水系统与制冷机房
制冷机房布置注意事项
![制冷机房布置注意事项](https://img.taocdn.com/s3/m/8beb446e657d27284b73f242336c1eb91a3733f9.png)
制冷机房布置注意事项制冷机房布置是与设备稳定运行和环境保护密切相关的重要环节。
合理的机房布置能够有效提高设备的运行效率,降低设备故障率,确保机房环境安全稳定。
在进行制冷机房布置时,需要注意一系列细节。
下面将从布置位置、空间设计、设备选型、安全防护等多个方面详细介绍制冷机房布置的注意事项。
一、布置位置的选择在选择制冷机房的布置位置时,需要考虑到以下几个因素:1. 机房距离主要用冷设备的距离:机房应尽量靠近主要冷设备,减少制冷管线的长度,降低能量损耗。
2. 机房离电源的距离:机房应尽量靠近电源,避免因输电距离过远而产生能量损耗。
3. 机房的自然环境:应尽量不选择容易受到外界环境影响的区域,如易受洪水侵袭的低洼地带等。
4. 机房的供排风系统:机房应能够方便地接入供排风系统,保证空气流通和散热条件。
二、空间设计的合理性在进行制冷机房的布置时,需要考虑空间设计的合理性,主要包括以下几个方面:1. 机房的结构:机房结构应能够容纳所有制冷设备,并且便于维护和操作。
2. 排水系统:机房内部应设置合理的排水系统,避免因设备故障或其他原因产生的水浸现象。
3. 通风系统:机房内应设置良好的通风系统,保证空气流通,确保设备正常运行。
4. 空间利用率:应根据机房内设备的数量和大小,合理利用空间,确保设备布置紧凑,便于维护和操作。
三、设备选型的合理性在进行制冷机房的布置时,设备选型至关重要,应考虑以下几个因素:1. 设备的功率和制冷能力:应根据实际需要选择合适的功率和制冷能力的设备,避免过度或者不足造成的能源浪费或者运行不顺畅。
2. 设备的品牌和质量:应选择知名品牌的设备,确保设备的质量和稳定性。
3. 设备的保养和维护:在选择设备时,要考虑设备的保养和维护的难易程度,以避免日后维护成本过高。
四、安全防护的重要性机房安全防护是制冷机房布置的重要内容,需要考虑以下几个因素:1. 防火措施:机房应设置合理的防火设施,包括灭火器、自动灭火系统等,确保在发生火灾时能够及时有效地控制火势。
精心总结-制冷机房各项要求解释说明
![精心总结-制冷机房各项要求解释说明](https://img.taocdn.com/s3/m/c72d304db207e87101f69e3143323968011cf444.png)
制冷机房各项要求解释说明1压缩机1.1(氨)压缩机排气压力不得超过1.5Mpa;油压差控制在0.15~0.3Mpa范围内;油温在40℃左右。
解释:氨压缩机排气压力如果大于1.5Mpa,肯定制冷系统有故障,冷凝器结水垢、系统有空气、冷凝器冷却水量不足、填料比较脏不通风、布水器堵塞或者故障等,应该查找原因加以解决;氨制冷压缩机的排气压力保护值设定一般是1.52-1.55Mpa,排压力再高压缩机开不起来。
油压差控制在0.15~0.3Mpa范围内;油温在40℃左右,这个要求只是限于氨制冷机,有些氟利昂制冷机油温会低于40℃,有些螺杆压缩机运行时油泵是不运行的。
1.2、压缩机转动部位防护罩固定牢固,张贴警示标志。
解释:是转动部位不论大小轮均应加装防护板。
1.3、压缩机的油位应保持在油视窗的1/3~2/3处,严禁缺油运行。
解释:一个油视镜的压缩机的油位应保持在油视窗的1/3~2/3处,两个油视镜的下视镜2/3以上-上视镜1/2以下,停机时一般油位会高些,开机时一定要达到这个要求,停机可以高于这个要求。
油压差是油压表减去吸气压力得出的数。
1.4、压缩机、氨泵电流运行平稳,无异常波动。
解释:压缩机电流摆动大一般是有机械故障或者管道、机器固定不牢,氨泵电流摆动大一般是缺氨、排液流量超过设计值,可以通过加大循环桶供液量或者关小氨泵出口阀门减小出液流量来解决。
1.5压缩机轴封无漏氨现象(漏油不超过1滴/3分钟),油泵无漏油现象。
解释:漏油可以很直观看到,如果机房有氨味,压缩机轴封漏的可能性也很大,可以用试纸测试,酚酞试纸鲜红色为漏氨,轴封需要维修或者更换。
1.6控制台操作按钮灵敏可靠,指示灯正常显示无损坏;配电柜内各电器元件无异常温升;配电盘内无杂物、漏油现象。
解释:控制台按钮不能有缺失没有或者缺少的情况,也不能改亮的灯不亮该显示压力温度电流的根本不显示或者显示不准。
电器元件温升标准是电机线接近接线盒端外线用手摸不能烫手,否则必须紧固接线柱,交流接触器或者空开接线端子用红外测温仪测量温度不能大于80℃。
机房空调分类以及原理
![机房空调分类以及原理](https://img.taocdn.com/s3/m/d796e1f65ef7ba0d4a733b1b.png)
机房空调分类以及原理机房空调按是否自带冷源方式可以分为直接膨胀式(DX)机组和通冷型(CW)机组,DX 机组自身具有制冷系统、CW机组自身不带制冷系统,需要利用冷水机组提供低温冷源。
其中DX机组按冷凝器冷却单元不同又分为风冷机组、水冷机组、乙二醇机组等。
随着机房空调散热量的能量损耗越来愈大、利用室外自然冷源的直接用来冷却机房的方案也越来收到人们的关注。
1.风冷风冷式直接蒸发系统的原理如下图所示,它的传热介质是制冷剂,制冷剂通过室内的压缩机加压,通过铜管进入室外的冷凝器放热,然后再通过铜管经过室内的膨胀阀降压,最后到达蒸发盘管吸热,达到降温的效果。
2. 水冷系统水冷机组系与风冷不同之处是增加了板式换热器和干冷器,整个压缩机制冷系统均在室内机组进行,其吸收的热量通过板式换热器传递给水,然后通过水循环散到室外。
根据热量通过水循环散到室外的方式,可以分成两种,一种是通过开放式水塔散热,称为开放循环方式,也就说通常说的水冷机组;一种是通过干冷器来散热,成为闭式循环方式,也就是通常说的乙二醇机组3.冷水式系统冷水系统主要有风冷(水冷)冷水机组、冷水式机房空调、水泵、冷却塔等组成,其中冷水机组提供冷源,,冷却塔在室外散热、冷水式机房空调利用冷水机提供的冷冻水冷却机房。
4.双冷源系统机房空调按是否自带冷源方式可以分为直接膨胀式(DX)机组和通冷型(CW)机组,DX 机组自身具有制冷系统、CW机组自身不带制冷系统,需要利用冷水机组提供低温冷源。
所谓双冷源就是一台机组中包含DX和CW两种制冷单元,可换为备份自动切换。
有上述三种基本的冷却方式可组成不同型的双冷源系统,如风冷+冷水系统、水冷+冷水系统。
5.高效自然冷却方案利用自然冷源、直接引新风到机房内的方案,最为节能。
如下图所示,CyberMate系列机房专用空调集成新风系统原理图英维克CyberMate系列机房专用空调可实现集成新风机组,是将新风单元和常规机房空调组合而成,在室外温度低于室内温度是,常规机房空调停止工作,新风单元直接引入室外新风;当室外温度高于室内温度时,新风单元停止工作,常规机房空调开启工作;此方案节能效果非常明显,但是却有着新风直接进入机房,影响机房内部的洁净度的问题。
制冷机房运行中目前存在的问题及对策
![制冷机房运行中目前存在的问题及对策](https://img.taocdn.com/s3/m/d3451003a9956bec0975f46527d3240c8447a1af.png)
制冷机房运行中目前存在的问题及对策
制冷机房运行中存在的问题及对策包括:
1. 电力稳定性问题:制冷机房对电力的要求比较高,不稳定的电力供应可能导致机房工作不正常甚至停机。
对策:安装UPS设备和稳压器,确保稳定的电力供应。
