奥氏体和马氏体定义
奥氏体马氏体铁素体的区别
奥氏体马氏体铁素体的区别奥氏体/马氏体/铁素体奥氏体(钢的组别:A1, A2, A3 A4, A5) (性能等级:50软,70冷加工,80高强度) 马氏体(钢的组别:C1,C2,C3) (性能等级:50软,70、110淬火并回火,80淬火并回火) 铁素体(钢的组别:F1) (性能等级:45软,60冷加工) 马氏体不锈钢属于铬不锈钢。
由于含碳量高,碳化铬多,钢的耐蚀性能下降,虽可通过热处理的方法改善,但防腐性不高。
马氏体不锈钢多用于制造力学性能要求较高,并有一定耐蚀性能要求的零件,如汽轮机叶片、喷嘴、阀座、量具、刃具等。
铁素体不锈钢也属于铬不锈钢。
含碳量小,抗大气、硝酸及盐水溶液的腐蚀能力强,有高温抗氧化性能好等特点。
主要用于制作化工设备中的容器、管道。
奥氏体不锈钢属于铬镍不锈钢。
具有很高的耐蚀性,优良的塑性,良好的焊接性及低温韧性,不具有磁性,易加工硬化。
主要用于在腐蚀介质中工作的零件、容器、管道、医疗器械以及抗磁环境中。
马氏体、铁素体、奥氏体、双相不锈钢的化学成分化学成分 % 类钢号牌号型 C Cr Ni Mn P S Mo Si Cu N 其它1Cr17Mn?0.116.00-3.50-5.50,?0.?0.0?1.0?0.2201 - - - 6Ni5N 5 18.00 5.50 7.50 060 30 0 503Cr17M?0.016.00-3.50-5.50,?0.?0.0?1.0?0.2201L n6Ni5N 30 18.00 5.50 7.50 060 30 0 57.50-10.?0.?0.0?1.0?0.21Cr18Mn?0.117.00-4.00-202 - , 8Ni5N 5 19.00 6.00 00 060 30 0 503Cr16M?0.015.00-1.50-7.00-9.00.15-204 n8Ni2N 30 17.00 3.50 0 0.301Cr18Mn国内?0.117.00-4.00-8.50-12.2.80-0.20-10Ni5Mo 奥研制 0 19.00 6.00 00 3.50 0.30 3N 氏体前苏2Cr13Mn0.15-12.00-3.70-8.00-10. 型联 9Ni4 0.25 14.00 5.00 00 国内2Cr15Mn0.15-14.00-1.50-14.00-160.15- 研制 15Ni2N 0.25 16 .003.00 .00 0.301Cr18Mn?0.117.00-4.00-8.50-12.?0.?0.02.8-3?1.00.20- 10Ni5Mo- - 6.00 00 060 30 .5 0 0.30 5 19.003N1Cr17Ni?0.116.00-6.00-?0.?0.0?1.0301 ?2.00 - - - - 7 5 18.00 8.00 065 30 01Cr18Ni?0.117.00-8.00-?0.?0.0?1.0302 - - ?2.00 - -9 5 19.00 10.00 035 30 0Y1Cr18N?0.117.00-8.00-?0.?0.0?1.0303 ?2.00 1) - - - i9 5 19.00 10.00 20 30 0Y1Cr18N?0.117.00-8.00-?0.?0.0?1.0Se?0.1303se - - ?2.00 -i9Se 5 19.00 10.00 20 30 0 5 0Cr18Ni?0.017.00-8.00-?0.?0.0?1.0304 - - - ?2.00 -9 7 19.00 10.00 035 30 000Cr19N?0.018.00-8.00-?0.?0.0?1.0304L ?2.00 - - - - i10 3020.0010.00 035 30 0 0Cr19Ni?0.018.00-7.00-?0.?0.0?1.00.10-304N1 ?2.00 - - - 9N 8 20.00 10.50 035 30 0 0.25 0Cr18Ni?0.018.00-7.50-?0.?0.0?1.00.15-Nb?0.1304N2 ?2.00 - - 10NbN 8 20.00 10.50 035 30 0 0.30 5 00Cr18N?0.017.00-8.50-?0.?0.0?1.00.12-304LN ?2.00 - - - i10N 30 19.00 11.50 035 30 0 0.2210.501Cr18Ni?0.117.00-?0.?0.0?1.0305 -13.0?2.00 - - - - 12 2 19.00 035 30 0 012.000Cr23Ni?0.022.00-?0.?0.0?1.0309S -15.0?2.00- - - - 13 8 24.00 035 30 0 019.000Cr25Ni?0.024.00-?0.?0.0?1.0310S - -22.0?2.00 - - - 20 8 26.00 035 30 0 010.000Cr17Ni?0.016.00-?0.?0.02.00-?1.0316 - - -14.0?2.00 -12Mo2 8 18.50 30 3.00 0 03501Cr18NiTi5(C%-11.00?0.116.00-?0.?0.01.80-?1.0 12Mo2Ti-14.0?2.00 - - 0.02)~0 30 2.50 0 2 19.00 0356) 0 .0811.000Cr18Ni?0.016.00-?0.?0.01.80-?1.0Ti5*C%- -14.0?2.00 - -12Mo2Ti 8 19.00 035 30 2.50 0 0.70 012.0000Cr17N?0.016.00-?0.?0.02.00-?1.0316L -15.0?2.00 - - - i14Mo2 30 18.00 035 30 3.00 0 010.000Cr17Ni?0.0?0.?0.016.00-2.00-?1.00.10-316N -14.0?2.00 - -12Mo2N 8 18.00 3.00 0 0.22 035 30 010.5000Cr17N?0.016.00-?0.?0.02.00-?1.00.12-316N -14.5?2.00 - -i13Mo2N 30 18.50 035 30 3.00 0 0.22 0316J1 0Cr18Ni ?0.017.00-10.00?2.00 ?0.?0.01.20-?1.01.00- -12Mo2Cu8 19.00 -14.5035 30 2.75 0 -2.52 0 000Cr18N12.001.00316J1?0.017.00-?0.?0.01.20-?1.0i14Mo2C -16.0?2.00-2.5- -L 19.00 035 30 2.75 0 30u2 0 011.000Cr19Ni?0.118.00-?0.?0.03.00-?1.0317 -15.0?2.00 - - - 13Mo3 2 20.00 035 30 4.00 0 011.0000Cr19N?0.018.00-?0.?0.03.00-?1.0317L -15.0?2.00 - - -i13Mo3 8 20.00 035 30 4.00 0 01Cr18Ni11.00Ti5(C%-?0.116.00-?0.?0.02.50-?1.0 12Mo3Ti -14.0?2.00- - 0.02)~02 19.00 035 30 3.500 6) 0 .0811.000Cr18Ni?0.016.00-?0.?0.02.50-?1.0Ti5*C%- - -14.0?2.00 -12Mo3Ti 8 19.00 0.70 035 30 3.50 0 015.000Cr18Ni?0.016.00-?0.?0.04.00-?1.0317J1 - - - -17.0?2.0016Mo5 40 19.00035 30 6.00 0 0Ti5(C%-1Cr18Ni?0.117.00-8.00-?0.?0.0?1.0321 ?2.00 - - - 0.02)~09Ti6) 2 19.00 11.00 035 30 0 .080Cr18Ni?0.017.00-9.00-?0.?0.0?1.0Ti?5*C ?2.00 - - -10Ti 8 19.0012.00 035 30 0 %0Cr18Ni?0.017.00-9.00-?0.?0.0?1.0Nb?10*347 ?2.00 - - - 11Nb 8 19.00 13.00 035 30 0 C%3.000Cr18Ni?0.017.00-8.50-?0.?0.0?1.0XM7 -4.0- - ?2.00 -9Cu3 8 19.0010.50 035 30 0 011.50XM15J0Cr18Ni?0.015.00-?0.?0.03.00--15.0?2.00 - - - 2)1 13Si4 8 20.00 035 30 5.00 00Cr26Ni?0.023.00-3.00-?0.?0.01.00-?1.0329J1 ?1.50 - - 2) 5Mo2 828.00 6.00 035 30 3.00 0 奥氏Al 体 1Cr18Ni0.10-0.0.10-17.50-10.--?0.?0.03.40-| 11Si4Al - - 30; Ti ?0.80-0.18 19.50 120..0354.00 30 铁Ti 0.40-0.素70 体00Cr18N?0.018.00-4.50-1.00-2.0?0.?0.02.50-1.30- - - -i5MoSi2 30 19.50 5.50 0 035 30 3.00 2.00Al ?0.011.50-?0.?0.0?1.0 0Cr13Al 3) ?1.00 - - - 0.10-0.4058 14.50 035 30 0 30?0.011.00-?0.?0.0?1.0410L 00Cr12 3) ?1.00 - - - -30 13.00 035 30 0 ?0.116.00-?0.?0.0?0.7430 1Cr17 3) ?1.25 - - - -铁 2 18.00 035 30 5 素 ?0.116.00-?0.?0.1?1.0体 430F Y1Cr17 - - - 3) ?1.00 1)218.00 035 50 型 ?0.116.00-?0.?0.00.75-?1.0434 1Cr17Mo - - 3) ?1.00 - 2 18.00 035 301.25 000Cr30M?0.028.50-?0.?0.01.50-?0.4?0.0447J1 - ?0.40 - - o2 10 32.00 035 30 2.50 0 1500Cr27M?0.025.00-?0.?0.00.75-?0.4?0.0XM27 - - ?0.40-o 10 27.50 03530 1.50 0 15?0.111.50-?0.?0.0?0.5403 1Cr12 ?1.00 3)- - - - 5 13.00 035 30 0?0.111.50-?0.?0.0?1.0410 1Cr13 3) ?1.00 - - - - 5 13.50 035 30 0 ?0.011.50-?0.?0.0?1.0405 0Cr13 3) ?1.00-- - - 8 13.50 035 30 0?0.112.00-?0.?0.1?1.0416 Y1Cr13 3) ?1.25 1) - - - 5 14.00 035 5 0 ?0.011.50-?0.?0.00.30-?0.6410J1 1Cr13Mo 8-0.1 3) ?1.00 - - - 14.00 035 30 0.60 0 80.16-12.00-?0.?0.0?1.0马 420J1 2Cr13 3) ?1.00 - - - -0.25 14.00 035 30 0 氏体 0.26-12.00-?0.?0.0?1.0420J23Cr13 3) ?1.00 - - - - 型 0.35 14.00 035 30 00.26-12.00-?0.?0.1?1.0420F Y3Cr13 ?1.25 3)1) - - - 0.40 14.00 035 5 00.28-12.00-?0.?0.00.50-?0.8 3Cr13Mo - - 3) ?1.00-0.35 14.00 035 301.00 