博弈论——完全信息动态博弈

合集下载

完全信息动态博弈和演化博弈的关系

完全信息动态博弈和演化博弈的关系

完全信息动态博弈和演化博弈的关系在博弈论的研究领域中,完全信息动态博弈和演化博弈是两个重要的分支。

它们分别从不同的角度研究博弈现象,但二者之间也存在一定的联系和关系。

本文将探讨完全信息动态博弈和演化博弈的关系,并对它们的特点和应用进行分析。

1. 完全信息动态博弈的定义和特点完全信息动态博弈是指博弈参与者在博弈过程中具备完全信息的情况下,根据先后顺序依次做出决策,随着时间的推移,博弈过程也在不断变化。

在完全信息动态博弈中,博弈参与者对于其他参与者的行动和策略都有准确的了解,能够全面考虑对手的决策,以此来优化自己的策略选择。

完全信息动态博弈的特点包括:首先,信息对称,每个博弈者都能了解其他博弈者的策略和收益函数;其次,决策按照时间顺序依次进行,每个博弈者的行动会对其他人的决策产生影响;最后,完全信息动态博弈具有策略的时序性,参与者需要根据他们观察到的其他人的决策来选择自己的策略。

2. 演化博弈的定义和特点演化博弈是指博弈参与者根据其在群体中的优势来选择策略,并通过遗传和选择机制在演化过程中逐步改变策略的过程。

演化博弈考虑的不是个体之间的完全信息,而是从整体出发,通过个体之间的相互作用和进化选择来探讨不同策略之间的稳定性和最终结果。

演化博弈的特点包括:首先,演化博弈关注的是群体中不同策略的相对频率和进化趋势,而不是个体行动的绝对收益;其次,演化博弈中存在着演化稳定策略,即一旦某种策略在群体中形成,就会对其他策略形成一种稳定的威胁;最后,演化博弈的结果依赖于演化的时间尺度和环境的改变。

3. 完全信息动态博弈与演化博弈的关系完全信息动态博弈和演化博弈虽然从不同的角度出发,但也存在一定的联系和关系。

首先,完全信息动态博弈可以看作演化博弈的一种特殊情况,即当演化博弈的时间尺度趋于无穷时,完全信息动态博弈的结果可以看作是演化博弈的极限情况。

因此,完全信息动态博弈可以为演化博弈提供一种基础理论框架。

其次,演化博弈可以用来解释完全信息动态博弈中出现的某些稳定策略。

北京大学博弈论课件第3章-完全信息动态博弈

北京大学博弈论课件第3章-完全信息动态博弈
❖ 路径用线段表示。在线段旁注明相应的策略。 ❖ 在“市场争夺战”博弈中,首先行动的潜在进入者可以采取两种策略:“不进入”
和“进入”。因此,从初始节点处引出两条线段,在两条线段旁分别标识“不进 入”和“进入”。 ❖ 当潜在进入者选择结束后,达到在位者的节点。 ❖ 在位者有两个选择:“斗争”和“默许”。 ❖ 因此,从在位者的节点处引出两条线段,在两条线段旁分别标识“斗争”和“默 许”。
❖ 博弈树中每个节点都独立构成一个信息集,没有虚线连接两个或多个博弈树节点。 ❖ 求解完全且完美信息动态博弈的重要方法之一是:逆向归纳法。 ❖ 可以通过“海盗分宝博弈”这个生动有趣的故事对“逆向归纳法”进行一个直观
介绍。
一、海盗分宝博弈
❖ 1.海盗分宝博弈的规则 ❖ 五个海盗首先进行抽签,确定决策顺序。 ❖ 五个海盗按照决策顺序依次提出对 100 个金币的分配方案。 ❖ 第一个海盗提出一个分配方案,如超过半数的海盗(包括提出分配方案的海盗)
2021/8/1
POWERPOINT TEMPLATE POWERPOINT TEMPLATE POWERPOINT TEMPLATE POWERPOINT TEMPLATE POWERPOINT TEMPLATE POWERPOINT TEMPLATE
第三章 POWERPOINT TEMPLATE
❖ 在完全信息动态博弈中,博弈参与者的行动存在先后顺序。 ❖ 可以用博弈树表示完全信息动态博弈。 ❖ 可以通过逆向归纳法求解完全信息动态博弈的子博弈精炼纳什
均衡,剔除不可置信的威胁。
第一节 完全信息动态博弈概述
❖ 一、完全信息动态博弈的定义 在完全信息静态博弈中,博弈参与者同时采取行动。但在完全信息动 态博弈中,博弈参与者的行动存在先后顺序。从信息角度上,完全信息 动态博弈与完全信息静态博弈类似,博弈参与者对博弈结构、博弈顺序、 双方收益等信息都具备完全了解。

博弈论 第 三 章 完全信息动态博弈讲解

博弈论 第 三 章   完全信息动态博弈讲解

房地产开发博弈
开发
A hA(1) 不开发
h表示信息集
N hN(1)
需求大
需求小
N hN(2)
需求大
需求小
B hB(1)
开发
不开发
B hB(2)
B hB(3)
开发
不开发 开发 不开发 开发
B hB(4)
不开发
(4,4)
(8,0) (-3,-3)
(1,0) (0,8) (0,0) (0,1) 单 位:百万元
定 义 一 个 展 开 式 博 弈 的 子 博 弈G 由 一 个 决 策 结x 和 所 有 该 决 策 结 的 后继结T(x)( 包 括终点结0 组 成, 它 满 足 下 列 条 件:⑴x 是 一 个 单 点 信 息 结即h(x)={x};⑵对于所有的 x′∈T(x),如果x″∈h(x′),则x″∈T(x)。
(3)
N
1/3
2/3
1
Y1
z1
1
x1
w1
(2,6) (5,6)
2
2
a2 (9,0)
b2 (0,3)
a2 (9,5)
b2 (0,3)
3.3 子 博 弈 与 子 博 弈 完 美
Nash 均衡在原则上适用所有的博弈,但对于预 测 参与人的行为来说,Nash均衡可能并不是 一个 合理的预测, 如房地产博弈:
A
开发
不开 发
A
开发
不开发
B
B
B
B
开发 不开发 开发 不开发 开发 不开发 开发
不开发
有了信息集的概念, 展开式表示也可以用来表 示静态博弈, 如“囚徒的困境 ”博弈可以表 示为:
1
坦白
2

