中最感兴趣的是哪一个?”随机调查了本年级的部分学生,并绘制了两幅不完整的统计图,请根据图中的信息回答下列问题:(1)本次被调查的学生有 人;扇形统计图中D 所对应的圆心角的度数为 ;(2)请补全条形统计图;(3)该校九年级共有650名学生,请估计该校九年级学生中对B .水球变“懒”实验最感兴趣的学生大约有多少人?(4)李老师计划从小明、小刚、小兰、小婷四位学生中随机抽取两人参加学校的微重力模拟实验,请用树状图法或列表法求出恰好抽中小刚、小兰两人的概率.26. 某校在七、八年级学生中开展了一次“讲文明,树新风”文明礼仪知识竞赛,根据比赛成绩(满分100分,参赛学生成绩均高于80分)绘制了如下尚不完整的统计图表.比赛成绩频数分布表 成绩分组(单位:分) 频数 频率 8085x ≤<600.12 8590x ≤<a 0.3 9095x ≤<240c 95100x ≤≤500.1 合计b1请根据以上信息解答下列问题:(1)频数分布表中,b = ,c = ;(2)补全频数分布直方图;(3)学校计划从成绩在95分以上的同学中随机选择15名同学,到某社区开展文明礼仪知识宣传,取得98分好成绩的小丽被选中的概率是多少?27. 2022年3月23日“天宫课堂”第二课在中国空间站开讲并直播,神舟十三号三位航天员相互配合,生动演示了微重力环境下的四个实验:A .太空“冰雪”实验B .液桥演示实验C .水油分离实验D .太空抛物实验我校九年级数学兴趣小组成员“对这四个实验中最感兴趣的是哪一个”随机调查了本年级的部分学生,并绘制了两幅不完整的统计图,请根据图中的信息回答下列问题:(1)在这次调查活动中,兴趣小组采取的调查方式是_______;(填写“普查”或“抽样调查”)(2)本次被调查的学生有______人;扇形统计图中D 所对应的m =______;(3)我校九年级共有650名学生,请估计九年级学生中对B .液桥演示实验最感兴趣的学生大约有______人;(4)十三班被调查的学生中对A .太空“冰雪”实验最感兴趣的有5人,其中有3名男生和2名女生,现从这5名学生中随意抽取1人进行观后感谈话,每人被抽到的可能性相同,恰好抽到女生的概率是______.28. 国家规定,中小学生每天在校体育活动时间不低于1h ,为了解这项政策的落实情况,有关部门就“你每天在校体育活动时间是多少”的问题,在某校随机抽查了部分学生,再根据活动时间t (h )进行分组(A 组:0.5t <,B 组:0.51t ≤<,C 组:1 1.5t ≤<,D 组: 1.5t ≥),绘制成如图所示的两幅不完整统计图,请根据图中信息回答问题:(1)此次抽查的学生为__________人;(2)补全条形统计图;(3)从抽查的学生中随机询问一名学生,该生当天在校体育活动时间低于1小时的概率是多少(4)若当天在校学生为1200人,请估计在当天达到国家规定体育活动时间的学生有多少人?北师大版七年级下第六单元《概率初步》单元检测一、单选题【1题答案】【答案】A【解析】【分析】根据袋子中球的个数以及每样球的个数对摸出的3个球的颜色进行分析即可.【详解】解:袋中一共6个球,有4个黑球和2个白球,从中一次摸出3个球,可能3个都是黑球,也可能2个黑球1个白球,也可能2个白球1个黑球,不可能3个都是白球,因此3个球中至少有1个白球、3个球中至少有2个黑球,3个球中至少有2个白球是随机件,3个球中至少有1个黑球是必然事件,故A正确.故选:A.【点睛】本题考查了确定事件及随机事件,解题的关键是熟练掌握事件的分类,事件分为随机事件和确定事件,而确定事件又分为必然事件和不可能事件.【2题答案】【答案】D【解析】【分析】依据随机事件、扇形统计图、必然事件及普查的相关概念及性质进行判断即可【详解】解:A、任意投掷一枚质地均匀的硬币30次是随机事件,出现正面朝上的次数可能是15次,选项说法错误,不符合题意;B、为了直观地介绍空气各成分的百分比,最适合使用的统计图是扇形统计图,选项说法错误,不符合题意;C、“太阳东升西落”是必然事件,选项说法错误,不符合题意;D、调查某班40名学生的身高情况宜采用普查,选项说法正确,符合题意;故选:D.【点睛】本题考查了随机事件、扇形统计图、必然事件及普查的相关概念及性质;解题的关键是正确掌握相关概念即性质.【3题答案】【答案】B【解析】【分析】根据事件发生的可能性大小判断即可.【详解】解:对方出“剪刀”.这个事件是是随机事件,故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【4题答案】【答案】A【解析】【分析】表示一个事件发生的可能性大小的数,叫做该事件的概率,不可能事件的概率是0,必然事件的概率是1,随机事件的概率大于0且小于1.