00.36-12.00-?0.?0.0?0.6 4Cr13 - 3) ?0.80 - - - 0.45 14.00 035 30 01Cr17Ni0.11-16.00-1.50-?0.?0.0?0.8431 - - ?0.80 - -2 0.17 18.00 2.50 035 30 00.60-16.00-?0.?0.0?1.0440A 7Cr17 3) ?1.00 4) - - -0.75 18.00 035 30 0440B 8Cr17 0.75 -16.00-3) ?1.00 ?0.?0.0 4) ?1.0- - -0.95 18.00 035 30 00.90-17.00-?0.?0.0?0.8 9Cr18 3) ?0.80 4) - - - 1.00 19.00 035 30 00.95-16.00-?0.?0.0?1.0440C 11Cr17 - - 3) ?1.00 4) -1.20 18.00 035 30 00.95-16.00-?0.?0.1?1.0440F Y11Cr17 3) ?1.25 4) - - - 1.20 18.00 035 5 00.95-16.00-?0.?0.00.40-?0.8 9Cr18Mo 3) ?0.80 - - - 1.10 18.00 035 30 0.70 09Cr18Mo0.85-17.00-?0.?0.01.00-?0.8V0.07-0 3) ?0.80 - - V 0.95 19.00 035 30 1.30 0 .123.00Nb 0Cr17Ni?0.015.50-6.50-?0.?0.0?1.0630 - -5.0- 0.15-0.?1.004Cu4Nb 7 17.50 7.50 035 30 0 0 45 沉淀 Al 0Cr17Ni?0.016.00-6.50-?0.?0.0?1.0?0.硬 631 ?1.00 -- 0.75-1.7Al 9 18.00 7.50 035 30 0 50 化 50 型 Al 0Cr15Ni?0.014.00-6.50-?0.?0.02.00-?1.0632 0.75- 1.?1.00- -7Mo2Al 9 16.00 7.50 035 30 3.00 0 50 最佳答案马氏体不绣钢含碳量较高,多用做淬火不锈钢,因为它可以得到马氏体组织,常用于,量具,医疗器械等。
奥氏体马氏体铁素体的区别
奥氏体/马氏体/铁素体奥氏体(钢的组别:A1, A2, A3 A4, A5)(性能等级:50软,70冷加工,80高强度)马氏体(钢的组别:C1,C2,C3) (性能等级:50软,70、110淬火并回火,80淬火并回火)铁素体(钢的组别:F1) (性能等级:45软,60冷加工)马氏体不锈钢属于铬不锈钢。
由于含碳量高,碳化铬多,钢的耐蚀性能下降,虽可通过热处理的方法改善,但防腐性不高。
马氏体不锈钢多用于制造力学性能要求较高,并有一定耐蚀性能要求的零件,如汽轮机叶片、喷嘴、阀座、量具、刃具等。
铁素体不锈钢也属于铬不锈钢。
含碳量小,抗大气、硝酸及盐水溶液的腐蚀能力强,有高温抗氧化性能好等特点。
主要用于制作化工设备中的容器、管道。
奥氏体不锈钢属于铬镍不锈钢。
具有很高的耐蚀性,优良的塑性,良好的焊接性及低温韧性,不具有磁性,易加工硬化。
主要用于在腐蚀介质中工作的零件、容器、管道、医疗器械以及抗磁环境中。
奥氏体奥氏体是碳溶解在γ-Fe中的间隙固溶体,常用符号A表示。
它仍保持γ-Fe的面心立方晶格。
其溶碳能力较大,在727℃时溶碳为ωc=0.77%,1148℃时可溶碳2.11%。
奥氏体是在大于727℃高温下才能稳定存在的组织。
奥氏体塑性好,是绝大多数钢种在高温下进行压力加工时所要求的组织。
奥氏体是没有磁性的。
马氏体分级淬火是将奥氏体化工件先浸入温度稍高或稍低于钢的马氏体点的液态介质(盐浴或碱浴)中,保持适当的时间,待钢件的内、外层都达到介质温度后取出空冷,以获得马氏体组织的淬火工艺,也称分级淬火。
分级淬火由于在分级温度停留到工件内外温度一致后空冷,所以能有效地减少相变应力和热应力,减少淬火变形和开裂倾向。
分级淬火适用于对于变形要求高的合金钢和高合金钢工件,也可用于截面尺寸不大、形状复杂地碳素钢工件。
马氏体不锈钢通过热处理可以调整其力学性能的不锈钢,通俗地说,是一类可硬化的不锈钢。
典型牌号为Cr13型,如2Cr13 ,3Cr13 ,4Cr13等。
奥氏体马氏体铁素体的区别
奥氏体/马氏体/铁素体
奥氏体(钢的组别:A1, A2, A3 A4, A5)(性能等级:50软,70冷加工,80高强度)
马氏体(钢的组别:C1,C2,C3) (性能等级:50软,70、110淬火并回火,80淬火并回火)
铁素体(钢的组别:F1) (性能等级:45软,60冷加工)
马氏体不锈钢属于铬不锈钢。
由于含碳量高,碳化铬多,钢的耐蚀性能下降,虽可通过热处理的方法改善,但防腐性不高。
马氏体不锈钢多用于制造力学性能要求较高,并有一定耐蚀性能要求的零件,如汽轮机叶片、喷嘴、阀座、量具、刃具等。
铁素体不锈钢也属于铬不锈钢。
含碳量小,抗大气、硝酸及盐水溶液的腐蚀能力强,有高温抗氧化性能好等特点。
主要用于制作化工设备中的容器、管道。
奥氏体不锈钢属于铬镍不锈钢。
具有很高的耐蚀性,优良的塑性,良好的焊接性及低温韧性,不具有磁性,易加工硬化。
主要用于在腐蚀介质中工作的零件、容器、管道、医疗器械以及抗磁环境中。
最佳答案马氏体不绣钢含碳量较高,多用做淬火不锈钢,因为它可以得到马氏体组织,常用于,量具,医疗器械等。
奥氏体不绣钢的含铬量较高,使得它在常温下呈奥氏体组织,所以它没有磁性。
奥氏体不绣钢的韧性和塑性很高,焊接性较好,所以多用做化工容器,管道,耐腐蚀结构等。
奥氏体含碳量对马氏体转变温度的影响
一、概述奥氏体和马氏体是金属材料中常见的组织结构,它们的形成对材料的力学性能和物理性能具有重要影响。
奥氏体含碳量对马氏体转变温度的影响是材料科学领域一个备受关注的研究课题。
本文旨在探讨奥氏体含碳量对马氏体转变温度的影响,并结合相关研究成果进行讨论。
二、奥氏体和马氏体的基本概念1. 奥氏体是铁-碳合金中最常见的组织结构之一,其具有面心立方结构,由铁和碳组成。