博弈论 完全信息动态博弈.ppt

博弈论 完全信息动态博弈.ppt

4、工会、雇主与中央银行的经济博弈
考虑工资、物价、就业的宏观经济模型:
• 中央银行:选择货币供应量,在其效用函 数中关注通货膨胀率与就业水平;
• 企业:选择就业数量,使企业利润最大化 (受工人的工资影响);
• 就业者:要求工资水平,使自身福利最大 化(受通货膨胀率影响)。
• 由于劳动合同和工资刚性,博弈顺序为:
• 企业1首先选择产量q1,企业2观察到企业1的产量 后选择自己的产量q2,令: P(Q)=a-q1-q2代表逆需求函数 Ci(qi)=cqi代表成本函数 则第i企业的利润函数为:
i(q1,q2)=qiP(q1+q2)-Ci(qi)
企业1 q1
企业2 q2
市场
i=1,2
P(Q)
企业利润:
i(q1,q2)
• 若T=1,在T=1时,参与人1出价,如果他提出 x1=1,参与人2只能接受。
两阶段博弈(T=2)
• 若T=2,在T=2时,参与人2出价,如果他提 出x2=0,参与人1只能接受;
• 由于参与人2在T=2时的1单位支付相当于在 t=1时δ2单位,如果参与人在t=1时出价1-x1≥δ2, 则参与人2会接受。
承诺价值
• 在该博弈中,拥有信息优势反而使参与人处 于劣势,企业1称为领导者,企业2称为随从。
• 现在考察完全信息静态情形下:如果企业1 承 信诺呢?(威协)生产q1*=(a-c)/2,企业2是否会相
• 若 优 信企选企业择业将21选的是择威qq1胁*2=*,=3((唯aa--一cc))//的48, ,纳则 因什此 此均时企衡企业是业2不1会的相最 q1*=q2*=(a-c)/3。
企业1 q1
企业2 q2
市场
P(Q)

完全信息动态博弈

完全信息动态博弈

-3 1
-3, 0,
-3 0
1, 0,
0 1
1, 0,
0 0
这里有3个纯战略Nash均衡,分别是 {开发,{不开发,开发}} (均衡结果:A
14
开发,B不开发) {开发,{不开发,不开发}} {不开发,{开发,开发}} 在每一个均衡,给定对方的战略,自己 的战略是最优的(效用最大) 均衡结果是(开,不开) , (开,不开) , (不开,开) 。注意均衡与均衡结果不同。 一般定义:扩展式博弈的战略 令 H i 为第 i 个参与人的信息集的集合,
1
选择什么行动, 而不是简单的, 与环境无关的 行动选择。 为了说明,我们考虑房地产开发博弈的 例子。有两个开发商A和B,互为竞争对手,决 定是否进行房地产开发。但他们不是同时行 动,且后行动者可以观察到先行动者的行动。 假定博弈的行动顺序如下: (1)开发商A先行 动,选择开发或不开发; (2)在A决策后,自 然选择市场需求大小; (3) 开发商B在观察到A 的决策和市场需求(自然的行动)后,决定开 发或不开发。 如图是房地产开发博弈的博弈树。
4
路径: (path)从初始结到终点结,由结 和枝所组成的系列。 扩展式 (extensive form) 是对博弈的一种描述,满足以下条件: (1)由结和枝组成的整体结构,由单个 起始结开始到终点结, 中间无闭合的圈。 即没 有以下结构

11
1
(所有前列结全排序) (2)必须说明每个结点属于某个参与人。 (3)在自然选择的结上,有自然选择不同 枝的概率。 (4)有划分每个参与人的结的信息集。 (每个信息集是决策结集合的一个子集, 满足 (a)每个决策结都是同一个参与人的决
11
1
U 2 L R L R 1 D