【详解】①如果一个事件发生的可能性很小,也有可能发生,那么它的概率接近于0,故①错误;②如果一个事件发生的可能性很大,那么它的概率接近于1,故②错误;③如果一个事件可能发生,也可能不发生,那么它的概率介于0与1之间,故③正确,故正确的只有③一个,故选:A.【点睛】本题考查随机事件发生的可能性大小,是基础考点,难度较易,掌握相关知识是解题关键.【5题答案】【答案】B【解析】【分析】用剩余的奇数卡片张数除以剩下的卡片总张数即为所求的可能性.【详解】解:1至10共10个数,奇数卡片共有5张,抽出一张后,还有4张,第2次任意抽取1张是奇数卡片的可能性49.故选:B.【点睛】本题考查概率,解题关键是明确概率的意义,准确运用概率公式进行计算.【6题答案】【答案】A【解析】【分析】根据频率的概念与计算公式逐项判断即可得.【详解】A、经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定,此项正确;B、抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率可能不同,此项错误;C、抛掷50000次硬币,可得“正面向上”的频率约为0.5,此项错误;D、若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率为10.5180.482-=,此项错误;故选:A.【点睛】本题考查了频率的概念与计算公式,掌握理解频率的概念是解题关键.【7题答案】【答案】D【解析】【分析】根据概率的计算方法,比较概率的大小即可求解.【详解】解:A选项,1个红球,9个白球,摸到红球的概率为11 1910=+;B选项,2个红球,8个白球,到红球的概率为221 28105==+;C选项,5个红球,5个白球,到红球的概率为551 55102==+;D选项,6个红球,4个白球,到红球的概率为663 64105==+;∵1113 10525<<<,∴摸到红球可能性最大的是“6个红球,4个白球”,故选:D.【点睛】本题主要考查概率的计算,掌握概率的计算方法,比较概率大小的方法是解题的关键.【8题答案】【答案】C【解析】【分析】根据概率公式进行计算即可.【详解】解:掷均匀硬币时,有正面朝上和反面朝上,两种等可能的情况,因此掷一次,正面朝上的概率是12,故C正确.故选:C.【点睛】本题主要考查了应用概率公式计算概率,解题的关键是熟练掌握概率公式.【9题答案】【答案】B【解析】【分析】设白球和黑球共x个,根据概率公式得41040x=求得x即可.【详解】设白球和黑球共x个,根据题意,得41040x=,解得16x=故选B.【点睛】本题考查了概率公式的应用,熟练掌握概率公式是解题的关键.【10题答案】【答案】B【解析】【分析】根据概率公式进行计算即可.【详解】解:由题意,得:共有4种等可能的情况,其中几个字全在的结果有1种,∴14P ;故选B.【点睛】本题考查概率.熟练掌握概率公式,是解题的关键.二、填空题【11题答案】【答案】③④##④③【解析】【分析】根据必然事件与随机事件的定义,即可一一判定【详解】解:①射击一次,中靶,属于随机事件;②100件某种产品中有2件次品,从中任取1件恰好是次品,属于随机事件;③太阳从东方升起,属于必然事件;④一只不透明的袋子中有10个红球,从中任意摸出一个球是红球,属于必然事件.故答案为:③④.【点睛】本题考查了必然事件与随机事件的定义,熟练掌握和运用必然事件与随机事件的定义是解决本题的关键.【12题答案】【答案】3【解析】【分析】根据题意分析出哪路车间隔时间最长,哪路车间隔时间最短,据此解答即可.【详解】解:∵1路车8分钟一辆,3路车5分钟一辆,16路车10分钟一辆,∴3路车间隔时间最短,16路车间隔时间最长,∴小明去公交车站最先等到3路车的可能性最大.故填3.【点睛】本题主要考查了事件可能性大小的判断,掌握可能性等于所求情况数与总情况数之比是解答本题的关键.【13题答案】【答案】2 5【分析】根据题意,确定出符合条件的可能数,和出现的总可能数,利用概率定义求解即可.【详解】根据题意可得:一个不透明的盒子中装有2个红球和3个白球,共5个,摸到红球的概率为:25.故答案为:25.【点睛】本题考查简单的概率计算,熟练掌握概率公式是解题关键.【14题答案】【答案】6【解析】【详解】设这个箱子中黄球的个数为x个,再根据概率公式求出x的值即可.【分析】解:设这个箱子中黄球的个数为x个,根据题意得:424+5x=,解得6x=,经检验,6x=是方程的解.