冷冻机房水系统原理图

合集下载

机房空调分类以及原理

机房空调分类以及原理

机房空调分类以及原理机房空调按是否自带冷源方式可以分为直接膨胀式(DX)机组和通冷型(CW)机组,DX 机组自身具有制冷系统、CW机组自身不带制冷系统,需要利用冷水机组提供低温冷源。

其中DX机组按冷凝器冷却单元不同又分为风冷机组、水冷机组、乙二醇机组等。

随着机房空调散热量的能量损耗越来愈大、利用室外自然冷源的直接用来冷却机房的方案也越来收到人们的关注。

1.风冷风冷式直接蒸发系统的原理如下图所示,它的传热介质是制冷剂,制冷剂通过室内的压缩机加压,通过铜管进入室外的冷凝器放热,然后再通过铜管经过室内的膨胀阀降压,最后到达蒸发盘管吸热,达到降温的效果。

2. 水冷系统水冷机组系与风冷不同之处是增加了板式换热器和干冷器,整个压缩机制冷系统均在室内机组进行,其吸收的热量通过板式换热器传递给水,然后通过水循环散到室外。

根据热量通过水循环散到室外的方式,可以分成两种,一种是通过开放式水塔散热,称为开放循环方式,也就说通常说的水冷机组;一种是通过干冷器来散热,成为闭式循环方式,也就是通常说的乙二醇机组3.冷水式系统冷水系统主要有风冷(水冷)冷水机组、冷水式机房空调、水泵、冷却塔等组成,其中冷水机组提供冷源,,冷却塔在室外散热、冷水式机房空调利用冷水机提供的冷冻水冷却机房。

4.双冷源系统机房空调按是否自带冷源方式可以分为直接膨胀式(DX)机组和通冷型(CW)机组,DX 机组自身具有制冷系统、CW机组自身不带制冷系统,需要利用冷水机组提供低温冷源。

所谓双冷源就是一台机组中包含DX和CW两种制冷单元,可换为备份自动切换。

有上述三种基本的冷却方式可组成不同型的双冷源系统,如风冷+冷水系统、水冷+冷水系统。

5.高效自然冷却方案利用自然冷源、直接引新风到机房内的方案,最为节能。

如下图所示,CyberMate系列机房专用空调集成新风系统原理图英维克CyberMate系列机房专用空调可实现集成新风机组,是将新风单元和常规机房空调组合而成,在室外温度低于室内温度是,常规机房空调停止工作,新风单元直接引入室外新风;当室外温度高于室内温度时,新风单元停止工作,常规机房空调开启工作;此方案节能效果非常明显,但是却有着新风直接进入机房,影响机房内部的洁净度的问题。

某地工程制冷机房空调水系统流程图

某地工程制冷机房空调水系统流程图
Copyright 2000.ECADIDRAWN BY /DATECONFIRMED BY /DATE/工种会签日期绘图人/日期DATE比例SCALE日期工程编号JOB NO.DRAWING NO.DISCIPLINE专业图号STATUS阶段CHECKED BY /DATEPROJECT DIRECTOR /DATEDISCIPLINE RESPONSIBLE BY /DATEAUDITED BY /DATEDESIGNED BY /DATEDRAWING TITLE图名项目名称建设单位PROJECTCLIENT设计人/校对人/日期日期设计总负责人专业负责人/审核人日期日期/日期/& RESEARCH INSTITUTE C0.,LTD.EAST CHINA ARCHITECTURAL DESIGNCO-OPERATED WITHAUTHORIZED FOR ISSUE BY /DATE合作设计单位审定人/日期盖章SEAL序号NO.修改内容DESCRIPTIONDATE日期档案号档案号H型蒸汽双效型溴化锂吸收 SXZ6-233DH RCUG120ACZ(非标)风冷螺杆式冷水机组DFG200-50B/4DFG150-50B/4DFG100-32/478.900主楼排风及楼梯间前室正压送风流程图职防大楼D159X4.5FP全空气职防大楼注:冷冻机房供冷(热)量包括改建病房大楼和原职防大楼空调冷(热)负荷之和。D426X9.0CTSE~PT接冷却水泵和冷却塔(见给排水图纸)CTRFSPT(4)螺杆式冷水机组YS-150PTDN50D159X4.5~PTD159X4.5FSETP(见给排水图纸)接冷却水泵和冷却塔CTRCTSFS~TPYS-150螺杆式冷水机组(3)DN50PTD159X4.5TPD159X4.5FS~(见给排水图纸)接冷却水泵和冷却塔CTRCTSE~TTPPFSDN50螺杆

