太阳能电池基本特性实验报告
太阳能电池特性测试实验报告-资料类
太阳能电池特性测试实验报告-资料类关键信息项:1、实验目的2、实验设备与材料3、实验原理4、实验步骤5、数据记录与处理6、实验结果与分析7、误差分析8、结论与展望1、实验目的11 了解太阳能电池的工作原理和基本特性。
111 掌握太阳能电池的输出特性和效率的测量方法。
112 研究光照强度、负载电阻等因素对太阳能电池性能的影响。
2、实验设备与材料21 太阳能电池板211 光源模拟器212 数字万用表213 可变电阻箱214 数据采集卡及计算机3、实验原理31 太阳能电池的工作原理基于光伏效应,当光照射到半导体材料上时,光子能量被吸收,产生电子空穴对。
在内建电场的作用下,电子和空穴分别向两端移动,形成光生电动势。
311 太阳能电池的输出特性包括短路电流(Isc)、开路电压(Voc)、最大输出功率(Pm)等。
312 太阳能电池的效率(η)定义为输出电功率与入射光功率之比。
4、实验步骤41 连接实验设备,将太阳能电池板与光源模拟器、数字万用表、可变电阻箱等连接好。
411 调节光源模拟器的光照强度,设置不同的光照条件。
412 改变可变电阻箱的电阻值,测量太阳能电池在不同负载电阻下的输出电压(V)和输出电流(I)。
413 记录数据,包括光照强度、负载电阻、输出电压和输出电流等。
5、数据记录与处理51 将测量得到的数据整理成表格形式,包括光照强度、负载电阻、输出电压、输出电流等。
511 计算太阳能电池的短路电流(Isc)、开路电压(Voc)和最大输出功率(Pm)。
512 根据公式计算太阳能电池的效率(η)。
6、实验结果与分析61 绘制太阳能电池的输出特性曲线,包括输出电压输出电流曲线(VI 曲线)和输出功率输出电压曲线(PV 曲线)。
611 分析光照强度对太阳能电池输出特性的影响,随着光照强度的增加,短路电流和开路电压均增大。
612 研究负载电阻对太阳能电池输出功率的影响,存在一个最佳负载电阻,使得输出功率达到最大值。
太阳能电池特性及应用实验报告
太阳能电池特性及应用实验报告太阳能电池特性及应用实验报告引言:太阳能电池是一种将太阳能转化为电能的装置,它在可再生能源领域具有重要的应用前景。
本实验旨在研究太阳能电池的特性,并探索其在实际应用中的潜力。
一、太阳能电池的基本原理太阳能电池是利用光电效应将太阳能转化为电能的装置。
光电效应是指当光照射到半导体材料上时,光子的能量会激发电子跃迁,从而产生电流。
太阳能电池通常由p-n结构的半导体材料构成,其中p型半导体富含正电荷,n型半导体富含负电荷。
当光照射到p-n结构上时,光子的能量会激发p-n结附近的电子,使其跃迁到导带中,形成电流。
二、太阳能电池的特性参数太阳能电池的性能主要由以下几个参数来描述:1. 开路电压(Open Circuit Voltage,简称OCV):在没有外部负载的情况下,太阳能电池正极和负极之间的电压。
OCV主要取决于半导体材料的能带结构和光照强度,通常在0.5V至1V之间。
2. 短路电流(Short Circuit Current,简称SCC):在外部负载为零时,太阳能电池正极和负极之间的电流。
SCC主要取决于光照强度和半导体材料的光电转换效率,通常在1mA至10mA之间。
3. 填充因子(Fill Factor,简称FF):填充因子是太阳能电池输出功率与最大输出功率的比值,反映了太阳能电池的电流-电压特性曲线的平坦程度。
填充因子越接近1,表示太阳能电池的性能越好。
4. 转换效率(Conversion Efficiency):转换效率是指太阳能电池将太阳能转化为电能的比例,通常以百分比表示。
转换效率越高,表示太阳能电池的能量利用效率越高。
三、太阳能电池的应用实验为了进一步了解太阳能电池的特性和应用潜力,我们进行了一系列实验。
1. 光照强度对太阳能电池性能的影响实验:我们在实验室中设置了不同光照强度的环境,通过改变光源的距离和光源的亮度来调节光照强度。
实验结果表明,随着光照强度的增加,太阳能电池的输出电流和功率也随之增加,但是开路电压基本保持不变。
太阳能电池特性研究实验报告
太阳能电池特性研究实验报告太阳能电池特性研究实验报告引言:太阳能作为一种清洁、可再生的能源,近年来备受关注。
太阳能电池作为太阳能利用的核心技术之一,其特性研究对于提高太阳能利用效率具有重要意义。
本实验旨在探究太阳能电池的特性及其对环境因素的响应。
一、实验目的本实验旨在研究太阳能电池的特性,包括开路电压、短路电流、填充因子和转换效率,并探究环境因素对太阳能电池特性的影响。
二、实验原理太阳能电池是利用光生电压效应将太阳能转化为电能的装置。
在太阳能电池中,光线照射到半导体材料上,激发出电子-空穴对,形成光生电流。
通过将正负极连接外部电路,可以将光生电流转化为电能。
三、实验步骤1. 准备实验所需材料和设备,包括太阳能电池、光源、电压表、电流表和电阻箱等。
2. 将太阳能电池置于光源下方,调整光源的强度,使得太阳能电池表面接收到均匀的光照。
3. 使用电压表和电流表分别测量太阳能电池的开路电压和短路电流。
4. 调整电阻箱的阻值,改变电路中的负载,记录太阳能电池的输出电压和输出电流。
5. 根据实验数据计算太阳能电池的填充因子和转换效率。
通过实验测量,得到了太阳能电池在不同光照强度下的开路电压和短路电流。
随着光照强度的增加,太阳能电池的开路电压呈现出先增大后减小的趋势,而短路电流则随光照强度的增加而增加。
这是因为在光照较弱时,太阳能电池中的载流子复合速率较慢,导致开路电压较低。
随着光照强度的增加,载流子的生成速率增加,导致短路电流增加。
然而,当光照强度过高时,太阳能电池中的电子-空穴对的生成速率达到饱和,载流子复合速率也增加,导致开路电压下降。
填充因子是太阳能电池特性的重要参数之一,它反映了太阳能电池的电流输出能力。
通过实验测量的数据,可以计算出太阳能电池的填充因子。
填充因子的大小受到太阳能电池的内部电阻和光照强度的影响。
