有限元知识点总结

合集下载

材料力学有限元分析知识点总结

材料力学有限元分析知识点总结

材料力学有限元分析知识点总结材料力学是研究物质力学性质和行为的学科,而有限元分析是一种利用计算机数值模拟方法对工程问题进行分析和计算的技术。

本文将从理论基础、有限元建模、求解方法和误差分析等方面总结材料力学有限元分析的关键知识点。

一、理论基础1. 材料力学基本原理:包括应力、应变、变形和弹性模量等基本概念,以及胡克定律和应力应变关系等基本理论。

2. 有限元法基本原理:包括将实际结构离散为有限个单元,建立节点和单元之间的关系,以及应用物理原理和数值方法求解得到数值解的基本思想。

3. 有限元离散方法:包括将连续问题离散化为有限个子问题,建立单元刚度矩阵和全局刚度矩阵,以及应用有限元法进行力学问题分析的基本步骤。

二、有限元建模1. 几何建模:将实际工程结构进行几何建模,通常使用CAD软件进行建模,包括建立节点和单元等。

2. 材料建模:根据实际材料的物理性质和力学行为,选择适当的材料模型,如线性弹性模型或非线性材料模型。

3. 网格划分:将结构离散为有限个单元,通常使用三角形单元或四边形单元进行网格划分,确保离散后的单元足够小且保证几何形状的准确性。

三、求解方法1. 单元应力应变计算:通过数值方法计算每个单元的应力和应变,可采用解析解、数值积分或有限元法求解。

2. 节点位移计算:根据应力应变关系和单元的几何形状,计算每个节点的位移,从而得到结构的变形情况。

3. 刚度矩阵的建立:根据单元的几何形状、材料性质和节点位移等信息,建立单元刚度矩阵和全局刚度矩阵,用于力学方程的求解。

4. 边界条件的施加:根据实际工程问题,施加适当的边界条件,如固支约束和荷载条件等,从而得到合理的求解结果。

四、误差分析1. 收敛性分析:通过逐步增加单元数目或减小网格大小,观察求解结果是否趋近于稳定值,从而判断数值解的收敛性。

2. 精度分析:通过与解析解或实验结果进行比较,评估数值解的精度,包括位移误差、应力误差和能量误差等指标。

3. 稳定性分析:判断数值解的稳定性和可靠性,防止数值发散或出现明显的计算错误。

材料力学有限元法知识点总结

材料力学有限元法知识点总结

材料力学有限元法知识点总结材料力学是一门研究物质内部结构、性质和变形行为的学科,而有限元法则是一种在工程和科学领域中广泛应用的数值计算方法。

有限元法可以将一个复杂的实体划分为无数小的单元,通过对这些小单元进行分析和计算,最终得到整个实体的力学性质和行为。

本文将对材料力学有限元法的一些核心概念和知识点进行总结。

1. 有限元法基础概念有限元法基于将实际连续的物体离散为有限数量的单元,通过计算每个单元的受力、变形等性质,再通过组合这些单元的结果来近似整个物体的行为。

它包含以下几个基础概念:1.1 单元(Element):有限元法中的基本组成单元,可以是一维的线段、二维的三角形或四边形,或三维的四面体、六面体等。

1.2 节点(Node):单元的角点或边上的点,用于定义单元之间的连接关系和边界条件。

1.3 自由度(Degree of Freedom):每个节点与力学性质相关的物理量,如位移、应力等。

根据问题的不同,在每个节点上可能有一个或多个自由度。

1.4 单元刚度矩阵(Element Stiffness Matrix):描述单元内部受力和变形关系的矩阵,在有限元法中通过组合所有单元的刚度矩阵来得到整个系统的刚度矩阵。

1.5 全局刚度矩阵(Global Stiffness Matrix):由所有单元刚度矩阵组合而成的整个系统的刚度矩阵,用于计算节点的位移和应力。

2. 有限元法的数学原理有限元法的数学原理主要基于以下两个方面:2.1 变分原理(Variational Principle):有限元法的数学基础是根据变分原理推导实现的。

它通过对结构的势能进行变分并进行最小化,得到满足结构力学行为和边界条件的位移和应力场。

2.2 加权残差法(Weighted Residuals Method):有限元法通过将变分原理中的势能函数展开为一系列基函数的线性组合,并使用权重函数对残差进行加权求和的方式进行近似。

这样可以将求解连续问题转化为离散问题,进而进行数值计算。

有限元法及应用知识点总结

有限元法及应用知识点总结
• 虚应力原理可以应用于线弹性以及非线性弹性等不同 的力学问题。
• 但是必须指出,无论是虚位移原理还是虚应力原理, 他们所依赖的几何方程和平衡方程都是基于小变形理 论的,他们不能直接应用于基于大变形理论的力学问 题。
4.最小位能原理和最小余能原理
• 明确:最小位能原理是建立在虚位移原理基础上 的,而最小余能原理建立在虚应力原理基础上。
在工程实际中较为重要的材料非线性问题有:非线性弹性 (包括分段线弹性)、弹塑性、粘塑性及蠕变等。
2)几何非线性问题
几何非线性问题是由于位移之间存在非线 性关系引起的。
当物体的位移较大时,应变与位移的关系 是非线性关系。研究这类问题一般都是假 定材料的应力和应变呈线性关系。它包括 大位移大应变及大位移小应变问题。如结 构的弹性屈曲问题属于大位移小应变问题, 橡胶部件形成过程为大应变问题。
• 最小位能原理是指在所有可能位移中,真实位移 使系统总位能取最小值。
• 总位能是指弹性体变形位能和外力位能之和。
• 最小余能原理是指在所有的应力中,真实应力使 系统的总余能取最小值。
• 总余能是指弹性体余能和外力余能总和。
4.最小位能原理和最小余能原理(续)
• 一般而言,利用最小位能原理求得位移近似解 的弹性变形能是精确解变形能的下界,即近似 的位移场在总体上偏小,也就是说结构的计算 模型显得偏于刚硬;而利用最小余能原理求得 的应力近似解的弹性余能是精确解余能的上界, 即近似的应力解在总体上偏大,结构的计算模 型偏于柔软。
平面单元划分原则(续)
• 3)划分单元的形状,一般均可取成三角形或 等参元。对于平直边界可取成矩形单元,有时 也可以将不同单元混合使用,但要注意,必须 节点与节点相连,切莫将节点与单元的边相连。 4)单元各边的长不要相差太大,否则将影响 求解精度。