完全信息动态博弈模型

完全信息动态博弈模型

完全信息动态博弈模型完全信息动态博弈模型是博弈论中一种重要的博弈模型,它描述了一组参与者在了解所有相关信息的情况下,通过一系列决策和行动来实现最优化的结果。

下面将详细介绍完全信息动态博弈模型的相关内容。

一、博弈的参与者:完全信息动态博弈模型中,通常包括两个或多个参与者,每个参与者都可以做出自己的决策和行动。

参与者可以是个人、组织、公司等,他们之间存在着相互竞争和合作的关系。

二、博弈的信息:完全信息动态博弈模型中的参与者拥有完全信息,即每个参与者都能够获得关于其他参与者的决策和行动的完整信息。

通过完全信息,参与者能够准确地评估自己的决策和行动对其他参与者的影响,并作出最优化的决策。

三、博弈的行动和策略:在完全信息动态博弈中,参与者可以选择不同的行动和策略来达到自己的目标。

每个参与者根据自己对其他参与者行动和策略的评估,以及自己的目标和利益,选择最优化的行动和策略。

四、博弈的时间顺序:完全信息动态博弈是一个时间序列上的博弈模型,参与者的决策和行动是有序进行的。

参与者按照一定的时间顺序依次进行决策和行动,每个参与者都会考虑前面参与者的行动和决策对自己的影响,进而作出自己的决策。

五、博弈的结果和收益:完全信息动态博弈模型的结果是参与者的收益和利益。

通过多轮反复的博弈过程,参与者根据自己的决策和行动可以获得不同的结果和收益。

每个参与者的最终目标是通过优化自己的决策和行动,获得最大的收益和利益。

完全信息动态博弈模型是博弈论中一种重要的模型,它能够帮助我们分析和理解多方参与者在了解所有相关信息的情况下,通过一系列决策和行动来实现最优化的结果。

通过对博弈的参与者、信息、行动和策略、时间顺序以及结果和收益的分析,可以更好地理解和应用完全信息动态博弈模型。

博弈论——完全信息动态博弈

博弈论——完全信息动态博弈

博弈论——完全信息动态博弈2 完全信息的动态博弈2.1完全和完美信息的动态博弈动态博弈(dynamic game):参与⼈在不同的时间选择⾏动。

完全信息动态博弈指的是各博弈⽅先后⾏动,后⾏动者知道先⾏动者的具体⾏动是什么且各博弈⽅对博弈中各种策略组合下所有参与⼈相应的得益都完全了解的博弈静态博弈习惯⽤战略式(Strategic form representation)表述,动态博弈习惯⽤扩展式(Extensive form representation)表述。

战略式表述的三要素:参与⼈集合、每个参与⼈的战略集合、由战略组合决定的每个参与⼈的⽀付。

扩展式表述的要素包括:参与⼈集合、参与⼈的⾏动顺序、参与⼈的⾏动空间、参与⼈的信息集、参与⼈的⽀付函数、外⽣事件(⾃然的选择)的概率分布。

n⼈有限战略博弈的扩展式表述⽤博弈树来表⽰1(1,2) (0,3)①结:包括决策结和终点结。

决策结是参与⼈采取⾏动的时点,终点结是博弈⾏动路径的终点。

第⼀个⾏动选择对应的决策结为“初始结”,⽤空⼼圆表⽰,其它决策结⽤实⼼圆表⽰。

X表⽰结的集合,x X表⽰某个特定的结。

z表⽰终点结,Z表⽰终点结集合。

表⽰结之间的顺序关系,x x′表⽰x在x′之前。

x之前所有结的集合称为x的前列集,x之后所有结的集合称为x的后续集。

以下两种情况不允许:前者违背了传递性和反对称性;后者违背了前列节必须是全排序的。

在以上两个假设之下,每个终点结都完全决定了博弈树的某个路径。

②枝:博弈树上,枝是从⼀个决策结到其直接后续结的连线,每⼀个枝代表参与⼈的⼀个⾏动选择。

在每⼀个枝旁标注该具体⾏动的代号。

⼀般地,每个决策结下有多个枝,给出每次⾏动时参与⼈的⾏动空间,即此时有哪些⾏动可供选择。

③信息集(information sets):博弈树中某⼀决策者在某⼀⾏动阶段具有相同信息的所有决策结集合称为⼀个信息集。

博弈树上的所有决策结分割成不同的信息集。

每⼀个信息集是决策结集合的⼀个⼦集(信息集是由决策结构成的集合),该⼦集包括所有满⾜下列条件的决策结:(1)每⼀个决策结都是同⼀个参与⼈的决策结。

完全信息动态博弈名词解释

完全信息动态博弈名词解释

完全信息动态博弈名词解释完全信息动态博弈是经济学和博弈论的一个重要概念,它是一种自上而下的模型,用来描述多个经济参与者之间的博弈行为。

完全信息动态博弈模型可以用来分析不同参与者之间在时间和空间上进行博弈,以求取共同利益最大化。

它允许模型解决者预测策略,分析每个参与者在某个时间点采取的不同策略所带来的结果,以此来帮助其他参与者制定最佳战略。

完全信息动态博弈的核心概念是状态和行动,也就是描述参与者在每一轮有多少种可能的策略。

它在一定的时间框架内,由描述参与者现在的状态,观察他们如何根据当前状态下每个参与者的行动,以及每个行动产生的结果,来描述某一具体策略下的最终结果。

参与者首先通过观察彼此之间的博弈行为,体会状态和行动,从而确定自己的策略,并计划未来可能出现的状态和行动,从而获得最大的利益。

例如,在一款棋类游戏中,两个对手可以通过对对方进行攻击,或者保护自己的棋子,以及改变棋局,来表明他们的能力。

在这种情况下,两个玩家拥有相同的完全信息,他们可以根据当前的棋局和自己可能采取的每一步棋,确定最优的策略,从而提高自己赢得游戏的几率。

许多实际问题也是基于完全信息动态博弈模型构建的,如政府向公司提出经济问题的解决案,或是在双方同意的情况下进行谈判等。

在这些情况下,参与者不仅需要观察当前的状态和行动,还要考虑未来的可能性,用完全信息动态博弈模型来解决问题,才能更有效地取得共同利益最大化。

完全信息动态博弈是经济学和博弈论研究中一个基本模型,它可以有效的模拟由多个经济参与者之间进行的博弈,利用状态和行动的概念,可以很好的帮助参与者制定最优策略,以达到共同利益最大化的目的。