当太阳能电池的内部电阻较小时,填充因子较大;而当光照强度较小时,填充因子较小。
转换效率是衡量太阳能电池性能的指标之一,它反映了太阳能电池将太阳能转化为电能的能力。
太阳能电池特性研究实验报告
太阳能电池特性研究实验报告实验目的:本实验旨在研究太阳能电池的特性,包括其源电压、最大功率点、短路电流、开路电压等参数的测量与分析。
实验仪器:太阳能电池板、电子负载、数字万用表、直流电源、光强计、亚麻线等。
实验步骤:1.搭建实验电路,将太阳能电池板与电子负载、直流电源、数字万用表、光强计等设备按照实验要求连接起来;2.将电池板朝向太阳,并利用光强计调节光照强度,使其保持恒定不变;3.通过调节电子负载,将太阳能电池输出电流调整到不同值,记录下此时太阳能电池的输出电压、电流和光照震荡度等参数,并计算得出其等效电阻;4.统计数据,绘制实验结果图表;5.分析实验结果,比较其与标准太阳能电池参数的区别,并解释原因。
实验结果:通过实验,我们得出如下结果:1.太阳能电池的源电压随着光照强度的增加而增大;2.当太阳能电池的输出电流为最大功率点时,其输出功率达到最大值;3.短路电流是一个恒定的值,不随光照强度而变化;4.开路电压随着光照强度的增加而略有增大。
实验分析:从实验结果来看,与标准太阳能电池相比,我们的实验结果比较接近。
这表明我们的实验操作规范、数据准确。
但是,我们发现开路电压和最大功率点的偏差比较大,原因可能是我们使用的太阳能电池板质量不佳,功率转换效率不够高。
综上所述,通过本实验,我们了解了太阳能电池的特性,为今后的太阳能电池研究提供了依据。
同时,我们也发现了实验中存在的问题,为今后的改进提出了一些建议。
实验结论:太阳能电池的特性表现为:源电压随着光照强度的增加而增大,当电池输出电流为最大功率点时,其输出功率达到最大值。
短路电流是一个恒定的值,不随光照强度而变化。
开路电压随着光照强度的增加而略有增大。
本实验结果比较接近标准太阳能电池参数,但存在偏差,可能是由于太阳能电池板的质量不佳。
太阳能电池基本特性研究实验报告
太阳能电池基本特性研究实验报告一、引言。
太阳能电池是一种能够将太阳光直接转化为电能的装置,是目前可再生能源中应用最为广泛的一种。
太阳能电池的基本工作原理是利用光伏效应将太阳光能转化为电能。
本实验旨在研究太阳能电池的基本特性,为进一步了解太阳能电池的工作原理和性能提供实验数据和分析。
二、实验目的。
1. 研究太阳能电池的工作原理;2. 测量太阳能电池的输出电压和电流随光照强度的变化规律;3. 分析太阳能电池的最大功率点及其影响因素。
三、实验原理。
太阳能电池是由多个光伏电池组成的,光伏电池是一种能够将太阳能直接转化为电能的半导体器件。
当太阳光照射到光伏电池上时,光子能量被半导体材料吸收,激发出电子-空穴对,从而产生电流。
太阳能电池的输出特性与光照强度、温度等因素密切相关。
四、实验内容与步骤。
1. 实验仪器,太阳能电池、光照度测量仪、电压表、电流表、直流电源等;2. 实验步骤:a. 将太阳能电池放置在光照度测量仪下,并连接电压表和电流表;b. 调节直流电源输出电压,记录不同光照强度下太阳能电池的输出电压和电流值;c. 分析数据,绘制太阳能电池输出特性曲线。
五、实验数据与分析。
通过实验测量和数据处理,得到了太阳能电池在不同光照强度下的输出电压和电流值,绘制了太阳能电池的输出特性曲线。
实验结果表明,太阳能电池的输出电压和电流随光照强度的增加而增加,但在一定光照强度范围内,太阳能电池的输出功率并不是随着光照强度的增加而线性增加,而是存在一个最大功率点。
六、实验结论。
1. 太阳能电池的输出电压和电流随光照强度的增加而增加;2. 太阳能电池存在最大功率点,该点受光照强度和温度等因素影响;3. 实验结果验证了太阳能电池的基本特性。
七、实验总结。
通过本次实验,我们对太阳能电池的基本特性有了更深入的了解,掌握了太阳能电池的输出特性曲线绘制方法,为今后的太阳能电池研究和应用奠定了基础。
八、参考文献。
1. 高等学校太阳能电池实验教学研究组. 太阳能电池实验教学研究[M]. 北京: 清华大学出版社, 2010.2. 刘志远. 太阳能电池原理与应用[M]. 北京: 机械工业出版社, 2008.以上就是本次太阳能电池基本特性研究实验的全部内容,谢谢阅读!。
太阳能电池特性实验仪实验报告(综合)
太阳能电池特性研究实验数据记录报告
表1 三种太阳能电池的暗伏安特性测量
以电压作横坐标,电流作纵坐标,根据表1画出三种太阳能电池的伏安特性曲线。
实验结论:
表2 三种太阳能电池开路电压与短路电流随光强变化关系
根据表2数据,画出三种太阳能电池的短路电流随光强变化的关系曲线。
实验结论:
指导教师:(签字)
2014年月日
表3 三种太阳能电池输出特性实验 D=20cm 光强I= W/m2S=2.5×10-3m2Pin=I×S= mW
根据表3数据作3种太阳能电池的输出伏安特性曲线及功率曲线。
找出最大功率点,对应的电阻值即为最佳匹配负载。
根据表3数据和图4可以得出三种太阳能电池的最佳匹配负载分别为:
单晶硅:Ω,多晶硅:Ω,非晶硅:Ω
根据表3中数据计算三种太阳能电池的填充因子:
表4 三种太阳能电池的填充因子
计算转换效率:
表5 三种太阳能电池的转换效率表
实验结论:。
指导教师:(签字) 2014年月日。
太阳能电池特性实验报告
太阳能电池特性实验报告太阳能电池特性实验报告引言:太阳能电池是一种利用太阳能将光能转化为电能的装置,具有环保、可再生等特点,被广泛应用于各个领域。
为了深入了解太阳能电池的特性和性能,我们进行了一系列的实验,本报告将对实验过程和结果进行详细介绍和分析。
实验一:太阳能电池的光电流特性在本实验中,我们使用了一台太阳能电池测试仪,通过调节光照强度和测量电流、电压的变化,来研究太阳能电池的光电流特性。
实验结果显示,当光照强度逐渐增大时,太阳能电池的电流也随之增大。
这是因为光照强度的增加会激发更多的光子进入太阳能电池,从而产生更多的电子-空穴对,进而增加电流。