在低碳钢中,奥氏体是主要的组织结构。
2. 马氏体是在奥氏体基础上经过一定条件下产生的一种组织结构,其具有体心立方结构,具有良好的强度和硬度。
三、奥氏体含碳量对马氏体转变温度的影响1. 碳元素是影响钢材组织和性能的重要合金元素,其含量对马氏体转变温度具有重要影响。
2. 随着奥氏体中碳含量的增加,马氏体转变温度会相应提高。
这是因为碳元素会影响奥氏体的稳定性,增加碳含量会降低奥氏体的稳定性,从而提高马氏体转变温度。
3. 研究发现,合金元素的加入和时效处理等方式可以降低奥氏体中的碳含量,从而降低马氏体转变温度。
这为材料工程领域的技术改进提供了重要参考。
四、奥氏体含碳量对马氏体转变温度的影响机制1. 奥氏体含碳量对马氏体转变温度的影响涉及复杂的物理和化学过程。
碳元素的加入会改变奥氏体的结构和稳定性,从而影响马氏体的形成过程和转变温度。
2. 不同碳含量下的奥氏体和马氏体具有不同的晶格参数和弹性模量,这些物理特性的变化会直接影响马氏体的形成和转变温度。
3. 除了碳含量外,合金元素的加入和材料的热处理过程也会对奥氏体含碳量和马氏体转变温度产生影响。
五、奥氏体含碳量对马氏体转变温度的影响在材料工程中的应用1. 对于一些具有特殊要求的材料,需要通过控制奥氏体中的碳含量来调节马氏体转变温度,以获得所需的机械性能和物理性能。
2. 在材料工程中,可以通过合金元素的加入和热处理工艺来控制奥氏体中的碳含量,从而实现对马氏体转变温度的调控。
这为材料设计和制备提供了重要的理论基础和技术支持。
奥氏体马氏体铁素体的区别(精品课件)
奥氏体马氏体铁素体的区别奥氏体/马氏体/铁素体奥氏体(钢的组别:A1, A2,A3 A4, A5)(性能等级:50软,70冷加工,80高强度)马氏体(钢的组别:C1,C2,C3)(性能等级:50软,70、110淬火并回火,80淬火并回火)铁素体(钢的组别:F1) (性能等级:45软,60冷加工)马氏体不锈钢属于铬不锈钢。
由于含碳量高,碳化铬多,钢的耐蚀性能下降,虽可通过热处理的方法改善,但防腐性不高.马氏体不锈钢多用于制造力学性能要求较高,并有一定耐蚀性能要求的零件,如汽轮机叶片、喷嘴、阀座、量具、刃具等。
ﻫ铁素体不锈钢也属于铬不锈钢.含碳量小,抗大气、硝酸及盐水溶液的腐蚀能力强,有高温抗氧化性能好等特点.主要用于制作化工设备中的容器、管道。
奥氏体不锈钢属于铬镍不锈钢。
具有很高的耐蚀性,优良的塑性,良好的焊接性及低温韧性,不具有磁性,易加工硬化。
主要用于在腐蚀介质中工作的零件、容器、管道、医疗器械以及抗磁环境中。
...感谢阅览...奥氏体奥氏体是碳溶解在γ-Fe中的间隙固溶体,常用符号A表示。
它仍保持γ—Fe的面心立方晶格。
其溶碳能力较大,在727℃时溶碳为ωc= 0。
77%,1148℃时可溶碳2.11%。
奥氏体是在大于727℃高温下才能稳定存在的组织.奥氏体塑性好,是绝大多数钢种在高温下进行压力加工时所要求的组织.奥氏体是没有磁性的。
...感谢阅览...马氏体分级淬火是将奥氏体化工件先浸入温度稍高或稍低于钢的马氏体点的液态介质(盐浴或碱浴)中,保持适当的时间,待钢件的内、外层都达到介质温度后取出空冷,以获得马氏体组织的淬火工艺,也称分级淬火。
分级淬火由于在分级温度停留到工件内外温度一致后空冷,所以能有效地减少相变应力和热应力,减少淬火变形和开裂倾向。
分级淬火适用于对于变形要求高的合金钢和高合金钢工件,也可用于截面尺寸不大、形状复杂地碳素钢工件。
...感谢阅览...马氏体不锈钢通过热处理可以调整其力学性能的不锈钢,通俗地说,是一类可硬化的不锈钢。
马氏体与奥氏体金相结构
马氏体与奥氏体金相结构
马氏体和奥氏体是金相学中常见的两种组织结构。
马氏体是一种在金属材料中形成的结构,通常是在固溶体中通过快速冷却(比如淬火)形成的。
马氏体的形成是由于固溶体在快速冷却过程中无法完全达到热平衡状态,导致固溶体变形并形成马氏体。
马氏体通常具有高硬度和脆性,因此在金属材料的强化和改性中具有重要作用。
奥氏体是另一种常见的金相结构,是由铁-碳合金中的铁和碳按照一定的比例形成的一种晶体结构。
奥氏体通常是在铁素体中加入适量的碳后形成的。
奥氏体的形成取决于合金中的碳含量和冷却速度,通常在快速冷却时可以形成马氏体,而在较慢冷却时则形成奥氏体。
从金相学的角度来看,马氏体和奥氏体都是金属材料中的一种组织结构,其形成与材料的成分、冷却速度等因素有关。
马氏体和奥氏体的存在对材料的性能具有重要影响,因此在材料工程和金属加工中需要对其形成规律和性质进行深入研究。
总的来说,马氏体和奥氏体是金相学中两种重要的组织结构,
它们的形成与金属材料的成分、冷却速度等因素密切相关,对材料的性能具有重要影响,因此在材料工程和金属加工中具有重要的理论和应用价值。
纯铁,奥氏体,马氏体和铁素体定义
纯铁在室温时具有体心立方晶格,其晶格常数 a = 2 . 86A ,这种铁称为 a 一 Fe 。
若温度升高到 912 ℃ ,纯铁的晶休结构会发生变化,由体心立方晶格转变为面心立方晶格,其晶格常数a =3 . 64 人,这种铁称为γ一 Fe 。
当扭度继续升高到 1394 ℃ ,面心立方晶格又重新变为体心立方品格,其晶格常数 a =2 . 93 人,为与 912 ℃ 以下的。
γ一 Fe 相区别,称它为e F -δ。
若得度降低,则发生可逆转变。
上述变化过程可表达如下:这种随温度变化.固态金属由一种晶格转变为另一种晶格的现象,称为同素异晶转变.铁素体 F碳溶于a 一 Fe 铁中的固溶体,称为铁素体,用符号 F 衷示。
它仍保待 a 铁的体心立方晶格,铁素体的性能与纯铁相似,即塑性、韧性较好,强度,硬度较低。
奥氏体 A碳溶于γ一 Fe 铁中的固溶体,称为奥氏体,用符号 A 表示。
它仍保持护铁的面心立方品格,其有良好的塑性和低的变形拢力,适合于锻造。
渗碳体渗碳体是铁和碳的化合物,分子式为分子式为 C F 3e ,含碳量为6.69%。
对铸铁有重要意义。
珠光体 P由铁素体和渗碳体组成的机械混合物,称为珠光体.用符号 P 表示。
珠光体的平均含碳爪为 0.77%。
珠光体的性能介于硬的渗碳体和软的铁素体之间,硬度适中,强度较好,脆性不大。