说明+动图,保证让你把数据机房空调系统弄得明明白白

说明+动图,保证让你把数据机房空调系统弄得明明白白

说明+动图,保证让你把数据机房空调系统弄得明明白白机房空调属于精密空调的一种,是为了满足精密设备特殊工艺及特定环境的要求而设计的,其目的是精确控制其温度、湿度等并要求控制在一定范围。

机房空调具有高显热比、要求大风量。

为达到所需空气参数,空调系统由制冷循环和空气循环两个循环部分组成,制冷循环主要分为水冷和风冷两类。

下面我们就通过系列动图,来了解下机房空调的制冷循环和空气循环。

Pt.1制冷循环原理制冷循环由压缩过程、冷凝过程、膨胀过程、蒸发过程组成。

就是利用有限的制冷剂在封闭的制冷系统中,反复地将制冷剂压缩、冷凝、膨胀、蒸发,不断的在蒸发器处吸热汽化,进行制冷降温,将热量从室内搬运到室外。

所谓水冷和风冷的区别,其实就是与水或者空气进行热量交换的区别。

制冷循环Pt.2空气循环2.1 送风方式末端的送风方式常规分为上送风方式,风管送风方式和地板下送风。

上送风方式风管送风地板下送风2.2 典型布置为了优化气流和进一步提升冷却,采用约束送风是比较常用的通风并划分冷池的一种方式,冷热通道分离,如下图。

冷热通道分离除此之外,为了降低气流输配距离,还有行间空调和柜级空调。

传统的房间级空调到微模块的演变部分数据中心也会采用顶置空调,采用热通道封闭方法,进一步缩短气流循环距离,安装顶置空调的放置方式,可以分为卧式和立式。

卧式顶置空调立式顶置空调为了进一步降低气流输配距离,部分数据机房也会采用柜级冷却方式,如热管背板。

柜级空调Pt.3机房风冷系统这是最传统的冷却方法,空调由内机和外机通过氟管路连接而成,内机由压缩机、膨胀阀和蒸发器等组成,可以实现制冷和气流输送等功能,外机则用来散热。

风冷制冷原理常规采用定速涡旋压缩机制冷,少量采用数码涡旋或者变频涡旋压缩机;风冷室外机安装在室外或楼顶,内外机距离有限制:常规不高于室内机20米,不低于室内机5米,室内外管路长度推荐小于60米,超出需要延长组件和措施。

风冷机房空调典型结构3.1 适合场景风冷空调相互间独立,无单点故障,特别适合中小型数据中心,当输送气流距离较短时,可以单侧布置,当输送距离较远时,采用双侧布置,如图6。

高效冷水机房系统设计和运行介绍

高效冷水机房系统设计和运行介绍
高效机房系统设计和运行介绍
技术交流会
1
高效机房系统设计及运行
核心要素
01 高 效 机 房 核 心 要 素 : 末端设备
冷冻水系统 加减机逻辑 冷却水系统
2
高效机房的核心要素
• 变频/磁悬浮机组 • 一级能效设备 • 塔泵变频控制 • 采用IE3电机
高效 设备
高效机 房
系统 控制
• 高精度传感器 • 效率优先的运行 • 系统稳定性好 • 自动化程度高
11℃
Байду номын сангаас
多机对多泵
11℃
18
7℃
7℃
变频主机 变频水泵 变频冷塔
60%负荷
10℃
一常机规对系一统泵
11℃
技术路线选择(高效VS变频)
定频离心机效率(COP)
16
32C冷却水
14
25C冷却水
12
18C冷却水
10
12C冷却水传统系统 高效主机
8
6
4
2 0%
20%
40%
60%
80%
100%
120%
140%
• 准确计算负荷分布 • 减少阀门弯头 • 优化系统平衡 • 减少旁通流量
减少 输送 能耗
3
系统 温度 优化
• 减少系统流量 • 成本和能耗比例优化 • 提高冷冻水回水温度 • 降低冷却水供水温度
高效机房的整体概念
4
系统 设计
运行 维护
冷冻机房的控制逻辑
冷却水 温度控制
冷却水 流量控制
冷冻水 流量控制
➢ 系统整体投资和运行成本还有相当大的优化空间
末端设备 Vs. 管路系统
塔泵能耗比例

