全等三角形中的平移与旋转模型
模型构建专题:全等三角形中的常见八种模型(8类热点题型讲练)(解析版)--初中数学北师大版7年级下册
第05讲模型构建专题:全等三角形中的常见八种模型(8类热点题型讲练)目录【模型一平移型模型】 (1)【模型二轴对称型模型】 (3)【模型三四边形中构造全等三角形解题】 (5)【模型四一线三等角模型】 (9)【模型五三垂直模型】 (13)【模型六旋转型模型】 (18)【模型七倍长中线模型】 (24)【模型八截长补短模型】 (30)【模型一平移型模型】例题:(2023上·福建福州·八年级统考期末)如图,点B,E,C,F在同一直线上,A D∠=∠,AB DE∥,=.BE CF求证:AB DE=.【答案】证明见解析【分析】本题考查了三角形全等的性质与判定的应用以及两直线平行的判定定理,解此题的关键是推出△△,注意全等三角形的对应边相等;根据AB DE≌ABC DEF∠=∠,又根据∠A=∠D,BE=CF∥可知B DEF可以判定ABC DEF ≌△△,即可求证AB DE =.【详解】解:∵AB DE ∥,∴B DEF ∠=∠,∵BE CF =,∴BC EF =,∴在ABC 和DEF 中,A DB DEF BCEF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC DEF ≌△△,∴AB DE =.【变式训练】1.(2023秋·浙江·八年级专题练习)如图,在ACD 和CEB 中,点A 、B 、C 在一条直线上,D E AD EC AD EC ∠=∠=,∥,.求证:ACD CBE ≌.【答案】见解析【分析】根据平行线的性质得出A ECB ∠=∠,再根据全等三角形的判定定理ASA 证明ACD CBE ≌.【详解】AD EC ∥ ,A ECB ∴∠=∠,在ACD 和CEB 中,A ECB AD ECDE ∠=∠⎧⎪=⎨⎪∠=∠⎩,(ASA)ACD CBE ∴△≌△.【点睛】本题考查了全等三角形的判定定理和平行线的性质,能熟记全等三角形的判定定理是解此题的关键.2.(2024上·新疆和田·八年级统考期末)如图,点A 、D 、C 、F 在同一条直线上,AD CF =,AB DE =,BC EF =.(1)求证:ABC DEF ≌△△;(2)若65A ∠=︒,82B ∠=︒,求F ∠的度数.【答案】(1)见解析(2)33︒【分析】本题考查了全等三角形的性质与判定,三角形内角和定理的应用,掌握全等三角形的性质与判定是解题的关键.(1)先证明AC DF =,然后根据SSS 证明ABC DEF ≌△△即可;(2)根据全等三角形的性质得出F ACB ∠=∠,进而根据三角形内角和定理即可求解.【详解】(1)证明:AC AD DC =+∵,DF DC CF =+,且AD CF =,AC DF =∴,在ABC 和DEF 中,AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩,(SSS)ABC DEF ∴△≌△,(2)解:由(1)可知,ABC DEF ≌△△,F ACB ∠=∠∴,65A ∠=︒ ,82B ∠=︒,180()180(6582)33ACB A B ∴∠=︒-∠+∠=︒-︒+︒=︒,33F ACB ∴∠=∠=︒.【模型二轴对称型模型】例题:(2024上·云南昆明·八年级统考期末)线段AC 、BD 相交于点E ,D A ∠=∠,DE AE =,求证:C B ∠=∠.【答案】证明见解析.【分析】本题考查了全等三角形的判定和性质,根据ASA 可证ABE ≌DCE △,根据全等三角形的性质即可得证.【详解】证明: 在DEC 和AEB △中D A DE AE DEA AEB ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA DEC AEB ∴△≌△,ABE ∴ ≌()ASA DCE ,C B∴∠=∠【变式训练】1.(2023·湖南益阳·统考一模)如图,点D 在AB 上,点E 在AC 上,AB AC =,BD CE =.求证:ACD ABE ≌.【答案】见解析【分析】根据AB AC =,BD CE =推出AD AE =,即可根据SAS 进行求证.【详解】证明:,,,AB AC BD CE AD AB BD AE AC CE ===-=- ,AD AE ∴=.在ABE 和ACD 中,AD AE A A AC AB =⎧⎪∠=∠⎨⎪=⎩,()SAS ACD ABE ∴ ≌.【点睛】本题主要考查了三角形全等的判定,解题的关键是熟练掌握证明三角形全等的方法有SSS,SAS,AAS,ASA,HL .2.(2024上·山西阳泉·八年级统考期末)如图1是小宁制作的燕子风筝,燕子风筝的骨架图如图2所示,AB AE =,AC AD =,BAD EAC ∠=∠,40C ∠=︒,求D ∠的度数.【答案】40︒【分析】本题考查了全等三角形的判定与性质,先证明BAC EAD ∠=∠,再证明BAC EAD ≌,即可得到40D C ∠=∠=︒.【详解】解:∵BAD EAC ∠=∠,BAD DAC EAC DAC ∴∠+∠=∠+∠,即BAC EAD ∠=∠.在BAC 与EAD 中,,,,AB AE BAC EAD AC AD =⎧⎪∠=∠⎨⎪=⎩()SAS BAC EAD ∴V V ≌.C D ∴∠=∠.∵40C ∠=︒,40C D =∠=︒∴∠.【模型三四边形中构造全等三角形解题】例题:如图,在四边形ABCD 中,CB AB ⊥于点B ,CD AD ⊥于点D ,点E ,F 分别在AB ,AD 上,AE AF =,CE CF =.(1)若8AE =,6CD =,求四边形AECF 的面积;(2)猜想∠DAB ,∠ECF ,∠DFC 三者之间的数量关系,并证明你的猜想.AE ⎧⎪∴∠DFC+∠BEC=∠FCA+∠FAC+∠ECA+∠EAC=∠DAB+∠ECF.∴∠DAB+∠ECF=2∠DFC【点睛】本题考查了三角形全等的性质与判定,三角形的外角的性质,掌握三角形全等的性质与判定是解题的关键.【变式训练】1.在四边形ABDC中,AC=AB,DC=DB,∠CAB=60°,∠CDB=120°,E是AC上一点,F是AB延长线上一点,且CE=BF.(1)试说明:DE=DF:(2)在图中,若G在AB上且∠EDG=60°,试猜想CE,EG,BG之间的数量关系并证明所归纳结论.(3)若题中条件“∠CAB=60°,∠CDB=120°改为∠CAB=α,∠CDB=180°﹣α,G在AB上,∠EDG满足什么条件时,(2)中结论仍然成立?猜想CE 、EG 、BG 之间的数量关系为:证明:在ABD ∆和ACD ∆中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,ΔΔ()ABD ACD SSS ∴≅,【模型四一线三等角模型】【答案】探究:见解析;应用:61.已知CD 是经过BCA ∠顶点C 的一条直线,CA CB =.E 、F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠.(1)若直线CD 经过BCA ∠的内部,且E 、F 在射线CD 上,请解决下面问题:①如图1,若90BCA ∠=︒,90α∠=︒,求证:BE CF =;②如图2,若180BCA α∠+∠=︒,探索三条线段EF BE AF ,,的数量关系,并证明你的结论;(2)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,题(1)②中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确的结论再给予证明.【答案】(1)①见解析;②EF BE AF =-,见解析(2)不成立,EF BE AF =+,见解析【分析】(1)①利用垂直及互余的关系得到ACF CBE ∠=∠,证明BCE ≌CAF V 即可;②利用三等角模型及互补证明ACF CBE ∠=∠,得到BCE ≌CAF V 即可;(2)利用互补的性质得到EBC ACF ∠=∠,证明BCE ≌CAF V 即可.【详解】(1)①证明:∵90EE CD AF CD ACB ⊥⊥∠=︒,,,∴90BEC AFC ∠=∠=︒,∴9090BCE ACF CBE BCE ∠+∠=︒∠+∠=︒,,∴ACF CBE ∠=∠,在BCE 和CAF V 中,EBC FCA BEC CFA BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴BCE ≌CAF V ()AAS ,∴BE CF =;②解:EF BE AF =-.证明:∵180BEC CFA ACB αα∠=∠=∠∠+∠=︒,,∴180180CBE BCE ACF ACB BCE BCE αα∠=︒-∠-∠∠=∠-∠=︒-∠-∠,,∴ACF CBE ∠=∠,在BCE 和CAF V 中,EBC FCA BEC CFA BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴BCE ≌CAF V ()AAS ,∴BE CF CE AF ==,,∴EF CF CE BE AF =-=-;(2)解:EF BE AF =+.理由:∵BEC CFA BCA αα∠=∠=∠∠=∠,,又∵180180EBC BCE BEC BCE ACF ACB ∠=∠=∠=︒∠+∠+∠=︒,,∴EBC BCE BCE ACF ∠+∠=∠+∠,∴EBC ACF ∠=∠,在BCE 和CAF V 中,EBC FCA BEC CFA BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴BCE ≌CAF V ()AAS ,∴AF CE BE CF ==,,∵EF CE CF =+,∴EF BE AF =+.【点睛】本题主要考查三角形全等的判定及性质,能够熟练运用三等角模型快速证明三角形全等是解题关键.2.(2024上·湖南株洲·八年级校联考期末)(1)如图①,已知∶ABC 中,90,BAC AB AC ∠=︒=,直线m 经过点,A BD m ⊥于,D CE m ⊥于E ,求证∶ABD CAE △△≌;(2)拓展∶如图②,将(1)中的条件改为∶ABC 中,,AB AC D A E =、、三点都在直线m 上,并且BDA AEC BAC α∠=∠=∠=,α为任意锐角或钝角,请问结论DE BD CE =+是否成立?如成立,请证明;若不成立,请说明理由;(3)应用∶如图③,在ABC 中,BAC ∠是钝角,,AB AC BAD CAE =∠>∠,BDA AEC BAC ∠=∠=∠,直线m 与BC 的延长线交于点F ,若2,BC CF ABC = 的面积是12,求ABD △与CEF △的面积之和.【答案】(1)见解析;(2)成立,理由见解析;(3)6【分析】(1)先证明90BDA AEC BAC ∠=∠=∠=︒,DBA CAE ∠=∠,然后根据AAS 即可证明ABD CAE ≌ ;(2)先证明DBA CAE ∠=∠,再证明()AAS ABD CAE ≌,再利用全等三角形的性质可得结论;(3)同(2)可证()AAS ABD CAE ≌,得出ABD CEA S S = ,再由不同底等高的两个三角形的面积之比等于底的比,得出ACF S △即可得出结果.【详解】解:(1)∵90BDA AEC BAC ∠=∠=∠=︒,∴90BAD CAE ∠+∠=︒,且90DBA BAD ∠+∠=︒,∴DBA CAE ∠=∠,在ABD △和CAE V 中,【模型五三垂直模型】例题:(2023上·辽宁大连·八年级统考期中)通过对下面数学模型的研究学习,解决下列问题:(1)如图1,点A 在直线l 上,90,BAD AB AD ∠=︒=,过点B 作BC l ⊥于点C ,过点D 作DE l ⊥交于点E .得1D ∠=∠.又90BCA AED ∠=∠=︒,可以推理得到()ABC DAE AAS ≌.进而得到结论:AC =_____,BC =_____.我们把这个数学模型称为“K 字”模型或“一线三直角”模型;(2)如图2,∠90,,,BAD MAN AB AD AM AN BM l ∠=∠=︒==⊥于点C ,DE l ⊥于点E ,ND 与直线l 交于点P ,求证:NP DP =.【答案】(1)DE ,AE(2)见解析【分析】本题考查一线三直角全等问题,(1)由90CBA AED BAD ∠∠∠===︒,得12290D ∠∠∠∠+=+=︒,则1D ∠∠=,而AB DA =,即可证明ABC DAE ≌,得AC DE =,BC AE =,于是得到问题的答案;(2)作NF l ⊥于点F ,因为BM l ⊥于点C ,DE l ⊥于点E ,所以90ACM NFA NFP DEP ∠∠∠∠====︒,由(1)得AC DE =,因为90MAN ∠=︒,所以90CAM FAN FNA FAN ∠∠∠∠+=+=︒,则CAM FNA ∠∠=,而AM NA =,即可证明CAM FNA ≌,得AC NF =,所以NF DE =,再证明PFN PED ≌,则NP DP =.【详解】(1))解:BC l ⊥于点C ,DE l ⊥于点E ,∴90CBA AED ∠∠==︒,∵90BAD ∠=︒,∴12890D ∠∠∠∠+=+=︒,∴1D ∠∠=,在ABC 和DAE 中,1D BCA AED AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AAS ABC DAE ≌(),∴AC DE =,BC AE =,故答案为:DE ,AE .(2)证明:如图2,作NF l ⊥于点F ,∵BM l ⊥于点C ,DE l ⊥于点E ,∴90ACM NFA NFP DEP ∠∠∠∠====︒,由1AC DE=()得,同理(1)得AC NF =,∴NF DE =,在PFN 和PED 中,MFP DEF FPN EPD MF DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AAS PFN PED ≌(),∴NP DP =.【变式训练】1.在△ABC 中,∠BAC =90°,AC=AB ,直线MN 经过点A ,且CD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点A 旋转到图1的位置时,EAB DAC ∠+∠=度;(2)求证:DE=CD +BE ;(3)当直线MN 绕点A 旋转到图2的位置时,试问DE 、CD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】(1)90°(2)见解析(3)CD=BE +DE ,证明见解析【解析】【分析】(1)由∠BAC =90°可直接得到EAB DAC ∠+∠=90°;(2)由CD ⊥MN ,BE ⊥MN ,得∠ADC =∠BEA =∠BAC =90°,根据等角的余角相等得到∠DCA =∠EAB ,根据AAS 可证△DCA ≌△EAB ,所以AD =CE ,DC =BE ,即可得到DE =EA +AD =DC +BE .(3)同(2)易证△DCA ≌△EAB ,得到AD =CE ,DC =BE ,由图可知AE =AD +DE ,所以CD =BE +DE .(1)∵∠BAC =90°∴∠EAB +∠DAC =180°-∠BAC =180°-90°=90°故答案为:90°.