有限元(复习参考)

有限元(复习参考)

一.简答题:1.有限单元法和里兹法的区别:有限单元法:(1) 将连续的求解域离散为有限个单元组合体,利用在每一个单元内假设的近似函数来表示全求解域上待求的未知场函数。

(2)数学意义上,是把微分方程的连续形式转化为代数形式方程组。

里兹法:在整个求解域上,直接从泛函出发,通过假设试探函数,求得问题的近似解。

2. 泛函的两个基本点:(1)泛函有它的定义域,这个定义域是指满足一定条件的函数集。

(2)泛函](xy具有明确的对应关系,泛函的值是由一条可取曲线 与可取函数)[y的整体性质决定的,它表现在“积分”上。

3. 有限单元法的基本步骤:(1)结构或物体的离散化。

(2)选取单元内的场变量插值函数。

(3)进行单元分析,求单元特性矩阵和单元特性列阵。

(4)进行整体分析,组装整体特性矩阵和整体特性列阵,建立整体方程。

(5)计算单元内部的场变量。

4. 选取插值函数的原则:(1)广义坐标的个数与单元自由度数一致。

(2)为提高单元精度,插值多项式应尽量选取完全多项式。

有时完全多项式的项数与单元自由度数并不相同,这时可以增加单元的节点个数以使单元的自由度数和完全多项式的项数相同;还可以减少多项式的项数,以使问题变得简单,但此时应注意保持多项式的对称性。

5. 收敛准则:准则1 完备性要求。

如果出现在泛函中场函数的最高阶导数为m阶,则有限单元法收敛的条件之一是单元内场函数的插值函数至少是m次完全多项式,或者说插值函数必须包括本身和直至m阶导数为常数的项。

准则2 协调性要求。

如果出现在泛函中的最高阶导数是m阶,则试探函数在相邻单元的交界面上应有函数直到m - 1阶的连续导数。

6. 等参变换的定义:将局部(自然)坐标中几何形状规则的单元变换为整体坐标系中几何形状扭曲的单元。

当坐标变换和函数插值采用相同的节点,为等参单元;当坐标变换节点数多于插值函数节点数,为超参变换;当坐标变换节点数少于插值函数节点数,为亚参变换。

7. 等参单元基本思想:用相同数目的节点参数和相同的插值函数来定义单元的形状以及单元内的场变量。

有限元法基础重点归纳(精)

有限元法基础重点归纳(精)
γxy
=E 1−μ
2∗
1−μ2
γxy
42、制造位移函数:{u (x,y =α1+α2x +α3y
v (x,y =α4+α5x +α6y
43、等参单元精度比四边形单元高,四边形精度比三角形精度高。
44、轴对称问题:很多工程物件,它们的几何形状承受的载荷以及约束条件都对称于其一固定轴,这即为对称轴,此时载荷作用下的位移、应变和应力也对称于该对称轴的问题。45、等参数单元:优点:①形状方位任意,适应性好,精度高,容易构造高阶单元②具有统一形式,规律性强,采用数值积分算,程序处理方便③高阶等参单元精度高,描述复杂边界,形状能力强,所需单元少。缺点:①单元各方向尺寸要尽量接近②单元边界不能过于曲折,不能有拐点折点,尽量接近直线或抛物线③边之间夹角要尽量接近直角④单元形状不能过度畸变,边中节点不能过于偏离中间。46、有限元法基础理论:弹性力学,材料力学
11、弹性力学假设所研究的物体是连续的、完全弹性的、均匀的、各向同性的、微小变形的和无初应力的
12、外力:体力(分布在物体体积内的力---重力、惯性力、电磁力面力(分布在物体表面上的力---流体压力、接触力、风力
13、应力:物体受外力作用,或由于温度有所改变,其内部发生的内力。σ={ σx σy σz τx τy τz }
m
联立求解α1=1
2A |u i
x i y i u j
x j y j u m
x m
y m |α2=1
2A
|1u i
y i 1u j
y j 1u m y m |α3=1
2A
|1x i
u i
1x j
u j 1x m u m
|→A =1

有限元基本知识归纳

有限元基本知识归纳

有限元知识点归纳1.、有限元解的特点、原因?答:有限元解一般偏小,即位移解下限性原因:单元原是连续体的一部分,具有无限多个自由度。

在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。

2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49(1)在节点i处N i=1,其它节点N i=0;(2)在单元之间,必须使由其定义的未知量连续;(3)应包含完全一次多项式;(4)应满足∑Ni=1以上条件是使单元满足收敛条件所必须得。

可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。

4、等参元的概念、特点、用时注意什么?(王勖成P131)答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。

即:为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即:其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。

称前者为母单元,后者为子单元。

还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。

如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。

5、单元离散?P42答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。

每个部分称为一个单元,连接点称为结点。

对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。

这种单元称为常应变三角形单元。

常用的单元离散有三节点三角形单元、六节点三角形单元、四节点四边形单元、八节点四边形单元以及等参元。

有限元知识点总结

有限元知识点总结

有限元分析及其应用-2010;思考题:1、有限元法的基本思想是什么?有限元法的基本步骤有那些?其中“离散”的含义是什么?是如何将无限自由度问题转化为有限自由度问题的?答:基本思想:几何离散和分片插值。