另外,它也可以用来解决政府和公司之间的实际问题。

完全信息动态博弈是一个对经济学和博弈论有着深远作用的概念,它也被广泛应用于实践。

博弈论完全且完美信息动态博弈.ppt

博弈论完全且完美信息动态博弈.ppt

甲 分 (2,2)
不分 乙
不借 (1,0)
(-1,0) (0,4)
能否找到子博弈?
好1差
1 不卖
1


不卖
2
(0,0) (0,0)
买 不买
买 不买
(2,1)
(0,0)
(1,-1)
(-1,0)
二手车交易扩展形
结论:
(1)子博弈不能包括原博弈的第一阶段, 即动态博弈本身不会是它自己的子博弈;
(2)子博弈必须有一个明确的初始信息集, 以及必须包含初始阶段之后的所有博弈 阶段,即子博弈不能分割任何信息集或在 有多节点信息集的不完美信息博弈中可 能不存在子博弈。
3.3 子博弈和子博弈完美纳什均衡
3.3.1 子博弈 3.3.2 子博弈完美纳什均衡
3.3.1 子博弈
定义:由一个动态博弈 第一阶段以外的某阶段 开始的后续博弈阶段构 成的,有初始信息集和 进行博弈所需要的全部 信息,能够自成一个博 弈的原博弈的一部分, 称为原动态博弈的一个 “子博弈”。
乙 借
第三种开金矿博弈中, (不借-不打,不分)和 (借-打,分)都是纳什均衡。但后者不可信,不 可能实现或稳定。
结论:纳什均衡在动态博弈可能缺乏稳定性,也就 是说,在完全信息静态博弈中稳定的纳什均衡,在 动态博弈中可能是不稳定的,不能作为预测的基础。
根源:纳什均衡本身不能排除博弈方策略中包含的 不可信的行为设定,不能解决动态博弈的相机选择 引起的可信性问题
《博弈论与信息经济学》
第三章
完全且完美信息动态博弈
本章讨论动态博弈,所有博弈方都对博弈 过程和得益完全了解的完全且完美信息动态博 弈。这类博弈也是现实中常见的基本博弈类型。 由于动态博弈中博弈方的选择、行为有先后次 序,因此在表示方法、利益关系、分析方法和 均衡概念等方面,都与静态博弈有很大区别。 本章对动态博弈分析的概念和方法,特别是子 博弈完美均衡和逆推归纳法作系统介绍,并介 绍各种经典的动态博弈模型。

博弈论第四章 完全且完美信息动态博弈

博弈论第四章 完全且完美信息动态博弈

0,0
需求小的情况 开发商A
开发商B 开发 不开发
开发 -3000,-3000 1000,0
不开发 0,1000
0,0
精的扩展式表述包括四个要素:
✓ 参与人集合(Player) ✓ 每个参与人的战略集合(Strategy) ✓ 博弈的顺序(Order) ✓ 由战略组合决定的每个参与人的支付(Payoff)
( 1, 2 ) ( -1, -1 ) ( 0, 0 ) ( 2, 1 )
( 1, 2 ) ( -1, -1 ) ( 0, 0 ) ( 2, 1 )
( 1, 2 ) ( -1, -1 ) ( 0, 0 ) ( 2, 1 )
精选PPT
12
动态博弈的 战略
精选PPT
13
动态博弈的战略的表述
✓ 战略:参与人在给定信息集的情况下选择行动的规则,它规定参 与人在什么情况下选择什么行动,是参与人的“相机行动方案”。
si表示第i个参与人的特定战略
Si si代表第i个参与人所有可选战 择略 的集合
如果n个参与人每人选择战 一略 个, n维向量s (s1,s2, ,si, ,sn)称为一个战略组合 si表示第i个人选择的战略
精选PPT
6
扩展式表示的一个例子
精选PPT
7
博弈树始于 局中人1 的一个决策结点,这时1
要从L和R中作出选择,如果局中人1选择L,其后就
到达 局中人2 的一个决策结点,这时,局中人2要
从L′和R′中作出选择。类似地,如果局中人1选择R, 则将到达局中人2的另一个决策结点。
这时局中人2从L′和R′中选择行动。无论局中人2 选择了哪一个,都将到达终结点 (即博弈结束)且两 局中人分别得到相应终点节下面的收益。

lec4_完全信息动态博弈

lec4_完全信息动态博弈

博 弈 论 讲 义 —— 完 全 信 息 动 态 博 弈
动态博弈的概念
由于动态博弈各参与人进行决策具有明 显的阶段性、行动次序性,通常用扩展 式(extensive form)表述法描述这些信息。
博 弈 论 讲 义 —— 完 全 信 息 动 态 博 弈
博弈的扩展式表示
参与人集合:i=1, … ,N。此外,用0表 示虚拟参与人“自然”;
A 不 能 区 分 (D,L)和(D,R) 是正常的,因 为参与人1可能 没有观察到B是 选择了L还是选 择了R。
博 弈 论 讲 义 —— 完 全 信 息 动 态 博 弈
一些说明
“完美回忆”的数学描述
若x’和x’’属于同一个信息集,即x’∈h(x’’),y’ 是x’的前列结(排在x’前面的决策结),且 均属于同一参与人i。 那么,存在一个y’’(可能是y’本身),满足y’’ ∈h(x’), y’’是x’’的前列结。 在y’到达x’的行动与y’’到达x’’的行动完全一 致。
(4,4)
扩展式表述简例
图2-2是包括自然选择的博弈扩展式表述
A
开发 大(1/2) 不开发
0
小(1/2) 大(1/2)
0
小(1/2)
B
B
B
B
(8,0)
(-3,-3)
(1,0) (0,8) (0,0) (0,1)
(0,0)
图2-2 房地产开发博弈
博 弈 论 讲 义 —— 完 全 信 息 动 态 博 弈
(-3,-3)
图2-8 房地产开发博弈
博 弈 论 讲 义 —— 完 全 信 息 动 态 博 弈
动态博弈的策略式表述
若把B的信息集从左 到右排列,上述四个 纯战略可以简单记为

经典:博弈论-完全信息动态博弈

经典:博弈论-完全信息动态博弈
高需求 低需求 不完全信息情形下的博弈: 需求方的信号 承诺 长协价格从年度定价到季度定价
2、博弈的扩展式表述的要素
博弈的扩展式表述包含以下要素: (1) 参与人集合:i=1,2,…,n。此外,用N代表虚拟
参与人——自然。 (2) 行动顺序:谁在什么时候行动。 (3) 参与人的行动空间: (4) 参与人的信息集: (5) 参与人的策略集: (6) 参与人的支付函数: (7)外生事件的概率分布。
博弈的收益矩阵
(1)高需求
开发 开发商A 不开发
(2)低需求
开发 开发商A 不开发
开发商B
开发
不开发
2, 2
4, 0
0, 4
0, 0
开发商B
开发
不开发
-1, -1
1, 0
0, 1
0, 0
博弈分类
按开发商博弈的先后顺序分: 静态博弈:两个开发商同时决策,或后决策者不
能观察到先行动者的行动。 动态博弈:博弈有先后顺序,且后决策者能观察
完全信息动态博弈图示:N A B
开发 (2,2)
高需求