故答案为:6.【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.【15题答案】【答案】0.1【解析】【分析】根据概率的计算公式即可求解.【详解】解:一等奖10个,共准备了100张奖券,∴抽一张奖券中一等奖的概率为100.1 100=,故答案为:0.1.【点睛】本题主要考查概率的计算,理解并掌握概率的计算方法是解题的关键.【16题答案】【答案】60【分析】直接用频率乘以总数即可.【详解】由题意可知红球的个数约为20030%=60⨯,故答案为60.【点睛】本题考查了根据频率求总数,熟记频率⨯总数=个数是解题的关键.【17题答案】【答案】20【解析】【分析】由公式:频率=频数总数据,得:频数=总数据×频率,即可求出答案.【详解】解:由题意得:该组的频数为:50×0.4=20.故答案为20.【点睛】本题考查了频数与频率,难度一般,能够灵活运用频率=频数总数据这一公式是解决本题的关键.【18题答案】【答案】211【解析】【分析】由题意得空格有55322⨯-=(个),则小王随机站在剩下的空格中,与图中3人均不在同一行或同一列的空格有6个,再由概率公式求解即可.【详解】解:甲、乙、丙3人站在55⨯网格中的三个格子中,空格有:55322⨯-=(个),则小王随机站在剩下的空格中,与图中3人均不在同一行或同一列的空格有4个,∴小王随机站在剩下的空格中,与图中3人均不在同一行或同一列的概率为422211==,故答案为:211.【点睛】本题考查了概率公式,由题意得出与图中3人均不在同一行或同一列的空格的个数是解题的关键.【19题答案】【答案】200【解析】【分析】分别设出原来口袋中黑白棋子的个数,再根据概率公式列方程组解答即可.【详解】解:设原来口袋中分别有黑白棋子的个数分别为x 、y ,则310101103y x y y x y ⎧=⎪+⎪⎨+⎪=⎪++⎩,解得14060x y =⎧⎨=⎩,∴x +y =200,故口袋中原来有200颗围棋子.故答案为:200【点睛】此题主要考查了概率公式,关键是根据概率=所求情况数与总情况数之比来列方程.【20题答案】【答案】8【解析】【分析】根据概率公式先求出摸到黑球的概率,再乘以总球的个数即可得出答案.【详解】解:∵共摸了100次球,发现有40次摸到黑球,∴摸到黑球的概率为0.4,∴口袋中白球和黑球共20个,∴袋中的黑球大约有28×0.4=8(个);故答案为:8.【点睛】本题考查了用样本估计总体的知识,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.三、解答题【21题答案】【答案】(1)600,80;(2)见解析;(3)24°;(4)3 5 .【解析】【分析】(1)根据赞成的人数与所占的百分比列式计算即可求调查的家长的总数,然后求出不赞成的人数;(2)根据扇形统计图即可得到恰好是“赞同”的家长的概率;(3)求出无所谓的人数所占的百分比,再乘以360°,计算即可得解;(4)根据扇形统计图即可得到恰好是“赞同”的家长的概率.【详解】(1)这次调查的家长总数为360÷60%=600(人),很赞同的人数有600×20%=120(人),“不赞同”的人数为600-120-360-40=80(人).(2)补全条形统计图如下.(3)表示家长“无所谓”的扇形圆心角的度数是360°×40600=24°.(4)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是360 600=35.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.【22题答案】【答案】(1)0.6;472;(2)0.6;0.6;(3)144°【解析】【分析】(1)根据频率的定义计算n=298时的频率和频率为0.59时的频数;(2)从表中频率的变化,可得到估计当n很大时,频率将会接近0.6,然后根据利用频率估计概率得“可乐”的概率约是0.6;(3)可根据获得“洗衣粉”的概率为1−0.6=0.4,然后根据扇形统计图的意义,用360°乘以0.4即可得到表示“洗衣粉”区域的扇形的圆心角.【详解】解:(1)298÷500≈0.6;0.59×800=472;补全表格如下:转动转盘的次数n1002004005008001000落在“可乐”区域的次数60122240298472604m落在“可乐”区域的频率0.60.610.60.60.590.604mn(2)估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“可乐”的概率约是0.6;故答案为:0.6;0.6;(3)(1﹣0.6)×360°=144°,所以表示“洗衣粉”区域的扇形的圆心角约是144°.