然而,当光照强度达到一定值后,电流的增加趋势开始趋于平缓,这是因为太阳能电池的内部电场已经饱和,无法再继续增加电流。
此外,我们还发现太阳能电池的电流与电压呈反比关系。
随着光照强度的增加,电流增大,但电压却逐渐降低。
这是因为太阳能电池的内部电阻会导致电压损失,而随着电流的增大,这种损失也会变得更加明显。
实验二:太阳能电池的温度特性在本实验中,我们通过改变太阳能电池的温度,来研究太阳能电池的温度特性。
实验结果显示,随着太阳能电池温度的升高,电流呈现出先增大后减小的趋势。
这是因为在较低温度下,电子和空穴的复合速率较低,电流较小;而在较高温度下,电子和空穴的复合速率加快,电流逐渐增大。
然而,当温度超过一定值后,电流开始下降,这是因为高温会导致太阳能电池内部的电子迁移率下降,从而减小了电流。
此外,我们还发现太阳能电池的温度对电压的影响较小。
随着温度的升高,电压基本保持稳定,这是因为太阳能电池的内部电场对温度变化不敏感。
实验三:太阳能电池的寿命特性在本实验中,我们通过长时间连续使用太阳能电池,来研究太阳能电池的寿命特性。
实验结果显示,太阳能电池在连续工作一段时间后,其性能会逐渐下降。
这是因为长时间的工作会导致太阳能电池内部材料的劣化,从而降低了太阳能电池的转换效率。
太阳能电池特性研究实验报告
太阳能电池特性研究实验报告一、引言。
太阳能电池是一种利用光能直接转换成电能的装置,是目前可再生能源中使用最为广泛的一种。
随着全球能源危机的日益严重,太阳能电池作为清洁能源的代表,其研究和应用受到了广泛关注。
本次实验旨在通过对太阳能电池的特性进行深入研究,探索其在不同条件下的性能表现,为太阳能电池的进一步应用提供理论依据。
二、实验目的。
1. 掌握太阳能电池的基本原理和特性;2. 研究太阳能电池在不同光照条件下的输出特性;3. 探究太阳能电池在不同温度下的性能变化;4. 分析太阳能电池在不同负载下的输出特性。
三、实验方法。
1. 实验仪器,太阳能电池、光照度计、温度计、示波器、直流电源等;2. 实验步骤:a. 测量太阳能电池在不同光照条件下的输出电压和电流;b. 测量太阳能电池在不同温度下的输出电压和电流;c. 测量太阳能电池在不同负载下的输出电压和电流。
四、实验结果与分析。
1. 太阳能电池在不同光照条件下的输出特性。
实验结果表明,随着光照度的增加,太阳能电池的输出电压和电流均呈现出增加的趋势。
当光照度达到一定程度后,太阳能电池的输出电压和电流基本保持稳定。
2. 太阳能电池在不同温度下的性能变化。
实验结果显示,随着温度的升高,太阳能电池的输出电压呈现出下降的趋势,而输出电流则呈现出上升的趋势。
这表明太阳能电池的温度对其性能有一定影响,需要在实际应用中加以考虑。
3. 太阳能电池在不同负载下的输出特性。
实验结果表明,太阳能电池在不同负载下的输出电压和电流均呈现出不同的变化规律。
在一定范围内,负载的变化对太阳能电池的输出特性有一定影响,需要根据实际情况选择合适的负载。
五、结论。
通过本次实验,我们深入了解了太阳能电池在不同条件下的特性表现。
光照度、温度和负载都对太阳能电池的输出特性有一定影响,需要在实际应用中进行合理的调整和控制。
本次实验为太阳能电池的进一步研究和应用提供了重要的参考依据。
六、参考文献。
[1] 王明,太阳能电池原理与应用,北京,科学出版社,2018。
太阳能电池基本特性实验报告
竭诚为您提供优质文档/双击可除太阳能电池基本特性实验报告篇一:实验报告--太阳能电池伏安特性的测量实验报告姓名:张伟楠班级:F0703028学号:5070309108实验成绩:同组姓名:张家鹏实验日期:08.03.17指导教师:批阅日期:太阳能电池伏安特性的测量【实验目的】1.了解太阳能电池的工作原理及其应用2.测量太阳能电池的伏安特性曲线【实验原理】1.太阳电池的结构以晶体硅太阳电池为例,其结构示意图如图1所示.晶体硅太阳电池以硅半导体材料制成大面积pn结进行工作.一般采用n+/p同质结的结构,即在约10cm×10cm面积的p型硅片(厚度约500μm)上用扩散法制作出一层很薄(厚度~0.3μm)的经过重掺杂的n型层.然后在n型层上面制作金属栅线,作为正面接触电极.在整个背面也制作金属膜,作为背面欧姆接触电极.这样就形成了晶体硅太阳电池.为了减少光的反射损失,一般在整个表面上再覆盖一层减反射膜.图一太阳电池结构示意图2.光伏效应图二太阳电池发电原理示意图当光照射在距太阳电池表面很近的pn结时,只要入射光子的能量大于半导体材料的禁带宽度eg,则在p区、n区和结区光子被吸收会产生电子–空穴对.那些在结附近n区中产生的少数载流子由于存在浓度梯度而要扩散.只要少数载流子离pn结的距离小于它的扩散长度,总有一定几率扩散到结界面处.在p区与n区交界面的两侧即结区,存在一空间电荷区,也称为耗尽区.在耗尽区中,正负电荷间形成一电场,电场方向由n区指向p区,这个电场称为内建电场.这些扩散到结界面处的少数载流子(空穴)在内建电场的作用下被拉向p区.同样,如果在结附近p区中产生的少数载流子(电子)扩散到结界面处,也会被内建电场迅速被拉向n区.结区内产生的电子–空穴对在内建电场的作用下分别移向n区和p区.如果外电路处于开路状态,那么这些光生电子和空穴积累在pn结附近,使p区获得附加正电荷,n区获得附加负电荷,这样在pn结上产生一个光生电动势.这一现象称为光伏效应(photovoltaiceffect,缩写为pV).3.太阳电池的表征参数太阳电池的工作原理是基于光伏效应.当光照射太阳电池时,将产生一个由n区到p区的光生电流Iph.同时,由于pn结二极管的特性,存在正向二极管电流ID,此电流方向从p区到n区,与光生电流相反.因此,实际获得的电流I为(1)式中VD为结电压,I0为二极管的反向饱和电流,Iph为与入射光的强度成正比的光生电流,其比例系数是由太阳电池的结构和材料的特性决定的.n称为理想系数(n值),是表示pn结特性的参数,通常在1~2之间.q为电子电荷,kb为波尔茨曼常数,T为温度.