空调水系统课件ppt

空调水系统课件ppt
➢ 各个系统都必须分别设置 其定压、补水系统或装置。
16
(一)冷冻水系统的主要形式
3.异程系统和同程系统(空调末端水的流程是否相同)
定压水箱 阀门 空调用户
制冷机组 水泵
同程冷冻水系统
2021/3/10
优点: ➢ 流经各终端用户的压力损
失比较接近,利于水力平 衡 ➢ 简化水系统设计并减少系 统初调节的工作量。
2021/3/10
15
定压水箱 阀门 空调用户
换热器 制冷机组 水泵 间连式冷冻水系统
2021/3/10
➢ 用换热器将全部或部分用 户侧水路与制冷机组水路 分隔。
➢ 系统规模较大,用户比较 分散,便于系统调节,减 少相互影响,保持较高的 运行效率。
➢ 在大型建筑和超高层建筑 (100m)应用普遍。
➢用于小型或功能单 一,负荷特性一致空 调系统
22
用户侧 水流量 判断处
定压水箱
用户侧 阀门 空调用户 机房侧
制冷机组 水泵
变水量系统
2021/3/10
➢改变用户侧水流量 来适应负荷变化。 ➢末端采用电动阀连 续调节所需的水流量。 ➢减低冷冻水输配能 耗具有较大的节能潜 力
(一)冷冻水系统的主要形式
1.开式和闭式系统(循环水系统)
2021/3/10
9
闭式冷冻水系统
1-膨胀水箱 2-空调设备 3-冷冻水循环水泵 4-蒸发器
1、蓄冷能力小,低负荷时,冷冻机也需经常开动。
2、膨胀水箱的补水有时需要另设加压水泵。
3、与空气接触少,减缓腐蚀。
420、21/3/1壳0 管式蒸发器,用户表面换热设备。
17
定压水箱 阀门 空调用户
制冷机组 水泵
异程冷冻水系统

(工艺技术)冷库制冷工艺设计文件

(工艺技术)冷库制冷工艺设计文件

制冷工艺设计文件目录制冷工艺设计说明一、工程规模:1、快冷间:一间,400头/80min;设计冷风温度-26℃,共需机械负荷286kw2、排酸间:七间,210~280头/间、6~8h;设计冷间温度0~4℃,共需机械负荷483kw3、副产品冷却间:二间,设计冷间温度0~4℃,共需需机械负荷138kw4、分割产品暂存间:一间,设计冷间温度0~4℃,需机械负荷69kw5、急冻间:四间,15t/间、24h;设计冷间温度-23℃,需机械负荷288kw6、冷藏库:二间,120t+180t,共300t;设计冷间温度-18℃,需机械负荷21kw7、分割间:一间,设计车间温度10~12℃,需机械负荷60kw。

二、制冷系统说明(一)制冷剂:R717(氨);冷冻机油:N46(二)制冷系统划分1、-35℃蒸发温度系统:包括快冷间、急冻间和冷藏库。

2、-10℃蒸发温度系统;包括冷却排酸间、副产品冷却间、分割产品暂存间和分割间。

(三)设备选型及配置1、制冷压缩机:①-35℃蒸发温度系统:选用液氨冷却二次进气螺杆式压缩机LG16BMY2一台、LG20BMY2两台,在-35℃/+35℃工况下的总制冷量是701kw;②-10℃蒸发温度系统:选用液氨冷却螺杆式压缩机LG20BMY一台,在-10℃/+35℃工况下的总制冷量是770kw。

2、蒸发式冷凝器:选用ZNX-2800型一台,在冷凝温度+35℃,湿球温度26.9℃工况下的排热量是2800kw。

3、高压贮液器:选用ZA-5型一台。

4、低压循环桶:①-35℃系统,选用DX-8L型低压循环桶一台,配50P-40屏蔽式氨泵两台,一用一备;②-10℃系统,选用DX-6L型低压循环桶一台,配50P-40屏蔽式氨泵两台,一用一备。

5、经济器:选用JJA-28型一台,在-35℃蒸发温度系统运行时使供给蒸发器的液体过冷,提高系统在低温下运行的经济性。

(四)制冷系统的控制程度1、压缩机的安全保护:排气压力过高保护、吸气压力过低保护、压缩机电机过载保护;2、低压循环桶:液位自动控制,液位超高报警;3、蒸发式冷凝器:断水自动报警;4、氨泵:压差保护;5、自动放空气;6、冷间温度遥测、显示、打印,冷间冷库门外就地显示。