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【23题答案】【答案】(1)24,0.30;(2)108°.【解析】【分析】(1)先求出样本总数,进而可得出m、n的值;(2)根据(1)中n的值可得出,“乒乓球”所在的扇形的圆心角的度数;【详解】解:(1)∵喜欢篮球的是30人,频率是0.25,∴样本数=30÷0.25=120,∵喜欢羽毛球场的频率是0.20,喜欢乒乓球的是36人,∴m=0.20×120=24,n=36÷120=0.30;(2)∵n=0.30,∴0.30×360°=108°.故答案为(1)24,0.30;(2)108°.【点睛】本题考查的是扇形统计图,熟知通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数是解答此题的关键.【24题答案】【答案】(1)50,18(2)15 (3)2 3(4)13000【解析】【分析】(1)根据总人数×百分比=某项人数计算总人数;用总人数减去已知三部分的人数即可求出捐款10元的人数;(2)根据中位数的定义即可得出学生捐款金额的中位数;(3)根据概率公式求解即可;(4)用总人数乘以每人平均捐款钱数即可得出答案.【小问1详解】由于捐15元的有16人,所占比例为32%,本次抽样的学生人数是1632%50÷=(人);506161018---=人;故答案为:50,18;【小问2详解】把这数从小到大排列,中位数是第25、26个数的平均数,则中位数是1515152+=(元);故答案为:15;【小问3详解】∵6名同学中有4名男生和2名女生,∴P (恰好抽到男生)=4263=.故答案为:23;【小问4详解】6518101615102010001300050⨯+⨯+⨯+⨯⨯=元.故答案为:13000.【点睛】此题考查了条形统计图与扇形统计图的综合,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.【25题答案】【答案】(1)50;36︒(2)B 实验最感兴趣的人数为:501020515---=(人),补全统计图见解析 (3)该校九年级学生中对B .水球变“懒”实验最感兴趣的学生大约有195人 (4)16【解析】【分析】(1)用对C 实验最感兴趣的人数除以其所占的百分比可得本次被调查的学生人数;用360°乘以被调查的学生中对D 实验最感兴趣的人数所占的百分比,即可得扇形统计图中D 所对应的圆心角的度数;(2)用被调查的学生总人数分别减去对A ,C ,D 实验最感兴趣的人数,可求出B 实验最感兴趣的人数,补全条形统计图即可;(3)根据用样本估计总体,用650乘以被调查的学生中对B .水球变“懒”实验最感兴趣的人数所占的百分比,即可得出答案;(4)画树状图得出所有等可能的结果数和恰好抽中小刚、小兰两人的结果数,再利用概率公式可得出答案.【小问1详解】解:本次被调查的学生有2040%50÷=(人),扇形统计图中D 所对应的圆心角的度数为53603650︒⨯=︒.故答案为:50;36︒.【小问2详解】解:B 实验最感兴趣的人数为:501020515---=(人),。
(2023年最新)北师大版七年级下册数学第六章 概率初步含答案
北师大版七年级下册数学第六章概率初步含答案一、单选题(共15题,共计45分)1、从正方形的四个顶点中,任取三个顶点连成三角形.把“这个三角形是等边三角形”记作事件M,下列判断正确的是()A.事件M是不可能事件B.事件M是必然事件C.事件M发生的概率为D.事件M发生的概概率为2、小烈和小伟玩一种扑g版的游戏,若小烈手里有3张牌是K,小伟从小烈手中抽到K的概率为,则小烈手里共有扑g牌()A.4张B.9张C.12张D.15张3、如图,桌上摆放着写有号码的“♥”卡片,它们的背面都完全相同,现将它们背面朝上,从中任意摸出一张,摸到“♥”卡片上写有数字5的概率是()A. B. C. D.4、某学校为了解学生大课间体育活动情况,随机抽取本校部分学生进行调查.整理收集到的数据,绘制成如图所示的统计图.小明随机调查一名学生,他喜欢“踢毽子”的概率是()A. B. C. D.5、现有A,B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为、小明掷B立方体朝上的数字为来确定点P(),那么它们各掷一次所确定的点P落在已知抛物线上的概率为()A. B. C. D.6、一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A. B. C. D.7、甲工厂生产的5件产品中有4件正品,1件次品;乙工厂生产的5件产品中有3件正品,2件次品。