如果忽略太阳电池的串联电阻Rs,VD即为太阳电池的端电压V,则(1)式可写为(2)当太阳电池的输出端短路时,V=0(VD≈0),由(2)式可得到短路电流即太阳电池的短路电流等于光生电流,与入射光的强度成正比.当太阳电池的输出端开路时,I=0,由(2)和(3)式可得到开路电压(3)当太阳电池接上负载R时,所得的负载伏–安特性曲线如图2所示.负载R可以从零到无穷大.当负载Rm使太阳电池的功率输出为最大时,它对应的最大功率pm为(4)式中Im和Vm分别为最佳工作电流和最佳工作电压.将Voc与Isc的乘积与最大功率pm之比定义为填充因子FF,则(5)FF为太阳电池的重要表征参数,FF愈大则输出的功率愈高.FF取决于入射光强、材料的禁带宽度、理想系数、串联电阻和并联电阻等.太阳电池的转换效率η定义为太阳电池的最大输出功率与照射到太阳电池的总辐射能pin之比,即(6)图三太阳电池的伏–安特性曲线4.太阳电池的等效电路图四太阳电池的等效电路图太阳电池可用pn结二极管D、恒流源Iph、太阳电池的电极等引起的串联电阻Rs和相当于pn结泄漏电流的并联电阻Rsh组成的电路来表示,如图3所示,该电路为太阳电池的等效电路.由等效电路图可以得出太阳电池两端的电流和电压的关系为(7)为了使太阳电池输出更大的功率,必须尽量减小串联电阻Rs,增大并联电阻Rsh.【实验数据记录、实验结果计算】◆实验中测得的各个条件下的电流、电压以及对应的功率的表格如下:表11.根据以上数据作出各个条件下太阳能电池的伏安特性曲线2.各个条件下,光伏组件的输出功率p随负载电压V的变化【对实验结果中的现象或问题进行分析、讨论】◆各个条件下太阳能电池的伏安特性曲线图的分析与讨论从图中的曲线可以明显看出:1.光照距离越近,也即是光强越大,电池产生的电动势越大(但不能断定是否有上界);2.研究电动势的大小,两个电池并联,电动势几乎不变,电池串联,电动势大致增大一倍;3.研究电池电阻的大小,在I-V图里,函数线越陡,电阻越小,函数线越平坦,电阻越大。
太阳能电池基本特性研究实验报告
太阳能电池基本特性研究实验报告一、实验目的本实验旨在研究太阳能电池的基本特性,包括太阳能电池的输出电流和电压随太阳辐射强度的变化规律、电池的光谱响应特性以及太阳能电池的能量转换效率等。
二、实验原理太阳能电池是一种半导体器件,主要由一个p型半导体和一个n型半导体构成,在两种材料的交界面上形成一个PN结。
当太阳辐射射到 PN 结上时,电子受到能量激发而从 P 区向 N 区运动,从而产生电势差,这就是太阳能电池的基本工作原理。
太阳能电池的输出电流和电压随太阳辐射强度的变化规律可以用伏安特性曲线来表示。
光谱响应特性可以通过将太阳能电池暴露在具有不同波长的单色光下,测量电池对不同波长光的响应来研究。
太阳能电池的能量转换效率可以用输出电力与进入电力之比来表示。
三、实验器材太阳能电池、恒流源、数字万用表、单色光源、光谱仪等。
四、实验步骤1. 使用数字万用表测量太阳能电池的开路电压和短路电流,并记录数据。
2. 将太阳能电池暴露在不同太阳辐射强度下,测量太阳能电池的输出电流和电压,并记录数据。
3. 将太阳能电池暴露在不同波长的单色光下,测量太阳能电池的输出电流和电压,并记录数据。
4. 使用光谱仪测量太阳能电池在不同波长光下的光谱响应,并记录数据。
5. 根据实验数据计算太阳能电池的能量转换效率,并进行比较分析。
五、实验结果与分析1. 输出电流和电压随太阳辐射强度的变化规律随着太阳辐射强度的增大,太阳能电池的输出电流和电压都会增加,但其增长趋势是不同的。
当太阳辐射强度较小时,输出电流的增长更加明显,而当太阳辐射强度较大时,输出电压的增长更加明显。
2. 光谱响应特性太阳能电池对不同波长的光的响应是不同的,其响应度最大的波长在可见光区域的绿黄色光波段。
随着波长的偏离,响应度逐渐降低。
3. 能量转换效率通过计算得到太阳能电池的能量转换效率为 XX%,与实验数据比较分析得知,太阳能电池的能量转换效率受到多种因素的影响,例如光谱匹配、电路匹配、光伏电池的材料参数等。
太阳能电池特性研究实验报告
太阳能电池特性研究实验报告一、引言。
太阳能电池是一种能够将太阳能转化为电能的装置,是目前可再生能源中使用最为广泛的一种。
随着全球对清洁能源的需求不断增加,太阳能电池作为一种清洁、可再生的能源形式,受到了越来越多的关注。
本次实验旨在研究太阳能电池的特性,探究其在不同条件下的电能输出情况,为太阳能电池的优化设计和应用提供参考。
二、实验目的。
1. 研究太阳能电池在不同光照条件下的输出电压和电流特性;2. 探究太阳能电池在不同温度下的输出电压和电流特性;3. 分析太阳能电池在不同光照和温度条件下的效率变化。
三、实验原理。
太阳能电池的工作原理是利用光生电压效应,通过半导体材料的光生电子和空穴对的分离而产生电流。
当太阳能电池受到光照时,光子会激发半导体中的电子,使其跃迁到导带中,形成电子-空穴对。
这些电子-空穴对在电场作用下会分离,形成电流并产生电压。
四、实验步骤。
1. 将太阳能电池置于不同光照条件下,记录输出电压和电流;2. 将太阳能电池置于不同温度条件下,记录输出电压和电流;3. 根据记录的数据,计算太阳能电池在不同条件下的效率。
五、实验结果与分析。
通过实验数据的记录和分析,得出以下结论:1. 在光照强度较高的条件下,太阳能电池的输出电压和电流较大,表现出较高的输出功率;2. 随着光照强度的减小,太阳能电池的输出电压和电流逐渐降低,输出功率也相应减小;3. 在较高温度条件下,太阳能电池的输出电压和电流也会受到一定影响,表现出一定程度的降低;4. 太阳能电池的效率随着光照强度和温度的变化而变化,呈现出一定的规律性。
六、结论。
通过本次实验,我们对太阳能电池在不同条件下的特性有了更深入的了解。
太阳能电池在光照和温度条件下的输出特性对其在实际应用中的效率和稳定性有着重要影响。
因此,在太阳能电池的设计和应用过程中,需要充分考虑光照和温度对其特性的影响,以优化太阳能电池的性能和效率。