制冷机房水力计算书

制冷机房水力计算书

二、并联环路:
管段1:闸阀0.08+90°焊接弯头0.72+合流三通0.1=0.9
管段2:水过滤器2.0+焊接弯头0.78×2=3.56
管段3:直流三通0.1+闸阀0.08×2+止回阀3.4=3.36
管段4:变径0.1×2+90°焊接弯头0.78×3=2.54
管段5:闸阀0.08×2+90°焊接弯头0.78×2=1.88
管段6:变径0.1+直流三通0.1+90°焊接弯头0.72+闸阀0.08=1 管段1’:闸阀0.08+90°焊接弯头0.72×2=1.52
管段6':90°焊接弯头0.72×2+闸阀0.08=1.52
冷冻水系统:
四.并联环路:
最不利环路总损失:68760.592Pa
局部阻力系数:
管段1:闸阀0.08+90°焊接弯头0.72+直流三通0.1=0.9
管段2:直流三通0.1+闸阀0.08×2+止回阀3.4=3.66
管段3:水过滤器 2.0+90°焊接弯头0.72+直流三通(旁流三通)1.6+变径0.1=4.42
管段4:90°焊接弯头0.78+闸阀0.08=0.86
管段5:90°焊接弯头0.78+闸阀0.08=0.86
管段6:闸阀0.08+变径0.1+直流三通0.1+90°焊接弯头0.72×2=1.72
管段1'=闸阀0.08+90°焊接弯头0.72×5+三通1.5=2.3
管段6':闸阀0.08+三通1.5+90°焊接弯头0.72×2+变径0.1=3.12。

机房专用空调设备.ppt [兼容模式]

机房专用空调设备.ppt [兼容模式]

2015-10-8
机房空调关键指标
1、制冷量 《GB19413-2010计算机和数据处理机房用单元式空气调节机》规 定的额定 工况要求如下: 风冷机组 : 室内额定测试工况,干球温度/湿球温度:24℃/17; 室外环境温度:35℃ 冷水式机组: 室内额定测试工况,干球温度/湿球温度:24℃/17; 进 出水水温:7/12℃
室外环境温度<20℃即可开启的节能模式
运行模式—
运行模式—
室外环境温度<10℃即可开启低温自然冷节能模式
变频节能泵 室外冷凝器
变频节能泵 室外冷凝器
自动切换运行
—混合制冷模式
自动切换运行
—自然冷节能模式
电子膨胀阀 室内蒸发器 压缩机
电子膨胀阀 室内蒸发器
压缩机
压缩机和节能模块混合制冷运行, 通过变频泵辅助压缩机运行,节省压缩机功耗,降低冷凝温 度,提高制冷量,增大系统能效比。
Return Temperature to the unit 长春 预估投资回收年 1.4 限 北京 上海 西安 长沙 Capacity Energy Cost
24° C 50% 100kW 0.7¥/kWh
2.0
3.1
2.3
3.2
常见机房空调室内机外观
空调结构和主要部件——上出风
配电和控制 PTC加热器 EC风机
MAX 7.5 m
U 型回油弯 室外机高于室内机的安装示意图
U
保证压缩机油正常循环
当室外温度低于室内温度时,制冷剂在室外冷凝器内放出热量并冷凝。液态 制冷剂被泵送至室内蒸发器,吸收室内热量后,以汽态或汽液混合态进入室 外冷凝器冷凝,放出热量,完成冷却循环。简称“泵循环”。
智能双循环节能空调

低温冷库制冷循环设计-冷库CO2-NH3复叠制冷系统设计

低温冷库制冷循环设计-冷库CO2-NH3复叠制冷系统设计

课程设计课程名称制冷与低温课程设计题目名称冷库CO2/NH3复叠制冷系统设计学生学院能源与动力工程学院专业班级能动B11组员朱家伟李科白清川指导教师晏刚2014年9月2日设计总说明本课程设计是设计一个10^3 m3低温冷冻库制冷循环系统,要求选用CO2/NH3复叠制冷循环系统。

整个设计过程主要包括系统制冷量计算、系统高低温级循环理论设计、复叠制冷系统设备的计算和选配,同时结合整体设备运行原理,对该CO2/NH3复叠制冷循环系统进行校正。

本次设计先从冷库制冷量计算着手,先根据CO2的制冷范围,初设循环的温度范围,计算出中间温度;再由各级冷凝蒸发温度结合循环p-h图确定系统设备的工况,最后根据工况和要求选取最佳的制冷设备。