(2)证明:∵CD ⊥MN 于D ,BE ⊥MN 于E∴∠ADC =∠BEA =∠BAC =90°∵∠DAC +∠DCA =90°且∠DAC +∠EAB =90°∴∠DCA =∠EAB∵在△DCA 和△EAB 中90ADC BEA DCA EAB AC AB ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴△DCA ≌△EAB (AAS )∴AD =BE 且EA =DC由图可知:DE =EA +AD =DC +BE .(3)∵CD ⊥MN 于D ,BE ⊥MN 于E∴∠ADC =∠BEA =∠BAC =90°∵∠DAC +∠DCA =90°且∠DAC +∠EAB =90°∴∠DCA =∠EAB∵在△DCA 和△EAB 中90ADC BEA DCA EAB AC AB ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴△DCA ≌△EAB (AAS )∴AD =BE 且AE =CD由图可知:AE =AD +DE∴CD =BE +DE .【点睛】本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角,也考查了三角形全等的判定与性质.2.(2024上·吉林辽源·九年级统考期末)如图,在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到①的位置时,求证:①ADC CEB △△≌;②DE AD BE =+;(2)当直线MN 绕点C 旋转到②的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到③的位置时,试问DE 、AD 、BE 具有怎样的数量关系?请直接写出这个等量关系,不需要证明.【答案】(1)①见解析;②见解析(2)见解析(3)DE BE AD =-(或AD BE DE =-,BE AD DE =+).【分析】本题考查了几何变换综合题,需要掌握全等三角形的性质和判定,垂线的定义等知识点的应用,解此题的关键是推出证明ADC △和CEB 全等的三个条件.题型较好.(1)①已知已有两直角相等和AC BC =,再由同角的余角相等证明DAC BCE =∠∠即可证明()AAS ADC BEC ≌;②由全等三角形的对应边相等得到AD CE =,BE CD =,从而得证;(2)根据垂直定义求出BEC ACB ADC ∠=∠=∠,根据等式性质求出ACD CBE ∠=,根据AAS 证出ADC △和CEB 全等,再由全等三角形的对应边相等得到AD CE =,BE CD =,从而得证;(3)同样由三角形全等寻找边的关系,根据位置寻找和差的关系.【详解】(1)①证明:∵90ACB ∠=︒,90ADC ∠=︒,90BEC ∠=︒∴90ACD DAC ∠+∠=︒,90ACD BCE ∠+∠=︒,∴DAC BCE =∠∠,在ADC △与BEC 中,90ADC BEC DAC BCE AC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()AAS ADC BEC ≌;②由①知,ADC BEC △△≌,∴AD CE =,BE CD =,∵DE CE CD =+,∴DE AD BE =+;(2)证明:∵AD MN ⊥于D ,BE MN ⊥于E ,∴90ADC BEC ACB ∠=∠=∠=︒,∴90CAD ACD ∠+∠=︒,90ACD BCE ∠+∠=︒,∴CAD BCE ∠=∠,在ADC △与BEC 中,90ADC BEC DAC BCE AC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()AAS ADC CEB ≌.∴AD CE =,BE CD =,∴DE CE CD AD BE =-=-.(3)解:同(2)理可证()AAS ADC CEB ≌.∴AD CE =,BE CD =,∵CE CD DE=-∴AD BE DE =-,即DE BE AD =-;当MN 旋转到图3的位置时,AD 、DE 、BE 所满足的等量关系是DE BE AD =-(或AD BE DE =-,BE AD DE =+).【模型六旋转型模型】例题:如图,AB AC =,AE AD =,CAB EAD α∠=∠=.(1)求证:AEC ADB ≅△△1.如图,在△ABC中,AB=BC,∠ABC=120°,点D在边AC上,且线段BD绕着点B按逆时针方向旋转120°能与BE重合,点F是ED与AB的交点.(1)求证:AE=CD;(2)若∠DBC=45°,求∠BFE的度数.【答案】(1)AB⊥BE,AB=BD+BE;(2)图2中BE=AB+BD,图∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,∵CA=CB,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,∠CBE=∠A,∵CA=CB,∠ACB=90°,∴∠A=∠CBA=45°,∴∠CBE=∠A=45°,∴ABE=90°,∴AB⊥BE,∵AB=AD+BD,AD=BE,∴AB=BD+BE,故答案为AB⊥BE,AB=BD+BE.(2)①如图2中,结论:BE=AB+BD.理由:∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,∵CA=CB,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,∵AD=AB+BD,AD=BE,∴BE=AB+BD.②如图3中,结论:BD=AB+BE.理由:∵∠ACB =∠DCE =∴∠ACD =∠BCE ,【模型七倍长中线模型】例题:(2023秋·山东滨州·八年级统考期末)如图,BD 是ABC 的中线,10AB =,6BC =,求中线BD 的取值范围.【答案】28BD <<【分析】延长BD 到E ,使DE BD =,证明两边之和大于2BE BD =,两边之差小于2BE BD =,证明三角形全等,得到线段相等,等量代换得28BD <<.【详解】解:如图,延长BD 至E ,使DE BD =,连接CE ,∵D 为AC 中点,∴AD DC =,在ABD △和CED △中,BD DE ADB CDE AD CD =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABD CED ≌△△,∴10EC AB ==,在BCE 中,CE BC BE CE BC -<<+,即106106BE -<<+,∴416BE <<,∴4216BD <<,∴28BD <<.【点睛】本题考查了全等三角形的判定和性质,三角形三边之间的关系,解题的关键是作辅助线,构造全等三角形.【变式训练】1.如图,在ABC 中,AD 是BC 边上的中线.延长AD 到点E ,使DE AD =,连接BE .(1)求证:ACD EBD △△≌;(2)AC 与BE 的数量关系是:____________,位置关系是:____________;(3)若90BAC ∠=︒,猜想AD 与BC 的数量关系,并加以证明.【答案】(1)见解析(2)AC BE =,AC BE∥(3)2AD BC =,证明见解析【分析】(1)根据三角形全等的判定定理SAS ,即可证得;(2)由ACD EBD △△≌,可得AC BE =,C EBC ∠=∠,据此即可解答;(3)根据三角形全等的判定定理SAS ,可证得BAC ABE ≌,据此即可解答.【详解】(1)证明:AD 是BC 边上的中线,BD CD ∴=,在ACD △与EBD △中AD ED ADC EDB BD CD =⎧⎪∠=∠⎨⎪=⎩,()SAS ACD EBD ∴ ≌;(2)解:ACD EBD ≌,AC BE ∴=,C EBC ∠=∠,∴∥AC BE ,故答案为:AC BE =,AC BE ∥;(3)解:2AD BC=证明:ACD EBD ≌,AC BE ∴=,C EBC ∠=∠,∴∥AC BE ,90BAC ∠=︒90BAC ABE ∴∠=∠=︒在BAC △和ABE △中,90AB BA BAC ABE AC BE =⎧⎪∠=∠=︒⎨⎪=⎩()SAS BAC ABE ∴ ≌,2BC AE AD ∴==.【点睛】本题考查了全等三角形的判定与性质,平行线的判定与性质,熟练掌握和运用全等三角形的判定与性质是解决本题的关键.2.(2023上·江苏南通·八年级统考期中)课外兴趣小组活动时,老师提出了如下问题:如图1,ABC 中,若6AB =,4AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到E ,使DE AD =,连接BE .请根据小明的方法思考:(1)由已知和作图能得到ADC EDB V V ≌,得到BE AD =,在ABE 中求得2AD 的取值范围,从而求得取值范围是.方法总结:上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.(2)如图2,AD 是ABC 的中线,AB AE =,AC AF =,180BAE CAF ∠+∠=︒,试判断线段关系,并加以证明;(3)如图3,在ABC 中,D ,E 在边BC 上,且BD CE =.求证:AB AC AD AE +>+【答案】(1)15AD <<CD BD ADC EDB AD ED =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ADC EDB ≌,∴4BE AC ==,∵在ABE 中,AB BE AE AB BE -<<+,即64264AD -<<+,∴15AD <<.故答案为:15AD <<(2)2EF AD =,理由:如图,延长AD 到M ,使得DM AD =,连接BM ,∴2AM AD DM AD =+=,∵AD 是ABC 的中线,∴BD CD =,在BDM 和CDA 中BD CD BDM CDA DM DA =⎧⎪∠=∠⎨⎪=⎩∴()SAS BDM CDA ≌,∴BM AC =,∵AC AF =,∴BM AF =,∵BDM CAD ≌,∴∠=∠MBD ACD ,∴BM AC ∥,∴180ABM BAC ︒∠+∠=,∵180BAE CAF ∠+∠=︒,∴()360360180180BAC FAE BAE CAF ∠+∠=︒-∠+∠=︒-︒=︒,∴ABM FAE ∠=∠,在ABM 和EAF △中AB AE ABM EAF BM AF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABM EAF ≌,∴AM EF =,∵2AM AD =,∴2EF AD =;(3)取BC 的中点为M ,连接AM 并延长至N ,使AM MN =,连接BN 、DN ,∵点M 是BC 的中点,∴CM BM =,在ACM △和NBM 中,CM BM AMC NMB AM NM =⎧⎪∠=∠⎨⎪=⎩∴()SAS ACM NBM ≌,∴AC NB=∵BD CE =,∴BM BD CM CE -=-,即=DM EM ,在AEM △和NDM 中,EM DM AME NMD AM NM =⎧⎪∠=∠⎨⎪=⎩∴()SAS AEM NDM ≌,∴AE ND =,延长AD 交BN 于F ,+>,则AB BF AD DF+>+,且FN DF DN+++>++,∴AB BF FN DF AD DF DN+>+,∴AB BN AD DN+>+.即AB AC AD AE【模型八截长补短模型】【点睛】本题是四边形综合题,考查了全等三角形的判定及性质的运用,等边三角形的性质的运用,解答时证明三角形全等是关键.【变式训练】(1)求证:CD BC DE =+;(2)若75B ∠=︒,求E ∠的度数.【答案】(1)见解析(2)105︒∵CA 平分BCD ∠,∴BCA FCA ∠=∠.在BCA V 和FCA △中,⎧⎪∠⎨⎪⎩【答案】(1)①见解析;②14x <<;(2)见解析【分析】(1)①根据三角形的中线得出BD CD =,再由对顶角相等得出②先由ABD ECD ≌,得出5CE =,再由ED AD =,得出可求出答案;(2)先根据SAS 判断出DEF DEH △≌△,得出EH EF =,BD CD ∴=,在ADB 和ECD 中,BD CD ADB CDE AD DE =⎧⎪∠=∠⎨⎪=⎩,()SAS ABD ECD ∴△≌△;②解:由①知,ABD ECD ≌,CE AB ∴=,5AB = ,5CE ∴=,ED AD = ,AD x =,22AE AD x ∴==,在ACE △中,3AC =,根据三角形的三边关系得,53253x -<<+,14x ∴<<,故答案为:14x <<;(2)证明:如图2,延长FD ,截取DH DF =,连接BH ,EH ,DH DF = ,DE DF ⊥,即90EDF EDH ∠=∠=︒,DE DE =,∴()SAS DEF DEH ≌,EH EF ∴=,AD 是中线,BD CD ∴=,DH DF = ,BDH CDF ∠=∠,∴()SAS BDH CDF ≌,CF BH ∴=,∵BE BH EH +>,BE CF EF ∴+>.【点睛】此题是三角形综合题,主要考查了三角形中线的定义,全等三角形的判定和性质,三角形的三边【答案】(1)正确;(2)成立,见解析;(3)正确,见解析【分析】本题考查了三角形全等的判定与性质,正确做辅助线构造全等三角形是解题关键.(1)延长FD 到点G ,使DG BE =,连接AG ,先证明ADG ABE △△≌AEF AGF △△≌,可得EF GF =,进而得出EF BE DF =+,即可解题;(2)证明方法同(1):延长FD 到点G ,使DG BE =,连接AG ,先证明再证明AEF AGF △△≌,可得EF GF =,进而得出EF BE DF =+即可解题;∵90B ADF ∠=∠=︒,∴ADG ADF ∠=∠=∠在ABE 和ADG △中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE ADG ≌,∴AE AG =,BAE DAG ∠=∠,∵120BAD ∠=︒,60EAF ∠=︒,∴2BAD EAF ∠∠=,∴GAF DAG DAF BAE DAF BAD EAF EAF ∠=∠+∠=∠+∠=∠-∠=∠,在AEF △和AGF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS AEF AGF ≌,∴EF GF =,∵GF DG DF BE DF =+=+,∴EF BE DF =+,故答案为:正确;(2)解:上题中的结论依然成立;如图2,延长FD 到点G ,使DG BE =,连接AG ,∵110ADF ∠=︒,70B ∠=︒,∴18011070ADG B ∠=︒-︒=︒=∠,在ABE 和ADG △中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE ADG ≌,∴AE AG =,BAE DAG ∠=∠,∵180B ADF ∠+∠=︒,∴ADG B ∠=∠,在ABE 和ADG △中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE ADG ≌,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴()AEF AGF SAS ≌,∴EF GF =,∵GF DG DF BE DF =+=+,∴EF BE DF =+.。
2022年中考数学总复习微专题 第四章 全等三角形的常见模型