基本步骤:结构离散、单元分析和整体分析。

离散的含义:用假想的线或面将连续物体分割成由有限个单元组成的集合,且单元之间仅在节点处连接,单元之间的作用仅由节点传递。

当单元趋近无限小,节点无限多,则这种离散结构将趋近于实际的连续结构。

2、有限元法与经典的差分法、里兹法有何区别?区别:差分法:均匀离散求解域,差分代替微分,要求规则边界,几何形状复杂精度较低;里兹法:根据描述问题的微分方程和相应的定解构造等价的泛函表达式,求得近似解;有限元:基于变分法,采用分片近似进而逼近总体的求解微分方程的数值计算方法。

3、一根单位长度重量为q的悬挂直杆,上端固定,下端受垂直向下的外力P,试1)建立其受拉伸的微分方程及边界条件;2)构造其泛函形式;3)基于有限元基本思想和泛函求极值构造其有限元的计算格式(即最小势能原理)。

4、以简单实例为对象,分别按虚功原理和变分原理导出有限元法的基本格式(单元刚度矩阵)。

5、什么是节点力和节点载荷?两者有何区别?答:节点力:单元与单元之间通过节点相互作用节点载荷:作用于节点上的外载6、单元刚度矩阵和整体刚度矩阵各有何特点?其中每个矩阵元素的物理意义是什么(按自由度和节点解释)?答:单元刚度矩阵:对称性、奇异性、主对角线恒为正整体刚度矩阵:对称性、奇异性、主对角线恒为正、稀疏性、带状性。

Kij,表示j节点产生单位位移、其他节点位移为零时作用i节点的力,节点力等于节点位移与单元刚度元素乘积之和。

7、单元的形函数具有什么特点?有哪些性质?答:形函数的特点:Ni为x,y的坐标函数,与位移函数有相同的阶次。

形函数Ni在i节点的值为1,而在其他节点上的值为0;单元内任一点的形函数之和恒等于1;形函数的值在0~1间变化。

有限元理论总结

有限元理论总结

有限单元法的基本思想(1)将一个连续域化为有限个单元并通过有限个结点相连接的等效集合体。

由于单元能按照不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模型化几何形状复杂的求解域。

(2)有限元法利用在每一个单元内假设的近似函数来分片地表示全求解域上待求的未知场数。

单元内的近似函数由未知场函数在单元的各个结点的数值和其插值函数来表达。

(3)一个问题的有限元分析中,未知场函数在各个结点上的数值就成为新的未知量,从而使一个连续的无限自由度问题变成离散的有限自由度问题。

(4)一经求解出这些未知量,就可以通过插值函数计算出各个单元内场函数的近似值,从而得到整个求解域上的近似解。

显然,随着单元数目的增加,也即单元尺寸的缩小,或者随着单元自由度的增加以及插值函数精度的提高,解的近似程度将不断改进,如果单元是满足收敛要求的,近似解最后将收敛于精确解。

形函数的解释:我们知道有限元计算中需要形函数,形函数的作用是什么呢?其实就是插值函数,为了插值计算。

对于某个单元以四边形单元为例,如果我们知道了四个结点的计算结果,那么单元内部各处的结果是多少呢?这个时候就需要我们利用形函数在进行插值计算。

如果已知单元内部某个点(x0,y0),通过形函数插值代入坐标点就可以计算出该点处的物理量值,比如位移大小。

积分点则是指高斯积分点,主要涉及刚度矩阵计算。

对于高斯积分点的选择,其积分点与单元结点是不一样的,但是采用高斯积分计算能够大大提高计算效率而又不怎么会影响计算精度和收敛性,因此有限元中计算中都采用高斯积分点来进行计算。