经过设计计算,可以根据两级压缩机的排气量选取合适的压缩机,根据换热器负荷,利用专业换热器软件计算换热器的技术参数,在选取合适的换热器。

通过本次的设计,得到了一个较合理的可适用于低温冷冻库的CO2/NH3复叠系统成套设备。

关键词:低温冷库 CO2/NH3复叠螺杆压缩机蒸发冷凝器课程设计目录一、CO2/HN3复叠制冷系统制冷量计算 (2)1.110^3M³冷库耗冷量的计算 (2)1.2冷库机组计算 (3)二、CO2/NH3复叠制冷系统理论循环计算 (4)2.1C02/NH3复叠制冷系统的特点 (4)2.2CO2/NH3复叠制冷系统的组成 (5)2.3复叠系统温度的确定 (6)2.4低温级(CO2)设计参数 (6)2.5高温级(NH3)设计参数 (6)2.6低温级(CO2)循环理论计算 (6)2.7高温级(NH3)循环理论计算 (8)三、CO2/NH3复叠制冷系统设备的选择 (9)3.1压缩机的选择 (9)3.2换热器的计算和选择 (10)3.3油冷却器的选择 (10)3.4电子膨胀阀的选择 (11)3.5CO2安全阀的设计 (12)3.6润滑油的选择 (13)3.7密封材料 (14)四、主要参考文献 (16)五、心得体会 (17)一、co2/hn3复叠制冷系统制冷量计算1.1 10^3m³冷库耗冷量的计算Q=Q1+Q2+Q3+Q4+Q5+Q6+Q71、传导热量Q1:Q1=K×F×(T0 –T1)= 84 kw式中:K——库体材料传热系数W/ °C.m2。

数据中心新型冷却方式介绍(2):冷冻水型行间空调空调系统

数据中心新型冷却方式介绍(2):冷冻水型行间空调空调系统

数据中心新型冷却方式介绍(2):冷冻水型行间空调系统从2018年开始,北京、上海、深圳等一线城市,陆续出台“PUE新政”。

2018年9月,北京提出全市范围内禁止新建和扩建互联网数据服务、信息处理和存储支持服务数据中心(PUE值在1.4以下的云计算数据中心除外)。

上海也出台类似政策,存量改造数据中心PUE不得高于1.4,新建数据中心PUE限制在1.3以下。

2019年4月,深圳提出PUE1.4以上的数据中心不再享有支持,PUE低于1.25的数据中心,可享受新增能源消费量40%以上的支持。

为了降低PUE,近几年数据中心新型末端冷却方式不断涌现,水冷背板空调、热管、水冷背板、液体冷却等等。

本文主要讲解冷冻水型行间空调。

1、冷冻水型行间空调系统组成行间空调,是放在服务器机柜列间,热源直接散热的设备,主要应用于高热密度数据中心。

随着机房大功率服务器的不断应用,单机柜功率达12~20kW,普通的封闭冷热通道、精密空调单、双侧送风的方式已经无法满足IT设备的散热需求,因此行间空调得到了应用。

因为行间空调靠近热源布置,空调的回风温度高,且送回风距离很近,使得其能效比好,目前行间空调有风冷直接蒸发式和冷冻水两种形式,行间空调用于封闭冷热通道的场合,本文先讲解冷冻水型行间空调系统。

冷冻水型行间空调系统组机组主要由框架、冷冻水盘管、进出风温湿度传感器、控制系统、二通阀、冷冻水管路、排气阀、电气箱等组成。

图1 冷冻水型行间空调结构图图2 冷冻水型行间空调零部件图2、运行原理冷冻水型行间空调安装位置为服务器机柜中间,送风方式为前部侧向出风(冷通道),后部回风(热通道)。

冷冻水型行间空调运行时,15℃低温冷冻水进入冷冻水型行间空调的冷冻水盘管,被机房热空气加热后,成为21℃高温冷冻水,高温冷冻水经冷冻站冷水机组/板式换热器冷却后,再次成为15℃冷冻水,送往机房冷冻水型行间空调,完成冷冻水循环。

服务器排出的32℃热风在热通被冷冻水型行间空调风机吸入,经冷冻水盘管冷却,成为18℃冷风,冷却IT服务器。

数据中心(IDC机房)大型冷冻水制冷系统介绍

数据中心(IDC机房)大型冷冻水制冷系统介绍

数据中心大型冷冻水系统介绍随着互联网行业高速发展,数据业务需求猛增,数据中心单机柜功率密度增加至6~15kw,数据中心的规模也逐渐变大,开始出现几百到上千个机柜的中型数据中心。

随着规模越来越大,数据中心能耗急剧增加,节能问题开始受到重视。

在办公建筑中大量采用的冷冻水系统开始逐渐应用到数据中心制冷系统中,由于冷水机组的COP 可以达到6以上,大型离心冷水机组甚至更高,采用冷冻水系统可以大幅降低数据中心运行能耗。

冷冻水系统主要由冷水机组、板式换热器、冷却塔、冷冻水泵、冷却水泵以及通冷冻水型专用空调末端组成。

系统采用集中式冷源,冷水机组制冷效率高,冷却塔放置位置灵活,可有效控制噪音并利于建筑立面美观,达到一定规模后,相对于直接蒸发式系统更有建造成本和维护成本方面的经济优势。