全等三角形的常见模型模型一平移模型典例1(2021·湖南衡阳)如图,点A,B,D,E在同一条直线上,AB=DE,AC∥DF,BC∥EF.求证:△ABC≌△DEF.【答案】∵AC∥DF,∴∠CAB=∠FDE,∵BC∥EF,∴∠ABC=∠DEF,在△ABC和△DEF中,∴△ABC≌△DEF(ASA).平移模型的本质是两个全等的三角形,其中一个可以通过另一个平移得到,所以这种模型往往与平行相联系.常见的平移模型的图形有:模型二对称模型典例2(2021·云南)如图,在四边形ABCD中,AD=BC,AC=BD,AC与BD相交于点E.求证:∠DAC=∠CBD.【答案】在△ACD和△BCD中,∴△ACD≌△BDC(SSS),∴∠DAC=∠CBD.对称模型的本质是两个全等的三角形能关于某条直线对称.常见的对称模型的图形有:模型三旋转模型类型1不共顶点的旋转模型典例3如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=CD.求证:BC∥EF.【答案】∵AB∥DE,∴∠A=∠D.∵AF=CD,∴AF+CF=CD+CF,∴AC=DF.在△ABC与△DEF中,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴BC∥EF.类型2共顶点的旋转模型(手拉手模型)典例4(2021·湖南湘西州)如图,在△ABC中,点D在AB边上,CB=CD,将边CA绕点C旋转到CE的位置,使得∠ECA=∠BCD,连接DE与AC交于点F,且∠B=70°,∠A=10°.(1)求证:AB=ED;(2)求∠AFE的度数.【答案】(1)∵∠ECA=∠BCD,∴∠ECA+∠ACD=∠BCD+∠ACD,即∠DCE=∠ACB.由旋转可得AC=EC,在△BCA和△DCE中,∴△BCA≌△DCE(SAS),∴AB=ED.(2)由(1)中结论可得∠CDE=∠B=70°,又∵BC=CD,∴∠B=∠BDC=70°,∴∠ADE=180°-∠BDE=180°-70°×2=40°,∴∠AFE=∠ADE+∠A=40°+10°=50°.无论哪种类型,图中两个全等三角形都满足其中一个可以通过另一个旋转得到.其常见图形有:典例5如图,在△ABC中,∠ACB=90°,AC=BC,点D,E在边AB上,且∠DCE=45°.试说明:AD2+BE2=DE2.【答案】如图所示,将△BCE绕点C顺时针旋转90°得到△ACF,连接DF.∵AC=BC,∠ACB=90°,∴∠CAB=∠B=45°.由旋转可知∠FCE=90°,CF=CE,AF=BE,∠FAC=∠B=45°,∴∠FAD=90°.∵∠DCE=45°,∴∠DCF=45°,∴∠DCF=∠DCE,∴△CDF≌△CDE(SAS),∴DF=DE.∵AD2+AF2=DF2,∴AD2+BE2=DE2.半角模型也是旋转模型的特殊情况.等边三角形含半角(∠BDC=120°)等腰直角三角形含半角正方形含半角模型四一线三等角模型典例6如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是D,E,AD=3,BE=1,求DE的长.【答案】∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠ACB=∠BCE+∠DCA=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,∴△CEB≌△ADC(AAS),∴DC=BE=1,CE=AD=3,∴DE=CE-DC=3-1=2.一线三等角模型是以一条直线构造三个相等的角构造全等三角形.常见图形有:提分训练1.如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.解:连接BE.∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD.在△ACD和△BCE中,∴△ACD≌△BCE(SAS),∴AD=BE.∵AC=BC=6,∴AB =6.∵∠BAC=∠CAE=45°,∴∠BAE=90°.在Rt△BAE中,BE ==9,∴AD=9.2.(2021·陕西改编)如图,AB,BC,CD,DE是四根长度均为5 cm的火柴棒,点A,C,E共线.若AC=6 cm,CD⊥BC,求线段CE的长度.解:过点B作BM⊥AC于点M,过点D作DN⊥CE于点N.∵BA=BC,DC=DE,∴AM=CM=3,CN=EN.∵CD⊥BC,∴∠BCD=90°,∴∠BCM+∠CBM=∠BCM+∠DCN=90°,∴∠CBM=∠DCN.在△BCM和△CDN中,∴△BCM≌△CDN(AAS),∴BM=CN.在Rt△BCM中,∵BC=5,CM=3,∴CN=BM==4,∴CE=2CN=2×4=8(cm).3.(2021·贵州黔东南州)在四边形ABCD中,对角线AC平分∠BAD.【探究发现】(1)如图1,若∠BAD=120°,∠ABC=∠ADC=90°.求证:AD+AB=AC; 【拓展迁移】(2)如图2,若∠BAD=120°,∠ABC+∠ADC=180°.猜想AB,AD,AC三条线段的数量关系,并说明理由.解:(1)∵AC平分∠BAD,∠BAD=120°,∴∠DAC=∠BAC=60°.∵∠ADC=∠ABC=90°,∴∠ACD=∠ACB=30°,∴AD=AC,∴AD+AB=AC.(2)AD+AB=AC.理由:过点C分别作CE⊥AD于点E,CF⊥AB于点F.∵AC平分∠BAD,∴CF=CE.∵∠ABC+∠ADC=180°,∠EDC+∠ADC=180°,∴∠FBC=∠EDC.在△CED和△CFB中,∴△CED≌△CFB(AAS),∴FB=DE,∴AD+AB=AD+DE+AF=AE+AF.在四边形AFCE中,由(1)知AE+AF=AC,∴AD+AB=AC.。
平移和旋转在全等三角形中的巧用
平移和旋转在全等三角形中的巧用巧妙的运用平移和旋转进行图形变换, 可以使学生以动态的角度识别图形,有利于学生建立空间观念。
在全等三角形中,结合具体的实例,下面谈谈平移和旋转的巧用。
1、 点的平移已知:如图(1),在△ABC 中,M 在BC 上,D 在AM 上,AB=AC ,DB=DC 。
求证:BM=MC 。
A BCDM图(4)A BCDM 图(3)BACD M 图(2)图(1)M DCBA对于图(1)可做以下点的平移: (1)如果点D 平移到AM 的延长线上,如图(2),其他条件不变,原结论是否成立?(2)如果点D 平移到MA 的延长线上,如图(3),其他条件不变,原结论是否成立?(3)如果点D 平移到线段AD 上,如图(4),其他条件不变,原结论是否成立?2、 图形的平移(1)如图(1),A 、E 、F 、C 在一条直线上,AE=CF ,过E 、F 分别作DE ⊥AC ,BF ⊥A C ,垂足分别为E 、F ,若AB=CD,求证:BD 平分EF 。
图(2)图(1)D G F ECBAG FE CB A(2)若将△DEC 沿AC 方向平移变为图(2), 其他条件不变,原结论是否成立?请说明理由。
3、 线的旋转(1)如图,已知Rt △ABC 的直角顶点B 在直线l 上, AB=AC ,过A 、C 分别作l 的垂线AD 、CE,垂足为D、E 。
求证:BD=CE。
lE B D CA图(3)图(2)图(1)ACD BEllEBDCA(2)把直线l 绕着点B 逆时针旋转为图(2), 其他条件不变,原结论是否成立?请说明理由。
(3)把直线l 绕着点B 逆时针旋转为图(3), 其他条件不变,原结论是否成立?请说明理由。
4、图形的旋转(1)如图(1),点C 为线段AB 延长线上的一点,△AMC ,△BNC 都是等边三角形,且在线段AB 的同侧。
求证:AN=BM 。
图(3)BNC AMMACNB图(2)图(1)BN CAM(2)把△CBN 绕着点C 顺时针旋转变为图(2), 其他条件不变,原结论是否成立?请说明理由。
中考数学 考点系统复习 第四章 三角形 方法技巧突破(四) 全等三角形之六大模型
得对应边相等
2.(2021·泸州)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求
证:BD=CE. 证明:在△ABE与△ACD中,
∠A=∠A,
AB=AM,
在△ABN 和△AMC 中,∠BAN=∠MAC, AN=AC,
∴△ABN≌△AMC(SAS),∴BN=MC.
6.如图,AC⊥BC,DC⊥EC,AC=BC,DC=EC,AE 与 BD 交于点 F.
(1)求证:AE=BD; 证明:∵AC⊥BC, DC⊥EC, ∴∠ACB=∠DCE=90°, ∴∠ACB+∠BCE=∠DCE+∠BCE, 即∠ACE=∠BCD.在△ACE 和△BCD 中, AC=BC,
证明:∵ BF=EC,
∴EF= BC,
在△BCA与△EFD中,
AB=DE,
∠B=∠E, BC=EF, ∴△BCA≌△FED(SAS), ∴∠A=∠D,
模型二:轴对称型 【模型归纳】
有公 模型 共边 展示 有公共
顶点Leabharlann 模型 所给图形沿公共边所在直线或者经过公共顶点的某条直线 特点 折叠,两个三角形能完全重合
5.如图,在△ABC 中,分别以 AB,AC 为边向外作等边三角形 ABM 与等边 三角形 ACN,连接 MC,BN.求证:BN=MC.
证明:∵△ABM 和△ACN 是等边三角形, ∴AB=AM,AN=AC,∠BAM=∠NAC=60°, 又∵∠BAN=∠BAC+∠NAC, ∠CAM=∠BAC+∠BAM, ∴∠BAN=∠MAC,
= 43BD2
解题 常过顶点作角两边的垂线,构造全等三角形,或旋转一定的角
初中数学三角形全等常用几何模型及构造方法大全初二
初二数学三角形全等常用几何模型及构造方法大全掌握它轻松搞定全等题!全等是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,这次整理了常用的各大模型,一定要认真掌握~全等变换类型:(一)平移全等:平行等线段(平行四边形)(二)对称全等模型:角平分线或垂直或半角1:角平分线模型;2:对称半角模型;(三)旋转全等模型:相邻等线段绕公共顶点旋转1.旋转半角模型2.自旋转模型3.共旋转模型4.中点旋转如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE分析:将△ACE平移使EC与BD重合。
B\D,上方交点,左右两个三角形,两边和大于第三边!1:角平分线模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
2:对称半角模型说明:上图依次是45°、30°、 45+ °、对称(翻折)15°+30°直角三角形对称(翻折) 30+60+90直角三角形对称(翻折)翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
1.半角:有一个角含1/2角及相邻线段2.自旋转:有一对相邻等线段,需要构造旋转全等3.共旋转:有两对相邻等线段,直接寻找旋转全等(共顶点)4.中点旋转:倍长中点相关线段转换成旋转全等问题(专题七)1、旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
2、自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称3、共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“8”字模型可以证明。
(接上------共旋转模型)模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形混用。
专题02 全等三角形模型解题九年级数学中考复习专题训练模型解题高分攻略(教师版)
专题二全等三角形模型解题解题模型一平移模型针对训练1.(2018•桂林)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.解题模型二对称模型针对训练2.(2018•南充)如图,已知AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.3.(2018•广州)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.图示:图示:4.(2018•乐山)如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.5.(2018•武汉)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.6.(2017•郴州)已知△ABC中,∠ABC=∠ACB,点D,E分别为边AB、AC的中点,求证:BE=CD.7.(2018•泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.8.(2018•镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=°.解题模型三旋转模型针对训练8.(2018•昆明)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.10.(2018•柳州)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.11.(2017•常州)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.图示:12.(2017•恩施州)如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于点P.求证:∠AOB=60°.解题模型四平移+旋转模型针对训练13.(2018•菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.14.(2018•铜仁)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥FB.15.(2017•孝感)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.图示:16.(2018•怀化)已知:如图,点A,F,E,C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.解题模型五角平分线模型针对训练17.(2016•咸宁)证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,.求证:.请你补全已知和求证,并写出证明过程.图示:解题模型六三垂直模型针对训练18.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,求证:DE=AD+BE.19.如图,将等腰直角三角形ABC的直角顶点置于直线l上,且过A,B两点分别作直线l的垂线,垂足分别为D,E,请你在图中找出一对全等三角形,并写出证明它们全等的过程.图示:解题模型一平移模型针对训练1.(2018•桂林)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【分析】(1)求出AC=DF,根据SSS推出△ABC≌△DEF.(2)由(1)中全等三角形的性质得到:∠A=∠EDF,进而得出结论即可.【点睛】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的对应角相等.