求一次函数的表达式教案(教学设计)

合集下载

八年级数学上册5.7用二元一次方程组确定一次函数表达式教学设计 (新版北师大版)

八年级数学上册5.7用二元一次方程组确定一次函数表达式教学设计 (新版北师大版)

八年级数学上册5.7用二元一次方程组确定一次函数表达式教学设计(新版北师大版)一. 教材分析《八年级数学上册5.7用二元一次方程组确定一次函数表达式》这一节,主要让学生学会如何利用二元一次方程组来确定一次函数的表达式。

通过这一节的学习,学生能够理解两个变量的关系,掌握用方程组求解一次函数的方法,并能够运用到实际问题中。

二. 学情分析学生在学习了八年级上册的前置知识后,对一次函数、二元一次方程等概念已经有了初步的理解。

但在如何将实际问题转化为方程组,并用方程组求解一次函数表达式方面,还需要进一步的引导和训练。

三. 教学目标1.理解两个变量之间的关系,能够将实际问题转化为二元一次方程组。

2.学会用二元一次方程组确定一次函数的表达式。

3.能够运用所学的知识解决实际问题。

四. 教学重难点1.教学重点:如何将实际问题转化为二元一次方程组,并用方程组求解一次函数表达式。

2.教学难点:如何引导学生理解两个变量之间的关系,并能够灵活运用到实际问题中。

五. 教学方法采用问题驱动法,引导学生通过自主探究、合作交流的方式来学习本节内容。

在教学过程中,注重让学生经历知识的形成过程,培养学生的数学思维能力和解决问题的能力。

六. 教学准备1.准备相关的教学PPT,用于展示和引导学生思考。

2.准备一些实际问题,用于让学生练习和巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考两个变量之间的关系,并提问如何用方程组来表示这种关系。

2.呈现(10分钟)呈现相关的PPT,引导学生总结出用二元一次方程组确定一次函数表达式的步骤和方法。

3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,尝试用二元一次方程组确定一次函数表达式。

教师巡回指导,并给予反馈。

4.巩固(10分钟)选取一些典型的问题,让学生独立完成,检查他们对知识的掌握情况。

5.拓展(5分钟)引导学生思考:在实际问题中,如何确定二元一次方程组的解?如何判断解的合理性?6.小结(5分钟)让学生总结本节课所学的内容,回答问题:什么是二元一次方程组?如何用二元一次方程组确定一次函数表达式?7.家庭作业(5分钟)布置一些相关的练习题,让学生巩固所学知识。

北师大版八年级上册第五章5.7 用二元一次方程组确定一次函数表达式(教案)

北师大版八年级上册第五章5.7 用二元一次方程组确定一次函数表达式(教案)