2. 温度控制问题:制冷机房的温度控制非常重要,温度过高可能导致设备过热而损坏,温度过低可能会导致设备结露,影响设备的正常运行。
对策:安装温度传感器和自动控制系统,及时调整制冷机房的温度。
3. 机房密封性问题:机房的密封性较差可能导致外界空气进入机房,引起湿度升高、灰尘等污染。
对策:检查和修复机房的密封问题,确保机房的密封性。
4. 机房压力问题:机房内的压力过高可能导致设备散热不良,甚至损坏设备。
对策:安装并定期清洁换气扇和风道,保持机房内的良好通风。
5. 水系统问题:机房的制冷设备需要用到水,如果水系统出现故障或漏水问题,可能会导致机房设备无法正常运行。
对策:定期检查水系统,并进行维护和保养,避免水系统故障和漏水问题。
6. 设备老化问题:制冷机房内的设备长期运行容易出现老化,影响设备的性能和寿命。
对策:定期维护和保养制冷设备,及时更换老化严重的设备,确保设备的正常运行。
冷冻机房水系统集中监控全面解决方案
![冷冻机房水系统集中监控全面解决方案](https://img.taocdn.com/s3/m/658296663c1ec5da50e270bc.png)
管理软件是公司根据当前楼宇暖通自控技术的发展趋势,面向中端楼宇控制市场,以实现楼宇自控体化为目标开发的产品。
该产品以搭建战略性楼宇应用服务平台为目标,集成了自主研发的实时实时数据库,可以为用户提供个对整个楼宇系统进行数据汇总、分析及管理的有效平台。
是用户能够及时有效的获取数据信息,及时地作出反应,已获得优化能源管理。
下面是深圳邦德瑞厂家的小编带来的冷冻机房水系统集中监控全面解决方案。
一、冷冻机房集中监控的意义(一)冷冻机房集中监控的意义1、建筑能耗中,空调系统所占比重极高,直接影响楼宇运行经济利益。
2、冷冻机房运行耗能,在整个系统中所占比重极高,节能运行,势在必行。
3、在楼宇空调系统中,冷冻站相当于空调系统的心脏,对整个系统的运行状况起着决定性的作用。
4、冷冻机房设备造价高昂,使得设备的安全运行尤为重要。
(二)冷冻机房控制系统(SYNCO控制系统)的优势1、投资小,造价低,见效快,性价比极高。
2、运行经济节能,效果显著,立竿见影3、便于维护,保护资产。
4、操作简单,界面直观。
(三)冷冻机房控制系统(SYNCO系统)组成1、主要被控对象冷水机组、冷冻水循环泵、冷却塔、冷却水循环泵、换热器、定压补水装置等。
2、主要监测物理置供回水温度、压力、压差、室外温度、太阳照度、流量、冷热量、液位、水流状态。
3、主要执行机构电动调节阀、电动蝶阀、变频器、电机。
4、控制系统控制器、扩展模块、手操器。
5、通讯系统KN×通讯协议、网关、OC1700 1操作维护工具。
6、上位机管理管理软件安装、组态、通讯、编程、调试。
(四)冷冻机房控制系统的全面解决方案2、冷冻机房自动控制解决方案1)根据事先排定的工作及节假日时间表,定时启停冷水机组及相关设备。
2)根据冷冻水供回水温差及总回水流量,计算空调系统总负荷,控制冷冻机组运行台数。
3)对冷冻机组、冷冻泵、冷却泵及冷却塔风机进行顺序启停及连锁控制;a.启动顺序为:对应冷却水、冷冻水管路上的阀门立即开启:冷却塔风机、冷却水泵、冷冻水泵的启动延迟2-3min;制冷主机延迟3-4min开机。
制冷技术 第10 章空调水系统与制冷机房
![制冷技术 第10 章空调水系统与制冷机房](https://img.taocdn.com/s3/m/7c1cdb2ca36925c52cc58bd63186bceb19e8eda5.png)
2、冷水系统
四管制系统:在四管制系统中,用户端接 人两根供水管和两根回水管,分别走冷水 和热水,冷水管路和热水管路互补掺混, 可同时对不同房间进行供冷或供热,但系 统结构复杂,初投资较大。
2、冷水系统
⑤ 一次泵系统和二次泵系统——根据水泵 克服系统阻力要求不同
一次泵系统:在一次泵系统中,用一级 冷水泵克服冷水机组蒸发器、输配管路 以及末端设备的全部沿程阻力和局部阻 力。一次泵系统组成简单,控制容易, 运行管理方便,一般多采用此种系统。
设计间连系统时,各个系统都必须分别设置其定压、 补水系统或装置。
2、冷水系统
③ 异程系统和同程系统——根据每个空调 末端水的流程是否相同
异程系统:每个用户的冷水流经管道的物理长度不
相同的系统为异程系统。异程系统需要的主干管路较短, 可以节省管道的初投资及管路占用空间,但是各用户的 压力损失相差较大,需使用调节阀门平衡各个用户之间 的压力损失,保证每个末端用户都能够得到需要的水量 供应,因此水系统设计和初调节的工作相对复杂。
2、冷水系统
同程系统:每个用户的冷水流经管道的物 理长度相同的系统为同程系统,同程系统 的优点是流经各终端用户的压力损失比较 接近,设备各个末端的阻力特性比较相似, 有利于水力平衡,可以简化水系统设计并 减少系统初调节的工作量。
2、冷水系统④ 两管制系来自、三管制系统和四管制系 统——根据供回水主干管数目不同
两管制系统:在两管制系统中,用户端只 接人一根供水管和一根回水管,夏季管内 走冷水,冬季管内走热水,只能对所有房 间进行供冷或者供热,故难以保证部分用 户在过渡季的室温需求。
2、冷水系统
三管制系统:在三管制系统中,用户端接 入两根供水管和一根回水管,两根供水管 分别走冷水和热水,可以同时对不同房间 进行供冷或供热,但是由于共用-根回水 管,存在较大的冷热掺混损失。
数据中心冷冻机房空调水系统施工技术
![数据中心冷冻机房空调水系统施工技术](https://img.taocdn.com/s3/m/3f385807a200a6c30c22590102020740be1ecd3a.png)
数据中心冷冻机房空调水系统施工技术摘要:本文结合项目实际情况,介绍了数据中心冷冻机房空调水系统,并对其中涉及到的关键性环节——水系统施工技术进行了具体探讨,明确了机房空调水系统施工过程中的重要环节,为数据中心系统的稳定高效运行提供有力支持。
关键词:数据中心;机房空调;水系统;施工引言伴随城市建设的发展,公共建筑对于空调冷负荷的需求不断增大,尤其是对于数据中心这种特殊的建筑,其应用特性决定其需要常年制冷,制冷机组需确保在冬夏季均能够提供较为稳定的冷源。
制冷系统应用较多的为蒸汽压缩式螺杆、离心式水冷系统,除了制冷机组本身,机房空调的水系统设计及安装效果也会影响到数据中心冷却系统运行效果。
空调水系统的施工是建筑工程施工中的重要环节,但由于建筑工程施工的复杂程度高,各专业施工作业交叉性强,空调水系统的施工往往未受到足够的重视,导致空调水系统施工完成后出现各种问题,直接影响到机房空调的稳定高效运行。
一、项目概况本项目位于上海市某银行产业园,项目地块总用地面积22742.6㎡,总建筑面积43927.63㎡,其中地上建筑面积34696.98㎡,地下建筑面积9230.64㎡。
建筑单体包括:A楼综合配套楼、B楼综合配套楼、D楼数据中心、G楼地下室、U楼地下室。
二、数据中心冷冻机房空调水系统施工方案编制本项目中,由于数据中心机房空调系统全面,容量庞大,空调系统具有以下鲜明特征:①系统规模大,系统设两路冷源,互为备用。
两路冷源分别配置700RT冷水机组3台。
②可靠性要求高,机房空调系统需确保不间断运行,制冷系统彼此独立,互为备用。
每个制冷单元的故障都不会影响其它单元的正常运行,机组的制冷输出保持稳定,可满足机房空调对于制冷稳定性的要求[1]。
对于施工安装及后期调试均有较高的要求,因此在施工方案的编制方面予以重视,由总承包单位牵头,组织各分包商和各功能性设备厂商施工方案和调试方案,尤其注意调试前各系统安装质量的细节检查,诸如冷冻水是否完全冲洗干净、UPS电源间的防水密闭、供电相位,阀门启闭状态,供配电母线异常温升和噪音检查等问题[2]。