从这两个工厂生产的产品各任取1件,2件都是次品的概率为()A. B. C. D.8、有五张卡片的正面分别写有“我”“的”“中”“国”“梦”,五张卡片洗匀后将其反面放在桌面上,小明从中任意抽取两张卡片,恰好是“中国”的概率是( )A. B. C. D.9、有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为A. B. C. D.10、小明在白纸上任意画了一个锐角,他画的角在45º到60º之间的概率是()A. B. C. D.11、在围棋盒中有4颗黑色棋子和a颗白色棋子,随机地取出一颗棋子,如果它是白色棋子的概率是,则a的值为()A.1B.2C.3D.412、下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖13、从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是()A.0B.C.D.114、某运动员投篮5次,投中4次,则该运动员下一次投篮投中的概率为()A. B. C. D.不能确定15、从一副扑g牌中任意抽取1张,下列事件:①抽到“K”;②抽到“黑桃”;③抽到“大王”;④抽到“黑色的,其中,发生可能性最大的事件是()A.①B.②C.③D.④二、填空题(共10题,共计30分)16、如图,一次函数的图象与x轴交于点A,与y轴交于点B,若向的外接圆内随机抛掷一枚小针,则针尖落在阴影部分的概率是________.17、一个不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇均后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒子大约有白球________个.18、从数﹣2,﹣,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是________.19、某瓷砖厂在相同条件下抽取部分瓷砖做耐磨实验,结果如下表所示:抽取瓷砖数n 100 300 400 600 1000 2000 3000合格品数m 96 282 382 570 949 1906 28500.960 0.940 0.955 0.950 0.949 0.953 0.950合格品频率则这个厂生产的瓷砖是合格品的概率估计值是________.(精确到0.01)20、一个不透明的盒子中装有1个红球,2个黄球和1个绿球,这些球除了新色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为________.21、在5张完全相同的卡片上分别画上等边三角形、平行四边形、直角梯形、正方形和圆.在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是________.22、抛掷一枚分别标有1,2,3,4,5,6的正方体骰子1次,骰子落地时朝上的数为偶数的概率是________.23、现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是________.24、从-1,,,1.6中随机取两个数,取到的两个数都是无理数的概率是________.25、同时掷两枚标有数字1~6的正方形骰子,数字和为1的概率是________。
第六章 概率初步 单元测试卷-2022-2023学年北师大版七年级数学下册
第六章概率初步单元测试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共8小题,共24分。