A
N
低需求
开发 不开发 开发 不开发
不开发 (4,0)
开发 (0,4) B 不开发 (0,0)
开发 (-1,-1) 不开发 (1,0)
开发 (0,1) 不开发 (0,0)
(4)不完全信息动态情形:ANB
开发商A不清楚市场的需求状态,决定是否开发; 开发商B 在观察到市场需求和A的决策后决定是否开发。
到先行动者的行动后再行动。 按开发商是否知道市场需求状态分:
完全信息博弈:若两个开发商都知道市场需求状 态(高需求或低需求)。
不完全信息博弈:由自然决定市场的需求状态, 两开发商不知道。 共同知识:在市场各种可能状态和各开发商不同策 略组合下的得益矩阵是双方的共同知识。

完全信息动态博弈模型

完全信息动态博弈模型

完全信息动态博弈模型完全信息动态博弈模型是博弈论中的一种重要模型,它描述了参与者具有完全信息(即对所有相关信息都有准确了解)的情况下进行的博弈过程。

在该模型中,参与者能够观察其他人的行为和选择,并根据这些观察作出自己的决策。

在完全信息动态博弈模型中,博弈过程分为多个阶段。

每个参与者在每个阶段都必须做出自己的决策,而后续的决策将依赖于先前的决策。

参与者可以根据观察到的其他人的行为和选择来调整自己的策略。

这种博弈模型特别适用于描述多个参与者之间具有时间序列关系的情况,如竞价拍卖、价格战等。

完全信息动态博弈模型可以用博弈树来表示。

博弈树由一系列节点和边组成,每个节点表示参与者的决策点,边表示参与者的决策选择。

根节点表示博弈的初始状态,而叶节点表示博弈的终止状态。

在每个节点上,参与者根据其他人的选择和观察到的信息来做出决策。

通过沿着博弈树的边一步一步向下移动,参与者可以在每个阶段根据观察到的信息进行反应和调整。

完全信息动态博弈模型需要考虑的核心概念是策略和均衡。

策略是参与者通过决策选择在每个节点上的行为规则,决定了参与者在每个阶段应该如何行动。

而均衡是一种状态,其中所有的参与者都无法通过单方行动来改善自己的收益。

在完全信息动态博弈模型中,通常存在多个均衡解,其中每个参与者都选择出使自己获得最大收益的策略。

通过建立完全信息动态博弈模型,我们可以分析不同参与者的决策行为和相应结果的演化过程。

通过求解均衡解,我们可以预测在不同情况下各参与者的最佳策略选择,从而为参与者提供决策依据。

此外,完全信息动态博弈模型也可以用于研究不同决策因素对博弈结果的影响,并为参与者提供制定最优策略的指导。

总之,完全信息动态博弈模型是博弈论中重要的一个模型,它描述了参与者具有完全信息的情况下进行的博弈过程。

通过建立博弈树、分析策略和求解均衡解,我们可以预测参与者的决策行为和相应结果的演化,并提供决策指导。

这种模型对于研究多个参与者之间具有时间序列关系的博弈情况非常有用,为决策者提供了重要的参考和指导。

博弈论_完全信息动态博弈

博弈论_完全信息动态博弈

完全且完美信息动态博弈的子博弈
在完全且完美信息的动态博弈里,由于在每一 个阶段需行动的局中人对该阶段以前的行动组 合是完全了解的,所以在它的扩展式表述中, 该节点一定是单信息节点。 也就是说,每个信息集都是单节点信息集,因 此在完全且完美信息的动态博弈里,从任何一 个节点(不包括顶部节点和底部的终节点)出 发,都存在一个子博弈 对于取数游戏,若修改规则,可有更多子博弈
例子:私奔博弈
需看到的是,私奔决策是由卓文君做出的。她 需要做出这样的选择,是因为她已经知道她父 亲卓王孙反对把她嫁给穷书生司马相如。卓王 孙甚至不惜以断绝父女关系作为威胁,让她断 掉念头。 可以用一个完全且完美信息的动态博弈来描述 卓文君与其父亲之间的博弈。 第一步,卓文君在“私奔”与“断绝想法”中选择 第二步,父亲在“默认”与“断绝父女关系”选择
动态博弈的特征
收益函数
因行动组合的个数小于策略组合的个数,而且更为 直观,所以在动态博弈中,出于分析的方便,局中 人的支付函数是从行动组合到实数集的映射 当有n个局中人时,每个行动组合对应一个n维的实 数向量 但如果动态博弈仍然用策略式来表述的话,其支付 函数也仍然是从策略组合到实数集的映射 对于完全信息的动态博弈,支付函数对各方而言, 都是共同知识
例子
① 甲 ② 左 右 左 乙 ② 右
(2, 0)
(2, -1)
(1, 0)
(3, 1)
13
① 左 ② 甲 ① (-1, 2) 前 (0, 4) 后 (1, 0) (0, 0) 前 (4, -1) 后 (3, 3) 乙 甲

② 乙 ①
(3, 0, 0)

(1, 0, 3)

(2, 3, 1)

(3, 2, 9)

完全信息动态博弈 经典例子

完全信息动态博弈 经典例子

完全信息动态博弈经典例子完全信息动态博弈是博弈论中的一个重要概念,指的是博弈参与者在做决策时拥有完全的信息。

下面是符合要求的10个完全信息动态博弈的经典例子:1. 拍卖场景:假设有两个竞拍者参与一场拍卖,他们都知道对方的出价和拍卖物品的价值,他们需要根据对方的出价和自己对拍卖物品价值的估计来决定自己的出价。