空调制冷机房水系统综合优化控制策略研究
![空调制冷机房水系统综合优化控制策略研究](https://img.taocdn.com/s3/m/a7df061959fb770bf78a6529647d27284b73379f.png)
空调制冷机房水系统综合优化控制策略研究摘要:目前,我国科技发展迅速,社会不断进步,空调制冷设备的优化是近年来人们频繁讨论的重要内容,为了进一步提高空调和制冷设备的效率和制冷效果,以空调和制冷设备的水系统为切入点,进行了技术改进和优化,取得了良好的效果。
针对这种情况,将以空调制冷设备的水系统为例,对其运行原理和优化策略进行阐述和分析。
关键词:空调制冷;机房水系统;优化控制策略引言在我国全面推进环境保护的形势下,人们更加关注建筑工程领域节能减排的实施。
在建筑工程的使用过程中,对能源的需求比较大,我们可以发现,建筑工程运行过程中的碳排放约占整个人类社会碳排放的22%。
通过对大量相关资料和数据的综合分析,我们发现制冷机房对能源的需求属于整个空调系统的很大一部分,因此有效提升制冷机房的节能减排效果,对促进推动建筑业实现节能减排目标方面发挥积极作用。
1.制冷系统的四个组成部分制冷系统由四个主要部件组成:蒸发器、压缩机、冷凝器和膨胀阀。
蒸发器的制冷原理是液体制冷剂经过节流降压,在蒸发器吸热汽化的作用下进行物理降温。
压缩机的原理是使蒸发器中的制冷剂处于低压,而冷凝器中的制冷剂处于高压。
因此,压缩机是整个制冷循环的核心,是系统中制冷剂循环的动力装置。
冷凝器的原理是在冷凝介质的作用下,将压缩机排出的过热气体冷凝成液体状态。
膨胀阀的原理是对高压液体制冷进行节流,使进入蒸发器的制冷剂在所需的低压状态下吸热并蒸发,并根据被冷却介质热负荷的变化,自动调节流向蒸发器的制冷剂。
2. 空调和制冷机房水系统的节能要求制冷机房的能耗约占中央空调系统总能耗的75%。
循环水泵的能耗约占制冷机房总能耗的35%,但循环水泵往往是按照最大负荷设计的,这相当于系统的满负荷状态点,而全天的负荷变化很大。
当负荷达到75%以上、50%以下时,此时,冷冻水、冷却水的供回水温差一定,随着负荷率的降低,冷冻水、冷却水的比例也相应降低,制冷机组比现在的制冷机房、冷却水泵、冷冻水泵分开变频控制。
高效冷水机房系统设计和运行介绍
![高效冷水机房系统设计和运行介绍](https://img.taocdn.com/s3/m/75dca25d302b3169a45177232f60ddccda38e65c.png)
技术交流会
1
高效机房系统设计及运行
核心要素
01 高 效 机 房 核 心 要 素 : 末端设备
冷冻水系统 加减机逻辑 冷却水系统
2
高效机房的核心要素
• 变频/磁悬浮机组 • 一级能效设备 • 塔泵变频控制 • 采用IE3电机
高效 设备
高效机 房
系统 控制
• 高精度传感器 • 效率优先的运行 • 系统稳定性好 • 自动化程度高
11℃
Байду номын сангаас
多机对多泵
11℃
18
7℃
7℃
变频主机 变频水泵 变频冷塔
60%负荷
10℃
一常机规对系一统泵
11℃
技术路线选择(高效VS变频)
定频离心机效率(COP)
16
32C冷却水
14
25C冷却水
12
18C冷却水
10
12C冷却水传统系统 高效主机
8
6
4
2 0%
20%
40%
60%
80%
100%
120%
140%
• 准确计算负荷分布 • 减少阀门弯头 • 优化系统平衡 • 减少旁通流量
减少 输送 能耗
3
系统 温度 优化
• 减少系统流量 • 成本和能耗比例优化 • 提高冷冻水回水温度 • 降低冷却水供水温度
高效机房的整体概念
4
系统 设计
运行 维护
冷冻机房的控制逻辑
冷却水 温度控制
冷却水 流量控制
冷冻水 流量控制
➢ 系统整体投资和运行成本还有相当大的优化空间
末端设备 Vs. 管路系统
塔泵能耗比例
空调水系统工程安装施工方案
![空调水系统工程安装施工方案](https://img.taocdn.com/s3/m/8ffeea9f561252d381eb6e09.png)
一、空调系统简介1、冷热源本工程冷热源分别由设在地下室的制冷机房和锅炉房提供,夏季提供7~12℃冷冻水;制冷机房选用两台离心式冷水机组和一台螺杆式冷水机组;冬季空调热源由地下一层锅炉房换热站供给50/40℃热水,经机房内分集水器供给楼内;空调水系统为四管制,风机盘管回水管上设温控电动两通阀,新风机组、空调机组回水管上设动平衡电动调节阀,根据负荷变化,对水路系统进行自动控制,有利于节能。
局部区域采用两管制。
2、系统形式采用风机盘管加新风系统,风机盘管负担房间内负荷,新风机组负担新风部分负荷。
新风由各层的新风口经空气处理机进行预热交换后,经风管送到各房间。
风机盘管设于吊顶内。
局部区域采用全空气系统,设置空调送回风。
由新风竖井和新风管道向空调机组补充新风。
二、施工准备1、施工准备2、施工物资准备材料、设备、配件、制品、机具是保证施工顺利进行的物资基础,这些物资准备工作必须在工程开工之前完成。
根据各种物资的需要量计划,分别落实货源,安排运输和储备,使其满足连续施工的要求。
A、物资准备工作程序:(如流程图)B、施工材料进场计划空调专业主要材料进场计划表:主要施工机械设备计划表:1、主要施工程序管道安装总原则:先预制后安装,先干管后支管,先立管后水平管,先高处后低处,先里后外,先系统试压后冲洗,最后进行防腐、保温及隐蔽验收。
主要施工程序:施工准备→预留、预埋→材料的采购、检验及保管→管道预制→管道放线→支吊架制作、安装-管道及附件安装→管道试压、清洗及吹扫→管道防腐→管道保温及刷标识漆→系统调试。
2、主要施工方法及技术要求:A、施工准备:a)施工前认真熟悉图纸和相应的规范,进行图纸会审。
仔细阅读并理解设计说明中关于空调水管道的所有内容,与图纸内容有无冲突之处,系统流程图与平面、剖面图有无不符之处,设计要求与现行的施工规范有无差别等。
熟悉管道的分布、走向、坡度、标高,并主动与结构、装饰、通风、给排水、电气专业核对空间使用情况,及时提出存在的问题并做好图纸会审记录。
空气调节用制冷技术课后部分习题答案
![空气调节用制冷技术课后部分习题答案](https://img.taocdn.com/s3/m/eac944c7192e45361166f5d1.png)