解题模型二对称模型图示:针对训练2.(2018•南充)如图,已知AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.【分析】由∠BAE=∠DAC可得到∠BAC=∠DAE,再根据“SAS”可判断△BAC≌△DAE,根据全等的性质即可得到∠C=∠E.【点睛】本题考查了全等三角形的判定与性质:判断三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应角相等,对应边相等.图示:3.(2018•广州)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.【分析】根据AE=EC,DE=BE,∠AED和∠CEB是对顶角,利用S AS证明△ADE≌△CBE即可.【解答】证明:在△AED和△CEB中,,∴△AED≌△CEB(SAS).∴∠A=∠C(全等三角形对应角相等).【点睛】此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.4.(2018•乐山)如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.【分析】由∠3=∠4可以得出∠ABD=∠ABC,再利用ASA就可以得出△ADB≌△ACB,就可以得出结论.【点睛】本题考查了等角的补角相等的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.5.(2017•郴州)已知△ABC中,∠ABC=∠ACB,点D,E分别为边AB、AC的中点,求证:BE=CD.【分析】由∠ABC=∠ACB可得AB=AC,又点D、E分别是AB、AC的中点.得到AD=AE,通过△ABE≌△ACD,即可得到结果.【点睛】本题考查了等腰三角形的性质,全等三角形的判定与性质,熟记定理是解题的关键.6.(2018•武汉)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF.∴BF=CE.在△ABF和△DCE中,[来源:]∴△ABF≌△DCE(SAS).∴∠GEF=∠GFE.∴EG=FG.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.7.(2018•泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.【分析】因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以AB=CD,证明△ABO 与△CDO全等,所以有OB=OC.【点睛】此题主要考查了全等三角形的判定,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.8.(2018•镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=75°.【分析】(1)要证明△ABE≌△ACF,由题意可得AB=AC,∠B=∠ACF,BE=CF,从而可以证明结论成立;(2)根据(1)中的结论和等腰三角形的性质可以求得∠ADC的度数.【点睛】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.¥解题模型三旋转模型针对训练9.(2018•柳州)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.【分析】依据两角及其夹边分别对应相等的两个三角形全等进行判断.【解答】证明:∵在△ABC和△EDC中,图示:,∴△ABC≌△EDC(ASA).【点睛】本题主要考查了全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等.10.(2018•昆明)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.11.(2017•常州)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.【分析】(1)根据同角的余角相等可得到∠3=∠5,结合条件可得到∠1=∠D,再加上BC=CE,可证得结论;(2)根据∠ACD=90°,AC=CD,得到∠2=∠D=45°,根据等腰三角形的性质得到∠4=∠6=67.5°,由平角的定义得到∠DEC=180°﹣∠6=112.5°.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.12.(2017•恩施州)如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于点P.求证:∠AOB=60°.【分析】利用“边角边”证明△ACD和△BCE全等,可得可得∠CAE=∠CBD,根据“八字型”证明∠AOP=∠PCB=60°即可.【点睛】本题考查等边三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.解题模型四平移+旋转模型针对训练13.(2018•菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.【分析】结论:DF=AE.只要证明△CDF≌△BAE即可;【解答】解:结论:DF=AE.理由:∵AB∥CD,∴∠C=∠B.∵CE=BF,图示:∴CF=BE.又∵CD=AB,∴△CDF≌△BAE(SAS).∴DF=AE.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.14.(2017•孝感)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.[来源:Z|xx|]【分析】根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案.【点睛】本题考查了全等三角形的判定与性质,利用等式的性质得出BE=DF是解题关键,又利用了全等三角形的判定与性质.15.(2018•铜仁)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥FB.【分析】可证明△ACE≌△BDF,得出∠A=∠B,即可得出AE∥BF;【点睛】本题考查了全等三角形的判定及性质以及平行线的判定问题,关键是SSS证明△ACE≌△BDF.16.(2018•怀化)已知:如图,点A,F,E,C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.【分析】(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可;(2)利用全等三角形的性质和中点的性质解答即可.【解答】证明:(1)∵AB∥DC,∴∠A=∠C.在△ABE与△CDF中,,∴△ABE≌△CDF(ASA).(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD.∵EG=5,∴CD=10.∵△ABE≌△CDF,∴AB=CD=10.【点睛】此题考查全等三角形的判定和性质,关键是根据平行线的性质得出∠A=∠C.解题模型五角平分线模型针对训练17.(2016•咸宁)证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,.求证:.请你补全已知和求证,并写出证明过程.【分析】根据图形写出已知条件和求证,利用全等三角形的判定得出△PDO≌△PEO,由全等三角形的性质可得结论.【点睛】本题主要考查了角平分线的性质和全等三角形的性质及判定,利用图形写出已知条件和求证是解图示:答此题的关键.解题模型六三垂直模型针对训练18.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,求证:DE=AD+BE.【分析】先证明∠BCE=∠CAD,再证明△ADC≌△CEB,可得到AD=CE,DC=EB,等量代换,可得出DE=AD+BE.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.证明两线段的和等于一条线段常常借助三角形全等来证明,要注意运用这种方法图示:19.如图,将等腰直角三角形ABC的直角顶点置于直线l上,且过A,B两点分别作直线l的垂线,垂足分别为D,E,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【分析】分析图可知,全等三角形为:△ACD≌△CBE.根据这两个三角形中的数量关系选择ASA证明全等.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.。
2023学年八年级数学上册高分突破必练专题(人教版)全等三角形基本模型(4大模型)(解析版)
全等三角形基本模型(4大模型)模型一:平移型模型二:翻折型模型三:旋转型模型四:一线三垂直型【类型一:平移型】【典例1】如图已知点E、C在线段BF上BE=CF AB∥DE∠ACB=∠F.求证:.【解答】证明:∵AB∥DE∴∠B=∠DEF∵BE=CF∴BE+EC=CF+EC即BC=EF.∴在△ABC和△DEF中{∠B=∠DEF BC=EF ∠ACB=∠F∴△ABC≅△DEF(ASA).【变式1-1】如图已知Rt△ABC与Rt△DEF中△A=△D=90° 点B、F、C、E在同一直线上且AB=DE BF=CE 求证:△B=△E.【解答】证明:∵BF=CE BF+FC=BC CE+CF=EF∴BC=EF在Rt△ABC和Rt△DEF中∵{BC=EFAB=DE∴Rt△ABC≌Rt△DEF(HL)∴∠B=∠E.【变式1-2】如图点A、B、C、D在一条直线上EA//FB EC//FD EA=FB.求证:AB=CD.【解答】证明:∵EA∥FB∴∠A=∠FBD∵EC∥FD∴∠D=∠ECA 在△EAC和△FBD中{∠ECA=∠D∠A=∠FBDAE=BF∴△EAC≌△FBD(AAS)∴AC=BD∴AB+BC=BC+CD∴AB=CD.【变式1-3】如图点B C E F在同一直线上BE=CF AC⊥BC DF⊥EF垂足分别为C F AB=DE.求证:AC=DF.【解答】证明:∵BE=CF∴BE−CE=CF−CE即BC=EF在Rt△ABC和Rt△DEF中{BC=EFAB=DE∴Rt△ABC△Rt△DEF(HL)∴AC=DF.【类型二:翻折型】【典例2】已知△A=△D BC平分△ABD 求证:AC=DC.【解答】解:∵BC平分△ABD ∴△ABC=△DBC在△BAC和△BDC中{∠A=∠D ∠ABC=∠DBC BC=BC∴△BAC△△BDC∴AC=DC.【变式2-1】如图已知BD是∠ABC的角平分线AB=CB.求证:△ABD≌△CBD.【解答】证明:∵BD是∠ABC的角平分线(已知)∴∠ABD=∠CBD(角平分线定义)在△ABC与△CBD中∵{AB=CB(已知)∠ABD=∠CBD(已证)BD=BD(公共边)∴△ABD≌△CBD(SAS).【变式2-2】已知:如图线段BE、DC交于点O 点D在线段AB上点E在线段AC 上AB=AC AD=AE.求证:△B=△C.【解答】解:在△AEB和△ADC中{AB=AC ∠A=∠A AE=AD∴△AEB△△ADC(SAS)∴△B=△C.【变式2-3】已知:如图△ABC=△DCB △1=△2.求证AB=DC.【解答】证明:如图记AC BD的交点为O∵△ABC=△DCB △1=△2又∵△OBC=△ABC−△1 △OCB=△DCB−△2∴△OBC=△OCB∴OB=OC在△ABO和△DCO中{∠1=∠2OB=OC∠AOB=∠DOC∴△ABO△△DCO(ASA)∴AB=DC.【类型三:旋转型】【典例3】已知:如图AD BE相交于点O AB△BE DE△AD 垂足分别为B D OA=OE.求证:△ABO△△EDO.【解答】证明:∵AB△BE DE△AD∴△B=△D=90°.在△ABO和△EDO中{∠B=∠D ∠AOB=∠EOD OA=OE∴△ABO△△EDO.【变式3】如图已知线段AC BD相交于点E AE=DE BE=CE求证:△ABE△△DCE.【解答】证明:在△ABE和△DCE中{AE=DE ∠AEB=∠DEC BE=CE∴△ABE△△DCE(SAS)【典例4】如图CA=CD ∠1=∠2 BC=EC求证:∠B=∠E.【解答】证明:∵△1=△2∴△1+△ECA=△2+△ECA 即△ACB=△DCE 在△ABC和△DEC中{CA=CD∠ACB=∠DCEBC=EC∴△ABC△△DEC(SAS)∴∠B=∠E.【变式4】如图△ABC中点E在BC边上AE=AB 将线段AC绕A点旋转到AF 的位置使得△CAF=△BAE 连接EF EF与AC交于点G.(1)求证:EF=BC;(2)若△ABC=65° △ACB=28° 求△FGC的度数.【解答】(1)证明:∵△CAF=△BAE∴△CAF+△CAE=△BAE+△CAE 即△EAF=△BAC∵AE=AB AC=AF∴△EAF△△BAC∴EF=BC;(2)解:∵△EAF△△BAC∴△AEF=△ABC=65°∵AB=AE∴△AEB=△ABC=65°∴△FEC=180°-△AEB-△AEF=50°∴△FGC=△FEC+△ACB=78°.【类型四:一线三垂直型】【典例5】如图AB=AC直线l经过点A BM△l CN△l垂足分别为M、N BM=AN.(1)求证:MN=BM+CN;(2)求证:△BAC=90°.【解答】(1)证明:∵BM△直线l CN△直线l ∴△AMB=△CNA=90°在Rt△AMB和Rt△CNA中{AB=CABM=AN∴Rt△AMB△Rt△CNA(HL)∴BM=AN CN=AM∴MN=AM+AN=BM+CN;(2)由(1)得:Rt△AMB△Rt△CNA∴△BAM=△ACN∵△CAN+△ACN=90°∴△CAN+△BAM=90°∴△BAC=180°﹣90°=90°.【变式5-1】课间小明拿着老师的等腰三角板玩不小心掉在两墙之间如图所示:(1)求证:△ADC△△CEB;(2)已知DE=35cm 请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相同)【解答】(1)证明:由题意得:AC=BC △ACB=90° AD△DE BE△DE∴△ADC=△CEB=90°∴△ACD+△BCE=90° △ACD+△DAC=90°∴△BCE=△DAC在△ADC和△CEB中{∠ADC=∠CEB ∠DAC=∠BCE AC=BC∴△ADC△△CEB(AAS);(2)解:由题意得:∵一块墙砖的厚度为a∴AD=4a BE=3a由(1)得:△ADC△△CEB∴DC=BE=3a AD=CE=4a∴DC+CE=BE+AD=7a=35∴a=5答:砌墙砖块的厚度a为5cm.【变式5-2】在△ABC中∠ACB=90°AC=BC直线MN经过点C且AD⊥MN于D BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时①求证:△ADC△ △CEB;②求证:DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时(1)中的结论②还成立吗?若成立请给出证明;若不成立说明理由.