5.7用二元一次方程组确定一次函数表达式〔教案〕教学目的知识与技能:1.进一步理解二元一次方程与一次函数之间的联络,体会知识之间的普遍性和知识之间的互相转化.2.理解待定系数法,会用二元一次方程组确定一次函数的表达式.过程与方法:让学生体会一次函数与二元一次方程组的互相联络,感受“数形结合〞在数学研究中的作用.情感态度与价值观:通过积极参与数学学习活动,培养学生独立考虑,团结合作的精神.教学重难点【重点】利用二元一次方程组确定一次函数的表达式.【难点】应用方程与函数的联络解决实际问题.教学准备【老师准备】教材图5 - 3及例题.【学生准备】复习二元一次方程组与一次函数的关系.教学过程一、导入新课导入一:师:上节课,我们学习了二元一次方程与一次函数,那么二元一次方程(组)与一次函数有哪些联络?生1:以一个二元一次方程的解为坐标的点组成的图象与相应的一次函数的图象一样,是一条直线.生2:确定两条直线交点的坐标,就相当于求相应的二元一次方程组的解;另一方面,解一个二元一次方程组就相当于确定相应两条直线交点的坐标.师:因此,方程问题可以通过函数知识来解决;反之,函数问题也可以通过方程知识来解决.这节课我们就来学惯用二元一次方程组确定一次函数的表达式.(板书课题:7用二元一次方程组确定一次函数表达式)[设计意图]回忆旧知,体会函数和方程之间的联络,为后面利用二元一次方程组确定一次函数的表达式埋下伏笔.导入二:[过渡语]第四章我们学习了一次函数表达式的简单求法,首先我们看这个问题.如以下图所示,直线l是一次函数的图象.答复以下问题.(1)b=,k=;(2)当x=30时,y=;(3)当y=30时,x=.问题1:【课件1】一般设一次函数的表达式为什么?问题2:【课件2】确定一次函数的表达式关键是确定哪个参数的值?问题3:【课件3】确定一次函数的表达式需要几个点的坐标?问题4:【课件4】确定一次函数的表达式需要几个步骤?问题5:【课件5】当一次函数的图象与y轴相交时,交点的纵坐标与一次函数的表达式中的b的取值有关吗?[处理方式]通过合作交流,自主完成上面的问题,帮助学生回忆已学过的知识.对于题目下的各个问题可以多找几个同学归纳总结,总结不准确的地方,老师点拨.问题1,2,3学生比拟容易得出答案,问题4在学生总结的根底上,老师点拨确定一次函数表达式的一般步骤为:(1)设函数表达式为y=kx+b.(2)根据条件列出关于k,b的方程.(3)解方程.(4)把求出的k,b值代回表达式中即可.问题5可以让学生结合图象得出当一次函数的图象与y轴相交时,交点的纵坐标就是一次函数表达式中的b的值.师:同学们对已学过的知识掌握得很好.此题中的b的值可以直接由一次函数图象与y轴交点的纵坐标确定.但有些题目b值不能直接给出,我们将如何解决呢?这节课我们将研究实际问题中的用二元一次方程组确定一次函数表达式.(板书课题:7用二元一次方程组确定一次函数表达式)二、新知构建[过渡语]用画图象的方法能不能准确地解决问题呢?〔1〕、用图象法解决问题的缺乏之处出示教材“引例〞:A,B两地相距100 km,甲、乙两人骑车同时分别从A,B两地相向而行.假设他们都保持匀速行驶,那么他们各自到A地的间隔s(km)都是骑车时间t(h)的一次函数,1 h后乙间隔A地80 km;2 h后甲间隔A地30 km.经过多长时间两人将相遇?让学生讨论:(1)考虑:你有几种解决上述问题的方法?它们各有什么缺乏之处?(2)对照教材,比拟你的做法与小明、小颖、小亮的做法有什么不同,与同伴交流.(3)考虑讨论:图象法和代数法在解决问题时有什么不同?学生讨论后老师小结:在上面的问题中,用画图象的方法可以直观地获得问题的结果,但有时却难以准确获得问题的结果,为了获得准确的结果,我们一般用代数方法.[设计意图] 通过实际问题情境,进一步加强函数与方程的联络,让学生在用多种方法解决问题的考虑和比拟中体会作图象方法与代数方法各自的特点,为讲解待定系数法确定一次函数的表达式做好铺垫.同时理解知识之间有着广泛的联络.通过“小明的方法求出的结果准确吗?〞自然过渡到本节课的主要内容.〔2〕、用待定系数法确定一次函数的表达式出示教材例题:某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量那么需购置行李票,且行李费y (元)是行李质量x (kg)的一次函数.李明带了60 kg 的行李,交了行李费5元;张华带了90 kg 的行李,交了行李费10元.(1)写出y 与x 之间的函数表达式;(2)旅客最多可免费携带多少千克的行李?引导学生分析设出关系式并解答.展示学生研究的结果并进展讲评,出示答案.解:(1)设y =kx +b ,根据题意,得{5=60k +b,①10=90k +b.②.②-①,得30k=5,k=16代入①,得b=-5.将k=16x-5.所以y=16(2)当x=30时,y=0.所以旅客最多可免费携带30 kg的行李.【老师总结】待定系数法:先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法.待定系数法求一次函数表达式的一般步骤是:(1)先设出一次函数的一般形式,即y=kx+b(k≠0);(2)将自变量x的值及与它对应的函数y的值代入所设的表达式中,得到关于待定系数k和b的方程组;(3)解方程组,求出待定系数的值,进而写出函数表达式.[知识拓展]求正比例函数表达式,只要一对x,y的对应值就可以.因为它只有一个待定系数;而求一次函数的表达式,那么需要两组x,y的对应值.三、课堂总结四、课堂练习1.直线y=kx+b在坐标系中的位置如下图,那么 ()A.k =-12,b =-1B.k =-12,b =1C.k =12,b =-1D.k =12,b =1 解析:设函数表达式为y =kx +b ,由图可得函数图象过点(2,0)和(0,1),将这两点坐标代入得{0=2k +b,1=b,解得{k =−12,b =1.应选B . 2.函数y =kx +b (k ≠0)的图象与y 轴交点的纵坐标为-2,且当x =2时,y =1.那么此函数的表达式为 .解析:将(0,-2)与(2,1)代入y =kx +b 得{b =−2,2k +b =1,解得{k =32,b =−2,那么函数解析式为y =32x-2.故填y =32x-2. 3.一次函数y =kx +b 的图象经过点A (1,-1)和点B (-1,3),求这个一次函数的表达式.解:依题意将A (1,-1)与B (-1,3)代入y =kx +b ,得{k +b =−1,-k +b =3,解得{k =−2,b =1,∴所求的表达式为y =-2x +1. 五、板书设计7 用二元一次方程组确定一次函数表达式①、用图象法解决问题的缺乏之处②、用待定系数法确定一次函数的表达式六、布置作业①、教材作业【必做题】教材习题5.8第1,2题.【选做题】教材习题5.8第3题.②、课后作业【根底稳固】1.一次函数的图象经过点A(-2,-1),且与直线y=2x-3平行.那么此函数的表达式为()A.y=x+1B.y=2x+3C.y=2x-1D.y=-2x-52.某个一次函数的图象与x轴、y轴的交点坐标分别是(-2,0),(0,4),求这个函数的表达式.3.一个一次函数的图象平行于直线y=-2x,且经过点A(-4,2),求这个函数的表达式.4.某商场搞促销活动,一次性购置x件T恤的价格为y元,x与y之间的关系如下表:x/件 1 2 3 4y/元38 68 90 108能将y看成x的一次函数吗?4.直线l与直线y=2x+1的交点的横坐标为-1,与直线y=-x+2的交点2的纵坐标为1,求直线l对应的函数表达式.【才能提升】6.根据以下各小题中的条件,求相应的一次函数关系式.(1)一次函数的图象经过点A(2,4),B(0,2),求其表达式;(2)一次函数的图象如下图,求其表达式;(3)一次函数的图象经过点A(2,0)且与直线y=-x+3平行,求其表达式;(4)一次函数的图象经过点P(1,2)且与直线y=2x+3的交点在y轴上,求其表达式.7.某市自来水公司为鼓励居民节约用水,采取按月用水量分段收费方法,某户居民应交水费y(元)与用水量x(吨)的函数关系如下图.(1)分别写出当0≤x≤15和x>15时,y与x的函数关系式;(2)假设某用户10月份用水量为10吨,那么应交水费多少元?假设该用户11月份交了51元的水费,那么他该月用水多少吨?【拓展探究】8.某超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y (个)与甲品牌文具盒的数量x (个)之间的函数关系如下图.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.(1)根据图象,求y 与x 之间的函数关系式;(2)求甲、乙两种品牌的文具盒的进货单价.【答案与解析】1.B(解析:设此函数的表达式为y =kx +b ,因为该直线与直线y =2x-3平行,所以k =2,又因为图象经过点A (-2,-1),所以将此点的坐标及k 的值代入表达式即可求出b.)2.解:设一次函数表达式为y =kx +b ,由题意得{0=−2k +b,b =4,∴{k =2,b =4.故这个一次函数的表达式为y =2x +4.3.解:设一次函数表达式为y =kx +b ,∵它的图象平行于直线y =-2x ,∴k =-2,又∵该函数图象经过点(-4,2),∴函数表达式为y =-2x-6.4.解:假设y 与x 的关系为一次函数关系,设为y =kx +b ,由题可知该直线经过点(1,38)和点(2,68),从而38=k +b ,68=2k +b ,k =30,b =8.∴y =30x +8,当x =3时,y =30×3+8=98≠90,∴y 不是x 的一次函数.5.解:把x =-12代入y =2x +1,得y =0,∴直线l 与直线y =2x +1的交点坐标为(-12,0);同理可求得直线l 与直线y =-x +2的交点坐标为(1,1).设直线l 的解析式为y =kx +b ,将(-12,0),(1,1)代入,可求得表达式为y =23x +13.6.解:(1)设y =kx +b ,∵图象经过点A (2,4),B (0,2),∴{4=2k +b,2=b,解得{k =1,b =2.∴所求一次函数表达式为y =x +2. (2)设y =kx +b ,根据图象可知点(1,0),(0,-2)在直线y =kx +b 上,∴{k +b =0,-2=b,解得{k =2,b =−2.∴所求一次函数表达式为y =2x-2. (3)设y =kx +b ,∵函数y =kx +b 的图象与直线y =-x +3平行,∴k =-1,又∵其图象经过点A (2,0),∴0=-1×2+b ,解得b =2.∴所求一次函数表达式为y =-x +2. (4)设y =kx +b ,∵直线y =2x +3与y 轴的交点为(0,3),而直线y =kx +b 与直线y =2x +3的交点在y 轴上,∴直线y =kx +b 与y 轴的交点就是(0,3),∴3=b ,又∵直线y =kx +b 经过点P (1,2),∴{b =3,2=k +b,解得{k =−1,b =3.∴所求一次函数表达式为y =-x +3.7.解:(1)当0≤x ≤15时,设y =k 1x ,根据题意得27=15k 1,解得k 1=95,所以当0≤x ≤15时,y =95x ;当x >15时,设y =k 2x +b ,根据题意可得方程组{27=15k 2+b,39=20k 2+b,解这个方程组,得{k 2=125,b =−9.所以当x >15时,y =125x-9. (2)当x =10时,代入y =95x 中,得y =18.故10月份应交水费18元.当y =51时,代入y =125x-9中,得x =25.那么11月份用水25吨. 8.解:(1)设y 与x 之间的函数关系式为y =kx +b ,由函数图象,得{250=50k +b,100=200k +b,解得{k =−1,b =300.所以y 与x 之间的函数关系式为y =-x +300. (2)因为y =-x +300,所以当x =120时,y =180.设甲品牌的进货单价是a 元,那么乙品牌的进货单价是2a 元,由题意得120a +180×2a=7200,解得a=15,所以乙品牌的进货单价是2×15=30(元).答:甲、乙两种品牌的文具盒的进货单价分别为15元、30元.。