2. 囚徒困境:两名囚犯被关押在不同的牢房中,检察官给他们一个选择,如果他们都保持沉默,那么都只会被判轻罪;如果其中一个人供出另一个人,供出者会被判轻罪,而另一个人则会被判重罪;如果两人都供出对方,那么都会被判重罪。

囚犯在做出决策时,都知道对方的选择和可能的后果。

3. 企业竞争:两家竞争对手企业同时决定是否要进入一个新市场。

如果只有一家企业进入市场,它将获得垄断地位,赢得较高的利润;如果两家企业都进入市场,将会有激烈的竞争,利润都会下降。

两家企业在做出决策时,了解对方的行动和可能的后果。

4. 汽车悖论:假设有两辆车同时行驶在一条单行道上,它们需要决定是否要超车。

如果只有一辆车超车,它将获得更快的到达目的地的时间;如果两辆车同时超车,将会导致交通堵塞,两辆车的到达时间都会延长。

两辆车在做出决策时,了解对方的行动和可能的后果。

5. 资源分配:假设有两个人需要共同分配一笔资源,他们都知道对方对资源的需求和自己对资源的评估。

他们需要根据对方的需求和自己的评估来决定如何分配资源。

6. 股票交易:假设有两个投资者同时决定是否要买入或卖出某只股票。

他们都知道对方的交易意向和市场的情况,他们需要根据对方的交易意向和市场情况来决定自己的交易策略。

7. 网络安全攻防:假设有两个黑客分别掌握了对方的攻击技术和防御技术。

他们需要根据对方的技术和自己的技术来决定如何进行攻击或防御。

8. 购物决策:假设有两个消费者同时决定是否要购买某个商品。

他们都知道对方的购买意向和商品的价格,他们需要根据对方的购买意向和商品的价格来决定自己的购买策略。

博弈论5

博弈论5

子博弈完美纳什均衡
• 1965年塞尔顿(Selten)给出了子博弈完美纳什 均衡的概念。它需要包含两点:1.是纳什均衡.2. 不包含不可信的承诺和威胁。 • 定义:若动态博弈中各博弈方的策略在动态博弈 本身和所有子博弈中都构成纳什均衡,则该策略 组合称为子博弈完美纳什均衡。 • 用这个概念来看前面的借钱投资问题。在前面的 那个问题中,乙选借(不分就打)、甲选分是子 博弈完美纳什均衡。而当乙打官司成本提高后, 打的威胁不可信时,在从甲开始的子博弈中不是 纳什均衡。因此,(借,分)不是稳定的。 • 就是说,在静态博弈中要用纳什均衡,在动态博 弈中要用子博弈完美纳什均衡概念。二者是同等 2013-5-12 22 重要的。
2013-5-12 15
子博弈和逆推归纳法

为了把动态博弈问题简化,或分析的方便, 我们把动态博弈的某一阶段开始的后续所有阶段 构成的博弈称为子博弈。比如,在借钱投资问题 中,乙选择借以后,从甲开始决策起的博弈,就 称为原博弈的子博弈。当然,当甲选择不分时, 乙又开始决策,从这时起的博弈既是原博弈的子 博弈,也是从甲开始的子博弈的子博弈。 • 原博弈并不作为特殊的子博弈。也并不是每一个 博弈方开始决策时都能形成子博弈。
2013-5-12 19
• 再看法律保障不足时的借钱投资问题:
乙 借 不借
甲 不分 分 乙
(1,0)
(2,2)
打 不打
(-1,0)
2013-5-12
(0,4)
20
分析
• 只是稍微改动,结果却大不相同。甲不分时, 乙的打官司威胁变为是不可信的。因此,乙第 一阶段应该选不借,博弈结束。但是,用静态 博弈中纳什均衡概念对照,发现(借(不分则 打),分)仍是纳什均衡。因为谁单独离开这 个组合将不会增加收益。这两种分析的结论是 矛盾的。原因在于,实现(借(不分则打), 分)的纳什均衡策略包含一个不可信的威胁— 即乙在第三阶段选打。就是说,一般的纳什均 衡概念在分析动态博弈时,不能排除不可信的 承诺和威胁。纳什均衡概念不能完全照搬。21 2013-5-12

2.1_完全信息动态博弈

2.1_完全信息动态博弈

例如房地产开发博弈: a、假设B在决策时并不确切的 知道自然的选择。见图2.3 b、B知道自然的选择,但不知 道A的选择,见图2.4 完美信息博弈:指博弈树的所 有信息集都是单结的。它意味 着没有任何两个参与人同时行 动,并且所有后行动者能确切 的知道前行动者的行动,及大 家见到的自然行动。
图 2.3
“共同知识”( common knowledge)
指的是“所有参与人知道所有参与人知道,所有参与人知道所有参与人知道 所有参与人知道……”的知识。
在现实有许多博弈中,即使所有参与人“共同”享 有某种知识,每个参与人也许并不知道其他参与人 知道这些知识,或者并不知道其他人知道自己拥有 这些知识。这种情况被称为“一致信 念”(concordant beliefs)。
2、扩展式除包括以上三要素外,更重要的是其
“扩展”,主要指参与人的战略空间。战略对 应于参与人的相机行动规则。
具体来讲,博弈的扩展式表述包括以下因素: (1)参与人集合:i=1,…,n;此外,用N代表虚拟参 与人“自然”; (2)参与人的行动顺序:谁在什么时候行动; (3)参与人的行动空间:在每次行动时,参与人有些什 么选择; (4)参与人的信息集:每次行动时,参与人知道些什么; (5)参与人的支付函数:在行动结束之后,每个参与人 得到些什么(支付是所有行动的函数); (6)外生事件(即自然的选择)的概率分布。
琼 斯 (大,大) (大,小) (小,大) (小,小) -1 , -1 1,1 (E3)
史 密 斯
大 小
2 , 2(E1)
-1 , -1
2 , 2(E2)
1,1
-1 ,-1
-1 , -1
总的表述:
均衡 E1 E2 E3 策略
({L },{L , L})
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 完全信息的动态博弈2.1完全和完美信息的动态博弈动态博弈(dynamic game):参与人在不同的时间选择行动。