1、冷水机组冷水机组包括四个主要组成部分:压缩机,蒸发器,冷凝器,膨胀阀,从而实现了机组制冷制热效果。

中大型数据中心多采用离心式水冷冷凝器冷水机组。

冷水机组的作用:为数据中心提供低温冷冻水。

原理:冷水机组是利用壳管蒸发器使水与冷媒进行热交换,冷媒系统在蒸发器内吸收高温冷冻水(21℃)水中的热量,使水降温产生低温冷冻水(15℃)后,通过压缩机的作用将热量带至壳管式冷凝器,由冷媒与低温冷却水水进行热交换,使冷却水吸收热量后通过水管将热量带出到外部的冷却塔散热。

如图,开始时由压缩机吸入蒸发制冷后的低温低压制冷剂气体,然后压缩成高温高压气体送冷凝器;高压高温气体经冷凝器冷却后使气体冷凝变为常温高压液体;当常温高压液体流入热力膨胀阀,经节流成低温低压的湿蒸气,流入壳管蒸发器,吸收蒸发器内的冷冻水的热量使水温度下降;蒸发后的制冷剂再吸回到压缩机中,又重复下一个制冷循环。

2、板式换热器当过渡季节及冬季室外湿球温度较低时,可以使用板式换热器利用间接水侧自然冷却技术为数据中心制冷。

间接水侧自然冷却技术指利用室外较低的湿球温度通过冷却塔来制备冷水,部分或全部替代机械制冷的一项技术,冷却塔自然冷却属于水侧自然冷却,冷却塔自然冷却是目前数据中心采用最多的自然冷却技术之一。

某地中央空调水系统配电及控制原理图

某地中央空调水系统配电及控制原理图
滤波器KA3PLC连接图KA16COMCOM111SAC4SACX26X30X24X20X16X22X12X10X14COMX0X2COMX43-A电动阀关阀3-A电动阀开阀3-A电动阀开到位信号3-A电动阀关到位信号KVV(6x1.0)手动运行运行指示过载指示手动运行自动运行自动运行运行指示运行指示手动运行过载指示手动运行过载指示自动运行运行指示自动运行过载指示非变频-空调水系统接3#冰水主机控制盘开CT-32冷却塔信号冰水主机、冷却泵、冷却塔、冷冻泵配电系统图(二)接3#冰水主机控制盘开4#冷却泵信号4SAC5611220VAC手动12KA1开4#冷冻泵信号KA4接3#冰水主机控制盘自动220VACKA3KM55SBS5SB`5SBS`异地启停按钮220VACKA2接3#冰水主机控制盘开CT-31冷却塔信号5SBKM5KM325116手动123SACKA3L1FU 5A 50KA自动KM22(4AP5)KA6KM44SBS4SB`4SBS`异地启停按钮KM44SB4HYCT-32KH5冷运行指示却自动运行控过载指示制塔5HY220VACKA4KH55HR手动运行引至3#冰水主机控制盘4#、5#冷却泵运行信号运行指示过载指示自动运行控制塔却冷CT-31手动运行KH4KH44HR43HG1634电动阀12HG8HR651SAC自动手动562SAC1112KM31XKM12KM22KM21(4AP5)KM323KTKM32KA53SBS3SBKA2ZKM31KM32KM333KTWKM11KM21KM12KM12(4AP5)1KTKM12YKM13KM22KM222KT2SBS2SBKM21KM22KM232KT建 筑工 艺给 排 水结 构动 力暖 通总 图电 气名 称4AP4使用别尺 寸3#冰水主机2200x1000x800(HxWxD)Ic值大于或等于50KA自动56手动1112FU 5A

特灵冷源主机房设备系统群控成套柜方案

特灵冷源主机房设备系统群控成套柜方案



C4型:适用于三至四台风冷热泵的系统控制

C6型:适用于五至六台风冷热泵的系统控制
机 房
C8型:适用于七至八台风冷热泵的系统控制

C10型:适用于九至十台风冷热泵的系统控制
备 系
注:超过10台以上的冷冻机或风冷热泵的系统控制


柜需特殊定制


成套柜示意图
套 柜


1
特 点
特点介绍


集散的控制
例如:如果系统供水温度比设定值高20oF,冷冻机房运行于软起动模式。在冷冻机初次起动 时往往产生这种情况。冷冻机保持在软起动模式直到供水温度处于系统供水温度的死区范围 内。










软启动






5
功 能
功能举例详介


加机逻辑

冷冻机房控制的加机逻辑比较了系统的供水温度与系统的供水温度设定值加上加机死区。如
---系统的实际供回水温差ΔTa
---系统设计的供回水温差ΔTd
---所有可用的运行冷量
---减机后可用的冷量
根据流量的减机算法依据:
---旁通管的实际超额流量
特灵MP系列控制器
---将被减掉的冷冻机的流量 · 允许操作人员从状态界面发出一个增机或减
设备的能力共同决定。以下描述了冷水机房 机请求

