不定积分换元法例题上课讲义

合集下载

高等数学北大第二版31不定积分的换元法-资料.ppt

高等数学北大第二版31不定积分的换元法-资料.ppt

12cosm(n)xdx12cosm(n)xdx
1 2[m 1 ncom sn ()xd(m n)x
m 1 ncom sn ()xd(m n)x]
1 [1sim n n )x (1sim n n )x ( ] C .
2m n
m n
小结 常用简化技巧:
(1) 分项积分: 利用积化和差; 分式分项; 1si2nxco2xs等
ln1 (ex)C
l1 n e ( x ) le n x ( e [ x 1 )] 两法结果一样
例10. 求 secxdx.
解法1
secxdx ccoos2sxxdx 1dssiinn2xx
1 21s1ixn1s1ixn d sin x
1ln1sinx ln 1 sx in C
co4xsdx1 4(2 3 2 c2 o x 1 2 s c4 o x )d x s
14
3 2
dx co2xsd2(x)8 1co 4 xd s (4 x)
3 8
x
14sin2x312sin4x C
例12 求 sinxsinmdxx 解 sinxsinmdxx1 2[co m sn)(xcom sn ()x]dx
2 1ln1sinx C
2 1sinx
解法 2 secxdx sesxc(e x s x te c a ctx an xn )dx se2cxsexctaxndx
sexctaxn
d(sx etcax)n secxtanx
同样可证
ln se x c tax nC
cscxdx ln cs x co x C t
dsin x sin x
lnsixnC
例5.

dx x2 a2

不定积分凑微分法和换元法(课堂PPT)

不定积分凑微分法和换元法(课堂PPT)

1 cos 2x C; 2
解(二) sin 2xdx 2 sin x cos xdx 2 sin xd(sin x)
sin x2 C;
已知
udu
1 2
u2
C
解(三) sin 2xdx 2 sin x cos xdx 2 cos xd(cos x)
cos x2 C.
已知
udu
1 2
7.2 不定积分的计算
巴马水具有四个显著特征: 一是弱碱性离子水。 二是还原水。 三是小分子团水。 四是营养水。
1
1、第一换元积分法
问题 cos2xdx sin 2x C,
解决方法 利用复合函数,设置中间变量.
过程 令 t 2x dx 1 dt, 2
cos
2
xdx
1 2
cos
tdt
1 2
x 2
1 tan
x 2
d
tan
x 2
ln tan x C ln(csc x cot x) C. 2
(使用了三角函数恒等变形)
16
解(二) csc
xdx
1 sin
x
dx
sin x sin2 x
dx
1
1 cos2 x d(cos x) u cos x
1
1 u2
du
1 2
由此可得换元法定理
3
定理7.2.1 设u ( x)在[a,b]可导,(x)[, ],
g(u) 在[, ]上有原函数G(u) ,则有换元积分公式
g[( x)]( x)dx g(u)du G(( x)) C
第一类换元公式(凑微分法) 说明: 使用此公式的关键在于将
f [( x)]( x)dx 化为 g(u)du.

高等数学(第三版)课件:不定积分的积分方法

高等数学(第三版)课件:不定积分的积分方法

还应注意到,在换元—积分—还原的解题过程中,关 键是换元,若在被积函数中作变量代换 j(x) = u,还需要在
被积表达式中再凑出 j '(x)dx 即 dj(x),也就是 du ,这样才能
以u为积分变量作积分,也就是所求积分化为
f j(x)dj(x) f (u) du Fj(x) C
在上述解题过程中u可不必写出,从这个意义上讲,第 一换元积分法也称为“凑微分”法.
式而可能使其容易积分.当然在求出原函数后, 还要
将 t j1(x) 代回.还原成x的函数,这就是第二换元
积分法计算不定积分的基本思想.
定理2 设 x j(t) 是单调可导的函数,且
j(t) 0. 如果 f j(t)j(t) dt F(t) C,
则有
f (x) d x f j(t)j(t) d t F(t) C
3
1
2x
dx
1 u
1 2
du
=
1 2
1 du u
12 u C 2
3 2x C.
例4 求 x x2 4 dx.
解 令u x2 4,则du 2xdx,则
x
x2
4dx
1 2
udu
12 3
= 2 3u2 C
1 3
(
x2
3
4)2
C.
例5