七、参考文献。
1. 王小明,太阳能电池原理与应用,北京,科学出版社,2018。
太阳能电池特性的测量实验报告
太阳能电池特性的测量实验报告一、实验目的本实验旨在研究太阳能电池的特性,包括开路电压、短路电流、最大功率点以及填充因子等参数,深入了解太阳能电池的工作原理和性能特点,为太阳能电池的应用和优化提供实验依据。
二、实验原理太阳能电池是一种基于半导体pn 结光生伏特效应的能量转换器件。
当太阳光照射到太阳能电池表面时,光子的能量被半导体吸收,产生电子空穴对。
在内建电场的作用下,电子和空穴分别向 n 区和 p 区移动,形成光生电流和光生电压。
1、开路电压(Voc)当太阳能电池处于开路状态时,即外电路电阻无穷大,此时输出的电压即为开路电压。
开路电压与半导体材料的禁带宽度、光照强度和温度等因素有关。
2、短路电流(Isc)当太阳能电池的输出端被短路,即外电路电阻为零,此时流过的电流即为短路电流。
短路电流主要取决于光照强度和电池的面积。
3、最大功率点(Pm)在不同的负载电阻下,太阳能电池的输出功率不同。
当负载电阻与太阳能电池的内阻匹配时,输出功率达到最大值,此时对应的工作点称为最大功率点。
4、填充因子(FF)填充因子是衡量太阳能电池性能的重要参数,定义为最大功率与开路电压和短路电流乘积的比值,即 FF = Pm /(Voc × Isc)。
三、实验仪器与材料1、太阳能电池实验装置包括太阳能电池板、可变电阻箱、数字电压表、数字电流表、光源等。
2、计算机及数据采集软件四、实验步骤1、连接实验电路将太阳能电池板与可变电阻箱、数字电压表和数字电流表按照正确的电路连接方式连接好。
2、测量开路电压在光源关闭的情况下,将可变电阻箱调至无穷大,测量太阳能电池的开路电压 Voc,并记录数据。
3、测量短路电流在光源关闭的情况下,将可变电阻箱调至零,测量太阳能电池的短路电流 Isc,并记录数据。
4、测量不同负载下的输出特性打开光源,调节可变电阻箱的阻值,从大到小依次测量不同负载电阻下太阳能电池的输出电压 V 和输出电流 I,并记录数据。
太阳能电池IV特性实验报告
一、太阳能电池基本IV特性实验1.实验目的1.了解太阳能光伏电池的基本特性参数:开路电压、短路电流、峰值电压、峰值电流、峰值功率、填充因子及转换效率2.了解太阳能光伏电池的伏安特性及曲线绘制3.掌握电池特性的测试与计算2.实验设备光伏太阳能电池特性实验箱。
3.实验原理(1)开路电压Uoc开路电压(Open circuit voltage VOC),当将太阳能电池的正负极不接负载、使电流i=0时,此时太阳能电池正负极间的电压就是开路电压,开路电压的单位是伏特(V)。
单片太阳能电池的开路电压不随电池片面积的增减而变化,一般为0.5~0.7V。
(2)短路电流Isc短路电流(short-circuit current),当将太阳能电池的正负极短路、使电压u=0时,此时的电流就是电池片的短路电流,短路电流的单位是安培(A),短路电流随着光强的变化而变化。
(3)峰值电压Um峰值电压也叫最大工作电压或最佳工作电压。
峰值电压是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位是v。
峰值电压不随电池片面积的增减而变化,一般为0.45~0.5v,典型值为0.48v。
(4)峰值电流Im峰值电流也叫最大工作电流或最佳工作电流。
峰值电流是指太阳能电池片输出最大功率时的工作电流,峰值电流的单位是安培(A)。
(5)峰值功率Pm峰值功率也叫最大输出功率或最佳输出功率。
峰值功率是指太阳能电池片正常工作或测试条件下的最大输出功率,也就是峰值电流与峰值电压的乘积:Pm=Im×Um。
峰值功率的单位是w(瓦)。
太阳能电池的峰值功率取决于太阳辐照度、太阳光谱分布和电池片的工作温度,因此太阳能电池的测量要在标准条件下进行,测量标准为欧洲委员会的101号标准,其条件是:辐照度l000W/m2、光谱AMl.5、测试温度25±1℃。
(6)填充因子FF填充因子也叫曲线因子,是指太阳能电池的最大输出功率与开路电压和短路电流乘积的比值。
太阳能电池特性测试实验报告
太阳能电池特性测试实验报告一、1.1 实验目的与意义随着科技的不断发展,太阳能作为一种清洁、可再生的能源越来越受到人们的关注。
为了更好地了解太阳能电池的性能,提高太阳能电池的转换效率,我们进行了一次太阳能电池特性测试实验。
本实验旨在通过理论分析和实验验证,探讨太阳能电池的工作原理、性能参数及其影响因素,为太阳能电池的研究和应用提供理论依据。
二、2.1 实验原理太阳能电池是一种将太阳光能直接转化为电能的装置。
其工作原理是利用半导体材料的光电效应,当太阳光照射到半导体表面时,光子能量被吸收,使得半导体中的电子跃迁至导带,形成自由电子和空穴对。
在P-N结界面,自由电子和空穴相遇时,产生电场,从而产生电流。
太阳能电池的输出电压与太阳辐射强度成正比,输出电流与太阳辐射强度的平方成正比。
三、3.1 实验设备与材料1. 太阳能电池模块:用于接收太阳光并产生电流。
2. 数字万用表:用于测量电流和电压。
3. 短路开关:用于保护电路。
4. 直流电源:用于给太阳能电池模块供电。
5. 光纤激光器:用于产生单色光束。
6. 光谱仪:用于测量光强和光谱。
7. 数据处理软件:用于记录和分析实验数据。
四、3.2 实验步骤与方法1. 将太阳能电池模块安装在光源和数字万用表之间,确保模块表面与光源平行。
2. 用短路开关连接太阳能电池模块的正负极。
3. 用直流电源给太阳能电池模块供电。
4. 用光纤激光器产生单色光束,使其经过一个分束镜后分为两束光线。
5. 其中一束光线经过一个透镜后聚焦在太阳能电池模块上,另一束光线经过一个偏振片后得到一个具有一定相干度的光束。
6. 将光谱仪放置在聚焦后的光线附近,测量光强和光谱分布。
7. 用数据处理软件记录实验数据,并进行分析。
五、实验结果与分析通过本次实验,我们得到了太阳能电池模块的输出电流和电压数据。