莱氏体 L在 727 ℃ 以上,莱氏体主要由奥氏休和渗碳体组成,称为莱氏体或高温莱氏体,用符号 L 表示.在 727 ℃ 以下,莱氏体主要由珠光体和渗碳体组成,称为变态莱氏体或低温莱氏体,用符号 L 益表示。
莱氏体的平均含碳吸为 4.3 %。
是一种婴硬而脆的组织。
马氏体转变(低温转变)A。
:以上温度的共析钢,迅速冷却使其不与C 曲马氏体转变的特点:将加热到e1线相遇,当温度低于M,以下时,将转变为马氏体。
贝氏体转变‘中温等温转变’共析钢过冷奥氏体在550 ℃~M (马氏沐开始转变温度)的温度范围内进行等温转变,可以将到贝氏休组织。
奥氏体马氏体铁素体的区别
奥氏体/马氏体/铁素体奥氏体(钢的组别:A1, A2, A3 A4, A5) (性能等级:50软,70冷加工,80高强度)马氏体(钢的组别:C1,C2,C3) (性能等级:50软,70、110淬火并回火,80淬火并回火)铁素体(钢的组别:F1) (性能等级:45软,60冷加工)马氏体不锈钢属于铬不锈钢。
由于含碳量高,碳化铬多,钢的耐蚀性能下降,虽可通过热处理的方法改善,但防腐性不高。
马氏体不锈钢多用于制造力学性能要求较高,并有一定耐蚀性能要求的零件,如汽轮机叶片、喷嘴、阀座、量具、刃具等。
铁素体不锈钢也属于铬不锈钢。
含碳量小,抗大气、硝酸及盐水溶液的腐蚀能力强,有高温抗氧化性能好等特点。
主要用于制作化工设备中的容器、管道。
奥氏体不锈钢属于铬镍不锈钢。
具有很高的耐蚀性,优良的塑性,良好的焊接性及低温韧性,不具有磁性,易加工硬化。
主要用于在腐蚀介质中工作的零件、容器、管道、医疗器械以及抗磁环境中。
奥氏体奥氏体是碳溶解在γ-Fe中的间隙固溶体,常用符号A表示。
它仍保持γ-Fe的面心立方晶格。
其溶碳能力较大,在727℃时溶碳为ωc= 0.77%,1148℃时可溶碳2.11%。
奥氏体是在大于727℃高温下才能稳定存在的组织。
奥氏体塑性好,是绝大多数钢种在高温下进行压力加工时所要求的组织。
奥氏体是没有磁性的。
马氏体分级淬火是将奥氏体化工件先浸入温度稍高或稍低于钢的马氏体点的液态介质(盐浴或碱浴)中,保持适当的时间,待钢件的、外层都达到介质温度后取出空冷,以获得马氏体组织的淬火工艺,也称分级淬火。
分级淬火由于在分级温度停留到工件外温度一致后空冷,所以能有效地减少相变应力和热应力,减少淬火变形和开裂倾向。
分级淬火适用于对于变形要求高的合金钢和高合金钢工件,也可用于截面尺寸不大、形状复杂地碳素钢工件。
马氏体不锈钢通过热处理可以调整其力学性能的不锈钢,通俗地说,是一类可硬化的不锈钢。
典型牌号为Cr13型,如2Cr13 ,3Cr13 ,4Cr13等。
马氏体不锈钢和奥氏体不锈钢
马氏体不锈钢和奥氏体不锈钢一、马氏体不锈钢马氏体不锈钢是一种具有优异耐腐蚀性的不锈钢材料。
它的特点是具有良好的强度和韧性,同时具备优异的耐热性和耐蚀性。
马氏体不锈钢通常由奥氏体不锈钢经过淬火和时效处理得到。
马氏体不锈钢的主要组织结构是马氏体,这是一种具有高硬度的组织形态。
通过淬火处理,奥氏体不锈钢中的铁素体和奥氏体会转变为马氏体,从而提高材料的强度和韧性。
此外,马氏体不锈钢还具有较高的耐腐蚀性能,可以在恶劣的环境中长时间使用。
马氏体不锈钢在工业领域具有广泛应用。
它广泛用于制造各种耐腐蚀的零部件,如阀门、管道、泵体等。
此外,马氏体不锈钢还被广泛用于制造刀具、弹簧和机械零件等。
二、奥氏体不锈钢奥氏体不锈钢是一种具有良好耐腐蚀性和机械性能的不锈钢材料。
奥氏体不锈钢的主要组织结构是奥氏体,这是一种具有良好塑性和韧性的组织形态。
奥氏体不锈钢具有高强度、良好的焊接性能和优异的耐腐蚀性能。
奥氏体不锈钢的耐腐蚀性能主要取决于其中的铬含量。
铬是一种具有良好抗氧化性的元素,可以形成一层致密的氧化铬膜来保护材料表面免受腐蚀的侵害。
因此,奥氏体不锈钢中的铬含量越高,其耐腐蚀性能就越好。
奥氏体不锈钢具有广泛的应用领域。
它被广泛用于制造化工设备、食品加工设备、医疗器械等对耐腐蚀性能要求较高的领域。
此外,奥氏体不锈钢还被应用于建筑装饰、家具制造等领域,其优雅的外观和良好的耐腐蚀性能使其成为理想的材料选择。
三、马氏体不锈钢与奥氏体不锈钢的比较1. 结构:马氏体不锈钢的主要组织结构是马氏体,而奥氏体不锈钢的主要组织结构是奥氏体。
2. 性能:马氏体不锈钢具有较高的强度和硬度,同时具备良好的耐热性和耐蚀性。
奥氏体不锈钢具有良好的塑性和韧性,同时具备优异的耐腐蚀性。
3. 应用:马氏体不锈钢广泛应用于制造耐腐蚀的零部件,如阀门、管道、泵体等。
奥氏体不锈钢广泛应用于制造化工设备、食品加工设备、医疗器械等领域。
四、总结马氏体不锈钢和奥氏体不锈钢都是具有优异耐腐蚀性能的不锈钢材料。
铁素体奥氏体马氏体 简单理解
铁素体奥氏体马氏体简单理解
铁素体、奥氏体和马氏体是钢铁材料中的三种不同的组织结构,它们在钢铁的热处理过程中起着重要的作用。
铁素体是一种由铁和
碳组成的晶体结构,它是钢铁的最稳定状态。
奥氏体是一种由铁和
碳组成的非稳定结构,它在钢铁的高温冷却过程中形成。
马氏体是
一种由奥氏体经过快速冷却转变而成的结构,它具有高硬度和强度。
在钢铁的热处理过程中,通过控制温度和冷却速度,可以使钢
铁的组织结构发生变化,从而改变钢铁的性能。
例如,通过快速冷
却可以将奥氏体转变为马氏体,从而提高钢铁的硬度和强度。
而通
过适当的退火处理,可以将马氏体转变为铁素体和奥氏体,从而提
高钢铁的韧性和塑性。
综合来看,铁素体、奥氏体和马氏体是钢铁材料中非常重要的
组织结构,它们对钢铁的性能具有重要影响。
通过合理的热处理工艺,可以使钢铁具有不同的性能,满足不同的工程需求。
因此,对
于工程师和研究人员来说,深入理解和掌握铁素体、奥氏体和马氏
体的形成和转变规律,对于钢铁材料的开发和应用具有重要意义。
奥氏体、铁素体、珠光体、贝氏体、马氏体等定义特征与区别
奥氏体、铁素体、珠光体、贝氏体、马氏体等定义奥氏体定义:碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格特征:奥氏体是一般钢在高温下的组织,其存在有一定的温度和成分范围。