(lnx)2
dx x
解 1 dx d(ln x), x
= sect dt
= ln | sect tant | C.
x
x2 a2
t
a
根据sec t x ,利用图所示三角形,易得 a
对边 tan t 邻边
x2 a2 , a

20-不定积分的第一类换元积分法省公开课获奖课件市赛课比赛一等奖课件

20-不定积分的第一类换元积分法省公开课获奖课件市赛课比赛一等奖课件

例例43.
x
1
x2
dx
1 2
d u1dx(21(1xx22))dx(1
12x2u)'1dx1x2
x2, d(1 x2) 2 xdx.
原式 x
u ( 1 )du 2x
dx 1 du, 2x
1212
1
u u2
d12 duu11uu23 33
23CC11(1(1xx2)223) 33
3
2CC
du
原式
2
cos
u
1 2
du
du d(2x) (2x)'dx 2dx. 1
cccooossusuuddduuussisinninuuuCCCssisinnin222xxxCCC
dx du, 2
例例32 2xex2dx ex2 (x2)dx ex2d(x2) eudu u x2 ,
原式
2
11(1ax(1ax)2)d2 daxaxa
a
a
例13

1 dx (a 0)
a2 x2

a2a121x2xd2 xdx1a1a
111( 1ax( a)x2)2dxdx
11 11( x(
a
a)x2)2d
daxaxaracrscisninaxax
111(1ax( ax)2)2dxdx
111( 1ax( ax)2)2ddaxaxaracrscisninax
x
f
f (cos x) sin xdx f (cos x)dcosx f (tan x) sec2xdx f (tan x)d tan x
f (sec x) sec x tan x dx f (sec x)d sec x

5,2不定积分的换元积分法 PPT课件

5,2不定积分的换元积分法 PPT课件

解:(1):令t x, x t , dx tdt,
步骤:
1.设函数t ( x), 并求出x 1(t )
1
1
t
dx [ 1(t)]dt
(2) :
dx 2tdt 2 dt
1 x 1t
1t
2.代换 ( x) t
(3) : 2t 2ln 1t c
dx [ 1(t )]dt
3.求关于t的积分
(4) : 2 x 2ln 1 x c
4.反代t ( x)
例13 求
1 dx x3 x
解 : 令 x t,则x t ,则x t ,
x t , x t , dx t dt,
原式
6t 5 t3 t2
dt
6
t3 dt t 1
6
t2 t 1
t 1 1dt
6
1 3
t3
凑微分的实质: (x)dx d(x)
形如 f ax bdx
1 a
f
(ax
b)adx
1a f (ax b)d(ax b)
a1 F(ax b) c
例1求 (5x 1)4 dx
解:第一步 凑微分:
(5x
1)4
dx
1 5
(5x 1)4 5dx
1 5
5x
14
d
5x
1
第二步 设变量代换: 设u 5x 1
dx
ln
xd
ln
x
令u ln x udu 1 u 2 C
2 还原u ln x 1 (ln x)2 C
2
1
__x__dx d (ln x)
用第一换元法求不定积分可按如下步骤进行:
(1)凑微分: f [( x)]( x)dx

高等数学第四章 第二节不定积分 课件

高等数学第四章 第二节不定积分 课件

1 x+ 1 例17 求 ∫ (1 − 2 )e x dx . x ′ 1 1 解 ∵ x + = 1− 2 , x x
1 ∴ ∫ (1 − 2 )e x = ∫e
x+ 1 x
x+
1 x
dx
1 x+ 1 d( x + ) = e x + C. x
例18 求 解
cot x dx ∫ ln sin x
同样可证
∫ csc xdx = ln csc x − cot x + C