【解答】(1)证明:①∵AD△MN BE△MN∴△ADC=△BEC=90°∵△ACB=90°∴△ACD+△BCE=90° △DAC+△ACD=90°∴△DAC=△BCE又∵AC=BC∴△ADC△ △CEB;②∵△ADC△ △CEB∴CD=BE AD=CE∵DE=CE+CD∴DE=AD+BE;(2)解:DE=AD+BE不成立此时应有DE=AD-BE 理由如下:∵BE△MN AD△MN∴△ADC=△BEC=90°∴△EBC+△ECB=90°∵△ACB=90°∴△ECB+△ACE=90°∴△ACD=△EBC又∵AC=BC∴△ADC△ △CEB∴AD=CE CD=BE∵DE=CE-CD∴DE=AD-BE.1.如图在△ABC和△CDE中点B、D、C在同一直线上已知△ACB=△E AC=CE AB∥DE 求证:△ABC△△CDE.【解答】证明:∵AB∥DE ∴∠B=∠EDC在△ABC和△CDE中{∠B=∠EDC ∠ACB=∠E AC=CE∴△ABC≌△CDE(AAS).2.如图AC和BD相交于点O OA=OC DC△AB.求证DC=AB.【解答】证明:∵DC△AB∴△D=△B在△COD与△AOB中{∠D=∠B ∠DOC=∠BOA OC=OA∴△COD△△AOB(AAS)∴DC=AB.3.如图点B、F、C、E在同一条直线上△B=△E AB=DE BF=CE.求证:AC =DF.【解答】证明:∵BF=CE∴BF+FC=CE+FC 即BC=EF在△ABC和△DEF中{AB=DE ∠B=∠E BC=EF∴△ABC△△DEF(SAS)∴AC=DF.4.如图等边△ABC的内部有一点D 连接BD 以BD为边作等边△BDE连接AD CE 求证:AD=CE.【解答】证明:∵△ABC和△DBE为等边三角形∴△ABC =△DBE=60°AB=BC DB=EB∴△ABC−△DBC=△DBE−△DBC即△ABD=△CBE在△ABD和△CBE中{AB=BC∠ABD=∠CBE BD=EB∴△ABD≌△CBE(SAS)∴AD=CE5.如图点E F在BC上BE=CF △A=△D △B=△C 求证:AB=DC.【解答】证明:∵点E F在BC上BE=CF ∴BE+EF=CF+EF 即BF=CE;在△ABF和△DCE中{∠A=∠D ∠B=∠C BF=CE∴△ABF△△DCE(AAS)∴AB=CD(全等三角形的对应边相等).6.如图点B、C、E、F在一条直线上AB=CD AE=DF BF=CE求证:∠A=∠D.【解答】证明:∵BF=CE∴BF+EF=CE+EF即BE=CF在△ABE和△DCF中{AB=DCBE=CFAE=DF∴△ABE△△DCF.∴∠A=∠D7.如图已知AB、CD相交于点O 且AD=CB AB=CD.求证:△A=△C.【解答】证明:连接BD 如图在△ABD和△CDB中∵AD=CB AB=CD BD=DB∴△ABD△△CDB(SSS)∴△A=△C.8.已知:如图A、C、F、D在同一条直线上且AB//DE AF=DC AB=DE求证:△ABC△△DEF.【解答】证明:∵AB△DE∴△A=△D∵AF=CD∴AD+CF=CF+DF∴AC=DF在△ABC和△DEF中{AC=DF ∠A=∠D AB=DE∴△ABC△△DEF(SAS).9.如图:点E、F在BC上BE=CF AB=DC∠B=∠C AF与DE交于点G.过点G作GH⊥BC垂足为H.(1)求证:△ABF≌△DCE(2)求证:∠EGH=∠FGH【解答】(1)证明:∵BE=CF∴BF=CE在△ABF和△DCE中{AB=DC ∠B=∠C BF=CE∴△ABF△△DCE(SAS).(2)证明:∵△ABF△△DCE∴△AFE=△DEC∴EG=GF∵GH△BC∴△EGH=△FGH.10.如图AD平分∠BAC ∠ADB=∠ADC.(1)求证:△ABD⊆△ACD:(2)若∠B=25° ∠BAC=40°求∠BDC的度数.【解答】(1)证明:∵AD平分∠BAC ∴∠BAD=∠CAD.又∵AD=DA ∠ADB=∠ADC ∴△ABD≅△ACD(ASA)(2)解:∵∠BAD=∠CAD ∠BAC=40°∴∠BAD=∠CAD=12∠BAC=20°.又∵∠B=25°∴∠ADB=180°−∠B−∠BAD=135°.又∵△ABD≅△ACD ∴∠ADC=∠ADB=135°.又∵∠ADB+∠ADC+∠BDC=360°∴∠BDC=90°.11.如图在四边形ABCD中E是CB上一点分别延长AE DC相交于点F AB= CF ∠CEA=∠B+∠F.(1)求证:∠EAB=∠F;(2)若BC=10求BE的长.【解答】(1)证明:∵∠CEA是△ABE的外角∴∠CEA=∠B+∠EAB.又∵∠CEA=∠B+∠F∴∠EAB=∠F.(2)解:在△ABE和△FCE中{AB=FC ∠EAB=∠F ∠AEB=∠FEC∴△ABE△△FCE.∴BE=CE.∵BC=10∴BE=5.12.如图AB⊥BE DE⊥BE垂足分别为点B E且AB=DE BF=CE点B F C E在同一条直线上AC DF相交于点G.求证:(1)ΔABC≌ΔDEF;(2)AG=DG.【解答】(1)解:∵AB⊥BE DE⊥BE∴∠B=∠E=90°∵BF=CE∴BF+FC=CE+FC即BC=EF在ΔABC和ΔDEF中{AB=DE∠B=∠EBC=EF∴ΔABC≌ΔDEF(SAS)(2)解:由(1)全等可知:AC=DF ∠ACB=∠DFE∴CG=FG13.如图已知△A=△D AB=DB 点E在AC边上△AED=△CBE AB和DE相交于点F.(1)求证:△ABC△△DBE.(2)若△CBE=50° 求△BED的度数.【解答】(1)证明:∵△A=△D △AFE=△BFD∴△ABD=△AED又∵△AED=△CBE∴∠ABD=∠CBE∴△ABD+△ABE=△CBE+△ABE即△ABC=△DBE在△ABC和△DBE中{∠A=∠DAB=DB ∠ABC=∠DBE∴△ABC△△DBE(ASA);(2)解:∵△ABC△△DBE∴BE=BC∴△BEC=△C∵△CBE=50°∴△BEC=△C=65°.∴AG=DG14.已知:如图点A D C B在同一条直线上AD=BC AE=BF CE=DF求证:(1)AE△FB(1)DE=CF.【解答】(1)证明:在△ADE和△BCF中{AE=BF∠A=∠BAD=BC∴△ADE△△BCF(SAS)∴DE=CF.15.如图在△ABC中AB=BC BE平分△ABC AD为BC边上的高且AD=BD.(1)求证:△ABE=△CAD(2)试判断线段AB与BD DH之间有何数量关系并说明理由.【解答】(1)证明:∵AB=BC BE平分△ABC∴BE△AC∴△BEA=90°=△ADB∵△CAD+△BEA+△AHE=180° △HBD+△ADB+△BHD=180° △AHE=△BHD∴△HBD=△CAD∵△HBD=△ABE∴△ABE=△CAD(2)解:AB=BD+DH理由是:∵在△BDH和△ADC中{∠2=∠3 BD=AD∠BDH=∠ADC=90°∴△BDH△△ADC(ASA)∴DH=DC∴BC=BD+DC=BD+DH∵AB=BC∴AB=BD+DH.16.如图1 AC=BC CD=CE △ACB=△DCE=α AD、BE相交于点M.(1)求证:BE=AD;(2)直接用含α的式子表示△AMB的度数为(3)当α=90°时取AD BE的中点分别为点P、Q 连接CP CQ PQ 如图2 判断△CPQ的形状并加以证明.【解答】(1)证明:如图1∵△ACB=△DCE=α∴△ACD=△BCE在△ACD和△BCE中{CA=CB ∠ACD=∠BCE CD=CE∴△ACD△△BCE(SAS)∴BE=AD;(2)α(3)解:△CPQ为等腰直角三角形证明:如图2 由(1)可得BE=AD∵AD BE的中点分别为点P、Q∴AP=BQ∵△ACD△△BCE∴△CAP=△CBQ在△ACP和△BCQ中{CA=CB ∠CAP=∠CBQ AP=BQ∴△ACP△△BCQ(SAS)∴CP=CQ 且△ACP=△BCQ 又∵△ACP+△PCB=90°∴△BCQ+△PCB=90°∴△PCQ=90°∴△CPQ为等腰直角三角形.。
全等三角形 平移、旋转翻折课件2
三角 形全 等的 探究
30°
50° 可以发现给出两个条
③两边:
2cm 4cm 2cm 4cm
件时画出的三角形也
不能保证一定全等。
知识梳理:
简写为“边边边”或“SSS”)。
用符号语言表达为: 在△ABC和△ DEF中 AB=DE BC=EF CA=FD
B
三角形全等判定方法1 注意:两个三角形全等在表示 时通常把对应顶点的字母写在 三边对应相等的两个三角形全等(可以 对应的位置上。
或连接PD;
F
A
P
D
A P E E D
F
4、若看到正方形 以及所要求证的 等线段PB和PE 共端点,从而联 想到旋转 则可作PF⊥PC, 交CB延长线于F;
B
C B C
或者作PF⊥PC, 交CD延长线于F;
平移型
将△ABC沿着边BC方向平移,得到△A’B’C’,如 图40-1.将图40-1换个角度看,如图图40-2.继续 将△ABC沿着边BC方向平移,使点B’与点C重 合,得图41
在利用图形寻找全等三角形时,通常需要将图形换一 个角度观察,从中找出常见的全等图形,如图19-1和 图19-2,当图形比较复杂时,还可以将图形分解成几 个常见的全等图形,如图42,可以分解出三个常见的 旋转型全等图形,如图42-1至图42-3
旋转90度
△ABC为锐角三角形时, 绕着顶点A旋转90度,得 图28-1,联结BB’,CC’, 则△ABB’与△ACC’是等 腰直角三角形;常见的放 置方向如图28-2 △ABC为直角三角形时, 得图29和图30,与正方形 相关
绕着三角形一边上的一个点旋转180° 在△ABC的AC边上任取一点O 将△ABC绕着点O旋转180°,得△A’B’C’, △ABC与△A’B’C’或中心对称,如图31 当点O为AC边中点时,得图32,四边形ABCB’ 是平行四边形 当点O在AC边的延长线上时,得图33
全等三角形模型总结及经典练习题
全等三角形模型及习题练习第一部分全等模型图一、平移模型特征:可看成是三角形在一边所在直线上移动构成的,故在同一直线上的对应边的相等关系一般可由加(减)公共边证得,对应角的相等关系可由平行线的性质证得。
二、平行模型(X型)特征:平行线所形成的同位角、内错角相等三、折叠轴对称模型(翻转型,部分X型)特征:图形关于某一条直线对称,则这条直线两边的部分能完全重合,重合的顶点就是全等三角形的对应点。
图①中有公共角∠A;图②中对顶角相等(∠AOC=∠BOD);图③④中分别有公共边AB,BD四、旋转模型特征:可看成是以三角形某一个顶点为中心旋转构成的,故一般有一对相等的角隐含在对顶角、某些角的和或差中五、角平分线模型旋转有重叠特征:角平分线形成的两个角相等,若把角平分线看成一条公共边,在角的两边再截取相等的线段,就可根据SAS得到全等三角形(如图①,ΔA1BD1≌ΔC1BD1),或者利用角平分线上的点到角两边的距离相等找到一组相等的边,就可根据HL得到全等三角形(如图②,ΔA2BD2≌ΔC2BD2)六、双直角三角形模型特征:证明多数可以用到同(等)角的余角相等这个定理,相等的角就是对应角七、一线三等角模型(K型)特征:如图①,,三个等角指的是α(图②中,α=90°),利用外角定理可证得∠1=∠2或∠3=∠4第二部分精选例题例1.如图,已知AB∥CD,AD∥BC,F在DC的延长线上,AM=CF,FM 交DA的延长线上于E.交BC于N,求证:AE=CN.思路分析:欲证AE=CN.看它们在哪两个三角形中,设法证这两个三角形全等即可.结合图形可发现△AME≌△FCN可证.题设告知AM=CF,AD∥BC,AB∥CD.由两平行条件,可找两对角相等.∵∠1=∠2(对顶角相等)∴∠2=∠E(等量代换)∴AE=CN (全等三角形的对应边相等)例2.△ABC中,∠ACB=90°,AC=BC,过C的一条直线CE⊥AE于E,BD⊥CE的延长线于D,求证:AE=BD+DE.思路分析:从本例的结论知是求线段和的问题,由此入手,很难找到突破口.此时可迅速调整思维角度,可仔细观察图形,正确的图形是证题的“向导”,由此可发现△ACE与△CBD好像(猜测)全等.那么AE=CD=CE+DE.又BD=CE.那么,此时已水落石出.AC=BC(已知)∠1=∠3 (已证)∠AEC=∠CDB(已证)∴△ACE≌△CBD(AAS)∴BD=CE,AE=CD(全等三角形的对应边相等)∵AE=CE=CE+DE∴AE=BD+DE(等量代换)例3.如图,AD是△ABC的中线,DE,DF分别平分∠ADB和∠ADC,连接EF,求证:EF<BE+CF. 定对象:△ABC定角度:三角形全等分析:由结论EF<BE+CF很容易与定理“三角形两边之和大于第三边”联系在一块,观察图形,BE,CF,EF 条件分散,不在一个三角形中,必须设法(平移,旋转,翻转等)把三者集中在一个三角形中,是打开本例思路的关键.由角的平分线这一线索,可将△BDE沿角平分线翻转180°,即B点落在AD的点B'上(如图)(也就是在DA上截取DB'=BD),连结EB',B'F,此时△BDE与△B'DE完全重合,所以△BDE≌△B'DE(两个三角形能够完全重合就是全等三角形,所以BE=B'E(全等三角形的对应边相等).在△EFB'中,EF<B'E+B'F(三角形的两边之和大于第三边).∴EF<BE+CF(等量代换).例4 如图,已知CD⊥AB于D,BE⊥AC于E,△ABE≌△ACD,∠C= 20°,AB=10,AD= 4, G为AB延长线上一点.求∠EBG的度数和CE的长.定对象:如图定角度:三角形全等分析:(1)图中可分解出四组基本图形:有公共角的Rt△ACD 和Rt△ABE;△ABE≌△ACD,△ABE的外角∠EBG或∠ABE的邻补角∠EBG.例5已知:如图,△ABC≌△ADE,BC的延长线交DA于F,交 DE于G,∠ACB=105°,∠CAD=10°,∠D=25°.求∠EAC,∠DFB,∠DGB的度数.例6.在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=20 cm,则△DBE的周长等于多少?分析:对象:△DBE的周长角度:(1)BD,DE,BE的长解:因为DE⊥AB,所以AED ACD∠=∠因为AD是∠BAC的平分线,所以EAD CAD≅则AE=AC ∠=∠又因为AD为公共边所以AED ACD DE=DC所以△DBE的周长=BE+DE+BD=AB-AE+BC=20例7如图13—3—8所示,已知在△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F.求证:EF⊥AD.分析:对象:△ABC 角度:(1)AD是∠BAC的平分线,(2)DE⊥AB于E,DF⊥AC于F证明:因为DE⊥AB于E,DF⊥AC于F,所以0∠=∠=又因AED AFD90为AD是∠BAC的平分线,所以EAD FAD∠=∠由于AD是公共边所以AED AFD≅则AE=AF 因为AD是∠BAC的平分线所以EF⊥AD。
微专题 全等三角形的六种基本模型-2024年中考数学复习
21
全等三角形的六种基本模型
模型应用
8.如图17, △ 是边长为1的等边三角形, = ,
∠ = 120∘ ,点 , 分别在 , 上,且
∠ = 60∘ .求 △ 的周长.
提示:如图16,延长 至点 ,使 = ,连接 .
图6
= ,
在 △ 和 △ 中, ቐ∠ = ∠, ∴ △≌△ SAS .
= ,
∠ = ∠ = 50∘ .
7
全等三角形的六种基本模型
模型三 旋转型
模型剖析
如图7,将三角形绕着公共顶
点旋转一定角度后,两个三角形能
够完全重合,这两个三角形称为旋
图3
在 △ 和△ 中, ∵ ∠ = ∠ , ∠ = ∠ , = ,
∴ △ ≌ △ AAS .
∴ = .