有些淬火钢能使部分奥氏体保留到室温,这种奥氏体称残留奥氏体。
奥氏体一般由等轴状的多边形晶粒组成,晶粒内有孪晶。
在加热转变刚刚结束时的奥氏体晶粒比较细小,晶粒边界呈不规则的弧形。
经过一段时间加热或保温,晶粒将长大,晶粒边界可趋向平直化。
铁碳相图中奥氏体是高温相,存在于临界点A1温度以上,是珠光体逆共析转变而成。
当钢中加入足够多的扩大奥氏体相区的化学元素时,Ni,Mn等,则可使奥氏体稳定在室温,如奥氏体钢。
铁素体定义:碳与合金元素溶解在a-Fe中的固溶体特征:亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。
渗碳体定义:碳与铁形成的一种化合物特征:渗碳体不易受硝酸酒精溶液的腐蚀,在显微镜下呈白亮色,但受碱性苦味酸钠的腐蚀,在显微镜下呈黑色。
渗碳体的显微组织形态很多,在钢和铸铁中与其他相共存时呈片状、粒状、网状或板状。
在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状珠光体定义:铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物特征:珠光体的片间距离取决于奥氏体分解时的过冷度。
过冷度越大,所形成的珠光体片间距离越小。
在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。
在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。
奥氏体和马氏体定义
奥氏体:固态金属及合金都是晶体,其内部原子是按一定规律排列的,排列的方式一般有三种即:体心立方晶格结构、面心立方晶格结构和密排六方晶格结构。
金属是由多晶体组成的,它的多晶体结构是在金属结晶过程中形成的。
组成铁碳合金的铁具有两种晶格结构:910℃以下为具有体心立方晶格结构的α——铁,910℃以上为具有面心立方晶格结构的Υ——铁。
如果碳原子挤到铁的晶格中去,而又不破坏铁所具有的晶格结构,这样的物质称为固溶体。
碳溶解到α——铁中形成的固溶体称铁素体,它的溶碳能力极低,最大溶解度不超过0.02%。
而碳溶解到Υ——铁中形成的固溶体则称奥氏体,马氏体:它的溶碳能力较高,最高可达2%。
奥氏体是铁碳合金的高温相。
钢在高温时所形成的奥氏体,过冷到727℃以下时变成不稳定的过冷奥氏体。
如以极大的冷却速度过冷到230℃以下,这时奥氏体中的碳原子已无扩散的可能,奥氏体将直接转变成一种含碳过饱和的α固溶体,称为马氏体。
铁素体:由于含碳量过饱和,引起马氏体强度和硬度提高、塑性降低,脆性增大。
不锈钢的耐蚀性主要来源于铬。
实验证明,只有含铬量超过12%时钢的耐蚀性能才会大大提高,因此,不锈钢中的含铬量一般均不低于12%。
由于含铬量的提高,对钢的组织也有很大影响,当铬含量高而碳含量很少时,铬会使铁碳平衡,图上的Υ相区缩小,甚至消失,这种不锈钢为铁素体.铁素体铁素体是c溶于α-Fe中所形成的间隙固溶体,具有体心立方晶体结构,用字母F或者α表示.奥氏体奥氏体是c溶于γ-Fe中所形成的间隙固溶体.具有面心立方晶体结构,用字母A或者γ表示.马氏体马氏体有点长,我懒的打,只是简单的告诉你,它分为上马氏体和下马氏体,是过冷奥氏体等温冷却到230摄氏度以下形成的!!!!奥氏体简介英文名称:austenite晶体结构:面心立方(fcc)字母代号:A、γ定义:碳在γ-Fe中形成的间隙固溶体命名:为纪念英国冶金学家罗伯茨-奥斯汀(1843~1902)对金属科学中的贡献而命名。
马氏体温度和奥氏体温度
马氏体温度和奥氏体温度
马氏体温度和奥氏体温度是两种常用的温度测量方法。
它们的主要区别在于温度的基准点不同。
马氏体温度是以水的冰点为基准点,将温度分为100等分,每一度为1/100摄氏度。
这种温度计最早由德国物理学家马氏(Gabriel Fahrenheit)于1724年发明,因此得名。
奥氏体温度是以水的沸点为基准点,将温度分为180等分,每一度为1/180摄氏度。
这种温度计最早由瑞典天文学家奥勒·罗默(Anders Celsius)于1742年发明,因此得名。
在实际应用中,马氏体温度和奥氏体温度的选择取决于具体情况。
例如,在美国等国家,通常使用华氏温度(一种以水的冰点为基准点的温度计),而在欧洲等地,则更常使用摄氏温度(一种以水的冰点为基准点的温度计)。
需要注意的是,马氏体温度和奥氏体温度只是温度的表示方法,它们并不代表温度的本质。
温度是一个物理量,表示物体内部分子的热运动状态,与温度计的基准点无关。
因此,在实际应用中,应该根据具体情况选择合适的温度计,并注意温度的测量精度和误差范围。
铁素体奥氏体贝氏体马氏体珠光体异同
铁素体奥氏体贝氏体马氏体珠光体是金属材料中常见的组织结构形态,在金属材料的热处理过程中会产生不同的组织结构形态,而这些组织结构对金属材料的性能有着重要的影响。
以下将对这些金属材料的组织结构形态进行介绍并对其特点进行比较。
1. 铁素体铁素体是一种由铁和少量的碳组成的金属结构,在室温下呈现面心立方的晶体结构。
铁素体在金属材料中是一种比较稳定的结构形态,具有良好的延展性和韧性,但其硬度和强度相对较低。
2. 奥氏体奥氏体是一种由铁和碳组成的金属结构,在高温下呈现面心立方的晶体结构。
奥氏体在金属材料中具有较高的硬度和强度,但其延展性和韧性相对较低。
3. 贝氏体贝氏体是一种由铁和碳组成的金属结构,在热处理过程中由奥氏体经过一定温度和时间的转变形成的一种组织结构。
贝氏体具有较高的硬度和强度,但其延展性和韧性相对较低。
4. 马氏体马氏体是一种由铁和少量的碳组成的金属结构,在金属材料中具有很高的硬度和强度,但其延展性和韧性相对较低。
马氏体在金属材料中是一种比较不稳定的结构形态,在变形和断裂中容易形成。
5. 珠光体珠光体是一种由铁和碳组成的金属结构,在金属材料中具有良好的韧性和延展性,但其硬度和强度相对较低。
珠光体在金属材料中是一种比较稳定的结构形态,常用于要求良好冲击韧性的零件中。
以上是对铁素体、奥氏体、贝氏体、马氏体和珠光体的简要介绍,下面分别对它们进行比较:1. 硬度和强度奥氏体、贝氏体和马氏体在金属材料中具有较高的硬度和强度,适用于一些对硬度和强度要求较高的零件中。