空气调节用制冷技术课后部分习题答案制冷技术作业第一章 蒸汽压缩式制冷的热力学原理 练习题-6 (1) 压焓图hl g PR22(2) 中间压力MPa 11.00=p ; MPa 4.1=k pMPa 39.04.111.00=⨯=⋅=k m p p p(3)各状态点主要参数低压压缩机质量流量kg/s 2010.020039286.310810rL =-⨯=-==h h q M φφ低压压缩机实际输气量/s m 402.000.202010.031rL rL =⨯=⋅=v M V 由中间冷却器能量平衡,得()()69rb 75rL h h M h h M -=-kg/s 0451.02010.0237402200237rL 6975rb =⨯--=--=M h h h h M kJ/kg 4190451.0201.0402.0451*******.0rb rL 9rb 2rL 3=+⨯+⨯=+⋅+⋅=M M h M h M h高压压缩机实际输气量()()/s .0165m 0067.0.04510201.033rb rL rH =⨯+=⋅+=v M M V(3)循环的理论耗功率()()()KW46.015352461.0322010.034rb rL 12rL th2th1th =⨯+⨯=-⋅+⋅+-⋅=+=h h M M h h M P P P第二章 制冷剂与载冷剂 练习题-2高温制冷剂为低压制冷剂,有R11, R123, R718, 适用于空调系统中温制冷剂为中压制冷剂,有R22, R717, R134a, R600, 适用于冷藏,空调系统 低温制冷剂为高压制冷剂,有R744, 适用于复叠制冷低温级,跨临界循环第三章 制冷压缩机 练习题-3 (1) 压焓图hl g PR22(2) 各状态点主要参数kg/s 0402.0237411745111r1=-=-==h h q M φφkg/s 0864.02373991478222r2=-=-==h h q M φφkJ/kg 403.086400402.0399.086404110402.02192611=+⨯+⨯=+⋅+⋅=M M h M h M h压缩机理论输气量()()()/s m 0173.02453.0/52.31245.00-44.80.09680.086400402.03V 121h =⨯⨯+=+=ηv M M V(3)压缩机理论输入功率()()()KW 502.9547864.00402.0012r2r1th =⨯+=-⋅+=h h M M P 压缩机输入功率().4226KW 128.09.02453.0/352.10513.0948.0502.95em i thin =⨯⨯⨯-==ηηηP P制冷系数COP90.614226.12147in21=+=+=P COP φφ(4)()KW 0050.125402.0051_5r1th1=⨯=-⋅=h h M P056.48.09.0)498.0/352.10513.0948.0(0050.17e m i th111=⨯⨯⨯-⨯==ηηηφP COP ()KW 016.8344.0864081_8r2th2=⨯=-⋅=h h M P764.18.09.0)2453.0/352.10513.0948.0(8016.314m m i th222=⨯⨯⨯-⨯==ηηηφP COP 628kW6.98.09.0)2453.0/352.10513.0948.0(8016.3.809.0)498.0/352.10513.0948.0(0050.1em i th1e m i th1in =⨯⨯⨯-+⨯⨯⨯-=+=∑ηηηηηηP P P (5)第一类方案初投资小,运行费用高 第二类方案初投资大,运行费用低第四章 制冷装置的换热设备第五章 节流装置和辅助设备 练习题-1第六章 蒸气压缩式制冷装置的性能调节 练习题-2 (1) 已知()c e Q e ,e t t f Q = (1) ()c e P in ,in t t f P = (2) ()ain c Qc ,c t t f Q '= (3) ()w in e Qe ,e t tf Q '= (4) in in c P Q Q += (5)联立上述5式子,以t ain , t win 为已知量,其余参数Q e ,Q c ,P in ,t e ,t c 为未知量,可得到压缩-冷凝-蒸发器联合工作特性()w in ain P in ,in t t f P ''= (6) ()w in ain Qe ,e t tf Q ''= (7)带入冷却水出水温度,消去冷却水进水温度,上式可写为,⎪⎪⎭⎫ ⎝⎛+''=wout w e ain P in ,in t M Q t f P (8) ⎪⎪⎭⎫ ⎝⎛+''=wout w eain Q e ,e t MQ t f Q (9) 上述两式中的Mw 可由该制冷机的名义工况和压缩-冷凝-蒸发器联合工作特性确定()()()in wout w win ain Qin wout w ew ,e t t c t t f t t c Q M -⋅''=-⋅=(10)将(10)带入(8-9),(8-9)中以t ain , t wout 为已知数,P in , Q e 为未知数联立求解,可得到不同出水温度时,系统性能。
空调水系统课件ppt
![空调水系统课件ppt](https://img.taocdn.com/s3/m/846cb7c9c5da50e2534d7f17.png)
16
(一)冷冻水系统的主要形式
3.异程系统和同程系统(空调末端水的流程是否相同)
定压水箱 阀门 空调用户
制冷机组 水泵
同程冷冻水系统
2021/3/10
优点: ➢ 流经各终端用户的压力损
失比较接近,利于水力平 衡 ➢ 简化水系统设计并减少系 统初调节的工作量。
2021/3/10
15
定压水箱 阀门 空调用户
换热器 制冷机组 水泵 间连式冷冻水系统
2021/3/10
➢ 用换热器将全部或部分用 户侧水路与制冷机组水路 分隔。
➢ 系统规模较大,用户比较 分散,便于系统调节,减 少相互影响,保持较高的 运行效率。
➢ 在大型建筑和超高层建筑 (100m)应用普遍。
➢用于小型或功能单 一,负荷特性一致空 调系统
22
用户侧 水流量 判断处
定压水箱
用户侧 阀门 空调用户 机房侧
制冷机组 水泵
变水量系统
2021/3/10
➢改变用户侧水流量 来适应负荷变化。 ➢末端采用电动阀连 续调节所需的水流量。 ➢减低冷冻水输配能 耗具有较大的节能潜 力
(一)冷冻水系统的主要形式
1.开式和闭式系统(循环水系统)
2021/3/10
9
闭式冷冻水系统
1-膨胀水箱 2-空调设备 3-冷冻水循环水泵 4-蒸发器
1、蓄冷能力小,低负荷时,冷冻机也需经常开动。
2、膨胀水箱的补水有时需要另设加压水泵。
3、与空气接触少,减缓腐蚀。
420、21/3/1壳0 管式蒸发器,用户表面换热设备。
17
定压水箱 阀门 空调用户
制冷机组 水泵
异程冷冻水系统
制冷机房运行管理规定、责任制及应急处置
![制冷机房运行管理规定、责任制及应急处置](https://img.taocdn.com/s3/m/d0aae1bbf12d2af90342e60f.png)
制冷运行人员工作内容一、对制冷机房进行巡站工作,详细检查制冷机房内离心式冷水机组、各水泵及各类型设备是否运行正常,如不正常,及时上报项目相关负责人并进行维修,无法处理的及时通知相关厂家委派专业技术人员进场维修。
二、每日至少4次巡视楼顶冷却塔,检查冷却塔进风格栅是否脏堵,如有脏堵现象,及时清理,确保冷却塔进风量满足使用要求。
三、每月对楼顶运行冷却塔进行切换工作(运行3台,每月倒休1台),对停机冷塔进行维保工作,主要包括除锈、漏水补漏、管路保养、进风格栅清理、冷塔风扇加油、皮带松紧度检查等内容,确保下次冷塔开启时运行状态良好。
四、每两月进行制冷机组切换工作,以便于平衡机组运行时间,对停机冷水机组进行检查工作,主要包括启动柜检查,配电柜检查,各传感器校正,水流开关检查,冷机各进出口阀门检查和各配套水泵检查等,确保下次机组开启时运行状态良好。
五、收集汇总好供冷需求表,按需调整系统供冷情况,按时做好用电申请并汇总用电申请批复联。
严格按照启动/关闭流程启动/关闭设备,群控系统运行后,及时记录、维护相关设备及系统信息。
北京城建集团有限责任公司制冷运行岗位职责六、值班人员应具备较强的责任心和较高的专业技术水平,接受过上岗培训教育,持证上岗。
七、值班人员应熟悉制冷系统各设备的操作,严格执行操作规程。
八、值班人员应做到熟知现场,清楚各路阀门所起的作用,以便在出现问题时,妥善处理。