x 1 1 − cos x = ln tan + C = ln + C. 2 1 + cos x 2
1 dx . 例12 求∫ 1 + cos x 1 1 − cos x 解法一 ∫ dx = ∫ dx 1 + cos x (1+ cos x)(1− cos x) 1 − cos x 1 1 dx = ∫ 2 dx − ∫ 2 d (sin x ) =∫ 2 sin x sin x sin x 1 = − cot x + + C. sin x
x x
1 8) ∫ f ( x ) d x = 2∫ f ( x )d x x
1 9) ∫ f (arctan x) d x = ∫ f (arctan x)darctan x 2 1+ x
例7. 求
dln x 1 d(1+ 2ln x) 解: 原式 = ∫ = ∫ 1+ 2ln x 2 1+ 2ln x
其中 ψ − 1 ( x ) 是 x = ψ ( t ) 的反函数。 的反函数。
d (( ∫ f [ψ ( t )]ψ ′( t ) dt )

不定积分的换元积分法PPT课件

不定积分的换元积分法PPT课件

例 2.求 3x 1dx
解:
3x
1dx
1 3
3x
1d(3x
1)
令u
3x
1
1 3
udu
1 3
2 3
u
3 2
C
回代3x
1
u
2 9
(3x
3
1) 2
C
2 9
(3x
1)
3x 1 C.
第5页/共34页
例 3.求下列不定积分
(1)
e2x2ln xdx
e2x2 xdx 1
4
e2x2d(2x2 ) 1 e2x2 C. 4
其中s 是m和n的最小公倍数.
(2) 对 R(x, n ax b )dx, (ad bc 0)可作代换 cx d t n ax b . cx d
第21页/共34页
例 11.求 1 dx
1 ex
解:令 1 ex t ,ex t 2 1,
x ln(t 2 1) ,dx 2t dt ,则 t2 1
积分
F(u) C 回代: (x) u
F[(x)] C
第一换元法或称为凑微分法,是与复合函数的 微分法则相对应的积分方法。
第3页/共34页
(二)常用凑微分式子
1、求不定积分时常用的微分性质
(x)dx d[(x)] 1 d[a(x) b] , a
其中 a, b 都是常数,且a 0 。
2、常用凑微分式子
x C.
第9页/共34页
例 6.求下列不定积分
(1)
a2
1
x2
dx
1 dx a2[1 ( x )2 ]
1 arctan x C.
a
1 a

不定积分的计算ppt课件

不定积分的计算ppt课件

1
1 (ex )2
dex
arctan ex C.
dex exdx
1
1 u
2
du
arctan u C
一般地, 有
ex f (ex )dx f (ex )dex.
13
例9 求
dx 2x ln
x
.

dx 2x ln
x
2
1 ln
x
d
(ln
x)
1 ln ln x C. 2
d ln x 1 dx x
解: 令 u ln x , v x
则 du 1 dx , v 1 x2
x
2
原式
=
1 2
x2
ln
x
1 2
x dx
1 x2 ln x 1 x2 C
2
4
30
例2 求积分 x cos xdx . uvdx uv uvdx
分析:被积函数 xcosx 是幂函数与三角函数的乘积,
采用分部积分.d(1x2 Nhomakorabea)
x arccos x 1 x2 C
34
例4 求 x arctan xdx.
解 设 u = arctanx, v′= x, 则
x
arctan
xdx
arctan
xd
(
1 2
x
2
)
du
1 1 x2
dx, v
1 2
x2
1 x2 arctan x 1
2
2
x2 1 x2 dx
1 x2 arctan x 1
不定积分的计算
一、第一换元积分法 二、第二换元积分法 三、分部积分法
1