Tracer Summit控制系统的典型应用。

根据温度的减机逻辑检测系统实际供回水温差ΔTa。当系统的温差ΔTa小于减机的ΔTd时,

水系统与制冷机房ppt课件

水系统与制冷机房ppt课件
前、后管道、部件的阻力,用二次泵克服输配 管路及末端设备的阻力
10
二、冷冻水系统
6、变水量(VWV)和定水量(CWV)系统 定水量系统:总的用户侧水流量不实时变化而
相对恒定,可通过改变冷冻水供、回水温度或 调节末端风机转速来适应空调房间的冷负荷变 化。 变水量系统:通过改变用户侧水流量来适应空 调房间的冷负荷变化。
11
空调用制冷技术
三、冷却水系统
冷却水系统可分为: ➢直流式:冷却水可为地面水(河水或湖水)、地下水
(井水)或城市自来水
➢混合式 ➢循环式
12
三、冷却水系统
13
第二节制冷机房设计
一、设计步骤 制冷机房(或称冷冻站)的设计大体有以下几个步骤: (1)确定制冷机房的总冷负荷 (2)确定制冷机组类型(包括制冷方式、制冷剂种类、冷凝器冷
间连系统是采用换热器将全部或部分用户侧水路与制冷机组水路 分隔的系统,用于系统规模大、用户较分散、且层高较高(高度 大于100米)的场合,可减少各部分之间的影响,保持较高的运行 效率。
设计间连系统时各个系统都必须分别设置其定压、补水系统或装置。
7
二、冷冻水系统
3、异程系统与同程系统
同程系统:每个用户的冷冻水流经管道的物理 长度相同的系统称之。(P217图8-7)同程系 统的优点是流经各终端用户的压力损失比较接 近,有利于阻力平衡,可简化水系统设计并减 少系统初调节的工作量。
15
第二节制冷机房设计
(4)确定制冷机组容量和台数 设计制冷机房时,一般选择2~3台同型号的制冷机组,
台数不宜过多。除特殊要求外,可不设置备用制冷机 组。 空调用制冷机房,目前一般选用冷水机组; 冷冻冷藏用制冷机房,制冷压缩机、冷凝器、蒸发器 和其他辅助设备,可以选择成套设备或配套机组。 (5)设计水系统 确定冷冻水和冷却水系统形式,选择冷冻水泵、冷却 水泵和冷却塔的规格和台数,进行管路系统设计计算。 (6)布置制冷机房

冷库氨制冷系统

冷库氨制冷系统

12.2 岩浆岩鉴别
• ④SiO2(二氧化硅)与石英是两个概念,前者多指岩石中的化学成分,后 者是矿物.
• 4.重点和难点 • 重点:①从理解岩浆岩的概念开始可以认定岩浆岩的矿物绝大多数是
硅酸盐,为7~10种.②从岩浆岩的形成条件和环境可以确认它的结构 和构造(高温熔融体缓慢结晶→快速冷凝形成不同结构构造的岩石).③ 岩浆岩的颜色是岩石中暗色矿物含量的多少,是岩石中宏观的体现.根 据以上三点,知道了岩石的颜色、矿物成分和结构构造,即可反演推论 其化学成分及形成环境,来确定岩石的种类.
解石、白云石、黄铁矿、磁铁矿、方铅矿、石膏、石墨、萤石等.观 察矿物形态的标本应该与测试用的标本分开.
下一页 返回
12.1 矿物标本认识
• 工具和试剂:放大镜、小刀、条痕板、磁铁、稀盐酸(5%). • ②教学挂图或幻灯.教师自己选择,必要时可将重要问题和插图于课前
书写在黑板上或用多媒体幻灯演示. • 3.实验步骤 • (1)教师讲述和演示阶段.首次实验课应给学生介绍实验室的主要规章
• ③喷出岩矿物结晶条件差,常以隐晶质或玻璃质的状态出现,肉眼很难 定出矿物成分,有时可见到少许斑晶.斑晶的矿物成分能判断岩石的大 类,长条状斜长石多出现在玄武岩中,具环带构造的斜长石斑晶常常与 具暗化边的角闪石在一起出现,它们可能属安山岩,透长石和石英斑晶 的出现,当属酸性岩.
上一页 下一页 返回
上一页 下一页 返回
任务3.1 三种供液原理图与方案对比
• 当前, 在一些大型制冷系统中, 把卧式冷凝器或立式冷凝器与蒸发 式冷凝器相配置。 这样配置不仅提高了换热面积, 大大提高了换热 效果, 而且省去了冷却水塔。
• 在设计中, 无论配置哪一种水冷冷凝器, 都必须注意以下几点: • (1) 冷凝器和高压储液器上必须有安全阀及其连接管道。 • (2) 多台冷凝器和多台高压储液器的系统, 在各冷凝器之间、各高