九、负责制冷机房内所有设备设施的运行、检查、维护保养等工作,及时准确填写设备设施运维记录。
十、负责机房内全面巡视工作,按时巡视、检查设备,认真填写报表记录,发现问题及时上报。
十一、监控设备运行状况,避免“跑、冒、滴、漏”现象的发生。
十二、按规定做好运行、巡视等工作记录,要求内容完整、字迹清楚。
十三、按交接班制度按时到岗,坚守岗位,做好交接班工作。
十四、负责制冷机房安全保卫工作,保持工作环境卫生清洁。
十五、负责故障抢修、应急处置工作,发生事故时,应保持冷静,按照操作规程立即进行抢修,及时排除故障,在尽可能短的时间内恢复所有功能,完成后编写事故报告,交项目部工程主管审阅。
冷库用制冷机房设计
![冷库用制冷机房设计](https://img.taocdn.com/s3/m/3a0562a58e9951e79a89274c.png)
空调用制冷技术课程设计任务书一、课程设计题目:冷库用制冷机房设计二、原始数据1.制冷系统主要提供冷库用冷冻水,供水与回水温度为:7℃/12℃,空调冷负荷1200kW。
2.制冷剂为:氟利昂(R22)。
3.冷却水进出口温度为:26.3℃/35.3℃。
4.某市空调设计干球温度为28.4℃,湿球温度为25℃。
三、设计内容1.确定设计方案根据制冷剂为:氟利昂(R22)确定制冷系统型式。
2.根据冷冻水、冷却水的要求和条件,确定制冷工况并用压焓图来表示。
3.确定压缩机型号、台数,校核制冷量等参数。
4.根据蒸发温度、冷凝温度选择蒸发器、冷凝器(水冷或空冷),并做其中一个设备(蒸发器或冷凝器)的传热计算。
5.确定辅助设备并选型。
6.编写课程设计说明书。
目录目录 (1)二、制冷压缩机型号与数量选择 (2)三、冷凝器的选择及冷却水系统计算 (7)四、蒸发器的选择与计算: (12)五、辅助设备选型 (12)六、管径的计算 (14)七、所选设备汇总表 (16)一、基本资料制冷系统主要为冷库提供冷量,冷库冷负荷1400KW 。
1.制冷剂为:氨(R717)。
2.冷却水进出口温度为:26.3℃,35.3℃3.某市空调设计干球温度为28.4℃,湿球温度为25℃ 二、制冷压缩机型号与数量选择 1.确定制冷系统型式考虑到目前对臭氧层的保护和全球变暖的趋势等环境方面,以及氨的单位容积制冷能力大、制冷效率高,且价廉等优点,选用R717作为制冷剂。
冷凝器采用卧式壳管冷凝器,冷却剂及载冷剂选用水,蒸发器选用氨卧式壳管蒸发器。
2.确定制冷机房的总制冷量制冷机房的总制冷量应该包括用户实际所需的制冷量以及制冷机组本身和供冷系统的冷损失,应考虑有15%-20%的冷损失,则总制冷量为:1610kW 140015%)(1A)Q (10=⨯+=+=φ 式中ɸ0:制冷系统的总制冷量 Q :用户实际所需的制冷量A :冷损失,本设计取15% 3.确定制冷系统设计工况 ⑴冷凝温度t k 的确定冷凝温度指制冷剂在冷凝器中,物质状态由气态转变为液态的温度。
制冷机房电动冷水机组空调水系统原理图
![制冷机房电动冷水机组空调水系统原理图](https://img.taocdn.com/s3/m/2448d36da4e9856a561252d380eb6294dd882290.png)
数据中心(IDC机房)大型冷冻水制冷系统介绍
![数据中心(IDC机房)大型冷冻水制冷系统介绍](https://img.taocdn.com/s3/m/f0e1016b03d8ce2f006623d4.png)
数据中心大型冷冻水系统介绍随着互联网行业高速发展,数据业务需求猛增,数据中心单机柜功率密度增加至6~15kw,数据中心的规模也逐渐变大,开始出现几百到上千个机柜的中型数据中心。
随着规模越来越大,数据中心能耗急剧增加,节能问题开始受到重视。
在办公建筑中大量采用的冷冻水系统开始逐渐应用到数据中心制冷系统中,由于冷水机组的COP 可以达到6以上,大型离心冷水机组甚至更高,采用冷冻水系统可以大幅降低数据中心运行能耗。
冷冻水系统主要由冷水机组、板式换热器、冷却塔、冷冻水泵、冷却水泵以及通冷冻水型专用空调末端组成。
系统采用集中式冷源,冷水机组制冷效率高,冷却塔放置位置灵活,可有效控制噪音并利于建筑立面美观,达到一定规模后,相对于直接蒸发式系统更有建造成本和维护成本方面的经济优势。
1、冷水机组冷水机组包括四个主要组成部分:压缩机,蒸发器,冷凝器,膨胀阀,从而实现了机组制冷制热效果。
中大型数据中心多采用离心式水冷冷凝器冷水机组。
冷水机组的作用:为数据中心提供低温冷冻水。
原理:冷水机组是利用壳管蒸发器使水与冷媒进行热交换,冷媒系统在蒸发器内吸收高温冷冻水(21℃)水中的热量,使水降温产生低温冷冻水(15℃)后,通过压缩机的作用将热量带至壳管式冷凝器,由冷媒与低温冷却水水进行热交换,使冷却水吸收热量后通过水管将热量带出到外部的冷却塔散热。
如图,开始时由压缩机吸入蒸发制冷后的低温低压制冷剂气体,然后压缩成高温高压气体送冷凝器;高压高温气体经冷凝器冷却后使气体冷凝变为常温高压液体;当常温高压液体流入热力膨胀阀,经节流成低温低压的湿蒸气,流入壳管蒸发器,吸收蒸发器内的冷冻水的热量使水温度下降;蒸发后的制冷剂再吸回到压缩机中,又重复下一个制冷循环。
2、板式换热器当过渡季节及冬季室外湿球温度较低时,可以使用板式换热器利用间接水侧自然冷却技术为数据中心制冷。
间接水侧自然冷却技术指利用室外较低的湿球温度通过冷却塔来制备冷水,部分或全部替代机械制冷的一项技术,冷却塔自然冷却属于水侧自然冷却,冷却塔自然冷却是目前数据中心采用最多的自然冷却技术之一。
制冷机房群控系统方案
![制冷机房群控系统方案](https://img.taocdn.com/s3/m/78228758ae1ffc4ffe4733687e21af45b307fe1f.png)
1、机房能源管理系统功能冷水系统的机房群控系统包括以下主要内容:一是实现冷水系统的能量控制管理,主要包括根据冷量负荷计算对冷水机组进行台数控制、根据系统压差实现一次泵变流量控制、根据冷却水供水温度实现对冷却水泵的控制管理;二是根据大厦的日程安排自动开关冷水机组、冷冻水泵、冷却水泵等,并实现各设备之间开关机顺序及连锁保护功能;三是累计每台冷水机组、冷冻水泵、冷却水泵运行时间,自动选择运行时间最短的设备启动,使每台设备运行时间基本相等,延长机组的寿命;四是动态显示机组、水泵及相关设备的运行状态和报警信息,自动记录系统数据,如遇故障则自动停泵,备用泵自动投入使用;A系统冷量控制管理制冷系统的制冷量是采用自动监测计算系统负荷方式,通过DDC控制系统控制制冷机组运行台数进行控制;系统的供、回水温度以及回水流量可通过传感器输入到现场DDC控制器,根据这些参数,系统将能够计算出用户实际所需要的冷量,并将计算出的冷量值输入到能量管理系统;根据冷负荷对冷水机组进行台数控制,设计根据分、集水器上的供回水温差及回水流量计算出系统冷负荷: Q=C×L×T2-T1式中:Q———计算冷负荷; L———流量,L=L1+L2+L3;T2———回水温度; T1———供水温度;C———水比热;同时,在低负荷时,系统实时监测冷水机组的冷冻水出水温度,当冷水机组出水温度低于系统冷冻水温度设定值并持续一段时间后,系统会自动关闭低负荷冷水机组,此时冷冻水系统仍继续运行,满足系统冷量低负荷运行要求;当冷冻水温度超出系统冷冻水温度设定值并持续一段时间后,系统自动运行冷水机组,自适应冷水系统的负荷变化;系统在启动或低负荷运行时,先运行一台冷水机组,当第一台冷水机组启动60min 