4
全等三角形的六种基本模型
模型二 对称型
模型剖析
如图4、图5,将所给图形沿某一条直线折叠后,直线两旁的部分能
够完全重合,这两个三角形称为对称型全等三角形,其中重合的顶点就
= , ∴ △ ≌ △ SAS . ∴ = ,
图17
图16
22
全等三角形的六种基本模型
∠ = ∠. ∵ ∠ = 120∘ , ∠ = 60∘ , ∴ ∠ +
∠ = 60∘ . ∴ ∠ + ∠ = 60∘ . ∴ ∠ = ∠ =
∴ ∠ = ∠ + ∠ = 110∘ .
∴ ∠ = ∠ .
= ,
图9
在 △ 和 △ 中, ቐ∠ = ∠ , ∴ △ ≌ △ .
= ,
∴ = .
11
全等三角形的六种基本模型
第十三章 全等三角形 5.专项二 全等三角形的常见模型强化练
专项二 全等三角形的常见模型强化练
4. 新定义型阅读理解题 阅读材料,回答下列问题.筝形的定义:两组邻边 分别相等的四边形叫做筝形,几何图形的定义通常可作为图形的性质也可以作 为图形的判定方法.也就是说,如图,若四边形 ABCD 是一个筝形,则 DA=DC ,BA=BC;若 DA=DC,BA=BC,则四边形 ABCD 是筝形.如图,四边形 ABCD 是 一个筝形,其中 DA=DC,BA=BC.对角线 AC,BD 相交于点 O,过点 O 作 OE⊥AB,OF⊥BC,垂足分别为 E,F,求证:四边形 BEOF 是筝形.
专项二 全等三角形的常见模型强化练
解:(1)证明:∵AB⊥DC,∴∠ABC=∠DBE=90°,在△ABC 和△DBE 中, AB=DB,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE(SAS),∴DE=AC;
(2)题图 2:由平移变换知 EF⊥BC,EF=BC,DF=AB. ∴∠ABC=∠DFE=90°.在△DFE 和△ABC 中,EF=CB,∠DFE=∠ABC,DF=AB, ∴△DFE≌△ABC(SAS),∴DE=AC.故在题图 2 中的结论仍然成立.题图3,4 中 可类似地推证出(1)的结论也成立.
专项二 全等三角形的常见模型强化练
解决图形变换问题需要抓住的三个特点:(1)变化前后的结论及说理过程对 变化前后的结论起到重要的作用;(2)在图形变化前后,明确哪些关系发生变化 ,哪些关系没有发生变化,变化前的等角、等线段在变化后是否还存在;(3)几 种变化图形之间,说理思路存在内在联系,变化后的说理思路可模仿与借鉴变化 前的结论与过程.变化后的结论有时发生变化,有时不发生变化.
ቤተ መጻሕፍቲ ባይዱ 专项二 全等三角形的常见模型强化练
解:(2)AF∥CD,理由如下:如图,作 AG⊥BF 于点 G,AH⊥CE 于点 H,由(1)知△ABD≌△ACE,∴ 易知 AG=AH.∵∠AGF=∠AHF=90°,AF=AF, 又易知∠HAF=∠AFD,∴△AGF≌△FHA;∴AG=HF,∴AH=HF,∴ 易知 ∠HFA=45°,∴∠AFD=45°,∵∠BDC=135°,∴∠FDC=45°,∴∠AFD=∠FDC, ∴AF∥CD.
熟悉全等三角形的几种常见类型
熟悉三角形全等的几种常见类型一般地,一个图形经过平移、翻折、旋转等位置后变化了,由于形状、大小都没有发生改变,因此三角形经过平移、翻折、旋转后所得三角形与原三角形全等.然而全等三角形的位置虽然各异,但从基本图形的构造上划分,主要有:平移全等型、翻折全等型、旋转全等型这三种类型,了解这些基本类型不仅可以增强我们分辨图形的能力,而且可以提高我们分析和解决问题的能力.现归纳分析如下:一、平移全等型平移全等型可视为由对应相等的边沿同一方向移动所构成的全等三角形,它是全等三角形中较简单的一类,其对应边、对应角、对应顶点比较明显.证明平移全等型对应边的全等关系常常会由同一直线上线段和(或差)证线段相等.如图1:若已知AD=BE,则AD+AE=BE+AE,即DE=AB.图1 图2 图3二、翻折全等型翻折全等型特征是有对应相等的边(角或顶点)重合,可沿某一直线翻折且直线两旁的部分能完全重合.因此,其重合的边是对应边,重合的角是对应角,重合的顶点为对应点.图4 图5 图6 图7 图8三、旋转全等型旋转全等型的特征是以三角形某一顶点为中心旋转所构成,如图和图都以A为旋转中心,或旋转之后再进行平移.常常有一对相等的角隐含于对顶角、平行线、某些角的和(或差)之中.图9 图10 图11 图12你能写出以上各图中的全等三角形吗?请你写一写,要注意对应的元素哟!!参考答案:图1:△ABC≌△DEF;图2△ABC≌△DAE;图3△ABC≌△DEF;图4:△ABC≌△DBC(BC为公共边);图5:△ABC≌△DCB(BC为公共边);图6:△ABC≌△DEF;图7 :△ABC≌△AED;图8:△ABC≌△AED;图9:△ABC≌△ADE;图10:△ABC≌△CDA;图11:△ABC≌△DEF;图12:△ABC≌△ADE.。
【差】全等三角形简单模型(解析版)
全等三角形简单模型【模型讲解】模型1、平移全等模型,如下图:【巩固训练】1.如图,AB DE =,A D ∠=∠,要说明ABC DEF △≌△,需添加的条件不能是()A .//AB DE B .//AC DF C .AC DE ⊥D .AC DF =【答案】C 【分析】直接根据三角形证明全等的条件进行判断即可;【详解】A 、∵AB ∥DE ,∴∠ABC=∠DEC ,∴根据ASA 即可判定三角形全等,故此选项不符合题意;B 、∵AC ∥DF ,∴∠DFE=∠ACB ,∴根据AAS 即可判定三角形全等,故此选项不符合题意;C 、AC ⊥DE ,不符合三角形全等的证明条件,故此选项符合题意;D 、∵AC=DF ,∴根据SAS 即可判定三角形全等,故此选项不符合题意;故选:C .【点睛】本题考查了三角形证明全等所需添加的条件,正确掌握知识点是解题的关键;2.如图:已知AD BE =,BC EF =且//BC EF ,求证:ABC DEF ≌△△.【答案】见解析【分析】由AD=BE 可求得AB=DE ,再结合条件可证明△ABC ≌△DEF .【详解】证明:∵AD BE =∴AD BD BE BD +=+∴AB DE=又∵//BC EF ∴ABC DEF∠=∠在ABC 和DEF 中AB DE ABC DEF BC EF =⎧⎪∠=∠⎨⎪=⎩∴ABC DEF △≌△(SAS )【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .3.如图,在△ABC 和△DEF 中,B ,E ,C ,F 在同一条直线上,AB //DE ,AB =DE ,∠A =∠D .(1)求证:ABC DEF ≌;(2)若BF =11,EC =5,求BE的长.【答案】(1)见解析;(2)BE =3.【分析】(1)根据平行线的性质由AB ∥DE 得到∠ABC =∠DEF ,然后根据“ASA”可判断△ABC ≌△DEF ;(2)根据三角形全等的性质可得BC =EF ,由此可求出BE =CF ,则利用线段的和差关系求出BE .【详解】(1)证明:∵AB ∥DE ,∴∠ABC =∠DEF ,在△ABC 和△DEF 中A D AB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DEF (ASA );(2)解:∵△ABC ≌△DEF ,∴BC =EF ,∴BC -EC =EF -EC ,即BE =CF ,∵BF =11,EC =5,∴BF -EC =6.∴BE +CF =6.∴BE =3.【点睛】本题考查了全等三角形的判定与性质,掌握全等三角形的判定与性质是解答此题的关键.4.如图,已知点C 是AB 的中点,CD ∥BE ,且CD BE =.(1)求证:△ACD ≌△CBE .(2)若87,32A D ∠=︒∠=︒,求∠B的度数.【答案】(1)见解析;(2)61【分析】(1)根据SAS 证明△ACD ≌△CBE ;(2)根据三角形内角和定理求得∠ACD ,再根据三角形全等的性质得到∠B=∠ACD .【详解】(1)∵C 是AB 的中点,∴AC =CB ,∵CD//BE ,∴ACD CBE ∠=∠,在△ACD 和△CBE 中,AC CB ACD CBE CD BE =⎧⎪∠=∠⎨⎪=⎩,∴ACD CBE ∆≅∆;(2)∵8732A D ︒︒∠=∠=,,∴180180873261ACD A D ︒︒︒︒︒∠=-∠-∠=--=,又∵ACD CBE ∆≅∆,∴61B ACD ︒∠=∠=.【点睛】考查了全等三角形的判定和性质,解题关键是根据SAS 证明△ACD ≌△CBE .5.如图,AB//CD ,AB=CD 点E 、F 在BC 上,且BF=CE .(1)求证:△ABE ≌△DCF (2)求证:AE//DF .【答案】(1)见详解;(2)见详解【分析】(1)由题意易得B C ∠=∠,BE CF =,然后问题可得证;(2)由(1)可得DFC AEB ∠=∠,则有EFD AEF ∠=∠,然后问题可得证.【详解】证明:(1)∵AB ∥CD ,∴B C ∠=∠,∵BF =CE ,∴CF EF BE EF +=+,∴BE CF =,∵AB =CD ,∴ABE DCF △≌△(SAS );(2)由(1)可得:ABE DCF △≌△,∴DFC AEB ∠=∠,∵180,180DFC EFD AEF AEB ∠+∠=︒∠+∠=︒,∴EFD AEF ∠=∠,∴//AE DF .【点睛】本题主要考查三角形全等的判定及性质,熟练掌握全等三角形的判定定理是解题的关键.6.如图1,A ,B ,C ,D 在同一直线上,AB =CD ,DE ∥AF ,且DE =AF ,求证:△AFC ≌△DEB .如果将BD 沿着AD 边的方向平行移动,如图2,3时,其余条件不变,结论是否成立?如果成立,请予以证明;如果不成立,请说明理由.【思路】可以根据已知利用SAS 判定△AFC ≌△DEB .如果将BD 沿着AD 边的方向平行移动,如图(2)、(3)时,其余条件不变,结论仍然成立.可以利用全等三角形的常用的判定方法进行验证.【解答过程】解:∵AB =CD ,∴AB +BC =CD +BC ,即AC =BD .∵DE ∥AF ,∴∠A =∠D .在△AFC 和△DEB 中,AF DE∠A ∠D AC DB,∴△AFC ≌△DEB (SAS ).在(2),(3)中结论依然成立.如在(3)中,∵AB =CD ,∴AB ﹣BC =CD ﹣BC ,即AC =BD ,∵AF ∥DE ,∴∠A =∠D .在△ACF 和△DEB 中,AF DE∠A ∠D AC DB,∴△ACF ≌△DEB (SAS ).模型2.对称(翻折)全等模型,如下图:【巩固训练】1.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,ABO ADO △≌△,下列结论:①AC BD ⊥;②CB CD =;③ABC ADC △≌△;④DA DC =,其中正确结论的序号是__________.【答案】①②③【分析】根据全等三角形的性质得出AB=AD ,∠BAO =∠DAO ,∠AOB =∠AOD =90°,OB=OD ,再根据全等三角形的判定定理得出△ABC ≌△ADC ,进而得出其它结论.【详解】由△ABO ≌△ADO 得:AB=AD ,∠AOB =∠AOD =90°,∴AC ⊥BD ∠BAC =∠DAC ,又AC =AC ,所以,有△ABC ≌△ADC ,∴CB=CD ,所以,①②③正确.由已知条件得不到DA=DC ,故④不正确.故答案为:①②【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法:SSS ,SAS ,ASA ,AAS ,以及HL ,是解题的关键.2.如图,已知ACB DBC ∠=∠,若要使得ABC DCB ∆≅∆,则添加的一个条件不能是()A .A D∠=∠B .ABC DCB ∠∠=C .AB =DC D .AC =DB【答案】C 【分析】根据全等三角形的判定方法对各选项进行判断,即可得出结论.【详解】解:∵ACB DBC ∠=∠,BC =CB ,A 、当添加∠A =∠D 时,可利用“AAS”判断△ABC ≌△DCB ,故此选项不符合题意;B 、当添加ABC DCB ∠=∠时,可利用“ASA”判断△ABC ≌△DCB ,故此选项不符合题意;C 、当添加AB=DC 时,利用“SSA”不能判断△ABC ≌△DCB ,故此选项符合题意;D 、当添加AC=DB 时,可利用“SAS”判断△ABC ≌△DCB ,故此选项不符合题意.故选:C .【点睛】本题考查了全等三角形的判定:全等三角形的判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.3.如图,12∠=∠,BC EC =,请补充一个条件:______,能使用“ASA ”方法判定ABC DEC ≌△△.【答案】∠B =∠E【分析】已知∠1=∠2,就是已知∠ACB =∠DCE ,则根据三角形的判定定理“ASA ”即可证【详解】可以添加∠B =∠E .理由是:∵∠1=∠2,∴∠1+∠BCE =∠2+∠BCE ,∴∠ACB =∠DCE ,∴在△ABC 和△DEC 中,ACB DCE BC EC B E ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEC (ASA ).故答案是:∠B=∠E【点睛】本题考查了三角形全等的判定,熟练掌握“两角及夹边对应相等的两个三角形全等”是解题关键.4.在数学课上,林老师在黑板上画出如图所示的图形(其中点B 、F 、C 、E 在同一直线上),并写出四个条件:①AB =DE ,②BF =EC ,③∠B =∠E ,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:【答案】①②③;④;证明过程见解析;【分析】根据三个不同的情况进行讨论分析即可;【详解】情况一:题设①②③,结论④;∵BF=EC ,∴BF CF EC CF +=+,即BC EF =,在△ABC 和△DEF 中,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴ABC DEF ≅ ,∴12∠=∠;情况二:题设①③④,结论③;在△ABC 和△DEF 中,12B E AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABC DEF ≅ ,∴BC EF =,∴BC FC EF FC -=-,即BF EC =;情况三:题设②③④,结论①;∵BFEC =,∴BF CF EC CF +=+,即BC EF =,在△ABC 和△DEF 中,12BC EF B E ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABC DEF ≅ ,∴AB DE =;故答案为:①②③;④.【点睛】本题主要考查了全等三角形的判定与性质,准确分析证明是解题的关键.5.如图,在ABC 中,点D ,E 分别是AB 、AC 边上的点,BD CE =,ABE ACD ∠=∠,BE 与CD 相交于点F ,求证:AB AC =.