高数不定积分-讲解和例题.ppt

高数不定积分-讲解和例题.ppt

tan
x
cos2
d x
x
1 tan
x
dtan
x
ln
tan
x
C
例6:
sin2 x d x
1
cos 2x 2
d
x
1 2
dx
1 2
cos 2x d 2 x
1 x 1 sin2x C. 24
同理, cos2 x d x 1 x 1 sin2x C. 24
例7:
cos4
xd
x
1
cos 2 x 2
f (u)
du
[F (u) C]u( x) F ( x) C. 证明:{ F( x) C } F( x)( x)
f ( x)( x), 得证。
换元公式: f ( x)( x)d x
(x)d x d ( x) f ( x) d ( x)
φ (x) = u
f (u)du F(u) C
x
1 d x d ln x x
1 ln x
d
ln
x
1 u
d
u
ln u
C
ln
ln
x
C.
题目做得熟练后,中间变量 u 可以不写出来。
例2:
11 x2 sin x d x
1 x2
d
x
d(
1) x
sin
1 x
d
1 x
cos 1 C. x
例3: tanxcdo1sxxdcocsoisnsxxxdxln cos x C.
则 f (x)dx F(x) C
就表示了一族积分曲线 y = F (x) + C .
y
它们相互平行,即 在横坐标相同的点 处有相同的切线斜 率。

不定积分求解方法换元法PPT学习教案

不定积分求解方法换元法PPT学习教案

t
(
2
,
2
)
,

a2 x2 a2 a2 sin2 t a cos t
dx a cos t d t
ax
∴ 原式 a cost a cost d t a2 cos 2 t d t
a2 t sin 2t C
t
a2 x2
24 sin 2t 2sin t cost 2 x
1
1) 2
d(a2t 2
1)
(a
2
t2 3a
2
1)
3 2
C
当 x < 0 时, 类似可得同样结果 .
第29页/共42页
机动 目录 上页 下页 返回 结束
小结:
1. 第二类换元法常见类型:
(1) f (x , n ax b ) dx , 令 t n ax b 第

(2)
f
(x
,n
a xb c xd
sec2 x sec x tan x dx sec x tan x
d (sec x tan x) sec x tan x
同样可证
csc xdx ln csc x cot x C

ln tan x C (P226-P227 )
2
第13页/共42页
机动 目录 上页 下页 返回 结束
∴原式 =
1 4
dx
1 64
cos 8x d(8x)
1 2
sin2 2x d(sin 2x)
1 32
cos 4x d(4x)
第16页/共42页
机动 目录 上页 下页 返回 结束
例14. 求
解: 原式= e x
ex
(