4.4确定一次函数表达式教案

4.4确定一次函数表达式教案

4.4确定一次函数的表达时间教学目标知识与技能1、根据函数的图像确定一次函数的表达式2、会运用一次函数的思想解决实际问题过程与方法让学生经历观察、操作、合作、探究、交流、推理等活动,体会数学的建模、数形结合思想,进一步发展推理能力及有条理表达能力情感态度与价值观使学生经历探索、合作、交流的学习过程,激发学生对数学的兴趣,获得成功的体验。

教学重点根据所给信息确定一次函数的表达式。

教学难点体会数学的建模、数形结合思想。

教学过程一、复习:1.复习提问:(1)什么是一次函数?(2)一次函数的图象是什么?(3)一次函数具有什么性质?(4)一次函数和正比例函数有怎样的关系?学生回答…….2.预习:1.怎样确定一次函数的表达式?2.确定一次函数表达式的步骤有哪些?二、引入新课:(5分钟)v(米/秒)与其下滑时间t(秒 )的关系如图所示.1)写出v与t之间的关系式?2)下滑3秒时物体的速度是多少?t三、讲授新课:1、想一想(1)确定正比例函数的表达式需要几个点的坐标?(一个)(2)确定一次函数的表达式需要几个点的坐标?(两个)。

总结:在确定函数表达式时,要求几个系数就需要知道几个点的坐标2、例题讲解:例1 :在弹性限度内,弹簧的长度 y(厘米)是所挂物体质量 x(千克)的一次函数。

一根弹簧不挂物体时长14.5厘米;当所挂物体的质量为3千克时,弹簧长16厘米。

请写出 y 与x之间的关系式,并求当所挂物体的质量为4千克时弹簧的长度。

解:设y=kx+b(k≠0)由题意得:14.5=b,16=3k+b,解得:b=14.5 ; k=0.5.所以在弹性限度内,当x=4时,y=0.5×4+14.5=16.5(厘米).即物体的质量为4千克时,弹簧长度为16.5厘米.总结规律:求一次函数表达式的步骤:(1)设——设函数表达式y=kx+b(2)代——将点的坐标代入y=kx+b中,列出关于k,b的方程。