后,冷水机组出水温度基本达稳定温度,系统再启动负荷控制管理功能;每30min 把计算出的实际冷负荷与当前运行机组的额定冷量比较,当实际负荷小于当前机组的额定总负荷一定量时,减少相应的机组台数运行;当实际负荷大于当前机组的额定总负荷一定量时,增加相应的机组台数运行;B 冷水机组运行台数控制管理DDC 系统将输入的冷量值与所有正在运行的制冷机组额定制冷量的总和进行比较,如果用户实际消耗冷量少于一台制冷机的额定制冷量时,DDC系统将发出一个开关量信号,该信号将使一台制冷机组停止运行,制冷机组在停机后将输入动作信号至DDC 系统,DDC 系统确认机组已经停止运行后,将输出关闭与该制冷机组相对应的冷冻水循环泵及该机组冷冻水进水管上的电动蝶阀;当用户实际需要冷量持续少于运行机组额定制冷量时,将重复上述控制过程;当用户所需要的冷量多于一台制冷量时,DDC 系统将发出开关量型号,启动一台冷冻水循环泵并同时打开与冷冻水泵相对应的制冷机组冷冻水管上的电动蝶阀,冷却水泵和电动蝶阀将反馈动作信号至DDC系统,其动作系统得到DDC系统确认后,DDC 系统将启动与冷冻水泵相对应的制冷机组;如果用户所需要的冷量继续增加时,则按上述控制方式再次启动制冷机组,直到满足用户需要为止;C一次泵变流量管理及加/减载管理Array系统负荷发生变化时,机房能量管理系统首先根据控制特点先行调节系统一次变频泵流量供应,当系统流量变化调节不足以满足系统负荷变化的需求时,再通过机房群控系统对冷水机组进行相应的加减机来满足负荷的需求;当系统末端负荷增加,系统末端的电动阀门开度增大,系统压差会有相应的减少,控制系统接受到相应的压差变化,调节水泵的频率,增加一次变频泵的水量,由于冷水机组能够接受水量变化,即一次水泵的流量可一直增加到100%,来满足系统负荷增加的需求;同时由于机组能够锁定出水温度为7℃,当冷冻水量上升时,机组感应到水量的变化,此时机组则根据自身负荷调节的能力上载制冷负荷,满足系统负荷变化,当系统负荷上升到单台机组额定输出冷量的95%时可调,则控制系统启动另外机组加机延时5Min可根据实际情况调整,在这启动延时期后,如果系统冷量负荷持续超出单台机组额定输出冷量的95%,且冷水机组出水温度超出冷冻水出水设定温度时,则说明单台机组的满载运行和水泵的满载运行已不足以满足系统负荷值,且冷冻水出水温度不会稳定在出水温度设定值上,这样第二台机组的电动阀门马上开启,经过一定的阀门开启时间之后,第二台机组迅速开启;假设2台机组正在运行,当系统负荷变小时,末端的压差传感减小,一次变频泵即减小所供应的水量,机组感应到相应的水量变化,即反应到机组的负荷相应减小,当系统负荷只有甚至小于一台机组的负荷总量时,机房控制系统马上关掉其中一台机组,以使得另一台机组运行在高负荷效率状况下运行同时满足系统负荷的要求;当VSD变频冷水机组运行时,可最低在15%单机负荷的情况下运行,当系统负荷继续下降并持续低于15%,且冷水机组出水温度低于冷冻水设定值时,控制系统自动关闭冷水机组运行,但仍保持冷冻水循环系统,满足系统低负荷运行要求;通过DDC将检测到的供回水压力进行计算得出供回水压差,通过与设定值△P进行比较并进行PID计算,将PID计算结果发送至冷冻水泵进行控制;当空调系统在部分负荷运行时,△P将会增加,通过对供、回压差的PID控制将水泵的转速降低,一方面保证了空调末端风柜的最低用水量,一方面提高了机组使用效率,减少了旁通的能量损耗,另一方面降低了冷冻水泵的使用能耗,可谓一举三得;根据经验值,通常对冷水机组及一次变频冷冻水泵的台数加减载可降低能耗约20%~30%;D冷水机组运行时间管理其一,累计每台机组的运行时间;其二,同类型机组开机时,先开运行时间最短的机组,再开运行时间长的机组,关机时则相反,使同类型机组的开机时间基本相等;VSD变频机组优先在低负荷情况下运行;E冷却水泵的控制管理从节能的角度出发,在保证冷水主机的最低冷却水保护水温的基础上,冷却水水温每低1℃,冷水主机的能耗将降低约3%;鹭岛国际社区每台冷水主机的能耗约为:323KW;每降低1℃,冷水主机的能耗将降低 323KW 3% ≈ ;每台冷却水泵通常可降的最低频率为35Hz,则冷却水泵变频可节能:45KW =通过以上计算可以看出,采用冷却水泵变频实际并节能效果不太明显,故保建议不采用冷却水变频水泵,因为冷却水温度越低,主机的效率越高;冷却水系统变频会导致机组能耗增加,容易结垢,而且容易进入喘振区域;没必要在冷却水系统上安装旁通环路人为提高冷却水温度,使主机在过渡季和电机不能充分利用低温冷却水带来的巨大节能效果通过控制冷却塔进水电动蝶阀保证冷却水出水压力;F冷冻水出水温度再设冷水机组通常只有不到1%的时间在设计工况下运行;其他时间则在非运行工况下运行,期间的室外温度更温和,并且湿度低;分设计工况意味着冷负荷和冷凝器入口水温ECWT都比设计工况低;充分利用这些条件是减少能耗的途径之一;冷冻水重设的基本概念已被认可了一段时间了;当负荷降低时,即使冷冻水温度设得更高,冷却盘管也可以产生所需的冷量,这是因为除湿的需求也更低了;通常,提高冷水机组的冷冻水出口温度LCHWT可以降低压缩机的压头,从而节能;根据制冷原理P-H图可以直观的说明1. 由制冷原理图可以看出,提高冷冻水出水温度,蒸发器工作点由A-B,变成A’-B’,制冷剂A-B压力相对提高,压缩机做功h3-h2’相对减少,主机功耗对应降低,能效比COP提高;2. 冷冻水出水温度的设计值通常是选择在最恶劣的制冷工况下,相关的冷却盘管满足制冷需求时的冷冻水出水温度值;3. 正常运行时,建筑物的负荷通常低于设计的最恶劣工况的负荷,因此在通常情况下,出水温度如果还按照设计值设定,那将导致不必要的过低的冷冻水出水温度,只会增加能耗;4. 冷冻水出水温度每提高1°C ,冷水机组的效率就会增加约3% ;机组的冷冻水出水温度可以利用微处理器控制装置进行手动重新设定或者自动设定;5. 影响冷冻水出水温度调节的因素有如下:a.环境温度, 在较凉爽的季节,冷冻水出水温度可以设得高一点;b.冷冻水回水温度;冷冻水回水温度低,说明建筑物负荷较低,冷冻水出水温度可以设得高一点根据YORKWORKS选型软件分析出,不同出水温度在部分负荷时的相对7℃出水温度时节电率如下:根据室外温度、冷冻水回水温度、主机电流百分比可以判断主机的负荷情况;按照时间累计,综合节能率=%;2、系统接口配合要求水泵电气控制箱接口要求,冷冻水泵、冷却水泵、热水泵电控箱提供每一台泵的运行状态、故障、手/自动状态及控制信号;电控箱提供接线端子和实现二次接线;电控箱要求有现场手动/自动转换开关和相应的切换功能;状态信号取至接触器常开点,要求无源干触点、正逻辑;故障信号取至热继常开点,要求无源干触点、正逻辑;手/自动状态信号取至手动/自动转换开关常开点并与自动档连锁,要求无源干触点、正逻辑;楼宇自控系统向电控箱提供一个远程无源干触点控制信号;冷冻水泵、热水泵变频器接口要求,每一台水泵变频器需提供频率反馈、变频器故障和频率控制信号;变频器提供接线端子和实现二次接线;变频器向楼控系统提供0~10VDC频率反馈信号,准确对应变频器0~50Hz频率;楼宇自控系统向电控箱提供一个远程频率控制信号,信号标准为0~10VDC,对应变频器0~50Hz 频率;冷/热水机组接口要求:冷/热水机组电控箱提供每一台机组的运行状态、故障及控制信号;电控箱提供接线端子和实现二次接线;状态信号取至接触器常开点,要求无源干触点、正逻辑;故障信号取至热继常开点,要求无源干触点、正逻辑;楼宇自控系统向电控箱提供一个远程无源干触点控制信号;并要求冷/热水机组需给出MODBUS RTU标准协议及其详细的定义方式;。