结点力和积分点应力的讨论:下面就涉及到关于节点力和积分点应力情况的讨论。

在分析软件中,最先都是计算得到节点的位移,这个是最精确的;之后通过节点位移再求解应力应变。

但是在求解过程中就会涉及到高斯积分点,因此它是先得到积分点处的应力应变值,这个是最准确的。

然后通过形函数将积分点处的值外插到节点上,获得节点处的应力应变值。

有限元总结

有限元总结

有限元总结第一篇:有限元总结1、有限元法是近似求解连续场问题的数值方法。

2、有限元法将连续的求解域(离散),得到有限个单元,单元与单元之间用(结点相连。

3、从选择未知量的角度看,有限元法可分为三类(位移法力法混合法)。

4、以(结点位移)为基本未知量的求解方法称为位移量。

5、以(结点力)为基本未知量的求解方法称为力法。

7、直梁在外力作用下,横截面上的内力有(剪力)和(弯矩)两个。

8、平面刚架结构在外力作用下,横截面上的内力有(剪力)、(弯矩)、(轴力)。

9、进行直梁有限元分析,结点位移有(转角)、(挠度)。

12、弹性力学问题的方程个数有(15)个,未知量个数有(15)个。

13、弹性力学平面问题方程个数有(8),未知数(8)个。

15、几何方程是研究(应变)和(位移)关系的方程。

16、物理方程描述(应力)和(应变)关系的方程。

17、平衡方程反映(应力)和(位移)关系的方程。

18、把进过物体内任意一点各个(截面)上的应力状况叫做(该点)的应力状态。

19、形函数在单元结点上的值,具有本点为(1),他点为零的性质,并在三角形单元的后一结点上,三个形函数之和为(1)。

20、形函数是(三角形)单元内部坐标的(线性位移)函数,它反映了单元的(位移)状态。

21、结点编号时,同一单元相邻结点的(编号)尽量小。

25、单元刚度矩阵描述了(结点力)和(结点位移)之间的关系。

矩形单元边界上位移是(线性)变化的。

1、从选择未知量的角度来看,有限元法可分为三类,下面那种方法不属于其中(C)。

A、力法B、位移法C、应变法D、混合法2、下面对有限元法特点的叙述中,哪种说法是错误的(D)。

A、可以模拟各种几何形状负责的结构,得出其近似值。

B、解题步骤可以系统化,标准化。

C、容易处理非均匀连续介质,可以求解非线性问题。

D、需要适用于整个结构的插值函数。

3、几何方程研究的是(A)之间关系的方程式。

A、应变和位移B、应力和体力C、应力和位移D、应力和应变 4.物理方研究的是(D)之间关系的方程式。

有限元ANSYS复习要点

有限元ANSYS复习要点

有限元ANSYS复习要点形函数的物理意义:单元节点位移对单元内任⼀点位移的贡献程度。

⼆、收敛性分析: 1、当⽹格⽆限⼩时,有限元解收敛于⼒学模型的精确解。

2、位移元解是下限解三、位移元收敛准则1、完备性准则(位移函数必须能反映单元的刚体位移和常应变状态。

)2、协调性准则(位移函数必须保证在相邻单元的接触⾯上位移连续或位移以及⼀阶导数连续。

)杆、平⾯和空间应⼒问题——C0连续(位移连续)梁、板壳问题——C1连续(位移及其⼀阶导数连续)平⾯和空间问题——位移连续保证相邻单元既不会开裂,也不会重叠。

1、平⾯空间结构问题:位移函数只要含有线性项和常数项就是完备的。

2、平⾯结构问题:3个刚体位移;3个常应变。

3.空间结构问题:6个刚体位移;6个常应变。

2、协调性:(1、矩形单元在边界上的位移是线性函数。

2、在边界上有两个公共节点,且有相同位移。

3、保证了相邻单元在其公共边界上位移的连续性.)⼦块Kij的物理意义:当节点j处发⽣单位位移,⽽其他节点固定时,在节点i上所施加的⼒(4)若两个三⾓形相似,且编号顺序采⽤⼀致的标记⽅法,两三⾓形单元的单元刚度矩阵⼀致。

(5)单元刚阵所有奇数⾏(列)的对应元素之和为零,所有偶数⾏(列)的对应元素之和也为零。

提⾼单元的精度:(1、增加节点2、增加旋转⾃由度3、增加插值项数(不协调模式)Q8 Q9 LST单元可以避免剪切锁定,可以⽐较好的模拟弯曲。

2.平⾯应⼒:结构形状特点:沿Z⽅向尺⼨远⼩于x,y⽅向尺⼨受⼒特点:载荷平⾏板中⾯并沿厚度⽅向均匀分布。

板前后表⾯上没有外⼒作⽤应⼒特点:由于板很薄,整个平板的所有各点沿Z轴的正应⼒分量和垂直于Z轴的⾯上的剪应⼒均为0;应⼒分量,应变分量,位移分量都认为不沿厚度变化。

平⾯应变:1)结构形状特点:沿Z⽅向尺⼨远⼤于x,y⽅向尺⼨3)变形特征:任⼀截⾯都是对称⾯2)受⼒特点:物体柱⾯上承受平⾏横截⾯并沿长度⽅向均匀分布的⾯⼒,体⼒也平⾏横截⾯并沿长度⽅向均匀分布。

有限元笔记(个人整理)

有限元笔记(个人整理)

有限元笔记:1有限元基本概念 (2)2ANSYS记录 (2)3自己总结 (3)1有限元基本概念FEA:Finite Element Analysis的简写,即有限元分析。

有限元是一门以结构力学和弹性力学为理论基础,以计算机为媒体,以有限元程序为主体,对大型结构工程的数值计算方法。

有限元的核心思想:结构的离散化,就是将实际结构假想地离散为有限数目简单单元的组合体,实际结构的物理性能可以通过对离散单元进行分析,得出满足工程精度的近似结果来替代对实际结构的分析。

目的:在工程设计阶段时期分析应力和应变是否满足工程的要求。

结构分析是有限元方法最常用的一个领域,分析中计算得出的基本未知量是位移,其他的如应力,应变和反力可以通过位移导出。

位移模式(位移函数):单元内任意点的位移随位置变化的函数式。

位移模式反映单元的位移分布形态,它是单元内位移的插值函数。

位移模式可表示为f=Nδ式子中,N——形态函数(形函数),反映了单元的位移形态,称为位移函数的形函数。

几何关系(几何方程):位移与应变分量之间的关系表示。

为确定唯一解,给应变分量附加限制条件,或者理解为离散的六面体仍能组合成连续体的条件,称为变形协调条件变形协调方程表示几何关系,即几何方程。

物理方程:应力应变之间的关系式作用于物体上的外力:体积力表面力泛函:函数的函数根据有限元离散思想,所有有关的量均要转换为节点的量。

载荷也是如此,必须将其转换为等效的节点载荷。

2ANSYS记录宏:是包含一系列ansys命令且后缀为mac的命令流文件图元:开始建立的体或面,预先定义好的集合体工作平面:可动的二维参考面,用来定位确定图元坐标系:缺省时是总体直角坐标系IGES:初始图形交换标准平面应变:假定在Z方向的应变为零Z方向的尺寸远远大于X和Y方向的尺寸才有效平面应力:假定在Z方向的应力为零Z方向的尺寸远远小于X和Y方向的尺寸才有效对模型划分网格之前,也即在建立模型之前,先确立采用自由网格还是映射网格。