完全信息动态博弈指的是各博弈方先后行动,后行动者知道先行动者的具体行动是什么且各博弈方对博弈中各种策略组合下所有参与人相应的得益都完全了解的博弈静态博弈习惯用战略式(Strategic form representation)表述,动态博弈习惯用扩展式(Extensive form representation)表述。

战略式表述的三要素:参与人集合、每个参与人的战略集合、由战略组合决定的每个参与人的支付。

扩展式表述的要素包括:参与人集合、参与人的行动顺序、参与人的行动空间、参与人的信息集、参与人的支付函数、外生事件(自然的选择)的概率分布。

n人有限战略博弈的扩展式表述用博弈树来表示1(1,2) (0,3)①结:包括决策结和终点结。

决策结是参与人采取行动的时点,终点结是博弈行动路径的终点。

第一个行动选择对应的决策结为“初始结”,用空心圆表示,其它决策结用实心圆表示。

X表示结的集合,x X表示某个特定的结。

z表示终点结,Z表示终点结集合。

表示结之间的顺序关系,x x´表示x在x´之前。

x之前所有结的集合称为x的前列集,x之后所有结的集合称为x的后续集。

以下两种情况不允许:前者违背了传递性和反对称性;后者违背了前列节必须是全排序的。

在以上两个假设之下,每个终点结都完全决定了博弈树的某个路径。

②枝:博弈树上,枝是从一个决策结到其直接后续结的连线,每一个枝代表参与人的一个行动选择。

在每一个枝旁标注该具体行动的代号。

一般地,每个决策结下有多个枝,给出每次行动时参与人的行动空间,即此时有哪些行动可供选择。

③信息集(information sets):博弈树中某一决策者在某一行动阶段具有相同信息的所有决策结集合称为一个信息集。

博弈树上的所有决策结分割成不同的信息集。

每一个信息集是决策结集合的一个子集(信息集是由决策结构成的集合),该子集包括所有满足下列条件的决策结:(1)每一个决策结都是同一个参与人的决策结。

(2)该参与人知道博弈进入该集合的某个决策结,但不知道自己究竟处于哪一个决策结。

引入信息集的目的是为了描述当一个参与人要作出决策时他可能不知道“之前”发生的所有事情。

(之前加引号是因为,博弈树中的决策结的排序并不一定与行动的时间顺序相一致)H 表示信息集集合,h 表示一个特定的信息集。

h (x )表示包含决策结x 的信息集。

h (x )是一个信息集,意味着在x 决策的参与人不确定他处在x 结点还是其它x ´ h (x )结点。

这同时意味着一个决策结只能属于一个信息集。

信息集满足的条件:1、任何一个决策结不能是属于同一信息集的其它决策结的前列结或后续结。

2、同一信息集的所有结都是同一参与人的决策结,即参与人不会将自己行动的结与他人行动的结混淆。

3、一个参与人在属于同一信息集的每一个决策结的行动空间应该是相同的。

1a b 2 c d e 1 1一个静态博弈的扩展式表述一个信息集可能包含多个决策结,也可能只包含一个决策结。

只2f 1 1g h i j k l m n2(2,1)(3,1)(2,4) (5,1) (0,6) (7,1)(2,4)vw(1,2)(0,3)包含一个决策结的信息集称为单结信息集;如果博弈树的所有信息集都是单结的(如果有虚拟参与人自然,则所有的参与人都知道自然的行动),该博弈称为完美信息博弈(Game of perfect information);否则就是不完美信息博弈。

完美信息(perfect information): 在博弈的每次行动的参与人完全知道博弈的历史,即每个信息集只有一个决策结。

完美信息博弈意味着博弈中没有任何两个参与人同时行动,而且所有后行动者都能确切知道先行动者选择的行动,所有参与人都知道自然的行动。

完全信息(complete information):参与人完全了解对手特征,既没有事前的不确定性。

不完全信息意味着不完美信息,但逆定理不成立。

在博弈论中,自然的信息集一般假定为单结的。

因为自然是随机行动的,自然在参与人决策之后行动等价于自然在参与人决策之前行动但参与人不能观测到自然的行动。

因此,博弈树上是否出现连接不同决策结的虚线取决于我们如何安排决策结的顺序。

决策结的顺序:如果知道前决策者的选择,后决策者必须出现在后面,如果不知道前决策者的选择,后决策者可以出现在后面,也可以出现在前面。

相同的博弈可以不同的博弈树表示,但同一个参与人在代表同一博弈的不同博弈树中的信息集的数量必须相同,自然除外。

博弈一般假定满足完美回忆的要求,完美回忆是指没有参与人会忘记自己以前知道的事情,所有参与人都知道自己以前的选择。

1确保博弈具有完美回忆的要求:如果①x 2和x 1属于同一信息集;②x 是x 1的前列结;③x 和x 1都是同一个参与人的决策结;那么,存在一个x ´´(可能是x 本身)满足:①x ´´和x 属于同一信息集;②x ´´是x 2的前列结;③从x 到达x 1的行动和x ´´到达x 2的行动是一样的。

即必须满足“同一行动”和“同一信息集”假设。

当博弈涉及到外生不确定性事件时,我们假定“自然”以某种概率选择某个特定事件,所有参与人对于自然的选择具有相同的先验概率。

即所谓的“海萨尼公理”。

均衡结果有三个(进入,默许)、(不进入,斗争)、(不进入、默许)定理:一个有限完美信息博弈有一个纯战略纳什均衡(zermelo,1913; kuhn,1953)。