绿色高效制冷机房深化及研究
![绿色高效制冷机房深化及研究](https://img.taocdn.com/s3/m/f0209841b94ae45c3b3567ec102de2bd9605de34.png)
绿色高效制冷机房深化及研究摘要:本文以我司在上海南站万科项目中高效机房的实际施工应用为案例进行分析说明,讨论在高效机房深化和BIM工作中,如何从优化系统、施工前期策划、机房三维建模和施工中节点控制等方面来诠释实现高效机房的“高效”概念。
关键词:系统优化、减阻、建模、节点控制引言:随着双碳政策的发展以及建筑节能减排政策的不断推进,高效机房对于节能的意义非凡,也在一定程度上节约设备的运行成本。
对于施工单位来说,安装高效机房是我们开始研究探索的方向。
一、系统优化:由减阻方法带来的机房管线排布特点1.1.冷却水管和冷冻水管管路优化冷却水管采用1个90°弯头和一个斜向插入的顺水三通;冷冻水管采用了1个45°弯头、1个90°弯头和一个斜向插入的顺水三通。
相比普通机房的做法,将45°弯头改为90°弯头,略微增加了局部阻力,但在相当程度上节省了管线对通行空间的占用,也回避了三维空间双45度夹角管线的定位问题,使施工难度大大降低,可谓是性价比较高的方案。
1.2. 水泵优化水泵方面,常规排布的弯头不多。
端吸泵(下进上出的水泵形态):水泵吸入端常规来说是一个三通和一个90°弯头。
若考虑节省阻力,可采用类似冷机进出口的45°斜向上弯头。
那么如果按照水泵进口和主管高差3m计算,则简单计算可得,管道从弯头开始向水泵的轴向和水平向均需要伸出3*1.41=4.24m。
显然,对机房空间的要求极高,一般的机房无法容纳如此跨度的直管。
故南站项目采用了90°弯头加顺水三通的形式,将机房的空间需求保持在常规机房的水平。
水泵出口端是垂直向上的接口,若以正三通接入,则整段出水管除了不可省略的阀门附件外仅有一个三通。
若是采用斜向插入主管的支管,则原本竖直一根的管道需要添加一个45°弯头,则会成为一个弯头加一个斜三通的形式。
从阻力系数上分析,按红宝书给出的数据,一个合流正三通是1.5,一个合流斜三通是0.5,一个45°弯最大是1.0,最小是0.5。
泰州市某建筑制冷系统及机房设计
![泰州市某建筑制冷系统及机房设计](https://img.taocdn.com/s3/m/edce0e503c1ec5da50e270cf.png)
泰州市某建筑制冷系统及机房设计一、原始设计数据1.工程概况:设计建筑位于泰州市郊区繁华地段,大厦为一栋综合性的高层建筑,建筑面积为30000m2。
2.气象资料泰州地区地理位置:北纬32。
45′东经119。
92′夏季空调室外计算干球温度:35.0℃夏季空调室外计算湿球温度:28.3℃夏季通风室外计算干球温度:32.0℃冬季空调室外计算干球温度:-6℃冬季空调室外计算相对湿度:73.00%冬季通风室外计算干球温度:2.0℃室外风速:夏季 2.6 m/s 冬季 2.6 m/s风向:夏季 SE 冬季 NE3.能源资料该工程位于泰州市繁华地段,动力能源设施完善,动力与照明用电充足,工程设有发电设备,自来水、天然气由城市管网供应,自来水压力0.5MPa(表压)。
4.土建资料:机房建筑平面图(附后)5.空调负荷与冷热源夏季空调冷负荷:3.5MW空调冷冻水参数:供水7℃,回水12 ℃(冷却方式可按水冷或风冷考虑)二、确定制冷系统的总制冷量制冷系统的总制冷量,应该包括用户实际所需要的制冷量,以及制冷系统本身和供冷系统冷损失,可按下式计算:Q=(1+A)×Q0=(1+0.10)×3500=3850KW式中:Q——制冷系统的总制冷量(KW),Q0——用户实际所需要的制冷量(KW),A——冷损失附加系数,按10%来计算。
三、确定制冷剂种类和制冷系统形式1.制冷剂的选择要求及确定(1)制冷剂选择要求制冷剂的性质将直接影响制冷机的构造、尺寸和运转特性,同时也会影响制冷循环的形式、设备结构及经济技术性能。
具体要求如下。
(1)临界温度要高,以便在常温下或普通低温下能够液化。
(2)凝固温度低,可使制冷系统安全地制取较低的蒸发温度,制冷剂在工作温度范围内不发生凝固现象。
(3)具有适宜的饱和蒸气压力,以避免外部空气从不严密处渗入系统,造成制冷机的无效耗功和腐蚀。
冷凝压力不宜过高,以免引起压缩机耗功增加和设备金属材料消耗的增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节制冷机房设计
二、制冷机房 小型制冷机房一般附设在主体建筑内,氟里昂制冷设备也可设在 空调机房内。规模较大的制冷机房,特别是氨制冷机房,应单独 修建。 (1)对制冷机房的要求 制冷机房宜布置在全区夏季主导风向的下风侧;在动力站区域内, 一般应布置在乙炔站、锅炉房、煤气站、堆煤场等的上风侧,以 保证制冷机房的清洁。 制冷机房的位置应尽可能设在冷负荷中心处,力求缩短冷冻水和 冷却水管网。当制冷机房为全区主要用电负荷时,还应考虑靠近 变电站。 氨制冷机房不应靠近人员密集的房间或场所,以及有精密贵重设 备的房间等,以免发生事故时造成重大损失。
(一)冷冻水系统的主要形式 1、开式系统与闭式系统 闭式系统:与外界空气接触少,可以减缓腐蚀 现象,必须采用壳管式蒸发器; 开式系统:需设置冷冻水箱和回水箱,系统水 容量大,运行稳定,控制简便。
闭式系统和开式系统
二、冷冻水系统
2、直连系统与间连系统
直连系统为用户侧水路和制冷机组直接连通的水系统。用于系统 规模小、用户较集中、且高差小的场合,可降低设备投资、运行 效率高。 间连系统是采用换热器将全部或部分用户侧水路与制冷机组水路 分隔的系统,用于系统规模大、用户较分散、且层高较高(高度 大于100米)的场合,可减少各部分之间的影响,保持较高的运行 效率。 设计间连系统时各个系统都必须分别设置其定压、补水系统或装 置。
二、冷冻水系统
3、异程系统与同程系统
同程系统:每个用户的冷冻水流经管道的物理 长度相同的系统称之。(P217图8-7)同程系 统的优点是流经各终端用户的压力损失比较接 近,有利于阻力平衡,可简化水系统设计并减 少系统初调节的工作量。 异程系统:每个用户的冷冻水流经管道的物理 长度不相同的系统称之。(管道短、初投资少。 阻力平衡难)( P217图8-6)
第二节制冷机房设计
(3)确定制冷系统的设计工况
冷凝温度根据冷凝器的冷却方式和冷却介质的温度确定。 立式、卧式壳管冷凝器等的冷凝温度一般比冷却水出口温度高2~4℃; 风冷式冷凝器,冷凝温度与空气进口温度差取10~16℃; 蒸发式冷凝器,其室外空气的设计湿球温度可按夏季室外平均每年不 保证50h的湿球温度计算,蒸发式冷凝器的冷凝温度应比该设计湿球 温度高5~10℃。 蒸发温度则应根据用户使用温度确定,一般情况下,蒸发温度应比冷 冻水供水温度低2~3℃。 直接蒸发式空气冷却器的蒸发温度则与用户所需空气温度有关,空气 调节用的直接蒸发式空气冷却器的蒸发温度比送风温度低6~8℃。 冷藏库用冷排管的蒸发温度一般比库温低5~10℃,库温越低,差值 越小。
第二节制冷机房设计
三、制冷设备的保温 一般,应保温的部分有制冷压缩机的吸气管、 膨胀阀后的供液管、间接供冷的蒸发器以及冷 冻水管和冷冻水箱等。制冷系统使用的保温材 料应导热系数小、湿阻因子大、吸水率低、密 度小,而且使用安全,价廉易得、易于加工敷 设。目前,制冷系统中常用的保温材料有矿渣 棉、离心玻璃棉、柔性泡沫橡胶塑料、自熄型 聚苯乙烯泡沫塑料、聚乙烯泡沫塑料和硬质聚 氨酯泡沫塑料等。.