第23讲:《不定积分换元法》内容小结、课件与典型例题与练习

第23讲:《不定积分换元法》内容小结、课件与典型例题与练习

第23讲:《不定积分换元法》内容小结、课件与典型例题与练习一、不定积分换元法使用的注意事项1、定积分的换元是基于基本的不定积分公式和不定积分的线性运算法则的,所以对于基本的不定积分公式要非常熟练,常见的不定积分公式见后面的课件与教材.2、不定积分的换元是基于求导或求微分运算的形式不变性的,即对最终变量的积分等于对中间变量的积分.3、对于换元法求不定积分一定要在换元求积分以后,要记得利用相应的换元函数求逆运算把元换回来,绝对不能使用符号的无关性,将中间变量的积分结果当作最终结果!4、对于计算得到的不定积分结果最好进行验算,即对求得的不定积分求导数,看化简、变换后是否等于不定积分的被积函数,如果不相等,则计算错误,需要重新计算.如果想等,则不管描述形式如何,都为正确的不定积分结果.5、不定积分的最终结果一定要有任意常数C,有任意常数C,有CCCCCC!二、不定积分第一类换元法的基本思路第一步:将被积函数拆分成两个函数的乘积;第二步:(1) 对于容易求原函数的函数,比如求原函数,如果可以写成的函数,则令,转换为容易计算的函数关于变量的不定积分;比如(2) 对于结构简单的函数,如求导数,看是否包含有的导数项,或者其中的某个函数项求导数,看是否包含有导数项;如果有,则可以令为;化简积分进行计算.比如具体解题可以参见课件中的练习.第三步:对于换元后的不定积分,如果不能直接基于基本不定积分计算公式和不定积分的线性运算法则写出结果,再次可以考虑换元法或者分部积分法等方法.三、不定积分第二类换元法的常用形式1、三角代换被积函数表达式的主体能改写成平方和或平方差,尤其是根号下具有这种结构时,可考虑使用三角代换,即•结构,则令•结构,则令•结构,则令或一般以上的取值范围取值为相应三角函数的一个单调主区间.【注】经过以上代换得到的结果为关于的三角函数表达式,则进行逆回代时,一般借助于如下三个三角形来得到不同三角函数值用和描述的形式.2、根式代换当根式里面不具有以上结构,则可以考虑根式代换,即令根式直接为变量. 如果有两个根式,且根式里面的表达式相同,则可以令根式指数的分母的公倍数对应的根式为,比如【注】以上两种方法换元的目的是去掉根号.3、倒代换当分母的次数远远比分子的次数高时,至少两次以上,则考虑倒代换令.4、三角函数万能公式代换当被积函数可以转换为一次的正弦、余弦、正切函数项构成的有理分式时,常借助于万能公式统一被积函数表达式为一个三角函数,即,然后令. 三角函数的万能公式为:【注1】另外还有对数换元、指数换元、双曲函数代换等等,只要能够简化计算,达到计算不定积分的目标,不局限于任何函数代换!同时,使用换元法要记得将被积表达式中的所有变量都用新的变量替换!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不定积分换元法例题【不定积分的第一类换元法】 已知()()f u du F u C =+⎰求()(())'()(())()g x dx f x x dx f x d x ϕϕϕϕ==⎰⎰⎰ 【凑微分】()()f u du F u C ==+⎰ 【做变换,令()u x ϕ=,再积分】(())F x C ϕ=+ 【变量还原,()u x ϕ=】【求不定积分()g x dx ⎰的第一换元法的具体步骤如下:】 (1)变换被积函数的积分形式:()(())'()dx g x f x x dx ϕϕ=⎰⎰ (2)凑微分:()(())((')))(()x g x dx d x dx f x f x ϕϕϕϕ==⎰⎰⎰(3)作变量代换()u x ϕ=得:()(())'()()()()g x dx f x x x x dx f d ϕϕϕϕ==⎰⎰⎰()u f u d =⎰ (4)利用基本积分公式()()f u du F u C =+⎰求出原函数:()(())'()(())()g x dx f x x dx f x d x ϕϕϕϕ==⎰⎰⎰()()d u u C f u F ==+⎰ (5)将()u x ϕ=代入上面的结果,回到原来的积分变量x 得:()(())'()(())()g x dx f x x dx f x d x ϕϕϕϕ==⎰⎰⎰()()f u du F u C ==+⎰(())F x C ϕ=+【注】熟悉上述步骤后,也可以不引入中间变量()u x ϕ=,省略(3)(4)步骤,这与复合函数的求导法则类似。