(3)求——解方程,求k,b。

《用待定系数法确定一次函数表达式》教案 (公开课)2022年湘教版数学

《用待定系数法确定一次函数表达式》教案 (公开课)2022年湘教版数学

4.4 用待定系数法确定一次函数表达式1.从题目中获取待定系数法所需要的两个点的条件;(难点)2.用待定系数法求一次函数的解析式.(重点)一、情境导入弹簧的长度y (厘米)在一定的限度内是所挂重物质量x (千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米.求这个一次函数的关系式.一次函数解析式怎样确定?需要几个条件?二、合作探究 探究点一:用待定系数法求一次函数解析式【类型一】 两点确定一次函数解析式 一次函数经过点A (3,5)和点B (-4,-9).(1)求此一次函数的解析式; (2)假设点C (m ,2)是该函数图象上的一点,求C 点的坐标.解析:(1)将点A (3,5)和点B (-4,-9)分别代入一次函数y =kx +b (k ≠0),列出关于k 、b 的二元一次方程组,通过解方程组求得k 、b 的值;(2)将点C 的坐标代入(1)中的一次函数解析式,即可求得m 的值.解:(1)设其解析式为y =kx +b (k 、b 是常数,且k ≠0),那么⎩⎪⎨⎪⎧5=3k +b ,-9=-4k +b ,∴⎩⎪⎨⎪⎧k =2,b =-1,∴其解析式为y =2x -1; (2)∵点C (m ,2)在函数y =2x -1的图象上,∴2=2m -1,∴m =32,∴点C 的坐标为(32,2).方法总结:解答此题时,要注意一次函数的一次项系数k ≠0这一条件,所以求出结果要注意检验一下.【类型二】 由函数图象确定一次函数解析式如图,一次函数的图象与x 轴、y 轴分别相交于A ,B 两点,如果A 点的坐标为(2,0),且OA =OB ,试求一次函数的解析式.解析:求出B 点的坐标,根据待定系数法即可求得函数解析式.解:∵OA =OB ,A 点的坐标为(2,0).∴点B 的坐标为(0,-2).设一次函数的解析式为y =kx +b (k ≠0),那么⎩⎪⎨⎪⎧2k +b =0,b =-2,解得⎩⎪⎨⎪⎧k =1,b =-2,∴一次函数的解析式为y =x -2. 方法总结:此题考查用待定系数法求一次函数解析式,解题的关键是利用所给条件得到关键点的坐标,进而求得函数解析式. 【类型三】 由三角形的面积确定一次函数解析式如图,点B 的坐标为(-2,0),AB 垂直x 轴于点B ,交直线l 于点A ,如果△ABO 的面积为3,求直线l 的解析式.解析:三角形AOB 的面积等于OB 与AB 乘积的一半,根据OB 与面积求出AB 的长,确定出A 点坐标,设直线l 的解析式为y =kx ,将A 点坐标代入求出k 的值,即可确定直线l 的解析式.解:∵S△AOB=12OB·AB=3,即12×AB=3,AB=3,即A点坐标为(-2设直线l的解析式为y=kx,将A坐标代入得:-3=-2k,即k,那么直线l的解析式为yx.方法总结:解决此题的关键是根据直线与坐标轴围成的三角形的面积确定另一个点的坐标.【类型四】利用图形变换确定一次函数解析式一次函数y=kx+b的图象过点(1,2),且其图象可由正比例函数y=kx向下平移4个单位得到,求一次函数的解析式.解析:先把(1,2)代入y=kx+b得k+b =2,再根据y=kx向下平移4个单位得到y =kx+b得到b=-4,然后求出k的值即可.解:把(1,2)代入y=kx+b得k+b=2,∵y=kx向下平移4个单位得到y=kx+b,∴b=-4,∴k-4=2,解得k=6.∴一次函数的解析式为y=6x-4.方法总结:此题考查了一次函数的图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k不变,向上平移m个单位,那么平移后直线的解析式为y=kx+b+m.探究点二:用待定系数法求一次函数解析式的应用【类型一】由实际问题确定一次函数解析式水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其局部刻度线不清晰(如图),表中记录的是该体温计局部清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数的自变量的取值范围);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.解析:(1)设y关于x的函数关系式为y =kx+b,由统计表的数据建立方程组求出其解即可;(2)当x,代入(1)的解析式就可以求出y 的值.解:(1)设y关于x的函数关系式为y=kx+b,由题意,得⎩⎪⎨⎪⎧35k+b,40k+b,解得:⎩⎪⎨⎪⎧k=54,b,∴y=54x+29.75.∴y关于x的函数关系式为y =54x+29.75;(2)当x,y=54×+29.75=37.5.℃.方法总结:此题考查了待定系数法求一次函数的解析式的运用,由解析式根据自变量的值求函数值的运用,解答时求出函数的解析式是关键.【类型二】与确定函数解析式有关的综合性问题如图,A、B是分别在x轴上位于原点左右侧的点,点P(2,m)在第一象限内,直线P A交y轴于点C(0,2),直线PB交y轴于点D,S△AOP=12.(1)求点A的坐标及m的值;(2)求直线AP的解析式;(3)假设S△BOP=S△DOP,求直线BD的解析式.解析:(1)由于S△POA=S△AOC+S△COP,根据三角形面积公式得到12×OA·2+12×2×2=12,可计算出OA =10,那么A 点坐标为(-10,0),然后再利用S △AOP =12×10×m=12求出m ;(2)A 点和C 点坐标,可利用待定系数法确定直线AP 的解析式;(3)利用三角形面积公式由S △BOP =S △DOP ,PB =PD ,即点P 为BD 的中点,那么可确定B 点坐标为(4,0),D 点坐标为(0,245),然后利用待定系数法确定直线BD 的解析式.解:(1)∵S △POA =S △AOC +S △COP ,∴12×OA ·2+12×2×2=12,∴OA =10,∴A 点坐标为(-10,0),∵S △AOP =12×10×m =12,∴m =125;(2)设直线AP 的解析式为y =kx +b ,把A (-10,0),C (0,2)代入得⎩⎪⎨⎪⎧-10k +b =0,b =2,解得⎩⎪⎨⎪⎧k =15,b =2,∴直线AP 的解析式为y =15x +2;(3)∵S △BOP =S △DOP ,∴PB =PD ,即点P 为BD 的中点,∵P 点坐标为(2,125),∴B点坐标为(4,0),D 点坐标为(0,245),设直线BD 的解析式为y =mx +n ,把B (4,0),D (0,245)代入得⎩⎪⎨⎪⎧4m +n =0,n =245,解得⎩⎨⎧m =-65,n =245,∴直线BD 的解析式为y =-65x+245. 三、板书设计用待定系数法求一次函数解析式 1.待定系数法的定义2.用待定系数法求一次函数解析式的步骤教学中,要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题的条件下,让学生自己去寻找答案,自己去发现规律.教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题,教师从中点拨、引导,并和学生一起学习,探讨,真正做到教学相长.4.5 一次函数的应用第1课时 利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点)3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司 话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱? 二、合作探究探究点:一次函数与实际问题利用图象(表)解决实际问题 我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t 以内(包括10t)的用户,每吨收水费a 元;月用水超过10t 的用户,10t 水仍按每吨a 元收费,超过10t 的局部,按每吨b 元(b >a )收费.设某户居民月用水x t ,应收水费y 元,y 与x 之间的函数关系如以下图. (1)求a 的值,并求出该户居民上月用水8t 应收的水费; (2)求b 的值,并写出当x >10时,y 与x 之间的函数表达式; (3)上月居民甲比居民乙多用4t 水,两家共收水费46元,他们上月分别用水多少吨? 解析:(1)用水量不超过10t 时,设其函数表达式为y =ax ,由上图可知图象经过点(10,15),从而求得a 的值;再将x =8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b 的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t 多还是比10t 少,然后用相对应的表达式分别求出甲、乙上月用水量. 解:(1)当0≤x ≤10时,图象过原点,所以设y =ax .把(10,15)代入,解得ayx (0≤x ≤10).当x =8时,y ×8=12,即该户居民的水费为12元; (2)当x >10时,设y =bx +m (b ≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t. 方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:元,那么这两种水果各购进多少千克? (2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元? 解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x 千克,那么购进乙种水果(140-x )千克,根据题意可得5x +9(140-x )=1000,解得x =65,∴140-x =75(千克).答:购进甲种水果65千克,乙种水果75千克; (2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W ,由题意可得W =3x +4(140-x )=-x +560,故W 随x 的增大而减小,那么x越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x ≤3x ,解得x ≥35,∴当x =35时,W 最大=-35+560=525(元),故140-35=105(千克). 答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】建立一次函数模型解决实际问题某商场欲购进A、B两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元.(1)求y关于x的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:由表格中的信息可得到A、B两种品牌每箱的利润,再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B种饮料有(500-x)箱,那么y=(63-55)x+(40-35)(500-x)=3xy=3x+2500(0≤x≤500);(2)由题意,得55x+35(500-x)≤x≤125.∴当x=125时,y最大值=3×125+2500=2875.∴该商场购进A、B两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】 两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间x (h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a 小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以D 的坐标,由待定系数法就可以求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23.答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题 2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。

求一次函数的表达式教案(教学设计)

求一次函数的表达式教案(教学设计)

一次函数复习课教学设计一、复习目标知识目标:了解一次函数的概念,掌握一次函数的图象和性质;能正确画出一次函数的图象,并能根据图象探索函数的性质;能根据具体条件列出一次函数的关系式。

能力目标:理解数形结合的数学思想,强化数学的建模意识,提高利用演绎和归纳进行复习的能力。

情感目标:通过对零散知识点的系统整理,让学生认识到事物是有规律可循的,同时帮助他们提高复习的效果,增进数学学习的兴趣。

教学重点与难点重点:根据不同条件求一次函数的解析式。

难点:根据函数图象探索其性质、体会函数与方程、函数与几何的转换。

教法与学法教法分析: 经过精心的整理,我把本单元的知识归纳成“六个知识要点”,采用的“演绎法”向学生传授。

由于是复习课,我采用边讲边练和问题教学的方式。

学法指导: 在这节课之前,我已经让全班同学拟定复习计划书,很多同学在计划书中都提出函数是难点,希望能多复习一点,我把这一信息反馈给班级,使全班同学都有一种意见得到尊重的满足感,并产生了强烈的主动求知欲望。

另外,通过向学生展示我对本单元的归纳,培养学生自己动脑,自己归纳总结的能力,从而掌握一种良好的复习方法。

二、教学过程(一)、知识回顾:由于是复习课,所以开门见山做课前练习。

(二)、提出“六个知识要点”:本单元的知识点比较繁多,而且在初中数学中所占的地位也比较重要。

因此,我用“六点”来对于本单元进行复习:知识点1、一般形式:1、选择题:分析:这类题目是考察同学们对函数解析式的特征的理解,在讲解时要突出两个疑难:一是一次函数中自变量的指数等于1,而不是0;二是一次函数解析式中自变量的系数不为零。