【答案】见详解;【分析】依题意,BD =CE ,∠ABE =∠ACD ,∠BFD =∠CFE ,可得△BDF ≌△CEF ,可得DF =EF ,BF =CF ;可得CD =BE ,可得△ABE ≌△ACD ,即可;【详解】由题知:BD =CE ,∠ABE =∠ACD ,又∠BFD 和∠CFE 为对顶角,∴∠BFD =∠CFE ;在△BDF 和△CEF 中ABE ACD BFD CFE BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDF ≌△CEF (AAS );∴DF =EF ,BF =CF ;又CD =DF +CF ,BE =BF +EF ;∴CD =BE ;在△ABE 和△ACD 中A A ABE ACD BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (AAS );∴AB =AC ;【点睛】本题主要考查对顶角相等、用AAS 证明全等及其性质,熟练构造出全等的三角形是关键;6.如图,已知∠C =∠F =90°,AC =DF ,AE =DB ,BC 与EF 交于点O ,(1)求证:Rt△ABC≌Rt△DEF;(2)若∠A=51°,求∠BOF的度数.【答案】(1)见解析;(2)78°【分析】(1)由AE=DB得出AE+EB=DB+EB,即AB=DE,利用HL即可证明Rt△ABC ≌Rt△DEF;(2)根据直角三角形的两锐角互余得∠ABC=39°,根据全等三角形的性质得∠ABC=∠DEF=39°,由三角形外角的性质即可求解.【详解】(1)证明:∵AE=DB,∴AE+EB=DB+EB,即AB=DE.又∵∠C=∠F=90°,AC=DF,∴Rt△ABC≌Rt△DEF.(2)∵∠C=90°,∠A=51°,∴∠ABC=∠C-∠A=90°-51°=39°.由(1)知Rt△ABC≌Rt△DEF,∴∠ABC=∠DEF.∴∠DEF=39°.∴∠BOF=∠ABC+∠BEF=39°+39°=78°.【点睛】本题主要考查直角三角形的两锐角互余,三角形外角的性质,全等三角形的判定与性质,证明三角形全等是解题的关键.模型3.旋转全等模型,如下图:【巩固训练】1.如图,△ABC和△AED共顶点A,AD=AC,∠1=∠2,∠B=∠E.BC交AD于M,DE交AC于N,甲说:“一定有△ABC≌△AED.”乙说:“△ABM≌△AEN.”那么()A .甲、乙都对B .甲、乙都不对C .甲对、乙不对D .甲不对、乙对【答案】A 【分析】利用AAS 判定△ABC ≌△AED ,则可得到AB=AE ,再利用ASA 判定△ABM ≌△AEN .【详解】∵∠1=∠2,∴∠1+∠MAC =∠2+∠MAC ,∴∠BAC =∠EAD,在△BAC 和△EAD 中,B E BAC EAD AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BAC ≌△EAD ,∴甲说的正确;∵△BAC ≌△EAD (AAS ),∴AB=AE ,在△BAM 和△EAN 中,12B E AB AE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BAM ≌△EAN (ASA ),∴乙说的正确;故选A .【点睛】本题考查了三角形全等的判定方法,根据题目的特点,补充适当条件,活用判定定理是解题的关键.2.如图,已知AB AD =,BC DE =,且10CAD ∠=︒,25B D ∠=∠=︒,120EAB ∠=︒,则EGF ∠的度数为()A .120︒B .135︒C .115︒D .125︒【答案】C【分析】由已知得△ABC ≌△ADE ,故有∠BAC =∠DAE ,由∠EAB =120°及∠CAD =10°可求得∠AFB 的度数,进而得∠GFD 的度数,在△FGD 中,由三角形的外角等于不相邻的两个内角的和即可求得∠EGF 的度数.【详解】在△ABC 和△ADE 中AB AD B D BC DE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADE (SAS )∴∠BAC =∠DAE∵∠EAB =∠BAC +∠DAE +∠CAD =120°∴∠BAC =∠DAE ()112010552=⨯︒-︒=︒∴∠BAF =∠BAC +∠CAD =65°∴在△AFB 中,∠AFB =180°-∠B -∠BAF =90°∴∠GFD =90°在△FGD 中,∠EGF =∠D +∠GFD =115°故选:C【点睛】本题考查了三角形全等的判定和性质、三角形内角和定理,关键求得∠BAC 的度数.3.已知:如图,C 为线段BE 上一点,AB//DC ,AB=EC ,BC=CD .求证:∠A=∠E.【答案】见详解【分析】直接利用全等三角形的判定方法得出△ABC ≌△ECD ,即可得出答案.【详解】证明:∵AB ∥DC ,∴∠B =∠ECD ,在△ABC 和△ECD 中,AB EC B ECD BC CD ⎧⎪∠∠⎨⎪⎩===,∴△ABC ≌△ECD (SAS ),∴∠A =∠E (全等三角形的对应角相等).【点睛】此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.4.如图,,,,AC BC DC EC AC BC DC EC ⊥⊥==,求证:(1)ACE BCD ∆≅∆;(2)AE BD ⊥.【答案】(1)见解析;(2)见解析【分析】(1)根据垂直得到90ACB DCE ∠=∠=︒,求出DCB ECA ∠=∠,即可得到结果;(2)设AC 交BD 于N ,AE 交BD 于O ,根据全等三角形的性质得到A B ∠=∠,再根据已知条件转换即可;【详解】证明:()1AC BC ⊥Q ,DC EC ⊥,90ACB DCE ∴∠=∠=︒,ACB ACD DCE ACD ∴∠+∠=∠+∠,∴∠=∠DCB ECA ,在DCB ∆和ECA ∆中,AC BC DCB ECA CD CE =⎧⎪∠=∠⎨⎪=⎩,()DCB ECA SAS ∴∆≅∆;()2如图,设AC 交BD 于N ,AE 交BD 于O ,∆≅∆ DCB ECA ,A B ∴∠=∠,∠=∠ AND BNC ,90∠+∠=︒B BNC ,90∴∠+∠=︒A AND ,90∴∠=︒AON ,AE BD ∴⊥.【点睛】本题主要考查了全等三角形的判定与性质,准确证明是解题的关键.。
全等三角形证明
全等三角形证明一、全等三角形证明方法二、全等三角形常见模型(一)基础模型1、平移型沿同一直线平移可得两三角形重合。
2、翻折型沿公共边或者公共顶点所在某条直线折叠可得两三角形重合。
3、组合型(平移+折叠、平移+旋转)AABCDAF BA将其中一个三角形平移至与另一个三角形对应顶点重合,然后两三角形可关于这点所在的直线对称变换后重合或者绕该顶点旋转后重合。
(一)角平分线模型1、角平分线的性质模型辅助线:过点G 作GE ⊥射线AC2、角平分线+垂线,等腰三角形必呈现辅助线:延长ED 交射线OB 于F 辅助线:过点E 作EF ∥射线OBEAM CA例1、如图,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于F .求证:1()2BE AC AB=-.例2、如图,在△ABC中,∠BAC的角平分线AD交BC于点D,且AB=AD,作CM⊥AD交AD的延长线于M. 求证:1()2AM AB AC=+.(二)等腰直角三角形模型1、旋转中心为直角顶点,在斜边上任取一点的旋转全等:操作过程:(1)将△ABD逆时针旋转90°,得△ACM ≌△ABD,从而推出△ADM为等腰直角三角形.(2)辅助线作法:过点C作MC⊥BC,使CM=BD,连结AM.2、旋转中心为斜边中点,动点在两直角边上滚动的旋转全等:操作过程:连结AD.(1)使BF=AE(或AF=CE),导出△BDF ≌△ADE.(2)使∠EDF+∠BAC=180°,导出△BDF ≌△ADE.例题1、如图,在等腰直角△ABC中,∠BAC=90°,点M、N在斜边BC上滑动,且∠MAN=45°,试探究BM、MN、CN之间的数量关系.(三)三垂直模型(弦图模型)(四)手拉手模型1、△ABE和△ACF均为等边三角形结论:(1)△ABF≌△AEC .(2)∠BOE=∠BAE=60° .(3)OA平分∠EOF .2、△ABD 和△ACE 均为等腰直角三角形 结论:(1)BE =CD ;(2)BE ⊥CD .3、四边形ABEF 和四边形ACHD 均为正方形 结论:(1)BD =CF ;(2)BD ⊥CF .(五)半角模型 条件:1,+=1802αββθβ=︒且,两边相等 . 思路:1、旋转辅助线:①延长CD 到E ,使ED=BM ,连AE 或延长CB 到F ,使FB=DN ,连AF②将△ADN 绕点A 顺时针旋转90°得△ABF ,注意:旋转需证F 、B 、M 三点共线结论:(1)MN =BM +DN ; (2)=2CMN C AB V ;(3)AM 、AN 分别平分∠BMN 、∠MND .2、翻折(对称)辅助线:①作AP ⊥MN 交MN 于点P②将△ADN 、△ABM 分别沿AN 、AM 翻折,但一定要证明M 、P 、N 三点共线 .引申120°的等腰三角形条件:∠CAD=60°三、课堂练习1、如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE 相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.2、(2019·陕西中考真题)如图,点A,E,F在直线l上,AE=BF,AC//BD,且AC=BD,求证:CF=DE EBA3、(2015·陕西中考真题)如图,在△ABC 中,AB=AC ,作AD⊥AB 交BC 的延长线于点D ,作AE∥BD,CE⊥AC,且AE ,CE 相交于点E ,求证:AD=CE .4、(2019·陕西初三期中)如图,在ABC V 中,已知45ABC ∠=︒,过点C 作CD AB ⊥于点D ,过点B 作BM AC ⊥于点M ,连接MD ,过点D 作ND DM ⊥,交BM 于点N .求证:DBN DCM △≌△.5、(2017·西安市铁一中学中考模拟)如图,点A ,C ,D ,B 四点共线,且AC=BD ,∠A=∠B,∠ADE=∠BCF,求证:DE=CF .6、(2019·陕西西安工业大学附中初三月考)如图,在菱形ABCD中,对角线AC,BD相交于点O,过点O作一条直线分别交DA,BC的延长线于点E,F,连接BE,DF.(1)求证:四边形BFDE是平行四边形;(2)若EF⊥AB,垂足为M,12MOMB,AE=2,求菱形ABCD的边长.7、(2019·陕西西安工业大学附中初三)如图,已知△ABC是等边三角形,点D在AC边上一点,连接BD,以BD为边在AB的左侧作等边△DEB,连接AE,求证:AB平分∠EAC.8、(2018·陕西初三期末)如图,点B在线段AF上,分别以AB、BF为边在线段AF的同侧作正方形ABCD和正方形BFGE,连接CF、DE,若E是BC的中点.求证:CF=DE.9、(2018·陕西师大附中中考模拟)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.10、(2018·陕西西北工业大学附属中学中考模拟)如图,AD是△ABC的中线,CF⊥AD于点F,BE⊥AD,交AD的延长线于点E,求证:AF+AE=2AD.11、已知:如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D,E.(1)求证:△BEC≌△CDA;(2)当AD=3,BE=1时,求DE的长.12、(2018·陕西师大附中中考模拟)如图,在△ABC中,∠BAC=90°,AB=AC,D为AB边上一点,连接CD,过点A作AE⊥CD于点E,且交BC于点F,AG平分∠BAC交CD于点G.求证:BF=AG.13、(2018·陕西西北工业大学附属中学中考模拟)已知:如图.D是△ABC的边AB上一点,CN//AB,DN交AC于点M,MA=MC.(1)求证:CD=AN;(2)若∠AMD=2∠MCD,试判断四边形ADCN的形状,并说明理由.14、(2019·陕西高新一中中考模拟)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD 于E,且DB=DA.求证:AE=CD.15、(2017·陕西高新一中中考模拟)如图,在ABC △中,AB AC =,BD 、CE 分别是边AB 、AC 上的高,BD 与CE 交于点O .求证:BO CO =.16、(2017·陕西中考模拟)正方形ABCD 中,E ,F 分别在BC ,CD 上,AE ,BF 交于点O ,若AE BF =,求证:AE BF ⊥.17、(2019·浙江初三月考)如图,已知:△ABC 中,AB=AC ,M 是BC 的中点,D 、E 分别是AB 、AC 边上的点,且BD=CE .求证:MD=ME .18、(2018·陕西初三期末)如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.19、(2019·陕西初三)已知▱ABCD中,E是AB边上的一点,点F、G、H分别是CD、DE、CE的中点,求证:△DGF≌△FHC.20、(2018·陕西中考模拟)如图,点E在△ABC外部,点D在BC边上,DE交AC于点F,若∠C=∠E,DE=BC,AC=AE,求证:AD平分∠BDE.21、正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF⊥CD,垂足为F,求证:EF=AP22、(2019·陕西中考模拟)已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.求证:AD=AE.23、(2019·陕西中考模拟)已知:如图,在菱形ABCD中,E、F分别是BC和DC边上的点,且EC=FC.求证:∠AEF=∠AFE.24、(2018·陕西中考真题)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.25、(2018·陕西中考模拟)如图,已知∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE 与BD相交于点O.求证:EC=ED.26、(2018·陕西初三期中)如图,在△ABC中,AB=AC,点D在BC上,已知BD=CD,点E是AB的中点,过点A作AF∥BC,交DE延长线于点F,连接AD,BF,求证:四边形AFBD 是矩形.27、(2017·陕西中考模拟)如图,△ABC 是等边三角形,D 是AB 边上的一点,以CD 为边作等边三角形CDE ,使点E 、A 在直线DC 的同侧,连接AE .求证:AE∥BC28、(2017·陕西中考模拟)如图,已知90ABC ∠=︒,D 是AB 延长线上一点,AD BC =,过点A 作AF AB ⊥,并截取AF BD =,连接DC 、DF 、CF ,请判断CDF V 的形状并证明.29、如图,四边形ABCD 是正方形,点E 是AB 上一点,点F 是BC 延长线上一点,且AE CF =.求证:DEFDFE ∠=∠.30、如图,在ABC ∆中,45ABC ∠=︒,AD BC ⊥于点D ,E 为AC 上一点,连接BE 交AD 于点G ,点F 在BE 上,且BF AE =,FBD EAD ∠=∠,连接DE 、DF . 求证:DE DF ⊥.。
专题 五大常考的全等模型
专题四
五大常考的全等模型
(1)证明:∵AD⊥BC, ∴∠ADB=∠ADC=90°. ∵∠ABC=45°, ∴∠BAD=45°. ∴∠ABC=∠BAD, ∴AD=BD. 在△BDE和△ADC中,
BD=AD
∠EDB=∠CDA
DE=DC
∴△BDE≌△ADC(SAS). ∴BE=AC;
专题四
五大常考的全等模型
AF,EF,且∠EAF=45°,求证:BE+DF=EF. 【思维教练】延长CD到点G,使DG=BE,将BE,DF转化在一条直线上,再 证EF=GF即可.