而铁素体和珠光体在金属材料中的硬度和强度相对较低,适用于一些对韧性和延展性要求较高的零件中。
2. 韧性和延展性铁素体和珠光体在金属材料中具有良好的韧性和延展性,适用于一些对韧性和延展性要求较高的零件中。
而奥氏体、贝氏体和马氏体在金属材料中的韧性和延展性相对较低,容易在变形和断裂过程中产生裂纹。
3. 稳定性铁素体和珠光体在金属材料中是比较稳定的结构形态,容易保持在一定的温度和压力条件下不发生明显的相变。
钨钴合金的硬度马氏体与奥氏体的表示区别
钨钴合金的硬度马氏体与奥氏体的表示区别钨钴合金是一种常见的金属合金,具有优异的硬度和耐磨性能。
其硬度主要取决于其组织结构中的马氏体和奥氏体的比例。
本文将从不同的角度探讨钨钴合金中马氏体和奥氏体的表示区别。
马氏体和奥氏体是钨钴合金中常见的两种组织结构。
马氏体是一种具有高硬度和脆性的组织结构,一般呈现出针状或板状的形态。
而奥氏体则是一种相对较软的组织结构,呈现出较为均匀的晶粒形态。
马氏体和奥氏体的形成机制也不同。
马氏体主要是通过快速冷却或应力诱导形成的,其形成速度较快,晶粒尺寸较小。
而奥氏体则是通过缓慢冷却或退火处理形成的,其形成速度较慢,晶粒尺寸较大。
马氏体和奥氏体在性能上也存在一定的差异。
由于马氏体具有较高的硬度和脆性,因此钨钴合金中马氏体含量较高时,其硬度也相对较高。
而奥氏体虽然相对较软,但具有较好的韧性和塑性,可以提高合金的韧性和可加工性。
马氏体和奥氏体对钨钴合金的性能也有一定的影响。
马氏体含量较高时,合金的硬度和耐磨性较好,适用于制作高强度和耐磨的零部件。
而奥氏体含量较高时,合金的韧性和可加工性较好,适用于制作需要较高韧性和可塑性的零部件。
钨钴合金中马氏体和奥氏体的比例可以通过热处理工艺进行调控。
通过合适的热处理工艺,可以使钨钴合金中马氏体和奥氏体的比例达到最佳状态,从而获得最理想的硬度和耐磨性能。
钨钴合金的硬度主要取决于其组织结构中的马氏体和奥氏体的比例。
马氏体具有高硬度和脆性,适用于制作高强度和耐磨的零部件;奥氏体相对较软,具有较好的韧性和可加工性,适用于制作需要较高韧性和可塑性的零部件。
通过合适的热处理工艺,可以调控钨钴合金中马氏体和奥氏体的比例,从而获得最理想的硬度和耐磨性能。
奥氏体与马氏体的区别
奥氏体是碳溶解在γ-Fe中的间隙固溶体,常用符号A表示。
它仍保持γ-Fe的面心立方晶格。
其溶碳能力较大,在727℃时溶碳为ωc=0.77%,1148℃时可溶碳2.11%。
奥氏体是在大于727℃高温下才能稳定存在的组织。
奥氏体塑性好,是绝大多数钢种在高温下进行压力加工时所要求的组织。
奥氏体是没有磁性的。
马氏体分级淬火是将奥氏体化工件先浸入温度稍高或稍低于钢的马氏体点的液态介质(盐浴或碱浴)中,保持适当的时间,待钢件的内、外层都达到介质温度后取出空冷,以获得马氏体组织的淬火工艺,也称分级淬火。
分级淬火由于在分级温度停留到工件内外温度一致后空冷,所以能有效地减少相变应力和热应力,减少淬火变形和开裂倾向。
分级淬火适用于对于变形要求高的合金钢和高合金钢工件,也可用于截面尺寸不大、形状复杂地碳素钢工件。
、马氏体不锈钢通过热处理可以调整其力学性能的不锈钢,通俗地说,是一类可硬化的不锈钢。
典型牌号为Cr13型,如2Cr13 ,3Cr13 ,4Cr13等。
粹火后硬度较高,不同回火温度具有不同强韧性组合,主要用于蒸汽轮机叶片、餐具、外科手术器械。
根据化学成分的差异,马氏体不锈钢可分为马氏体铬钢和马氏体铬镍钢两类。
根据组织和强化机理的不同,还可分为马氏体不锈钢、马氏体和半奥氏体(或半马氏体)沉淀硬化不锈钢以及马氏体时效不锈钢等。
马氏体就是以人命命名的:对于学材料的人来说,“马氏体”的大名如雷贯耳,那么说到阿道夫·马滕斯又有几个人知道呢?其实马氏体的“马”指的就是他了。
在铁碳组织中这样以人名命名的组织还有很多,今天我们就来说说这些名称和它们背后那些材料先贤的故事。
马氏体Martensite,如前所述命名自Adolf Martens (1850-1914)。
这位被称作马登斯或马滕斯的先生是一位德国的冶金学家。
他早年作为一名工程师从事铁路桥梁的建设工作,并接触到了正在兴起的材料检验方法。
于是他用自制的显微镜(!)观察铁的金相组织,并在1878年发表了《铁的显微镜研究》,阐述金属断口形态以及其抛光和酸浸后的金相组织。
奥氏体马氏体铁素体的区别[整理]
奥氏体/马氏体/铁素体奥氏体(钢的组别:A1, A2, A3 A4, A5)(性能等级:50软,70冷加工,80高强度)马氏体(钢的组别:C1,C2,C3) (性能等级:50软,70、110淬火并回火,80淬火并回火)铁素体(钢的组别:F1) (性能等级:45软,60冷加工)马氏体不锈钢属于铬不锈钢。
由于含碳量高,碳化铬多,钢的耐蚀性能下降,虽可通过热处理的方法改善,但防腐性不高。
马氏体不锈钢多用于制造力学性能要求较高,并有一定耐蚀性能要求的零件,如汽轮机叶片、喷嘴、阀座、量具、刃具等。
铁素体不锈钢也属于铬不锈钢。
含碳量小,抗大气、硝酸及盐水溶液的腐蚀能力强,有高温抗氧化性能好等特点。
主要用于制作化工设备中的容器、管道。
奥氏体不锈钢属于铬镍不锈钢。
具有很高的耐蚀性,优良的塑性,良好的焊接性及低温韧性,不具有磁性,易加工硬化。
主要用于在腐蚀介质中工作的零件、容器、管道、医疗器械以及抗磁环境中。
奥氏体00000000奥氏体是碳溶解在γ-Fe中的间隙固溶体,常用符号A表示。
它仍保持γ-Fe的面心立方晶格。
其溶碳能力较大,在727℃时溶碳为ωc=0.77%,1148℃时可溶碳2.11%。
奥氏体是在大于727℃高温下才能稳定存在的组织。
奥氏体塑性好,是绝大多数钢种在高温下进行压力加工时所要求的组织。
奥氏体是没有磁性的。
00000000马氏体分级淬火00000000是将奥氏体化工件先浸入温度稍高或稍低于钢的马氏体点的液态介质(盐浴或碱浴)中,保持适当的时间,待钢件的内、外层都达到介质温度后取出空冷,以获得马氏体组织的淬火工艺,也称分级淬火。
分级淬火由于在分级温度停留到工件内外温度一致后空冷,所以能有效地减少相变应力和热应力,减少淬火变形和开裂倾向。