知识点2:直线与坐标的交点:函数y=kx+b图象与X轴交点是()与Y轴交点是()知识点3:一次函数图像与特征:是指一次函数的图象在坐标系中的位置,直线经过的象限:一般的,一条直线都经过三个象限,由于新教材不注重k,b的符号决定直线经过的象限的理解,且加上我班学生的基础较差,成绩一般。

一次函数教案【优秀10篇】

一次函数教案【优秀10篇】

一次函数教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!一次函数教案【优秀10篇】在数学的学习中等差求和公式是学习的重点的内容,以下内容是本店铺为您带来的10篇《一次函数教案》,亲的肯定与分享是对我们最大的鼓励。

北师大版八年级数学上册5.7用二元一次方程组确定一次函数表达式(教案)

北师大版八年级数学上册5.7用二元一次方程组确定一次函数表达式(教案)
在实践活动环节,我发现学生们对于如何将二元一次方程组与一次函数图象ห้องสมุดไป่ตู้结合求解问题还不够熟练。这说明我在这一部分的教学还需要加强,可以通过更多的例题和练习来巩固学生的掌握程度。
最后,我还要反思自己在课堂上的语言表达和教学组织方面,力求在今后的教学中更加精炼、清晰,让学生能够更好地理解和接受知识。通过不断反思和改进,我相信我能够帮助学生们更好地掌握这一章节的内容。
3.重点难点解析:在讲授过程中,我会特别强调一次函数图象与二元一次方程组的联系以及如何求解方程组这两个重点。对于难点部分,我会通过具体的图象和方程组示例来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数表达式相关的实际问题,例如,如何根据两个变量的关系绘制直线图象。
-掌握一次函数图象上任意一点的坐标与二元一次方程组解的关系。
举例解释:
-重点一:学生需掌握如何从一次函数图象中识别出对应的二元一次方程组,例如,给定一次函数图象,能够通过观察图象上的点来确定方程组的解。
-重点二:在实际问题中,如两个变量的线性关系,学生需要能够建立二元一次方程组,并求解得到一次函数表达式,如成本与销售量的关系。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二元一次方程组与一次函数表达式的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对一次函数图象与方程组之间联系的理解。我希望大家能够掌握这些知识点,并在解决实际问题时能够灵活运用。如果有任何疑问或不明白的地方,请随时向我提问。

5.7用二元一次方程组确定一次函数表达式教案

5.7用二元一次方程组确定一次函数表达式教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
并求解得到k和b的值,进而确定一次函数的表达式。
2.教学难点
-难点一:理解一次函数图象与方程组之间的联系。对于一些学生来说,理解图象上的点如何转化为方程组中的未知数可能会存在困难。
解决方法:通过图象的直观展示,结合具体例子的逐步引导,帮助学生建立起图象与方程组之间的联系。
-难点二:在求解方程组时,如何正确选择和运用求解方法。学生在面对不同的方程组时,可能会在选择方法上感到困惑。
具体内容包括:
(1)回两点坐标,列出一个包含k和b的二元一次方程组;
(3)求解二元一次方程组,得到k和b的值,进而确定一次函数表达式;
(4)通过实际案例,让学生练习如何运用二元一次方程组求解一次函数表达式。
二、核心素养目标
1.培养学生逻辑推理能力:通过分析一次函数图象上的点与方程组之间的关系,让学生掌握推理方法,提高逻辑思维能力。
这些核心素养目标与新教材要求相符,旨在帮助学生全面提高数学学科素养,为未来学习和生活打下坚实基础。
三、教学难点与重点
1.教学重点
-理解一次函数图象上任意两点与二元一次方程组之间的关系,这是本节课的核心内容。重点讲解如何从一次函数图象上的两点坐标出发,构建出包含斜率k和截距b的二元一次方程组。
-掌握求解二元一次方程组的方法,并能够将其应用于确定一次函数表达式。强调学生熟练运用代入法、消元法等方法求解方程组,进而得到一次函数的表达式。

5.7应用二元一次方程组-用二元一次方程组确定一次函数表达式(教案)

5.7应用二元一次方程组-用二元一次方程组确定一次函数表达式(教案)
2.教学难点
-难点一:理解二元一次方程组与一次函数之间的内在联系,特别是如何从图像上的点坐标推导出方程组;
-难点二:在求解过程中,对于方程组的列写与求解,尤其是涉及代数运算的步骤,学生可能会感到困难;
-难点三:将数学模型应用于实际问题,学生可能难以理解如何将抽象的数学知识应用到具体情境中。
举例一:在解释二元一次方程组与一次函数的联系时,通过图示和具体例题,引导学生理解一次函数图像上的任意两点可以确定一条直线,从而对应一个二元一次方程组。
五、教学反思
在今天的教学中,我重点关注了如何让学生理解并应用二元一次方程组来确定一次函数表达式。我发现,大部分学生在理论理解和实际操作上都能够跟上课程的节奏,但也有一些值得注意的地方。
首先,我发现在解释二元一次方程组与一次函数关系时,部分学生对于如何从图像上的点坐标推导出方程组这个过程感到困惑。这说明在今后的教学中,我需要更加形象、具体地展示这一过程,或许可以通过更多的图示和实际例题来帮助学生理解。
4.通过实例分析,使学生感受二元一次方程组在解决实际问题中的应用。
本节课我们将围绕以下案例进行教学:已知一次函数的图像上两点坐标,求该一次函数的表达式。通过引导学生运用二元一次方程组的知识,解决这一问题,让学生在实践中掌握知识,提高解决问题的能力。
二、核心素养目标
本节课的核心素养目标主要包括:
1.培养学生运用数学知识解决实际问题的能力,特别是在求解一次函数表达式时,能够熟练运用二元一次方程组;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二元一次方程组与一次函数之间的关系,以及如何通过二元一次方程组来确定一次函数的表达式。同时,我们也通过实践活动和小组讨论加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

八年级《一次函数》教学设计(5篇)

八年级《一次函数》教学设计(5篇)

八年级《一次函数》教学设计(5篇)八年级《一次函数》教学设计篇一教学目标:(知识与技能,过程与方法,情感态度价值观)(一)教学知识点1、一元一次不等式与一次函数的关系、2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较、(二)能力训练要求1、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识、2、训练大家能利用数学知识去解决实际问题的能力、(三)情感与价值观要求体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用、教学重点了解一元一次不等式与一次函数之间的关系、教学难点自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答、教学过程创设情境,导入课题,展示教学目标1、张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。

你能帮帮张大爷选择一种电话卡吗?2、展示学习目标:(1)、理解一次函数图象与一元一次不等式的关系。

(2)、能够用图像法解一元一次不等式。

(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。

积极思考,尝试回答问题,导出本节课题。

阅读学习目标,明确探究方向。

从生活实例出发,引起学生的好奇心,激发学生学习兴趣学生自主研学指出探究方向,巡回指导学生,答疑解惑探究一:一元一次不等式与一次函数的关系。

问题1:结合函数y=2x-5的图象,观察图象回答下列问题:(1) x取何值时,2x-5=0?(2) x取哪些值时,2x-50?(3) x取哪些值时,2x-50?(4) x取哪些值时,2x-53?问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y1 ?你是怎样求解的?与同伴交流让每个学生都投入到探究中来养成自主学习习惯小组合作互学巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。