有限元的基本理论知识

有限元的基本理论知识

1 3 0
2 3
0 0 0
T
分布体积力的等效结点荷载
{P}
e
= t ∫∫ [N ] {p}dxdy
T
= [X
e i
Yi
e
X
e j
Y
e j
X
e m
Y
e T m
]
t ∫∫ [N ] {p}dxdy = t ∫∫ N i p x
T
[
Ni py
N j px
N j py
N m px
N m p y dxdy
2.2 变分原理
质的有限单元分析包含三个基本方面:介质的离散化、单元 特性计算以及单元组合体的结构分析。
对于二维连续介质,以图所示的建筑在 岩石基础上的支墩坝为例,用有限单元法 进行分析的步骤如下: (1)用虚拟的直线把原介质分割成有限个 三角形单元,这些直线是单元的边界,几 条直线的交点称为结点。 (2)假定各单元在结点上互相铰接,结点 位移是基本的未知量。 (3)选择一个函数,用单元的三个结点的 位移唯一地表示单元内部任一点的位移, 此函数称为位移函数。 (4)通过位移函数,用结点位移唯一地表 示单元内任一点的应变;再利用广义虎克 定律,用结点位移可唯一地表示单元内任 一点的应力。 (5)利用能量原理,找到与单元内部应力状态等效的结点力,再利用单元应力与 结点位移的关系,建立等效结点力与结点位移的关系。这是有限单元法求解应力 问题的最重要的一步。 (6)将每一单元所承受的荷载,按静力等效原则移置到结点上。 (7)在每一结点建立用结点位移表示的静力平衡方程,得到一个线性方程组:解 出这个方程组,求出结点位移,然后可求得每个单元的应力。
1 − 2µ br b s + cr cs E (1 − µ )t 2(1 − µ ) [k rs ] = 4(1 + µ )(1 − 2 µ ) A µ c b + 1 − 2µ b c 1 − µ r s 2(1 − µ ) r s

有限元知识点汇总

有限元知识点汇总

有限元知识点汇总第一章1、何为有限元法?其基本思想是什么?》有限元法是一种基于变分法而发展起来的求解微分方程的数值计算方法。

》基本思想:化整为零,化零为整2、为什么说有限元法是近似的方法,体现在哪里?》有限元法的基本思想是几何离散和分片插值;》用离散单元的组合来逼近原始结构,体现了几何上的近似;用近似函数逼近未知量在单元内的真实解,体现了数学上的近似;利用及问题的等效的变分原理建立有限元基本方程,又体现了明确的物理背景。

3、单元、节点的概念?》单元:把参数单元划分成网格,这些网格就称为单元。

》节点:网格间相互连接的点称为节点。

4、有限元法分析过程可归纳为几个步骤?》3大步骤;——结构离散化;——单元分析;——整体分析。

5、有限元方法分几种?本课程讲授的是哪一种?》有限元方法分3种;——位移法、力法、混合法。

》本课程讲授的:位移法6、弹性力学的基本变量是什么?何为几何方程、物理方程及虚功方程?弹性矩阵的特点?》弹性力学的基本变量是——{外力、应力、应变、位移}》几何方程——{描述弹性体应变分量及位移分量之间关系的方程}》物理方程——{描述应力分量及应变分量之间的关系}》虚功方程——{描述内力和外力的关系的方程}》弹性矩阵特点——{ }7、何为平面应力问题和平面应变问题?》平面应力问题——{满足(1)几何条件——所研究的是一根很薄的等厚度薄板,即一个方向上的几何尺寸远远小于其余两个面上的几何尺寸;(2)载荷条件——作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面上无外力作用}》平面应变问题——{满足(1)几何条件——所研究的是长柱体,即长度方向的尺寸远远大于横截面的尺寸,且横截面沿长度方向不变;(2)载荷条件——作用于长柱体结构上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力}第二章1 何为结构的离散化?离散化的目的?何为有限元模型?答:⑴所谓离散化,是用假想的线或面将连续物体分割成由有限个单元组成的集合体。

有限元考点复习总结

有限元考点复习总结

填空与选择题 1并行计算是一种提高效率的计算。

2.材料的主要特性:弹性模量、泊松比、硬化指数、屈服强度。

3.有限元方法有3类分为位移法(以结点位移为未知量),力法,混合法。

3.数值模拟技术:以电子计算机为手段,通过数值计算和图像显示的方法解决工程问题。

5.垂直对称面上的结点位移为零。

6单元划分常见单元类型:六面体单元和四面体单元,Deform 常用四面体单元。

7.四面体单元:每个结点上有两个位移,整个单元有六个结点位移,i u i v 表示结点y x i ,处方向的位移,单元结点位移列阵:{}[]T m m j j i i e v u v u v u q =。

单元应变公式:{}[]{}e q B =ε;单元应力公式:{}[]{}εσD =;[]B 指应变与结点位移的关系矩阵;[]D 指应力应变关系矩阵8.常用商业有限元软件:LS —DYSA 、eta/DYNAFORM 、ABAQUS 、ANSYS9.Deform3D能导入的几何模型数据格式:STL、UNV、GEO、IGS、NAS、PDA。

10.Deform3D 的单位包括:公制SI 和英制EI11.后处理常用的显示方式:云图显示、结点追踪和切片。

12.摩擦模型分为:库伦摩擦、剪切摩擦、混合摩擦213.增量步长的定义可以用位移增量和时间增量两种方式定义。

14. 实际塑性成形问题涉及的三大力学非线性问题:几何非线性、材料非线性和边界非线性15.每个增量步的计算需要迭代两次。

16.自适应单元技术包括自适应重划分和自适应加密。

原因:有限元模拟数值解的精度依赖于单元结构。

17.四边形单元常见的畸形:自交叉、内凹、长宽比太大18.单元自适应加密的规则:单元的每条边不能多于两个单元与之相邻(注:适用于三角形和四边形单元) 19.库伦摩擦模型的摩擦系数取值区间(0,0.5);剪切模型的摩擦因子取值区间(0,1)20.大部分塑性成形工艺具有非稳态变形的特点。