分级淬火适用于对于变形要求高的合金钢和高合金钢工件,也可用于截面尺寸不大、形状复杂地碳素钢工件。
0000000马氏体不锈钢00000000通过热处理可以调整其力学性能的不锈钢,通俗地说,是一类可硬化的不锈钢。
奥氏体马氏体的介绍
奥氏体马氏体的介绍奥氏体是钢铁的一种层片状的显微组织,马氏体是黑色金属材料的一种组织名称。
1、组成成分奥氏体一般由等轴状的多边形晶粒组成,晶粒内有挛晶。
马氏体组织有两种类型。
中低碳钢淬火获得板条状马氏体,板条状马氏体是由许多束尺寸大致相同,近似平行排列的细板条组成的组织,各束板条之间角度比较大;高碳钢淬火获得针状马氏体,针状马氏体呈竹叶或凸透镜状,针叶一般限制在原奥氏体晶粒之内,针叶之间互成60°或120。
角。
2、物理特性奥氏体塑性很好,强度较低,具有一定韧性,不具有铁磁性。
板条状马氏体有很高的强度和硬度,较好的韧性,能承受一定程度的冷加工;针状马氏体又硬又脆,无塑性变形能力。
3、应用不同马氏体不锈钢能在退火、和硬化与回火的状态下焊接,无论钢材的原先状态如何,经过焊接后都会在邻近焊道处产生一硬化的马氏体区,热影响区的硬度主要是取决于母材金属的碳含量,当硬度增加时,则韧性减少,且此区域变成较易产生龟裂、预热和控制层间温度,是避免龟裂的最有效方法,为得最佳的性质,需焊后热处理。
奥氏体不锈钢是不锈钢类中钢种最多、使用量最大的一种(约占整个不锈钢产量的65~70%)。
最常用的奥氏体不锈钢是Fe-Cr-Ni系合金(即美国的AISI3OO系);Fe-Cr-Ni-Mn 系(即美国AISI200系);特殊奥氏体不锈钢等三种。
扩展资料:马氏体的形态:板条状马氏体是低碳钢,马氏体时效钢,不锈钢等铁系合金形成的一种典型的马氏体组织,因其单元立体形状为板条状,故称板条状马氏体。
由于它的亚结构主要是由高密度的位错组成,所以又称位错马氏体。
片状马氏体则常见于高,中碳钢,每个马氏体晶体的厚度与径向尺寸相比很小其断面形状呈针片状,故称片状马氏体或针状马氏体.由于其亚结构主要为细小挛晶,所以又称为挛晶马氏体。
奥氏体的形成:共析钢奥氏体冷却到临界点A1以下温度时,存在共析反应:A -- F+Fe3C o加热时发生逆共析反应:F+Fe3C ------- A o逆共析转变是高温下进行的扩散性相变,转变的全过程可以分为四个阶段,即:奥氏体形核,奥氏体晶核长大,剩余渗碳体溶解,奥氏体成分相对均匀化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥氏体:
固态金属及合金都是晶体,其内部原子是按一定规律排列的,排列的方式一般有三种即:体心立方晶格结构、面心立方晶格结构和密排六方晶格结构。
金属是由多晶体组成的,它的多晶体结构是在金属结晶过程中形成的。
组成铁碳合金的铁具有两种晶格结构:910℃以下为具有体心立方晶格结构的α——铁,910℃以上为具有面心立方晶格结构的Υ——铁。
如果碳原子挤到铁的晶格中去,而又不破坏铁所具有的晶格结构,这样的物质称为固溶体。
碳溶解到α——铁中形成的固溶体称铁素体,它的溶碳能力极低,最大溶解度不超过0.02%。
而碳溶解到Υ——铁中形成的固溶体则称奥氏体,
马氏体:
它的溶碳能力较高,最高可达2%。
奥氏体是铁碳合金的高温相。
钢在高温时所形成的奥氏体,过冷到727℃以下时变成不稳定的过冷奥氏体。
如以极大的冷却速度过冷到230℃以下,这时奥氏体中的碳原子已无扩散的可能,奥氏体将直接转变成一种含碳过饱和的α固溶体,称为马氏体。
铁素体:
由于含碳量过饱和,引起马氏体强度和硬度提高、塑性降低,脆性增大。
不锈钢的耐蚀性主要来源于铬。
实验证明,只有含铬量超过12%时钢的耐蚀性能才会大大提高,因此,不锈钢中的含铬量一般均不低于12%。
由于含铬量的提高,对钢的组织也有很大影响,当铬含量高而碳含量很少时,铬会使铁碳平衡,图上的Υ相区缩小,甚至消失,这种不锈钢为铁素体.
铁素体铁素体是c溶于α-Fe中所形成的间隙固溶体,具有体心立方晶体结构,用字母F或者α表示.
奥氏体奥氏体是c溶于γ-Fe中所形成的间隙固溶体.具有面心立方晶体结构,用字母A或者γ表示.
马氏体马氏体有点长,我懒的打,只是简单的告诉你,它分为上马氏体和下马氏体,是过冷奥氏体等温冷却到230摄氏度以下形成的!!!!
奥氏体简介
英文名称:austenite
晶体结构:面心立方(fcc)
字母代号:A、γ
定义:碳在γ-Fe中形成的间隙固溶体
命名:为纪念英国冶金学家罗伯茨-奥斯汀(1843~1902)对金属科学中的贡献而命名。
微观表述:γ-Fe为面心立方晶体,其最大空隙为0.51×10-8cm,略小于碳原子半径,因而它的溶碳能力比α-Fe大,在1148℃时,γ-Fe最大溶碳量为2.11%,随着温度下降,溶碳能力逐渐减小,在727℃时其溶碳量为0.77%。
性能特点:奥氏体是一种塑性很好,强度较低的固溶体,具有一定韧性。
不具有铁磁性。
因此,分辨奥氏体不锈钢刀具(常见的18-8型不锈钢)的方法之一就是用磁铁来看刀具是否具有磁性。
古代铁匠打铁时烧红的铁块既处于奥氏体状态。
另外,奥氏体因为是面心立方,四面体间隙较大,可以容纳更多的碳。
奥氏体解释
碳溶解在γ铁中形成的一种间隙固溶体,呈面心立方结构,无磁性。
奥氏体是一般钢在高温下的组织,其存在有一定的温度和成分范围。
有些淬火钢能使部分奥氏体保留到室温,这种奥氏体称残留奥氏体。
在合金钢中除碳之外,其他合金元素也可溶于奥氏体中,并扩大或缩小奥氏体稳定区的温度和成分范围。
例如,加入锰和镍能将奥氏体临界转变温度降至室温以下,使钢在室温下保持奥氏体组织,即所谓奥氏体钢。
钢中奥氏体特性
膨胀:奥氏体的线膨胀系数比铁素体和渗碳体的平均线膨胀系数高出约一倍。
故也可被用来制作要求膨胀灵敏的元件。
导热性:除渗碳体外,奥氏体的导热性最差。
为避免热应力引起的工件变形,不可采用过大的加热速度加热。
力学性能:具有较高的塑性、低的屈服强度,容易塑性变形加工成型。
面心立方点阵是一种最密排的点阵结构,至密度高,其中铁原子的自扩散激活能大,扩散系数小,从而使其热强性好。
故奥氏体钢可作为高温用钢。