do
二、冷冻水系统
6、变水量(VWV)和定水量(CWV)系统 定水量系统:总的用户侧水流量不实时变化而 相对恒定,可通过改变冷冻水供、回水温度或 调节末端风机转速来适应空调房间的冷负荷变 化。 变水量系统:通过改变用户侧水流量来适应空 调房间的冷负荷变化。
空调用制冷技术
三、冷却水系统
冷却水系统可分为: 直流式:冷却水可为地面水(河水或湖水)、地下水
(井水)或城市自来水
混合式 循环式
三、冷却水系统
第二节制冷机房设计
一、设计步骤 制冷机房(或称冷冻站)的设计大体有以下几个步骤: (1)确定制冷机房的总冷负荷 (2)确定制冷机组类型(包括制冷方式、制冷剂种类、冷凝器冷 却方式等 )(从能耗、单机容量和调节等方面考虑,选择空调用 蒸气压缩式冷水机组时,单机名义工况制冷量大于1758 kW时宜 选用离心式;制冷量在1054~1758 kW时,宜选用螺杆式或离心 式;制冷量在700~1054 kW时,宜选用螺杆式;制冷量在116~ 700 kW时,宜选用螺杆式或往复式;制冷量小于116 kW时,宜选 用活塞式或涡旋式。)(应根据总制冷量大小和当地条件,确定 冷凝器的冷却方式,即水冷、风冷、还是采用蒸发式冷凝器。采 用水冷冷凝器时,则应同时考虑水源和冷却水的系统形式。) (3)确定制冷系统的设计工况
空调用制冷技术
二、冷冻水系统
供冷方式:直接供冷和间接供冷 直接供冷:直接冷却对象,投资小,占地少, 制冷系数高,但是蓄冷性能差,制 冷剂渗漏多,适用中小型系统; 间接供冷:用蒸发器冷却载冷剂,载冷剂给所 需对象降温,供冷方式灵活,控制 方便,适合区域性供冷。
二、冷冻水系统
第二节制冷机房设计
空调用制冷机房,主要包括主机房、水泵房和值班室等。 冷冻冷藏用的制冷机房,规模较大者,按不同情况可分隔为主机 间(用于布置制冷压缩机)、设备间(布置冷凝器、蒸发器和储 液器等辅助设备)、水泵间(布置水箱、水泵)、变电间(耗电 量大时应有专门变压器),以及值班控制器、维修贮存室和生活 间等。房高应不低于3.2~4.0 m,设备间也还应低于2.5 m。 制冷机房应采用二级耐火材料或不燃材料建造。机房最好为单层 建筑,设有不相邻的两个出入口,机房门窗应向外开启。机房应 预留能通过最大设备的出入口或安装洞。 此外,制冷机房应有每小时不少于3次换气的自然通风,氨制冷机 房还应有每小时不少于12次换气的事故通风设备。 (二)制冷机房的设备布置(p228)
二、冷冻水系统
4、两管制、三管制和四管制系统
根据供回水主干管数目不同分为两管制、三管制 和四管制系统
两管制;一根供水管、一根回水管
三管制:一根供热水管;一根供冷水管;一根
回水管 四管制;一根供热水管;一根供冷水管; 一根热水回水管;一根冷水回水管
二、冷冻水系统
5、一次泵和二次泵系统 根据水泵克服系统阻力要求不同分为一次泵和 二次泵系统(见图8-11、8-12) 一次泵系统:用一级冷冻水泵克服制冷机组、 输配管路及末端设备的全部阻力 二次泵系统;用一次冷冻水泵克服制冷机组及 前、后管道、部件的阻力,用二次泵克服输配 管路及末端设备的阻力
第二节制冷机房设计
(4)确定制冷机组容量和台数 设计制冷机房时,一般选择2~3台同型号的制冷机组, 台数不宜过多。除特殊要求外,可不设置备用制冷机 组。 空调用制冷机房,目前一般选用冷水机组; 冷冻冷藏用制冷机房,制冷压缩机、冷凝器、蒸发器 和其他辅助设备,可以选择成套设备或配套机组。 (5)设计水系统 确定冷冻水和冷却水系统形式,选择冷冻水泵、冷却 水泵和冷却塔的规格和台数,进行管路系统设计计算。 (6)布置制冷机房
ta ts
对于管道: (8-5) ta ts t a ——空气干球温度,以最热月室外空气平均温度计算,℃; t f ——管道或设备内介质的温度,℃; t s ——保温层的表面温度,比最热月室外空气的平均露点温度高2℃; a ——外表面的对流换热系数,一般取5.8 W/(m2K) λ——保温材料的导热系数,W/(mK) δ——保温层厚度,m; d o ——管道的外径,m。
第二节制冷机房设计
管道和设备保温层厚度的确定,要考虑经济上的合理性,但是,最小 保温厚度应使其外表面温度比最热月室外空气的平均露点温度高2℃ 左右,以保证保温层外表面不结露。在计算保温层厚度时,可忽略管 壁导热热阻和管内表面的对流换热热阻。 ta t f 对于设备壁: (8-4) 1a
空调用制冷技术
第八章 水系统与制冷机房
8.1 空调水系统
第一节空调水系统 一、空调水系统概述 典型集中式空调系统原理 参见图8-1
ቤተ መጻሕፍቲ ባይዱ
水系统作为空调系统的能量输配环节,其全年能 耗在空调系统中占相当大的份额。与制冷机组能 效比(COP)类似,可用系统能效比(COP)和系 统季节能效比(SCOP)来评价整个空调系统在某个 时刻和整个制冷季节的综合能源利用效率。 制冷机组的能效比 COP=Qe /P kw/kw ( 8-1) 系统能效比 (8-2) COPs = Qe /(p+ Pf + Pw + Pc, w) kw/kw
ta t f
1
a do d 2 ( ) ln( o ) 2 do
空调用制冷技术
第一节空调水系统
一、空调水系统概述
式中Qe -制冷量 P-制冷机组功率 Pf -空调设备的风机功率 Pc, w -冷冻水系统功率 Pw -冷却水系统功率 系统季节能效比 SCOPs=制冷机组在制冷季节制取的总冷量/空调系统在制 冷季节消耗的总能量 kwh/kwh (8-3)