《一次函数》教案(共5则)

《一次函数》教案(共5则)

《一次函数》教案(共5则)第一篇:《一次函数》教案《一次函数》教案马才义一.教学目标1、经历一般规律的探索过程,发展学生的抽象思维能力。

2、理解一次函数和正比例函数的概念,能根据所给的条件写出简单的一次函数表达式,发展学生的数学应用能力。

教学重点、难点重点:理解一次函数和正比例函数的概念。

难点:能根据所给的条件写出简单的一次函数表达式。

二。

教学过程(一)问题的提出题的提出饮料每箱12瓶,售价55元,求买饮料的总价Y(元)与所买瓶数X(瓶)的关系式。

2 某弹簧的自然长度为3厘米,在弹簧限度内,所挂物体的质量X每增加12千克,弹簧长度Y增加0。

5厘米。

(1)计算所挂物体的质量为1千克2千克3千克4千克5千克、、、、、、X千克弹簧长度,并填入下表;X/千克 0 1 2 3 4 5、、、X Y/厘米(2)你能写出X与Y的函数之间的关系吗?(二)做一做某汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升。

(1)完成下表路程X/千米 0 50 100 150 200 300、、、余油Y/升(2)你能写出X与Y的函数之间的关系吗?说明:各题中的X 都有一定的限制。

问:观察上述关系式的特点,总结规律。

(三)一次函数定义、正比例函数的定义若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)则称y是x的一次函数(x是自变量,y是因变量)。

特别地,当b=0时,称y是x的正比例函数。

(四)讲例例1写出下列各题中x与y之间的关系式,并判断y是否为x一次函数?是否为正比例函数?(1)汽车以60千米/时的速度行使,行使路程y(千米)与行使时间x(时)之间的关系。

(2)圆的面积y (cm2)与它的半径x(cm)之间的关系。

(3)一棵树现高50cm,每个月长高2cm,x月后这棵树的高度为y(cm)。

分析:本题较为简单,由学生完成。

例2 我国现行个人工资、薪金所得税征收办法规定:月收入不超过800元的部分不收税;月收入超过800元但不超过1300元的部分征收5%的所得税……如某人月收入1160元,他应缴个人工资、薪金所得税为(1160—800)*5%=18(元)。

待定系数法求一次函数表达式教案

待定系数法求一次函数表达式教案

待定系数法求一次函数表达式教案用待定系数法求一次函数表达式教案一、教学目标根据课标要求和学生认知特点,制定以下三维教学目标:1.知识与技能了解两个条件确定一个一次函数和一个条件确定一个正比例函数。

理解待定系数法,会用待定系数法确定一次函数的表达式。

2.过程与方法通过探索求解一次函数表达式的过程,感悟数学中数与形的结合,培养学生分析和解决问题的能力。

3.情感、态度与价值观渗透数形结合的思想,培养良好的自我尝试和大胆创新的精神。

二、教学重点与难点:1.重点:用待定系数法确定一次函数的表达式。

2.难点:用待定系数法解决抽象的函数问题。

3.教学关键:根据所给信息,找出两个条件,进而求出一次函数表达式。

三、教学方法采用高效6+1教学模式,让学生在自主、合作、探究中研究。

四、教学过程一、导入(创设情景,导入新课)1.如果两个变量x和y之间的关系是正比例函数,那么它的表达式是什么?它的图像是什么?2.如果两个变量x和y之间的关系是一次函数,那么它的表达式是什么?它的图像是什么?3.画出函数y=x+3的图像。

师生活动:提出问题,让学生回答,然后再提出问题,从而成功导入新课。

设计意图:复正比例函数和一次函数的定义,以及画一次函数和正比函数的图像,为研究本节内容铺垫,并初步体会从数到形的思想。

出示本节研究目标)设计意图:让学生根据研究目标使研究更有针对性。

二、研究自学课本96、97页的“观察与思考”和例1,独立完成以下三个题目:1.已知一次函数的图像经过点(3,5)和(-4,-9),求这个一次函数的表达式。

2.已知正比例函数的图像过点(3,4),求这个正比例函数的表达式。

3.XXX将父母给的零用钱按月相等的存放在储蓄盒内,准备捐给希望工程。

第2个月XXX的储蓄盒内有80元,第4个月XXX的储蓄盒内有120元。

已知盒内钱数与存钱月数之间是一次函数关系。

①求出盒内钱数y(元)与存钱月数x(月)之间的函数关系式。

②根据关系式计算,XXX经过几个月才能存够200元?三、总结1.请举例说明如何用待定系数法确定一次函数的表达式。

用二元一次方程组确定一次函数表达式(教案)

用二元一次方程组确定一次函数表达式(教案)
活动探究二:想一想,回答下面的问题(小组讨论,5min)
例1某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(千克)的一次函数.现知李明带了60千克的行李,交了行李费5元,张华带了90千克:同学们我们来复习一下上节课的内容
二元一次方程组与一次函数有何联系?
1、二元一次方程的解是一次函数上点的坐标;一次函数上每一个点的坐标就是二元一次方程的一组解.
2、从图形的角度看,确定两条直线交点的坐标,相当于求相应的二元一次方程组的解;
回顾方程组和一次函数的对应关系,思考老师提出问题,并积极回答问题
回忆旧知,为本节课学习新的知识做铺垫。
讲授新课
活动探究一:想一想,回答下面的问题
A ,B两地相距100千米,甲、乙两人骑自行车分别从A,B两地相向而行。假设他们都保持匀速行驶,则他们各自到A地的距离s(千米)都是骑车时间t(时)的一次函数。1小时后乙距A地80千米;2小时后甲距A地30千米。问:经过多长时间两人相遇?
交点即为相遇地,求出交点的横坐标即为相遇的时间。
分析讨论得:图像不能准确的得到,需要求解。
积极联系上节课的内容,发现:二元一次方程组的解是它们对应的两个一次函数图像的交点坐标。
通过实际问题情景,进一步加强函数与方程的联系,让学生在多种方法解决问题的思考和比较中体会作图像方法与代数方法各自的特点,为讲解待定系数法确定一次函数的解析式做好铺垫.同时理解知识之间有着广泛的联系.通过“小明的方法求出的结果准确吗?”自然过渡到本节课的主要内容。
(2)旅客最多可免费携带多少千克的行李?
像本例这样,先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法。

沪科版数学八年级上册《求一次函数的表达式》教学设计

沪科版数学八年级上册《求一次函数的表达式》教学设计

沪科版数学八年级上册《求一次函数的表达式》教学设计一. 教材分析沪科版数学八年级上册《求一次函数的表达式》是学生在学习了初中数学基础知识后,对一次函数的定义、性质有了初步了解的基础上进行学习的。

本节课的内容包括一次函数的表达式、一次函数的图像和一次函数的应用。

通过本节课的学习,使学生掌握一次函数的表达式,了解一次函数的图像特点,提高学生解决实际问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了实数、代数式等基础知识,对函数的概念、性质有所了解,具备了一定的逻辑思维能力和问题解决能力。