我们还观察到了太阳光在经过分束镜、透镜和偏振片后的光谱分布情况。
根据实验数据和光谱分析结果,我们得出了太阳能电池的光电转换效率以及其随太阳辐射强度变化的关系。
太阳能电池特性测试实验报告-资料类
太阳能电池特性测试实验报告-资料类关键信息项:1、实验目的:____________________________2、实验设备:____________________________3、实验步骤:____________________________4、实验数据:____________________________5、数据分析:____________________________6、结论:____________________________11 实验目的本实验旨在研究太阳能电池的特性,包括其输出电压、电流与光照强度、负载电阻等因素之间的关系,从而深入了解太阳能电池的工作原理和性能特点。
111 具体目标1、测量太阳能电池在不同光照强度下的输出电压和电流。
2、探究太阳能电池的短路电流和开路电压与光照强度的依赖关系。
3、分析太阳能电池在不同负载电阻下的输出特性。
12 实验设备1、太阳能电池板。
2、光源模拟器,能够提供不同强度的光照。
3、数字电压表,用于测量电压。
4、数字电流表,用于测量电流。
5、可变电阻箱,用于改变负载电阻。
13 实验步骤131 实验准备将太阳能电池板放置在稳定的实验台上,确保其表面清洁无遮挡。
连接好数字电压表和数字电流表,设置好测量范围。
132 测量开路电压和短路电流在黑暗环境中,测量太阳能电池的开路电压和短路电流,作为基准值。
然后,打开光源模拟器,逐渐增加光照强度,分别测量在不同光照强度下太阳能电池的开路电压和短路电流,并记录数据。
133 负载电阻特性测量将可变电阻箱连接到太阳能电池板上,依次改变负载电阻的值,测量在不同负载电阻下太阳能电池的输出电压和电流,并记录数据。
134 数据重复测量为了提高实验数据的准确性,对每个测量点进行多次重复测量,并取平均值作为最终数据。
14 实验数据以下是实验中测量得到的数据表格:|光照强度(lux)|开路电压(V)|短路电流(mA)|负载电阻(Ω)|输出电压(V)|输出电流(mA)|||||||||100| ||10| |||100| ||20| |||100| ||50| |||200| ||10| |||200| ||20| |||200| ||50| |||300| ||10| |||300| ||20| |||300| ||50| ||15 数据分析151 开路电压与光照强度的关系绘制开路电压随光照强度变化的曲线,可以发现开路电压随着光照强度的增加而缓慢增加,但并非线性关系。
太阳能电池特性的测量实验报告doc
太阳能电池特性的测量实验报告.doc 实验报告:太阳能电池特性的测量一、实验目的本实验旨在通过测量太阳能电池的特性,包括电流、电压、填充因子和转换效率等参数,以了解太阳能电池的工作原理和性能特点。
二、实验原理太阳能电池是一种利用光能转换为电能的装置。
其工作原理基于光生伏特效应。
当太阳光照射在太阳能电池表面时,光子与半导体材料相互作用,使电子从价带跃迁到导带,从而产生电流。
太阳能电池的特性受到材料、结构、光照条件等多种因素的影响。
三、实验步骤1.准备实验器材:太阳能电池模块、数字万用表、光源及光强计、恒流电源、负载电阻等。
2.将太阳能电池模块放置在光强计前,调整光强计与太阳能电池模块的相对位置,使光线垂直照射在太阳能电池表面。
3.用数字万用表分别测量太阳能电池的正负极电压和电流。
测量时需要注意万用表的量程选择和极性判断。
4.调整恒流电源的输出电流,使太阳能电池在不同光照强度下工作,重复步骤3的测量。
5.连接负载电阻,测量太阳能电池在不同负载条件下的电压和电流。
6.记录实验数据,绘制电流-电压曲线和填充因子-电压曲线。
7.根据测量结果计算太阳能电池的转换效率。
四、实验结果及数据分析1.实验数据记录:根据实验数据,可以得出以下结论:(1)随着光照强度的增加,太阳能电池的电压和电流也相应增加。
这表明太阳能电池的输出性能受到光照条件的直接影响。
(2)填充因子(FF)是衡量太阳能电池性能的重要参数之一。
FF值越高,说明太阳能电池的电学性能越好。
实验数据显示,随着光照强度的增加,填充因子略有提高,但变化不大。
这说明填充因子主要受到材料和结构等因素的影响,而非单一的光照条件。
(3)转换效率(η)是评价太阳能电池能量转换效率的重要指标。
实验数据显示,随着光照强度的增加,转换效率呈上升趋势。
然而,当光强达到一定值时,由于串联电阻的增加和反偏二极管的影响,转换效率趋于稳定。
这说明在选择太阳能电池材料时,需要综合考虑材料的导电性能、光学性能和稳定性等因素。
太阳能电池基本特性研究实验报告
太阳能电池基本特性研究实验报告太阳能电池基本特性研究实验报告引言:太阳能电池是一种利用太阳光转化为电能的装置,具有环保、可再生等优点,因此在可持续能源领域备受关注。
本实验旨在研究太阳能电池的基本特性,包括光照强度对电池输出电流的影响、温度对电池输出电压的影响以及不同材料制成的太阳能电池的比较等。
实验一:光照强度对电池输出电流的影响实验装置:太阳能电池、光源、电流计、电压计实验步骤:1. 将太阳能电池连接到电流计和电压计上,并将光源对准电池表面。
2. 开启光源,调节光照强度,记录不同光照强度下的电流值。
3. 分析数据,绘制光照强度与电流的关系曲线。
实验结果:实验结果显示,光照强度与太阳能电池输出电流呈正相关关系。
随着光照强度的增加,电流值也随之增加。
这是因为太阳能电池中的光敏材料吸收光能后,产生电子-空穴对,从而形成电流。
因此,光照强度越高,太阳能电池输出电流越大。
实验二:温度对电池输出电压的影响实验装置:太阳能电池、温度控制装置、电压计实验步骤:1. 将太阳能电池连接到电压计上,并通过温度控制装置调节电池的温度。
2. 记录不同温度下的电压值。
3. 分析数据,绘制温度与电压的关系曲线。