有限元总结

有限元总结

有限元教学内容总结对知识掌握得如何,可以从他对这些知识的概括能力来判断。

对一门课程学得好,那么可以用一句话对这门课程做一个经典的概括,也可以用一堂课对这门课的内容作一次简练而精彩的报告,也可以用几十个学时对这门课的内容作全面的讲解。

我们的复习,希望能从这门课的核心部分开始,逐步向外展开。

希望抓住核心内容这个节点,就能象一张网一样,将主要内容连接在一起。

一、核心部分有限元的基本思路:化整为零,集零为整。

有限元的基本概念:节点,单元。

有限元的基本方程:结构的整体刚度方程{}[]{}P K δ=[K]为整体刚度矩阵;{P}为节点载荷列阵;{δ}为节点位移列阵。

二、骨干部分(整体刚度方程如何得来?如何解?)(一)如何得来?([K]如何得来?{P}如何得来?)1. [K]如何得来?(e k ⎡⎤⎣⎦如何得来?如何坐标变换?如何组集?) (1)e k ⎡⎤⎣⎦如何得来?(直接法,变分法) Ⅰ. 直接法基本原理:位移法基本步骤:(Ⅰ)由杆件基本变形中的内力与变形间的关系得到单元刚度方程{}{}e e e F k δ⎡⎤=⎣⎦式中:e k ⎡⎤⎣⎦为单元刚度矩阵;{}e δ为单元位移列阵;{}e F为单元节点力列阵。

(Ⅱ)由单元刚度方程得单元刚度矩阵e k ⎡⎤⎣⎦Ⅱ. 变分法基本原理:最小势能原理基本步骤:(Ⅰ)求单元位移函数假设:{}[]{}0δα=Φ,要求具有连续性(单元内位移连续)、协调性(相邻单元间位移连续)、完备性(有刚体位移项和常应变项),收敛的必要条件。

式中:{}δ为单元内任意点的位移列阵;[]0Φ为与单元内任意点坐标相关的矩阵;{}α为待定系数列阵。

将单元各节点坐标代入上式,得:{}[]{}eδα=Φ式中:{}e δ为单元节点位移列阵;[]Φ为与单元节点坐标相关的矩阵。

由上式得:{}[]{}1e αδ-=Φ将上式代入假设的位移插值函数得:{}[]{}e N δδ=式中:[N]为形函数矩阵(Ⅱ)求应变矩阵利用几何方程,对位移函数求导得:{}[]{}e B εδ=式中:[B]为单元应变矩阵;{}ε为单元内任意点的应变列阵。

有限单元法知识点总结

有限单元法知识点总结

有限单元法知识点总结1. 有限元法概述有限单元法(Finite Element Method ,简称FEM)是一种数值分析方法,适用于求解工程结构、热传导、流体力学等领域中的强耦合、非线性、三维等问题,是一种求解偏微分方程的数值方法。

有限元法将连续的物理问题抽象为由有限数量的简单几何单元(例如三角形、四边形、四面体、六面体等)组成的离散模型,通过对单元进行适当的数学处理,得到整体问题的近似解。

有限元法广泛应用于工程、材料、地球科学等领域。

2. 有限元法基本原理有限元法的基本原理包括离散化、加权残差法和形函数法。

离散化是将连续问题离散化为由有限数量的简单单元组成的问题,建立有限元模型。

加权残差法是选取适当的残差形式,并通过对残差进行加权平均,得到弱形式。

形函数法是利用一组适当的形函数来表示单元内部的位移场,通过形函数的线性组合来逼近整体位移场。

3. 有限元法的步骤有限元法的求解步骤包括建立有限元模型、建立刚度矩阵和载荷向量、施加边界条件、求解代数方程组和后处理结果。

建立有限元模型是将连续问题离散化为由简单单元组成的问题,并确定单元的连接关系。

建立刚度矩阵和载荷向量是通过单元的应变能量和内力作用,得到整体刚度矩阵和载荷向量。

施加边界条件是通过给定位移或力的边界条件,限制未知自由度的取值范围。

求解代数方程组是将有限元模型的刚度方程和载荷方程组成一个大型代数方程组,通过数值方法求解。

后处理结果是对数值结果进行处理和分析,得到工程应用的有用信息。

4. 有限元法的元素类型有限元法的元素类型包括结构单元、板壳单元、梁单元、壳单元、体单元等。

结构单元包括一维梁单元、二维三角形、四边形单元、三维四面体、六面体单元。

板壳单元包括各种压力单元、弹性单元、混合单元等。

梁单元包括梁单元、横梁单元、大变形梁单元等。

壳单元包括薄壳单元、厚壳单元、折叠单元等。

体单元包括六面体单元、锥体单元、八面体单元等。

5. 有限元法的数学基础有限元法的数学基础包括变分法、能量方法、有限元插值等。

08 有限元基本理论小结

08 有限元基本理论小结

节点荷载列阵
(2) 单元位移场的表达
u ( x, y ) N1u1 ( x, y ) N 2u 2 ( x, y ) N 3u3 ( x, y) v( x, y ) N1v1 ( x, y ) N 2 v2 ( x, y ) N 3v3 ( x, y )
u e ( x, y) N1 0 N 2 0 N 3 0 e u ( x, y) e q N e ( x, y)q e v ( x, y) 0 N1 0 N 2 0 N 3
a0 0
a1 a2 4
是构造Serendipity单元 插值函数的方法
N2 4 (1 )
1 N1 0 (节点1上) (节点2和3上)
~ N1 1
~ N3
1 N3 0 (节点3上) (节点1和2上)
1 ~ 1 N1 N1 N 2 2( )( 1) 2 2 1 ~ 1 N 3 N 3 N 2 2 ( ) 2 2
整体刚度矩阵的性质
1. 整体刚度矩阵K 的元素Kij称为刚度系数,它的物理意义是要使结构体的j 节点自由度发生单位广义位移,而其它节点自由度都保持零位移的状态 下,i节点需要施加的节点广义力。 整体刚度矩阵的对角元上的主元素都是正的。 整体刚度矩阵K 是对称矩阵。因此在实际计算中只需要计算对角元及其 某一边的元素。 整体刚度矩阵K 是一个稀疏阵,如果遵守一定的节点编号规则,可使非 零元素都集中于主对角线附近而呈带状。 整体刚度矩阵K 是一个奇异阵。因为物体在受到平衡力作用时,可以是 静止不动,但也可以作匀速运动,即物体的绝对位移不能确定,也就是 说整体刚度矩阵K 不存在逆矩阵,因此它是奇异矩阵。在排除刚体位移 后,它是正定阵。 整体刚度矩阵仅与材料物理性质和结构的几何尺寸有关。