但学生对一次函数的表达式的推导过程,以及如何应用一次函数解决实际问题还需加强。

三. 教学目标1.知识与技能:理解一次函数的表达式,学会用一次函数表示实际问题中的数量关系。

2.过程与方法:通过合作交流,培养学生的团队协作能力;通过自主探究,提高学生的问题解决能力。

3.情感态度价值观:激发学生学习数学的兴趣,培养学生的创新精神,使学生感受到数学与生活的紧密联系。

四. 教学重难点1.一次函数的表达式。

2.如何用一次函数解决实际问题。

五. 教学方法采用问题驱动法、合作交流法、自主探究法等教学方法,引导学生主动参与,提高学生的学习兴趣和问题解决能力。

六. 教学准备1.教学课件:制作一次函数的表达式、图像和应用的教学课件。

2.教学素材:准备一些实际问题,用于引导学生用一次函数解决。

3.教学工具:准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)利用课件展示一次函数的图像,引导学生回顾一次函数的定义和性质,为新课的学习做好铺垫。

2.呈现(10分钟)呈现一次函数的表达式,引导学生通过观察、分析、归纳,总结一次函数的表达式。

3.操练(10分钟)分组讨论,让学生试着用一次函数的表达式解决实际问题,培养学生的团队协作能力和问题解决能力。

4.巩固(10分钟)针对学生解决实际问题的过程,进行讲解和点评,纠正学生的错误,巩固一次函数的表达式的应用。

沪科版数学八年级上册《求一次函数的表达式》教学设计1

沪科版数学八年级上册《求一次函数的表达式》教学设计1

沪科版数学八年级上册《求一次函数的表达式》教学设计1一. 教材分析沪科版数学八年级上册《求一次函数的表达式》是学生在学习了初中数学基础知识后,进一步深入研究一次函数的内容。