在每小题列出的选项中,选出符合题目的一项)1. 正方形地板由9块边长均相等的小正方形组成,米粒随机地撒在如图所示的正方形地板上,那么米粒最终停留在黑色区城的概率是( )A. 13B. 29C. 23D. 492. 用力转动如图所示的转盘甲和转盘乙的指针,如果想让指针停在阴影区域,选取哪个转盘成功的机会比较大?( )A. 转盘甲B. 转盘乙C. 两个一样大D. 无法确定3. 有六张背面相同的扑克牌,正面上的数字分别是4,5,6,7,8,9.若将这六张牌背面朝上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是9的概率为( )A. 23B. 12C. 13D. 164. 不透明的袋子里有50张2022年北京冬奥会宣传卡片,卡片上印有会徽、吉祥物冰墩墩、吉祥物雪容融图案,每张卡片只有一种图案,除图案不同外其余均相同,其中印有冰墩墩的卡片共有n张.从中随机摸出1张卡片,若印有冰墩墩图案的概率是15,则n的值是( )A. 250B. 10C. 5D. 15. 下列各选项的事件中,是随机事件的是( )A. 向上抛的硬币会落下B. 打开电视机,正在播新闻C. 太阳从西边升起D. 长度分别为4、5、6的三条线段围成三角形6. 从长度分别为1cm、3cm、5cm、6cm四条线段中随机取出三条,则能够组成三角形的概率为( )A. 14B. 13C. 12D. 347. 如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从F出口落出的概率是( )A. 12B. 13C. 14D. 168. 一个质地均匀的立方体的六个面上分别标有数字1,2,3,4,5,6,右图是这个立方体的展开图,抛掷这个立方体,则朝上一面上的数字恰好等于朝下一面上的数字的12的概率是( )A. 16B. 13C. 12D. 23二、填空题(本大题共7小题,共21分)9. 如图所示,一块飞镖游戏板由除颜色外都相同的9个小正方形构成.假设飞镖击中每1个小正方形是等可能的(击中小正方形的边界或没有击中游戏板,则重投一次).任意投掷飞镖一次,击中灰色区域的概率是__ _.10. 地球上陆地与海洋面积比约为3︰7,则宇宙飞来一块陨石落在海洋的概率为.11. 有两把不同的锁和四把钥匙,其中两把钥匙分别能打开这两把锁,另外两把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是______ .12. 一个小球在如图所示的地面上自由滚动,并随机地停留在某块方砖上,则小球停留在黑色区域的概率是______.13. 正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为.14. 如图,在圆形靶中,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD,且∠BAC=30∘,则射击到靶中阴影部分的概率是.15. 如图,在4×4的正方形网格中,任选一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是.三、解答题(本大题共9小题,共75分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学试卷 桑水出品
七年级下册第六章《概率初步》单元练习题
一、选择题(每小题3分,共30分)
1. 一个小妹妹将10盒蔬菜的标签全部撕掉了。
现在每个盒子看上去都一样。
但是她知道有三盒玉米,两盒菠菜,四盒豆角,一盒土豆。
她随机地拿出一盒并打开它。
盒子里面是玉米的概率是( )
A B C D 2. 在1,3,5,7,9中任取出两个数,组成一个奇数的两位数,这一事件是( )
A .不确定事件
B .不可能事件
C .可能性大的事件
D .必然事件
3. 一幅扑克去掉大小王后,从中任抽一张是红桃的概率是( ) A.21 B.41
C.131
D.52
1 4.一个袋中有a 只红球,b 只红球,它们除颜色不同外,其它均相同,若从中摸出一
个球是红球的概率为 ( )
A.b a
B. a b
C. b a a + D . b
a b + 5. 小狗在如图所示的方砖上走来走去,最终停在黑色方砖上的概率为( ) A.
81 B. 97 C. 92 D . 167 6. 有下列事件:①367人中必有2人的生日相同;②抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;③在标准大气压下,温度低于0℃时冰融化;④如果a 、b 为有理数,那么a +b =b +a .其中是必然事件的有
A .1个
B .2个
C .3个
D .4个
7.四张卡片分别标有0、1、2、3的数字,抽出一张的数字是偶数的概率为( )
103521542
15题
A .41
B .21
C .43
D .2
8.下列说法正确的是( ) A.小强今年12岁,明年百分之二百地是13岁.
B.同时抛掷两枚硬币,同是正面或同是反面朝上的可能性比一正一反大.
C.任意掷出一枚骰子,点数6朝上的概率与点数1朝上的概率相同.