实验结果:实验结果显示,温度对太阳能电池输出电压有一定的影响。
随着温度的升高,电压值呈现下降的趋势。
这是因为太阳能电池中的光敏材料在高温下容易发生退化,从而导致电池的电压下降。
因此,在实际应用中,需要注意控制太阳能电池的工作温度,以保证其正常工作和输出电压的稳定。
实验三:不同材料制成的太阳能电池的比较实验装置:不同材料制成的太阳能电池、光源、电流计、电压计实验步骤:1. 将不同材料制成的太阳能电池连接到电流计和电压计上,并将光源对准电池表面。
2. 开启光源,记录不同太阳能电池的电流和电压值。
3. 分析数据,比较不同太阳能电池的性能差异。
实验结果:实验结果显示,不同材料制成的太阳能电池具有不同的性能特点。
例如,硅太阳能电池具有较高的转换效率和稳定性,是目前应用最广泛的太阳能电池;铜铟镓硒(CuInGaSe2)太阳能电池具有较高的光吸收能力和较高的光电转换效率,但成本较高。
太阳能电池特性测试实验报告-资料类
太阳能电池特性测试实验报告-资料类关键信息项:1、实验目的2、实验设备3、实验原理4、实验步骤5、数据记录与处理6、实验结果7、误差分析8、结论11 实验目的本次实验旨在深入了解太阳能电池的工作特性,包括其输出电压、电流与光照强度、负载电阻等因素之间的关系,从而为太阳能电池的应用和优化提供数据支持。
111 具体目标测量太阳能电池在不同光照条件下的输出特性。
研究太阳能电池的短路电流和开路电压随光照强度的变化规律。
分析太阳能电池的输出功率与负载电阻的关系。
12 实验设备太阳能电池板光源模拟器(可调节光照强度)数字万用表可变电阻箱数据采集系统121 设备参数太阳能电池板的规格和型号:____________________光源模拟器的光照强度调节范围:____________________数字万用表的精度和测量范围:____________________可变电阻箱的阻值范围和调节精度:____________________13 实验原理太阳能电池是基于半导体的光伏效应将光能转化为电能的器件。
当光子入射到半导体材料中,会激发电子从价带跃迁到导带,产生电子空穴对。
在内建电场的作用下,电子和空穴分别向不同方向移动,形成电流和电压。
131 短路电流(Isc)当太阳能电池的输出端短路时,测量得到的电流即为短路电流,它与光照强度成正比。
132 开路电压(Voc)当太阳能电池的输出端开路时,测量得到的电压即为开路电压,它随光照强度的增加而增加,但增加趋势逐渐减缓。
133 输出功率(P)太阳能电池的输出功率等于输出电压(V)与输出电流(I)的乘积,即 P = V × I。
当负载电阻与太阳能电池的内阻匹配时,输出功率达到最大值,称为最大功率点(MPP)。
14 实验步骤141 实验准备检查实验设备是否完好,确保各仪器的连接正确。
将太阳能电池板放置在光源模拟器下方,调整位置使其均匀受光。
142 测量短路电流和开路电压调节光源模拟器的光照强度为最小值,测量太阳能电池的短路电流Isc 和开路电压 Voc ,记录数据。
太阳能电池特性测试实验报告
太阳能电池特性测试实验报告太阳电池特性测试实验太阳能是人类一种最重要可再生能源,阳能。
利用太阳能发电方式有两种:地球上几乎所有能源如:生物质能、风能、水能等都来自太另一种是光—电直接转换方式。
一种是光—热—电转换方式,其中,光—电直接转换方式是利用半导体器件的光伏效应进行光电转换的,称为太阳能光伏技术,而光—电转换的基本装置就是太阳电池。
太阳电池根据所用材料的不同可分为:硅太阳电池、多元化合物薄膜太阳电池、聚合物多层修饰电极型太阳电池、纳米晶太阳电池、有机太阳电池。
其中,硅太阳电池是目前发展最成熟的,在应用中居主导地位。
硅太阳电池又分为单晶硅太阳电池、多晶硅薄膜太阳电池和非晶硅薄膜太阳电池三种。
单晶硅太阳电池转换效率最高,技术也最为成熟,在大规模应用和工业生产中仍占据主导地位,但单晶硅成本价格高。
多晶硅薄膜太阳电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池。
非晶硅薄膜太阳电池成本低,重量轻,转换效率较高,便于大规模生产,有极大的潜力,但稳定性不高,直接影响了实际应用。
太阳电池的应用很广,已从军事、航天领域进入了工业、商业、农业、用设施等部门,尤其是在分散的边远地区、高山、沙漠、海岛和农村等得到广泛使用。
通、家电和公共目前,中国已成为全球主要的太阳电池生产国,主要分布在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。
一.实验的目的1.熟悉太阳电池的工作原理;2.太阳电池光电特性测量。
二、实验原理(1)太阳电池板结构以硅太阳电池为例:结构示意图如图1。
硅太阳电池由硅半导体材料制成,大面积pn结串联,并联构成,在N型材料层面上制作金属栅线为面接触电极,背面也制作金属膜作为接触电极,这样就形成太阳能电池板。
为了减少光的反射损失,一般在表面(2)光伏效应图1太阳能电池板结构示意图在pn结上,当光照射到半导体pn结上时,半导体吸收光。
收光能后,两端产生电动势,这种现象称为光生伏特效应。
太阳能电池IV特性实验报告
太阳能电池IV特性实验报告一、本太阳能电池基本IV 特性实验 1. 实验目的 1.了解太阳能光伏电池的基本特性参数:开路电压、短路电流、峰值电压、峰值电流、峰值功率、填充因子及转换效率 2.了解太阳能光伏电池的伏安特性及曲线绘制 3.掌握电池特性的测试与计算 2. 实验设备光伏太阳能电池特性实验箱。
3. 实验原理(1)开路电压Uoc 开路电压(Open circuit voltage VOC),当将太阳能电池的正负极不接负载、使电流i=0 时,此时太阳能电池正负极间的电压就是开路电压,开路电压的单位是伏特(V)。
单片太阳能电池的开路电压不随电池片面积的增减而变化,一般为0.5~0.7V。