有限元分析总结

有限元分析总结

有限元分析考试总结赵启东1、有限元法定义有限元法(FEM)是随着计算机的广泛应用而产生的一种计算方法。

它是近似求解一般连续体问题的数值方法。

从物理方面看:它是用仅在单元结点上彼此相连的单元组合体来代替等分析的连续体,也即将待分析的连续体划分成若干个彼此相联系的单元。

通过单元的特性分析,来求解整个连续体的特性。

从数学方面看:它是使一个连续的无限自由度问题变成离散的有限自由度问题,使问题大大简化,或者说使不能求解的问题能够求解。

一经求解出单元未知量,就可以利用插值函数确定连续体上的场函数。

显然随着单元数目的增加,即单元尺寸的缩小,解的近似程度将不断得到改进。

如果单元是满足收敛要求的,近似解将收敛于数确解。

2、有限元法求解步骤对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。

有限元求解问题的基本步骤通常为:第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。

第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。

显然单元越小(网格越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。

第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。

为保证问题求解的收敛性,单元推导有许多原则要遵循。

对工程应用而言,重要的是应注意每一种单元的解题性能与约束。

例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.边界受梯形分布面力的等效,叠加原理,
32、 何谓等参单元?等参单元具有哪些特点?使用等参单元应注意什么?在等参单元计算中,数值积分阶次是否越高越好呢?为什么?
答:定义:以规则形状单元的位移函数相同阶次函数为单元几何边界的变换函数,通过
坐标变换所获得的单元。
特点:单元几何边界的变换函数与规则单元位移函数具有相同的节点参数。
21、 何谓刚性位移?何谓常量应变?
答:刚性位移就是物体的形状不发生变化产生的位移
变形位移就是考虑物体产生的变形
22、 在按位移法求解有限元法中,为什么说应力解的精度低于位移解的精度?
答:实际结构本来是具有无限个自由度,当用有限元求解时,结构被离散为有限个单元的集合,便只有有限个自由度了,限制了结构变形能力,从而导致结构的刚度增大、计算的位 假设平面三节点三角形单元的的位移模式为:
U=a1x2+a2xy+a3y2
V=a4x2+a5xy+a6y2
试计算该单元的形函数矩阵、单元刚度矩阵,并讨论该单元的特性。
27、 平面矩形单元的位移、应力在单元内、单元边界上有何特性?试说明矩形单元刚度矩阵的计算与坐标原点位置无关。
答:常数项和线性项的系数反映了单元的刚体位移和常应变,满足收敛性的必要条件;在单元边界上,由于u,v分别仅为x或y的线性函数,则这样的单元的位移函数是双线性函数,这说明单元边界上的两点能唯一确定变形后的边界,而对于相邻的单元公共边界,它们具有公共节点,则不论按哪个单元确定公共边界上的位移,都能保证公共边界上具有相同的位移,即单元边界处位移具有连续性,满足协调性要求。
答:协调性准则:如果在能力泛函中的位移函数出现最高阶导数是m阶,则位移函数
在单元边界上必须具有m-1阶的连续导数。
网格划分不一样
25、 何为常应变单元?其位移、应变、应力在单元内、单元边界上有何特性?
答:常应变单元:单元的应变分量均为常量。
位移函数在单元内部线性函数,内部连续。公共边界处位移协调。
单元的应力应变为常量,在相邻单元边界处,应变应力不连续,有突变。
注意:单元为凸
不是,阶次提高,单元自由度相应增加,计算更加复杂,积分更困难。
33、 平面三角形单元能否看成等参数单元,如能,其母元(标准元)为何?按等参单元定义进行解释。
答:能;直角等腰三角形;以三角形单元的位移函数相同阶次函数为单元几何边界的变换函数,通过坐标变换所获得的单元。
34、 杆梁单元如何区分?各有何特点?应用时如何选择?
答:杆:承受轴力和扭矩的杆件;梁:承受横向力和弯矩的杆件。
杆:节点数2,节点自由度1;梁:节点数2,节点自由度2。
根据受力情况进行选择。
平面应变问题:长柱体的横截面沿长度方向不变,作用于长柱体结构上的载荷平行于横截面且沿纵向方向均与分布,两端面不受力。
14、 何谓轴对称问题?如何判断?推导极坐标下的平衡方程和几何方程。
答:轴对称:几何形状、约束情况及所受的外力都对称于空间的某一跟轴,则通过该轴的任何平面都是物体的对称面,物体内的所有应力、应变和位移都关于该轴对称。
答:常应变三角形单元:形函数只与节点坐标有关;单元应变分量均为常量;
收敛性:位移函数含单元常量应变;反应单元刚体位移;单元内部位移连续;相邻公共边界连续协调。
四节点矩形单元:位移函数满足收敛性条件,为协调单元;较常应变单元有更高的计算精度。
六节点三角形单元:比常应变三角形单元精度高
30、 非节点载荷等效的基本原则是什么?
基本方程:平衡方程、几何方程、物理方程、几何条件
9、 何谓应力、应变、位移的概念?应力与强度是什么关系?