__________________________________________________________________________________________【第一换元法例题】1、9999(57)(57)(5711(57)(57)55)(57)dx d x d x dx x x x x +=+⋅=+⋅=+⋅++⎰⎰⎰⎰110091(57)(57)(57)10111(57)5550d C x x x x C =⋅=⋅+=+++++⎰ 【注】1(57)'5,(57)5,(57)5x d x dx dx d x +=+==+⇒⇒2、1ln ln ln ln dx d x xx dx x x x =⋅=⋅⎰⎰⎰221(l 1ln ln (ln )2n )2x x x d C x C =⋅=+=+⎰【注】111(ln )',(ln ),(ln )x d x dx dx d x x x x===⇒⇒3(1)sin tan cos co si s cos cos n cos cos xdx d x xdx dx x d x x xxx --====⎰⎰⎰⎰⎰cos ln |cos |c ln |co s |o s x x d C x C x=-=-+=-+⎰【注】(cos )'sin ,(cos )sin ,sin (cos )x x d x xdx xdx d x =-=-=-⇒⇒ 3(2)cos cos cot sin sin sin sin xdx x xdx dx d xx x x===⎰⎰⎰⎰sin ln |si ln |sin |n |sin xx d C x C x==+=+⎰【注】(sin )'cos ,(sin )cos ,cos (sin )x x d x xdx xdx d x ==⇒=⇒ 4(1)1()11d dx a x a x a d x x a x =⋅=⋅++++⎰⎰⎰ ln |1(|)ln ||d C a x a x a x a xC ++=⋅=+=+++⎰ 【注】()'1,(),()a x d a x dx dx d a x +=+==+⇒⇒ 4(2)1()11d dx x a x x x d a a x a =⋅=⋅----⎰⎰⎰ ln |1(|)ln ||d C x a x a x a x aC --=⋅=+=--+⎰ 【注】()'1,(),()x a d x a dx dx d x a -=-==-⇒⇒ 4(3)22221111111212x a a x a dx dx x a x a dx dx a a a x dx x ⎛⎫- ⎪--+⎝⎛⎫=-+⎭==- ⎪-⎝⎭⎰⎰⎰⎰⎰ ()11ln ||ln ||ln22x ax a x a C C a a x a-=--++=++5(1)2sec ()sec tan sec sec tan sec tan sec sec tan x x x x xdx x x x xdx dx x x+==⋅+++⎰⎰⎰ tan sec tan sec sec ()()ln |sec tan |se tan c tan d x x x x x xd x x C x x +===+++++⎰⎰5(2)2221cos sec cos c cos sin os cos 1sin x xdx dx dx x xx dx d xx x ====-⋅⎰⎰⎰⎰⎰ 2sin si 1111sin 111sin ln ln 1n sin 2112sin 121s sin sin in d x x x x x xd C C x xx --⎛⎫==-⋅=+=+ ⎪--+++⎝⎭⎰⎰6(1)2csc ()csc cot csc csc cot csc cot csc csc cot x x x x xdx x x x xdx dx x x+==⋅+++⎰⎰⎰ ()()ln |csc cot |csc c cot csc csc cot csc o ot t c d d x x x x x xx x C x x --+=-==+-+++⎰⎰6(2)2csc ()csc cot csc csc cot csc cot csc csc cot x x x x xdx x x x xdx dx x x==⋅----⎰⎰⎰ ()(cot csc csc co )ln |csc t csc co cot |c t sc cot d x x x x d x x x x x C x -+-=---==+⎰⎰7(1)arcsin x C ==+⎰7(2)arcsind xC ax d x =====+⎛⎫ ⎪⎛⎫ ⎪⎰⎰8(1)221arctan 11dx dx x C x x ==+++⎰⎰ 8(2)222222221111arctan 111d dx x dx C a x a x a a a x x x d dx x a x a a a a a a ⎛⎫⎛⎫⎪=====+++⎡⎤⎛⎫⎛⎫++⎝⎭⎛⎫ ⎪+⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⎝⎭⎪⎝⎭⎰⎰⎰⎰⎰,(0a >)9(1)352525s sin cos sin cos sin i c s o c n o s xd x xdx x x x x x d x =⋅-⋅=⎰⎰⎰862575cos cos (1cos )cos cos (cos cos )cos 86x xx x d x x x d x C =--⋅⋅=-⋅=-+⎰⎰9(2)353434c sin cos sin cos sin cos os sin x x xdx x x x dx d x x =⋅=⋅⎰⎰⎰468322357sin sin sin sin (1sin )sin (sin 2sin sin )sin 438x x xx x d x x x x d x C =-⋅=-+⋅=-++⎰⎰10(1)1ln 111l l n ln ln l ln n n ln dx d x C x x x x dx d x x x x =⋅=⋅=⋅=+⋅⎰⎰⎰⎰ 10(2)222211111ln ln