(2)短路电流Isc 短路电流(short-circuit current),当将太阳能电池的正负极短路、使电压u=0 时,此时的电流就是电池片的短路电流,短路电流的单位是安培(A),短路电流随着光强的变化而变化。
(3)峰值电压Um 峰值电压也叫最大工作电压或最佳工作电压。
峰值电压是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位是v。
峰值电压不随电池片面积的增减而变化,一般为0.45~0.5v,典型值为0.48v。
(4)峰值电流Im 峰值电流也叫最大工作电流或最佳工作电流。
峰值电流是指太阳能电池片输出最大功率时的工作电流,峰值电流的单位是安培(A)。
(5)峰值功率Pm 峰值功率也叫最大输出功率或最佳输出功率。
峰值功率是指太阳能电池片正常工作或测试条件下的最大输出功率,也就是峰值电流与峰值电压的乘积:Pm=Im×Um。
峰值功率的单位是w(瓦)。
太阳能电池的峰值功率取决于太阳辐照度、太阳光谱分布和电池片的工作温度,因此太阳能电池的测量要在标准条件下进行,测量标准为欧洲委员会的101 号标准,其条件是:辐照度l000W/m2、光谱AMl.5、测试温度25±1℃。
(6)填充因子FF 填充因子也叫曲线因子,是指太阳能电池的最大输出功率与开路电压和短路电流乘积的比值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
竭诚为您提供优质文档/双击可除太阳能电池基本特性实验报告
篇一:实验报告--太阳能电池伏安特性的测量
实验报告
姓名:张伟楠班级:F0703028学号:5070309108实验成绩:同组姓名:张家鹏实验日期:08.03.17指导教师:批阅日期:
太阳能电池伏安特性的测量
【实验目的】
1.了解太阳能电池的工作原理及其应用
2.测量太阳能电池的伏安特性曲线
【实验原理】
1.太阳电池的结构
以晶体硅太阳电池为例,其结构示意图如图1所示.晶体硅太阳电池以硅半导体材料制成大面积pn结进行工作.一般采用n+/p同质结的结构,即在约10cm×10cm面积的p型
硅片(厚度约500μm)上用扩散法制作出一层很薄(厚度~0.3μm)的经过重掺杂的n型层.然后在n型层上面制作金属栅线,作为正面接触电极.在整个背面也制作金属膜,作为背面欧姆接触电极.这样就形成了晶体硅太阳电池.为了减少光的反射损失,一般在整个表面上再覆盖一层减反射膜.图一太阳电池结构示意图
2.光伏效应
图二太阳电池发电原理示意图
当光照射在距太阳电池表面很近的pn结时,只要入射光子的能量大于半导体材料的禁带宽度eg,则在p区、n区和结区光子被吸收会产生电子–空穴对.那些在结附近n区中产生的少数载流子由于存在浓度梯度而要扩散.只要少数载流子离pn结的距离小于它的扩散长度,总有一定几率扩散到结界面处.在p区与n区交界面的两侧即结区,存在一空间电荷区,也称为耗尽区.在耗尽区中,正负电荷间形成一电场,电场方向由n区指向p区,这个电场称为内建电场.这些扩散到结界面处的少数载流子(空穴)在内建电场的作用下被拉向p区.同样,如果在结附近p区中产生的少数载流子(电子)扩散到结界面处,也会被内建电场迅速被拉向n区.结区内产生的电子–空穴对在内建电场的作用下分别移向n区和p区.
如果外电路处于开
路状态,那么这些光生电子和空穴积累在pn结附近,使p区获得附加正电荷,n区获得附加负电荷,这样在pn结上产生一个光生电动势.这一现象称为光伏效应(photovoltaiceffect,缩写为pV).3.太阳电池的表征参数
太阳电池的工作原理是基于光伏效应.当光照射太阳电池时,将产生一个由n区到p区的光生电流Iph.同时,由于pn结二极管的特性,存在正向二极管电流ID,此电流方向从p区到n区,与光生电流相反.因此,实际获得的电流I为
(1)
式中VD为结电压,I0为二极管的反向饱和电流,Iph
为与入射光的强度成正比的光生电流,其比例系数是由太阳电池的结构和材料的特性决定的.n称为理想系数(n值),是表示pn结特性的参数,通常在1~2之间.q为电子电荷,kb为波尔茨曼常数,T为温度.
如果忽略太阳电池的串联电阻Rs,VD即为太阳电池的端电压V,则(1)式可写为
(2)
当太阳电池的输出端短路时,V=0(VD≈0),由(2)式可得到短路电流
即太阳电池的短路电流等于光生电流,与入射光的强度
成正比.当太阳电池的输出端开路时,I=0,由(2)和(3)式可得到开路电压
(3)
当太阳电池接上负载R时,所得的负载伏–安特性曲线如图2所示.负载R可以从零到无穷大.当负载Rm使太阳电池的功率输出为最大时,它对应的最大功率pm为(4)
式中Im和Vm分别为最佳工作电流和最佳工作电压.将Voc与Isc的乘积与最大功率pm之比定义为填充因子FF,则
(5)
FF为太阳电池的重要表征参数,FF愈大则输出的功率愈高.FF取决于入射光强、材料的禁带宽度、理想系数、串联电阻和并联电阻等.
太阳电池的转换效率η定义为太阳电池的最大输出功率与照射到太阳电池的总辐射能pin之比,即
(6)
图三太阳电池的伏–安特性曲线
4.太阳电池的等效电路
图四太阳电池的等效电路图
太阳电池可用pn结二极管D、恒流源Iph、太阳电池的电极等引起的串联电阻Rs和相当于pn结泄漏电流的并联电
阻Rsh组成的电路来表示,如图3所示,该电路为太阳电池的等效电路.由等效电路图可以得出太阳电池两端的电流和电压的关系为
(7)
为了使太阳电池输出更大的功率,必须尽量减小串联电阻Rs,增大并联电阻Rsh.
【实验数据记录、实验结果计算】
◆实验中测得的各个条件下的电流、电压以及对应的功率的表格如下:
表1
1.根据以上数据作出各个条件下太阳能电池的伏安特
性曲线
2.各个条件下,光伏组件的输出功率p随负载电压V的变化
【对实验结果中的现象或问题进行分析、讨论】
◆各个条件下太阳能电池的伏安特性曲线图的分析与
讨论从图中的曲线可以明显看出:
1.光照距离越近,也即是光强越大,电池产生的电动势越大(但不能断定是
否有上界);
2.研究电动势的大小,两个电池并联,电动势几乎不变,电池串联,电动势。