答:应力:lim△Q/△A=S △A→0
应变:物体形状的改变
位移:弹性体内质点位置的变化
10、 问题的微分方程提法、等效积分提法和泛函变分提法之间有何关系?何谓“强形式”?何谓“弱形式”,两者有何区别?建立弱形式的关键步骤是什么?
15、 何谓虚位移原理?推导弹性体虚功方程的矩阵形式,并写出轴对称问题的虚功方
程。
16、 什么叫外力势能?什么叫应变能?简述势能变分原理。试问势能变分原理代表了弹
性力学的那些方程?同时,附加了什么条件?
17、 在三维弹性体中,若系统势能对位移变分为零。试证明一定满足应力平衡方程和应
力边界条件。
18、 为了保证有限元解的收敛性,位移函数必须满足那些条件?为什么?
23、 何为单元的协调性和完备性条件?为什么要满足这些条件?平面问题三节点三角形单元是如何满足这些条件?矩形四节点单元是否满足?
答:完备性准则:如果在能量泛函中所出现的位移函数的最高阶导数是m阶,则有限元解收敛的条件之一是单元函数至少是m阶的完全多项式。
24、 何为协调单元?何为非协调单元?为什么有时非协调单元的计算精度还高于协调单元?
有限元分析及其应用-2010;思考题:
1、 有限元法的基本思想是什么?有限元法的基本步骤有那些?其中“离散”的含义是什么?是如何将无限自由度问题转化为有限自由度问题的?
答:基本思想:几何离散和分片插值。
基本步骤:结构离散、单元分析和整体分析。
离散的含义:用假想的线或面将连续物体分割成由有限个单元组成的集合,且单元之间仅在节点处连接,单元之间的作用仅由节点传递。当单元趋近无限小,节点无限多,则这种离散结构将趋近于实际的连续结构。
7、 单元的形函数具有什么特点?有哪些性质?
答:形函数的特点:Ni为x,y的坐标函数,与位移函数有相同的阶次。 形函数Ni在i节点的值为1,而在其他节点上的值为0;
单元内任一点的形函数之和恒等于1;
形函数的值在0~1间变化。
8、 描述弹性体的基本变量是什么?基本方程有哪些组成?
答:基本变量:外力、应力、应变、位移
答:强弱的区分在于是否完全满足物理模型的条件。所谓强形式,是指由于物理模型的复杂性,各种边界条件的限制,使得对于所提出的微分方程,对所需要求得的解的要求太强。也就是需要满足的条件太复杂。比如不连续点的跳跃等等。将微分方程转化为弱形式就是弱化对方程解的要求。不拘泥于个别特殊点的要求,而放松为一段有限段上需要满足的条件,使解能够以离散的形式存在。
28、 何谓面积坐标?其特点是什么?
答:Li=Ai/A;Lj=Aj/A;Lm=Am/A特点:只有两个坐标是独立的:Ai+Aj+Am=1
29、 试分析以下几种平面单元的位移在单元公共边界上的连续性:1)常应变三角形单元;2)四节点矩形单元;3)六节点三角形单元;4)四节点直线边界四边形等参单元;
5)八节点曲线边界四边形等参单元。
1) 建立其受拉伸的微分方程及边界条件;
2) 构造其泛函形式;
3) 基于有限元基本思想和泛函求极值构造其有限元的计算格式(即最小势能原理)。
4、 以简单实例为对象,分别按虚功原理和变分原理导出有限元法的基本格式(单元刚度矩阵)。
5、 什么是节点力和节点载荷?两者有何区别?
答:节点力:单元与单元之间通过节点相互作用
答:1.位移函数应包含刚体位移
2.位移函数应能反映单元的常应变状态
3.位移函数在单元内要连续,在单元边界上要协调。
19、 位移函数构造为何按Pascal三角形进行?为什么?
答:选取多项式具有坐标的对称性,保证单元的位移分布不会因为人为选取的方位坐标不同而变化。
20、 如何理解有限元解的下限性?简要说明。
11、 以平面微元体为例,考虑弹性力学基本假设,推导微分平衡方程。
12、 常见的弹性力学问题解法有哪几类?各有何特点或局限?简述求解思路?
13、 何谓平面应力问题?何谓平面应变问题?应力应变状态如何?如何判断?举例说
明?
答:平面应力问题:作用于很薄的板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面上无外力作用
2、 有限元法与经典的差分法、里兹法有何区别?
区别:差分法:均匀离散求解域,差分代替微分,要求规则边界,几何形状复杂精度较低; 里兹法:根据描述问题的微分方程和相应的定解构造等价的泛函表达式,求得近似解; 有限元:基于变分法,采用分片近似进而逼近总体的求解微分方程的数值计算方法。
3、 一根单位长度重量为q的悬挂直杆,上端固定,下端受垂直向下的外力P,试
节点载荷:作用于节点上的外载
6、 单元刚度矩阵和整体刚度矩阵各有何特点?其中每个矩阵元素的物理意义是什么(按自由度和节点解释)?
答:单元刚度矩阵:对称性、奇异性、主对角线恒为正
整体刚度矩阵:对称性、奇异性、主对角线恒为正、稀疏性、带状性。
Kij,表示j节点产生单位位移、其他节点位移为零时作用i节点的力,节点力等于节点位移与单元刚度元素乘积之和。
答:能量等效原则和圣维南原理。
31、 试计算三节点三角形边界上不同线性分布载荷的等效节点载荷。(参考教材P58面)
答:1.均质材料单元所受体力等效,只需将单元外载荷均匀等分至各个节点即可
2.边界受均匀分布力等效,只需将单元边界上的分布载荷之和平均分配至受力的连个节点
3.边界受三角形分布面力等效,总力ql/2,分布力ql/6;ql/3
相关文档
最新文档