ln ln ln n ln l dx d C x x x x d x x x x d x x ⋅=⋅=⋅=⋅=-+⎰⎰⎰⎰11(1)242424222222()arctan(21)222)121122(xdx d x C x x x x x x x x dx x dx ====+++++++++++⎰⎰⎰⎰ 11(2)2242422422121()2521112252524()xdx d x xdx d x x x x x x x x +===++++++++⎰⎰⎰⎰2222222121(1)111arctan()8442111122x d d x x C x x ⎛⎫+ ⎪++⎝⎭===+⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭⎰⎰ 12、s 22sin dx dx dx =⋅=⋅=⎰⎰⎰2C C ==-=-⎰13、222211222122x x xx e dx e d x d e x C e ===+⎰⎰⎰14、 43333co sin sin cos sin sin s sin i 4sin s n xx xdx x x d C dx x x x d x =⋅=⋅=⋅=+⎰⎰⎰⎰15、100(25)x dx +⎰10010010011(25)(25)2(25)(25)(25)2dx d x x x x d x =+⋅=+++⋅+⋅=⎰⎰⎰1001100111(25)(25)(25)101111(25)22202x x x d C x C =⋅=⋅+=+++++⎰16、2222222111sin sin s 2in sin cos 22x x x x x dx x xdx dx x d C =⋅=⋅=⋅=-+⎰⎰⎰⎰17、ln 1ln dx d d x x x ===3122ln ln (1ln )(1ln )2(1ln )2(1ln )3d x d xd x d x x x C =-=+-+=+-++18、arctan arctan arctan arc arct 2tan 2an arcta 11arct 1n an x xx x x e dx e e e d e C x dx d x xx +=⋅=⋅=⋅=++⎰⎰⎰⎰ 19、22(1)x d xd dx x ===--2(1)d x C -=-=20、si n cos x dx d x =-=3221coscos 2cosx C x d x --=-=+⎰21、111()ln(22222)2x x x x x x x x x e dx d e e dx d e C e e e ee =⋅=⋅==+++++++⎰⎰⎰⎰22、23222ln ln ln l 1ln ln ln n 3x x dx x x x x d C x dx d x x =⋅=⋅=⋅=+⎰⎰⎰⎰ 23、C ====24、2221()177()112()()()2224224d x dx x x x x d x dx -===-+-+-+-⎰⎰⎰1()1d x C C x -==-=+25、计算⎰,22a b ≠【分析】因为:22222222(sin cos )'2sin cos 2cos (sin )2()sin cos a x b x a x x b x x a b x x +=+-=- 所以:222222(sin cos )2()sin cos d a x b x a b x xdx +=- 2222221sin cos (sin cos )2()x xdx d a x b x a b =⋅+-【解答】2222221a b==-2222221Ca b==-【不定积分的第二类换元法】已知()()f t dt F t C=+⎰求()(())()(())'()g x dx g t d t g t t dtϕϕϕϕ==⎰⎰⎰【做变换,令()x tϕ=,再求微分】()()f t dt F t C==+⎰【求积分】1(())F x Cϕ-=+【变量还原,1()t xϕ-=】___________________________________________________________________________________ _______【第二换元法例题】1、22sin sin sin2si2ntx tt ttdtt tdt tdt=⋅=⋅=⎰⎰⎰⎰2costt C C=-+-变量还原2(1)2211122111211tx tdt tdtdt dtt t t tt=⎛⎫⋅=⋅==-⎪++++⎝⎭⎰⎰⎰⎰⎰())2ln|1|2ln|1|tt t C C=-++++变量还原2(2)22(1)(1)2(1)1111221t x t d t dt dt t t t t dt t t =--⎛⎫⋅=⋅==- ⎪⎝⎭--⎰⎰⎰⎰⎰令 ()()12ln ||21ln |1t t t C C ==-+++变量还原3、343324332(1)1(1)(1)4(1)3tx t dx t t t d t t t dt =-⋅=--⋅⋅⋅-⎰⎰⎰ 746312()1274t t t t dt C ⎛⎫=-=-+ ⎪⎝⎭⎰12t C -+⎝=⎭变量还原 4、222221112(1)(1)12t x t dt td dt t t t t t t =⋅=⋅=+++⎰⎰⎰⎰2arctan t t C C =+变量还原5、ln 111111111(1)11ln xx e t x t dx dt dt e t t t t t t t t t d d =========⎛⎫⋅=⋅==- ⎪+++++⎝⎭=⎰⎰⎰⎰⎰令 ln ||ln |1|lnln 11x xxt e t e t t C C C t e ========-++=+++=+变量还原6、6223236522111661(1)(61)11tx t t dt dt t t t t t dt t t d t =⎛⎫⋅=⋅==- ⎪++++==⎝⎭⎰⎰⎰⎰6(arctan )t t t C C +=-+变量还原【注】被积函数中出现了两个根式t =,其中k 为,m n 的最小公倍数。

相关文档
最新文档