D.盒子里装有10个完全相同的纸团,其中只有一个纸团内写有“奖”,而另九个纸团内均为“谢谢惠顾”,10名参与者可从中任摸一个纸团,则先摸的比后摸的“中奖”概率要大.
9.图中有四个可以自由转动的转盘,每个转盘被分成若干等分,转动转盘,当转盘停止后,指针指向白色区域的概率相同的是( ).
A.转盘2与转盘3
B. 转盘2与转盘4
C. 转盘3与转盘4
D. 转盘1与转盘4
10. 李明用6个球设计了一个摸球游戏,共有四种方案,肯定不能成功的是( ) A.摸到黄球 、红球的概率是
21 B.摸到黄球的概率是32,摸到红球、白球的概率都是3
1 C.摸到黄球、红球、白球的概率分别为21、31、61 D.摸到黄球、红球、白球的概率都是31 二.填空题:(每小题3分,共30分)
11. 小明在一个小正方体的六个面上分别标了1、2、3、4、5、6六个数字,随意地掷出小
正方体,则P(掷出地数字小于7)=________. P(掷出地数字等于7)=________.
12. 王刚设计了一个转盘游戏:随意转动转盘,使指针最后落在红色区域的概率为1/3,
如果他将转盘等分成12份,则红色区域应占的份数是 .
13. 甲、乙两人下棋,甲赢的概率 是0.5(填“一定”或“不一定”)
14. 某商场举办有奖销售活动,办法如下:凡购货满100元者得奖券一张,多购多得.每10000张奖券为一个开奖单位,设特等奖1个,一等奖50个,二等奖100个,某人买了
2a
2a
a 20题 转盘1
转盘2 转盘3 转盘4
红 红 红 红 红 红 红 红 红 红 红 红 红 白 白 白 白 白 白 白 白 白 黄 黄 蓝 蓝 蓝 蓝
120元的商品,那他中奖的概率应该是 .
15.同地掷出两枚硬币,则同为正面朝上的概率为 .
16.有大小两个同心圆,它们的半径分别是1和3,飞镖钉在小圆中的概率是
17.以下三个事件,它们的概率分别为多少,填在后面的横线上。
事件A:在一小时内,你步行可以走80千米,则P(A)=___;
事件B:一个普通的骰子,你掷出2次,其点数之和大于10,则P(B)=___;
事件C:两数之和是负数,则其中必有一数是负数,则P(C)=___。
18.两个可以自由转动的转盘A、B,其中转盘A被6等分,且标上数字1、2、3、4、5、6,转盘B被4等分,分别标上数字7、8、9、10,转动两个转盘,当转盘停止时,如果两个数字指针所指向数字之和为奇数,则甲胜,如果两个数字之和为偶数,则乙胜.由此,知道甲、乙二人获胜的情况是
19.一个袋子中装有5个白球,3个红球,甲摸到白球,乙摸到红球胜,为使甲、乙两人获胜的可能性一样大,那么必须往袋中再放入个球.
20. 如图,是由边长分别为2a和a的两个正方形组成,闭上眼睛,由针随意扎这个图形,小孔出现在阴影部分的概率是.
三、生活中的数学
20.某商场为了吸引更多的顾客,安排了一个抽奖活动,并规定:顾客每购买100元商品,就能获得一次抽奖的机会。
抽奖规则如下:在抽奖箱内,有100个牌子,分别写有1、2、3、……、100这100个数字,抽到末位数是8的可获20元购物券,抽到数字是88的可获200元购物券,抽到66或99这两个数字的可获100元购物券。
某顾客购物130元,他获得购物券的概率是多少?他获得20元、100元、200元购物券的概率分别是多少?
21.六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球
就得到一个奥运福娃玩具.已知参加这种游戏活动为40 000人次,公园游戏场发放的福娃玩具为10 000个.
⑴求参加一次这种游戏活动得到福娃玩具的频率;
⑵请你估计袋中白球接近多少个?
22一只不透明的袋子中装有4个小球,分别标有数字2、3、4、x,这些球除数字外都相同.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表:
“和为7”出现
的频数
“和为7”出现
解答下列问题:
(1)如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近.试估计出现“和为7”的概率;
(2)根据(1),若x是不等于2、3、4的自然x数,试求x的值.。