冷水系统工作过程PPT课件

冷水系统工作过程PPT课件
11
冷却水系统监控点位配置表
监控点描述
AI DI AO DO
接口位置
冷却泵故障报警
3
冷却泵启、停控制
冷却水管电动蝶阀状态
3
冷却水管电动蝶阀故障
3
冷却水管电动蝶阀控制
冷却水管水流开关
3
冷却水回水温度
1
冷却水供水温度 1
冷却塔进水电动阀启停
冷却塔进水电动阀故障
3
冷却塔进水电动阀状态
3
冷却泵控制电路热继电器常闭触点接在 DDC的DI端口
Excel50 DDC控制器
Excel50 DDC控制器 硬件输入信号 * 传感器NTC20k, 0..10V, 0..20mA的8个输入信号 * 无电势触点或24V的4个附加输入信号
硬件输出信号 * 4个模拟输出信号0..10V * 6个数字输出信号24Vac
此系统中共有7个AI,44个DI,
1个AO, 37个DO。 Excel50 DDC最低需要11台
冷冻水旁通阀控制
1
冷冻水旁通阀控制启停电路接在DDC的AO端口
膨胀水箱电动阀故障检测
1
电动阀控制电路热继电器常闭触点接在DDC的DI 端口
膨胀水箱电动阀控制
1 电动阀控制启停电路接在DDC的DO端口
膨胀水箱液位检测
1
液位传感器接线端子接在DDC的DI 端口
在冷水系统中旁通阀需要~24V电压供电,由DDC交流电源输出供电
10
冷冻水系统监控点位配置表
监控点描述
AI DI AO DO
接口位置
冷冻水供水温度检测 1
冷冻供水温度传感器接线端子接在DDC的AI 端口
冷冻水回水温度检测 1
冷冻回水温度传感器接线端子接在DDC的AI 端口

数据中心冷冻水制冷系统的节能分析

数据中心冷冻水制冷系统的节能分析

数据中心冷冻水制冷系统的节能分析摘要:在数据中心节能降碳节水的大背景下,梳理了数据中心传统冷冻水系统的原理,冷水供、回水温度从15/21℃调整为18/24℃时,提升了冷水机组性能系数、延长了冷水系统自然冷却的时间,对降低制冷系统的PUE值有明显效果。

最后简要介绍了液冷和氟泵技术,未来有望代替冷冻水系统,实现更低的PUE值。

关键词:数据中心冷冻水系统 PUE 液冷氟泵0概述数据中心是典型的耗能大户,随着“双碳”战略目标的推进,各地纷纷加强了对数据中心能耗的监管,表现在PUE(Power Usage Effectiveness,电能利用效率)数值上,对PUE值的要求越来越低。

数据中心冷却系统运行带来的非生产能耗占数据中心总能耗的40%,降低这部分能耗是提高数据中心能效的重要研究方向。

数据中心内服务器耗电产生大量的热,在水冷系统架构中,散热终端冷却塔利用水蒸发吸热将冷却水中储存的热量释放到大气中。

笔者通过对数据中心冷冻水系统架构的总结梳理,分析了潜在的提高制冷系统能效,降低系统PUE[2]的措施。

1冷冻水系统架构原理如图1所示,数据中心冷冻水系统架构原理图,末端精密空调冷水盘管和机房内回风换热,通过水流将热量带到冷水机组,经制冷压缩后散热到冷却水中,最后在冷却塔蒸发散热到大气环境中。

为了充分利用自然冷源,常用板式换热器串联冷水机组的架构,根据室外湿球温度的变化,制冷系统可运行在免费冷、预冷及机械制冷模式。

图1冷冻水系统原理图笔者从事的项目多采用中温冷冻水温度15/21℃,冷却水温度33/38℃。

以华北项目为例,冬季冷塔选型湿球温度为8℃,冷塔出水温度13.5℃,考虑板换换热温差1.5℃,可满足二次侧冷水温度15/21℃的要求。

湿球温度为14℃时,冷却水出水温度约19℃,考虑板换的换热温差,二次侧冷水的出水温度约21℃,将不能对冷冻水回水进行预冷却。

因此当湿球温度低于8℃时,制冷系统运行在免费冷模式,冷却水系统通过板式换热器制取满足要求的二次侧冷冻水。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档