本节课主要让学生掌握一次函数的表达式,了解一次函数的性质,以及如何运用待定系数法求一次函数的表达式。

教材通过丰富的实例和实际问题,激发学生的学习兴趣,培养学生的动手操作能力和解决问题的能力。

二. 学情分析八年级的学生已经掌握了初中数学基础知识,对函数有一定的认识。

但在求一次函数的表达式方面,部分学生可能还存在一定的困难。

因此,在教学过程中,教师要关注学生的个体差异,针对不同程度的学生进行有针对性教学,提高他们的数学素养。

三. 教学目标1.让学生掌握一次函数的表达式,了解一次函数的性质。

2.培养学生运用待定系数法求一次函数的表达式的能力。

3.提高学生解决问题的能力,培养学生的团队协作精神。

四. 教学重难点1.一次函数的表达式及其求法。

2.一次函数的性质及其应用。

五. 教学方法1.情境教学法:通过生活实例引入一次函数,激发学生的学习兴趣。

2.启发式教学法:引导学生思考,自主探究一次函数的表达式求法。

3.小组合作学习法:培养学生团队协作,共同解决问题。

4.反馈评价法:及时了解学生的学习情况,针对性地进行教学调整。

六. 教学准备1.教学课件:制作生动有趣的教学课件,辅助教学。

2.实例素材:收集与一次函数相关的生活实例,用于导入和巩固环节。

3.练习题库:准备一定数量的一次函数练习题,用于操练和巩固环节。

4.板书设计:提前设计好板书,突出一次函数的表达式和性质。

七. 教学过程1.导入(5分钟)利用生活实例引入一次函数的概念,激发学生的学习兴趣。

如:交通工具的速度与时间的关系,商品的售价与数量的关系等。

2.呈现(10分钟)介绍一次函数的一般形式:y=kx+b(k≠0,k、b为常数)。

并通过实例解释一次函数的表达式。

3.操练(10分钟)学生分组讨论,运用待定系数法求一次函数的表达式。

一次函数教案12篇

一次函数教案12篇

一次函数教案12篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如演讲稿、工作总结、工作计划、心得体会、教学总结、事迹材料、优秀作文、教学设计、合同范文、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as speeches, work summaries, work plans, experiences, teaching summaries, deeds materials, excellent essays, teaching designs, contract samples, and other materials. If you want to learn about different data formats and writing methods, please pay attention!一次函数教案12篇一次函数教案1一、课程标准要求:①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
该直线的表达式为y=kx+b(k≠0).
∴直线AB的表达式为y=-3x+3
通过同学互相讨论,培养学生的观察、自学的能力,增强学生的自信心。
通过具体例子的具体解法加深对求一次函数的解析式的理解,切忌死记硬背。
三、引导观察,讨论归纳
(学生观察、讨论、总结)
(1)什么待定系数法
先设出函数表达式(其中含有待定系数),再根据条件列出方程或方程组,求出待定系数,从而得到所求结果的方法叫做待定系数法。
在我们身边见到的温度计,大多是酒精或水银温度计,它们的特性是温度计的液面高度会随着温度的变化而变化。那么它们的变化规律是否存在一定的函数关系?请大家看下边这道题目:
[出示题目]:
温度计是利用水银(酒精)热胀冷缩的原理制作的,温度计中水银(酒精)的高度y(厘米)是温度x(℃)的一次函数,某种实验用的温度计能测量-20℃至100℃的温度,已知10℃时,水银柱的高度是10cm,50℃时,水银柱高18cm,求这个函数的表达示。
七、板书设计
求一次函数的表达式
一、一次函数的表达式
1、例题
2、用待定系数法求一次函数的解析式的一般步骤:设、列、解、代。
八、教学反思
1、授课流程反思:
本堂课的教学重点是运用待定系数法求一次函数的解析式骤的确立。首先学生要知道什么是待定系数法,然后是会求一次函数的解析式。本节课主要以“先学后教,当堂训练”的教学模式进行。在教学过程中老师引导学生自己去归纳总结,充分体现学生的主体地位。
课题:求一次函数的表达式(第一课时)
科目:数学
教学对象:八年级学生
课时:1
一、学习者特征分析
八年级下的学生,已经有了一些解决问题的能力。特别是经过一学期的训练,他们有着强烈的自我发展,自主学习的要求,已不满足于老师的满堂灌,而是有着自己探究新知的渴望。这使得我们在学习活动的安排上,除了关注学生掌握数学知识之外,更应该注重学生动手实践、探索新知的过程。虽然不同基础的学生对知识的理解程度不同,但只要全体本节课的授课对象为八年级的学生,他们的观察、记忆、想象、总结概括能力在迅速的发展,所以在教学中应该更多的发挥学生的主体性作用,引导他们多观察、多思考,学生共同参与进来,这本身就是学生体验数学的重要过程。也要多创造条件与机会,让学生发表对所学知识见解。
学生口答问题1~4。
老师板书一次函数的符号表达,出示本节课的学习目标。
通过回顾复习一次函数的相关概念,为学习求一次函数的解析式做好铺垫。来自二、自主学习 探究新知
如图所示,已知直线AB和x轴交于点A,和y轴交于点B:
(1)出A、B两点的坐标;
(2)求直线AB的表达式.
[学习流程]
(1)学生相互讨论,自行解答;
四、教学策略选择与设计
本节课主要以“先学后教”的教学模式进行。让学生明确本节课的教学目标,激发学生学习的兴趣,调动学生学习的积极性,使学生能主动地围绕目标进行探究性学习。教师指导学生自学、补充、更正,帮助归纳、总结,使学生进一步加深对所学知识的理解。及时检测每个学生一是否当堂达到了教学目标,尽量做到“堂堂清”。最终形成运用所学知识去分析问题、解决问题的能力。
通过牛刀小试的练习,加强学生运用新知识的能力。检测每位学生是否都当堂达到了教学目标,做到“堂堂清”,便于老师针对学生作业中出现的问题,课外引导学生更正、做必要的辅导。三是便于教师准确地了解学生实际,课外有针对性的引导学生更正,进行必要的辅导。
四、实际应用 能力提升
请大家欣赏一段视频(出示视频、图片)
1、本节课我们学习了什么?
(用待定系数求一次函数表达式)
2、用待定系数求一次函数表达式的一般步骤是什么?
(一设、二列、三解、四代)
3、利用待定系数求一次函数表达式时,应注意哪些问题?
(在设一次函数表达式y=kx+b时,必须说明k≠0,实际问题中必须写清自变量的取值范围。)
学生小结。
学生对一节课的学习进行反思和梳理,对学习内容进行升华。
通过课本的实际应用题,严格训练,加强学生运用新知识的能力。检测每位学生是否都当堂达到了教学目标,做到“堂堂清”,便于老师针对学生作业中出现的问题,课外引导学生更正、做必要的辅导。三是便于教师准确地了解学生实际,课外有针对性的引导学生更正,进行必要的辅导。
五、课堂小结,回扣目标
引导学生自主进行课堂小结:
学生口答。
教师播放幻灯片。给出待定系数法的定义。
在本环节中,教师应重点关注:
学生是否能够根据例题解题的基本步骤归纳出运用待定系数法求解一次函数解析式的一般步骤。并且强调设列解代的四个步骤,加强同学们对知识点的理解和记忆。
学生独立完成。
教师巡视并指导,及时发现问题。
通过回忆、观察解答例题的步骤,学生讨论,归纳总结运用待定系数法求解一次函数解析式的一般步骤,可以锻炼学生的观察能力,归纳能力,团队协作思维。
[学生围绕以下问题讨论分析]
1、自变量是什么?因变量是什么?
2、题目中给定了x、y的几对对应值?分别是什么?
3、自变量的取值范围是什么?
[学生回答上述问题]
[学生练习,抽生板书]
[多媒体展示]
解:设所求函数表达式是y=kx+b(k≠0),根据题意得:
解这个方程得
所以,所求函数的表达式是
y=0.2x+8 (-20≤x≤100)
五、教学重点及难点
教学重点:用待定系数法求一次函数的表达式。
教学难点:解决实际的函数问题。
六、教学过程
教师活动
师生活动
设计意图
(一)温故知新
通过前几节的课的学习,大家已经掌握了一次函数的相关知识,现在一起回顾一下:
1、在某变化过程中,有两个变量x和y,如果对于x的每一个值,y都有(唯一)的值与之对应,那么x是(自变量),y是(因变量),此时也称y是x的(函数)。
2、形如y=kx+b(k、b为常数,k≠0)的函数叫做(一次函数);特别地,当b=0时,一次函数y=kx(k≠0)也叫做(正比例函数)。
[简单介绍待定系数]
3、一次函数的图像是(一条直线),而两点确定一条直线;所以画一次函数的图像只需要确定(两个)点。
4、小明在坐标系中画了如图所示的正比例函数y=kx(k≠0),你能写出它的表达式吗?
(2)用待定系数法求一次函数表达式的一般步骤。
一设:设出函数的一般形式。
二列:根据已知条件列出方程或方程组。
三解:解方程或方程组求出待定系数k,b的值。
四代:代入所设表达式中,得到函数的表达式。
[牛刀小试]
如图所示,一次函数的图象经过A(1,3),B(-1,7)两点,求该一次函数的表达式。
(学生练习,抽生板书)
2、授课效果反思:
对于本节课的重点问题,求一次函数的解析式老师要强调求一次函数的基本步骤。学生上黑板演示的时候,老师要特别强调,尤其是遇到学生做错时,以对其他学生起到警示的作用。
3、师生互动反思:
从课堂交流和课堂检测来看,学生能理解待定系数法,会做简单的求解一次函数的解析式,学生能够运用待定系数法解答实际应用题,并且效果很好。对上黑板演示的部分,让学生起来点评,对街求一次函数的解析式的步骤,由学生自己总结得出,真正发挥了学生的主体地位,也加强了学生之间的互相评价。
(2)请学生作答,老师分析总结;
分析:已知y是x的一次函数,它的表达式必有y=kx+b(k≠0)的形式,问题就归结为求k,b的值,图象经过AB两点,说明将这两个点的坐标代入函数表达示中,函数关系式是成立的,我们不妨将这两个点的坐标代入函数关系系中,进而求得k和b的值。
解:①A的坐标是(1,0),B的坐标是(0,3);
本节课,是我产假期间突然接到去给乡镇中学上的一节课。大部分的学生敢于积极发言,踊跃上黑板演示自己的解题过程。但由于我和学生之间不熟,也造成学生的一些紧张感,一部分胆小一点的学生不敢举手发言。希望自己将来能够很好的调动学生的积极性。达到人人能参与课堂,以达到更好的教学效果。
本阶段的学生是在学习了一次函数的基本性质,知道了一次函数的图像的基础上来学习本节课的,本节课采用“先学后教”的模式教学,把学生的个体行为提升为群体行为,使得学生成为课堂真正的“主体”,提高学生的学习兴趣,增强学生的好学的信心,养成良好的自学习惯,从而使学生能够高效地完成学习任务。
二、教学内容分析
一次函数是初中阶段学习的三种基本函数中最简单的一种函数形式。这部分内容是在学生学习了变量与函数、一次函数的概念等基础上,继续对某些特殊的变量关系的考察和认识。从知识衔接的角度看,有着承上启下的作用,符合学生的认知规律。确定一次函数解析式,关键在于确定出一次函数y=kx+b中的k、b的值,用待定系数法确定一次函数解析式,不仅要求学生能正确地确定出解析式,还重在让学生对一次函数式与函数图象、函数式中的变量与函数图象上点的坐标之间关系的理解,将数与形联系起来,形成数形结合的思想意识。为后面学习反比例函数、二次函数打下基础。
三、教学目标
1、知识目标:
(1)掌握待定系数法的思维方式与特点。
(2)会根据所给信息用待定系数法求一次函数的表达式,发展解决问题的能力。
(3)进一步体验并初步形成“数形结合”的思想方法。
2、能力目标:
通过学习能把实际问题转换为数学问题,培养学生的“数形结合”能力。
3、情感目标:
能把所学知识运用于实际,让学生认识数学与人类生活的密切联系以及对人类历史发展的作用。
相关文档
最新文档