策略的可置信性问题:策略是博弈方自己预先设定的,在各个博弈阶段针对各种情况所作的相应行为选择的计划,本身没有强制力,且实施起来有一个过程。

在该过程中,根据自己的利益需要,他完全可以改变这个计划,从而存在“相机选择”,产生策略的可置信性问题。

BB(40,50)(-10,0)(0,300)默许斗争进入不进入A默许斗争(0,300)纳什均衡:(进入、(默许、默许))(不进入、(斗争、斗争))(进入、(默许、斗争))(不进入、(斗争、默许))2.1.A 子博弈精炼纳什均衡、逆向归纳法“子博弈精炼纳什均衡”(subgame perfect Nash equilibrium,selten,1965),用于区分动态博弈中的“合理纳什均衡”与“不合理纳什均衡”,将纳什均衡中包含有不可置信威胁策略的均衡剔除出去,就是说,使最后的均衡中不再包含有不可置信威胁策略的存在。

子博弈:一个扩展式表示博弈的子博弈G是由一个单结信息集x 开始的与所有该决策结的后续结(包括终点结)组成的能自成一个博弈的原博弈的一部分。

要求:①x是一个单结信息集;②子博弈的信息集和支付向量都直接继承自原博弈;③子博弈不能切割原博弈的信息集。

任何博弈本身称为其自身的子博弈。

扩展式博弈的战略组合s*=(s*1,…,s*i , …,s*n)是一个子博弈精炼纳什均衡,如果:(1)它是原博弈的纳什均衡;(2)它在每一个子博弈上给出纳什均衡。

简单的讲,一个战略组合是子博弈精炼纳什均衡,当且仅当他在每一个子博弈(包括原博弈)上都构成一个纳什均衡。

如果整个博弈是唯一的子博弈,那么纳什均衡与子博弈精炼纳什均衡相同,如果有其它子博弈,则有些纳什均衡可能不构成子博弈精炼纳什均衡。

(开发,{不开发,开发})是唯一一个子博弈精炼纳什均衡均衡路径(equilibrium path ):纳什均衡所在的路径。

其它的路径都是该纳什均衡的非均衡路径(off-equilibrium path )。

构成子博弈精炼纳什均衡的战略不仅在均衡路径上是最优的,而且在非均衡路径上也是最优的。

这是纳什均衡与子博弈精炼纳什均衡的实质区别。

只有当一个战略规定的行动规则在所有可能的情况下都是最优的时,它才是一个合理的、可置信的战略。

序贯理性(sequential rationality ):不论过去发生了什么,参与人应该在博弈的每一个时点上最优化自己的决策。

子博弈精炼纳什均衡求法——逆向归纳法求解对于我们现在所讨论的有限完美信息动态博弈,逆向归纳法是求解子博弈精炼纳什均衡的最简便方法。

在求解子博弈精炼纳什均衡时,从最后一个子博弈开始逆推上去,这就是逆向归纳法。

所以逆向归纳法就是从动态博弈的最后一个阶段或最后一个子博弈开始,逐步向前倒推以求解动态博弈均衡的方法。

逆向归纳法是重复剔出劣战略方法在扩展式博弈中的应用。

逆向归纳法不适合于无限博弈和不完美信息博弈。

简单的完全和完美信息博弈: 1. 参与人 1 选择行动a 12. 参与人 2 观察a 1,然后选择a 23. 收益是 u 1(a 1, a 2)和u 2(a 1, a 2)求解博弈: 逆向归纳法 (backward induction) 1. 求解第二个阶段,对于a 1,求a 222max A a ∈u 2(a 1,a 2)其解: a 2= R 2(a 1) ---- 反应函数 2. 求解第一个阶段11max A a ∈ u 1(a 1,R 2(a 1))其解: a *1逆向归纳解(outcome): (a *1, R 2(a *1) ) 注意:在动态博弈中,行动与战略是不同的概念; 逆向归纳解与纳什均衡是不同的概念。

例11L R220 L'R'111 L''R''3 00 2用逆向归纳法:第3步:参与人1 选择L'';第2步:参与人2 选择L';第1步:参与人1 选择L逆向归纳解: L(在第一个阶段结束)。

如果博弈在第一个阶段中不结束,可能原因是什么?甲在开采一价值4万元的金矿时缺1万元资金,而乙正好有1万元资金可以投资。

甲希望乙能将1万元资金借给自己用于开矿,并许诺在采到金子后与乙对半分成,乙是否该将钱借给甲呢?关于逆向归纳法的理性假定:所有参与人是理性的是所有参与人的共同知识2.1.B Stackelberg 模型(1934)二个企业,生产产量: q1, q2市场需求: P = a–Q, 其中Q = q1 + q2成本: C i (q i) = cq i, i = 1, 2.利润:πi (q1, q2) = Pq i–C i (q i) = (a– (q1 + q2))q i–cq i,博弈的顺序:(1) 企业1 选择q1≥ 0;(2) 企业2 观察q1然后选择q2≥ 0;(3) 收益: πi(q i, q j) = q i [P(Q) –c],其中P(Q) = a–Q, Q = q1 + q2求逆向归纳解(1)阶段2,企业2在观察q1后选择q2满足2max ≥q q 2 (a – (q 1 + q 2) – c )解出q 2 = R 2 (q 1) = 21cq a --(2)阶段1,企业 1预测到R 2 (q 1),求q 11max ≥q q 1 (a – (q 1 + R 2 (q 1))– c )=01max ≥q q 121cq a -- 解出q 1* =2c a -, q 2* =4c a -,π1*=2()8a c -π2*= 2()16a c -与 Cournot 模型比较q 1* = q 2* =3ca -,π1*=π2*= 9)(2c a -结果:先进入市场者有更多的利润。

相关文档
最新文档