例4题图
专题四
五大常考的全等模型
证明:如解图,延长CD到点G,使
DG=BE, 在正方形ABCD中,AB=AD,
∠B=∠ADC=90°, ∴∠ADG=∠B. 在△ABE和△ADG中, AB AD B ADG , BE DG ∴△ABE≌△ADG(SAS). ∴AG=AE,∠DAG=∠BAE.
五大常考的全等模型
针对训练
7. 在等边△ABC中,∠BDC=120°,BD=CD,∠EDF=60°点D和点E分别 在边AB和AC上,连接EF,试猜想∠EFD和∠DFE应满足的数量关系,并写 出推理过程.
专题四
五大常考的全等模型
综合训练
1. 如图①,△ABD,△ACE都是等边三角形,
(1)求证:△ABE≌△ADC;
例6题解图
专题四
五大常考的全等模型
基本模型
图示
等边三角 形含半角 (∠BDC=120°)
等腰直角三 角形含半角
专题四
五大常考的全等模型
图示
正方形含半角
模型总结
当一个角包含着这个角的半角,常将半角两边的三角形通过 旋转到一边合并形成新的三角形,从而进行等量代换,然后 证明与半角形成的三角形全等.
模型构建:全等三角形中的常见七种解题模型全攻略(解析版)
专题11模型构建专题:全等三角形中的常见七种解题模型【考点导航】目录【典型例题】 (1)【模型一平移型模型】 (1)【模型二轴对称型模型】 (8)【模型三四边形中构造全等三角形解题】 (12)【模型四一线三等角模型】 (19)【模型五三垂直模型】 (25)【模型六旋转型模型】 (30)【模型七倍长中线模型】 (39)【典型例题】【模型一平移型模型】例题:(2023秋·江苏淮安·八年级淮安市浦东实验中学校考开学考试)如图,点E ,C 在线段BF 上,AB DE ∥,AB DE =,BE CF =.(1)求证:ABC DEF ≌;(2)若40B ∠=︒,70D ∠=︒,求ACF ∠的度数.【答案】(1)见解析(2)110︒【分析】(1)首先根据,AB DE ∥可得B DEF ∠=∠,再根据BE CF =,可得出BC EF =,即可判定ABC DEF ≌△△;(2)首先根据(1)中两三角形全等,可得70A D ∠=∠=︒,在ABC 中根据外角的性质即可求出ACF ∠.【详解】(1)证明: AB DE ∥,B DEF∴∠=∠BE CF = ,BE EC CF EC ∴+=+,即BC EF =,∴在ABC 和DEF 中,AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩,∴ABC DEF ≌△△.(2) ABC DEF ≌△△,40B ∠=︒,70D ∠=︒,70A D ∴∠=∠=︒,ACF ∠ 是ABC 的外角,110ACF A B ∴∠=∠+∠=︒.【点睛】此题主要考查平行线的性质,三角形全等的判定和性质,熟练运用性质定理,即可解题.【变式训练】1.(2023秋·浙江·八年级专题练习)如图,在ACD 和CEB 中,点A 、B 、C 在一条直线上,D E AD EC AD EC ∠=∠=,∥,.求证:ACD CBE ≌.【答案】见解析【分析】根据平行线的性质得出A ECB ∠=∠,再根据全等三角形的判定定理ASA 证明ACD CBE ≌.【详解】AD EC ∥ ,A ECB ∴∠=∠,在ACD 和CEB 中,A ECB AD ECDE ∠=∠⎧⎪=⎨⎪∠=∠⎩,(ASA)ACD CBE ∴△≌△.【点睛】本题考查了全等三角形的判定定理和平行线的性质,能熟记全等三角形的判定定理是解此题的关键.2.(2023秋·浙江·八年级专题练习)如图,已知ABC DEF ≌△△,点B ,E ,C ,F 在同一条直线上.(1)若140BED ∠=︒,75D ∠=︒,求ACB ∠的度数;(2)若2BE =,3EC =,求BF 的长.【答案】(1)65︒(2)7【分析】(1)由三角形外角性质,得65F BED D ∠=∠-∠=︒,由三角形全等知65ACB F ∠=∠=︒;(2)由条件可推出5BC BE EC =+=,由三角形全等知5BC EF ==,故7BF BE EF =+=.【详解】(1)解:∵140BED ∠=︒,75D ∠=︒,∴65F BED D ∠=∠-∠=︒.∵ABC DEF ≌△△,∴65ACB F ∠=∠=︒;(2)解:∵2BE =,3EC =,∴5BC BE EC =+=∵ABC DEF ≌△△,∴5BC EF ==,∴257BF BE EF =+=+=.故答案为:7.'='时的情形,求此时△ADE(1)如图2,善思小组的同学画出了BA BD(2)如图3,点F是BC的中点,在△ADE平移过程中,连接E F''交射线'=始终成立!请你证明这一结论;现OE OF拓展延伸:(3)请从A,B两题中任选一题作答,我选择______题.A.在△ADE平移的过程中,直接写出以F,A',D¢为顶点的三角形成为直角三角形时,ABC 是等边三角形,6AB =3AD CD ∴==,BD AC ⊥,将△ADE 从图1的位置开始,沿射线∴A D ''3AD ==,A B BD '=' ,BD AC ⊥,13ADE 是等边三角形,3AD =60DAE ∴∠=︒,3AE =,将△ADE 从图1的位置开始,沿射线60D A E DAE ∴∠=∠'=''︒,A E 'ABC 是等边三角形,6AB =190CD F ∴='∠︒,60C ∠=︒ ,30D FC ∴='∠︒,1322CD CF ∴='=,33322DD CD CD ''∴=-=-=;同理可得32A C '=,39622AA AC A C ''∴=-=-=;△ADE 平移的距离是92;综上所述,以F ,A ',D ¢为顶点的三角形成为直角三角形时,△当A '与C 重合时,如图:A D E ''' 是等边三角形,60E A D A D E E '''''∴∠=∠''=∠=︒,3A F A D '''== ,30A FD A D F ''''∴∠=∠=︒,90FD E A D F A D E ∴∠=∠'''''''+∠=︒,即以F ,D ¢,E '为顶点的三角形成为直角三角形,此时336DD CD A D =+='+'=',△ADE 平移的距离是6;当90D E F ∠=''︒时,如图:60A E D E A D ∠=︒'=∠''''' ,30A E O D E F A E D ∴∠=∠'''''''-∠=︒,30A OE D A E A E O '''''∴∠=∠'-∠='︒,A E O A OE ∴∠='∠''',3A O A E '''∴==,由()2知A OE '' ≌COF ,3CO A O '∴==,333312DD CD CO A O A D '''∴=+++=+++=',△ADE 平移的距离是12;综上所述,以F ,D ¢,E '为顶点的三角形成为直角三角形时,△ADE 平移的距离是6或12.【点睛】本题考查几何变换综合应用,涉及等边三角形的性质及应用,全等三角形的判定与性质,平移变换等知识,解题的关键是分类讨论思想的应用.【模型二轴对称型模型】例题:(2023秋·内蒙古呼伦贝尔·八年级校考期中)如图,AB AD =,BC DC =,求证:B D ∠=∠.【答案】见解析【分析】根据SSS 证明ABC ADC △≌△,得出B D ∠=∠即可.【详解】证明:∵在ABC 和ADC △中AB AD AC AC BC DC =⎧⎪=⎨⎪=⎩,∴()SSS ABC ADC ≌△△,∴B D ∠=∠.【点睛】本题主要考查了三角形全等的判定和性质,解题的关键是熟练掌握三角形全等的判定方法,证明ABC ADC △≌△.【变式训练】1.(2023春·四川成都·七年级成都嘉祥外国语学校校考期中)如图,在ABC 中,AB AC =,D 是BC 的中点,EAB FAC ∠=∠,且AE AF =,求证:EDB FDC ∠=∠.【答案】见解析【分析】由等腰三角形的性质得AD BC ⊥,BAD CAD ∠=∠,再证(SAS)AED AFD △≌△,得ADE ADF ∠=∠,即可得出结论.【详解】解:证明:连接AD ,AB AC = ,D 是BC 的中点,AD BC ∴⊥,BAD CAD ∠=∠,90ADB ADC ∴∠=∠=︒,EAB FAC ∠=∠ ,EAB BAD FAC CAD ∴∠+∠=∠+∠,即DAE DAF ∠=∠,在AED △与AFD △中,AE AF DAE DAF AD AD =⎧⎪∠=∠⎨⎪=⎩,(SAS)AED AFD ∴△≌△,ADE ADF ∴∠=∠,ADB ADE ADC ADF ∴∠-∠=∠-∠,即EDB FDC ∠=∠.【点睛】本题考查了全等三角形的判定与性质以及等腰三角形的性质等知识,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键.2.(2023秋·河南南阳·八年级统考期末)如图,点E 、F 是线段AB 上的两个点,CE 与DF 交于点M .已知AF BE =,AC BD =,A B ∠=∠.(1)求证:C D ∠=∠;(2)若60FME ∠=︒.求证:MFE 是等边三角形.【答案】(1)证明见解析(2)证明见解析【分析】(1)证明ACE BDF ≌△△即可.(2)根据ACE BDF ≌△△得到ME MF =,根据有一个角是60︒的等腰三角形是等边三角形证明.【详解】(1)证明:∵AF BE =,∴AF FE BE FE +=+,∴AE BF =,∵AE BF A B AC BD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ACE BDF ≌,∴C D ∠=∠.(2)∵()SAS ACE BDF ≌,∴DFE CEF ∠=∠,∴FM EM =,∵60FME ∠=︒,∴MFE 是等边三角形.【点睛】本题考查了三角形全等的判断和性质,等边三角形的判定,熟练掌握三角形全等的判断和性质,等边三角形的判定是解题的关键.3.(2023春·湖南益阳·八年级校考期中)两组邻边分别相等的四边形我们称它为筝形.如图,在筝形ABCD中,AB AD =,BC DC =,AC 、BD 相交于点O ,求证:(1)ABC ADC △≌△;(2)AC BD ⊥.【答案】(1)见解析;(2)见解析.【分析】(1)分别利用SSS 证ABC ADC ≌即可;(2)由ABC ADC ≌得ACB ACD ∠∠=,利用等腰三角形的性质即可得AC BD ⊥.【详解】(1)证明:在ABC 和ADC 中,AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩,∴ABC ADC ≌(SSS ).(2)证明:由(1)得ABC ADC ≌,∴ACB ACD ∠∠=,∵BC CD =,∴AC BD ⊥.【点睛】此题考查全等三角形的判定与性质以及等腰三角形的性质,解题关键在于掌握全等三角形的判定定理.【模型三四边形中构造全等三角形解题】例题:(2023春·江苏淮安·七年级校考阶段练习)已知:如图,AC BC =,AD BD =,E 、F 分别是AC 和BC 的中点.求证:DE DF =.【答案】证明见解析.【分析】由三边对应相等的两个三角形是全等三角形可证ADC BDC ≌ ,再根据全等三角形的性质可由两边对应相等以及它们的夹角相等的两个三角形全等可证CDE CDF ≌ ,即可得出结论.【详解】证明:连接CD在ADC △与BDC 中,AC BC CD CD AD BD =⎧⎪=⎨⎪=⎩()SSS ADC BDC ∴≌ ,ACD BCD ∴∠=∠,【变式训练】1.(2023春·广西玉林·八年级统考期末)如图,在四边形ABCD 中,AB AD =,CB CD =,我们把这种两组邻边分别相等的四边形叫做筝形.根据学习平行四边形性质的经验,小文对筝形的性质进行了探究.(1)小文通过观察、实验、猜想、证明得到筝形角的性质是“筝形有一组对角相等”.请你帮他将证明过程补充完整.已知:如图,在筝形ABCD 中,AB AD =,CB CD =.求证:___________.证明:___________(2)小文连接筝形的两条对角线,探究得到筝形对角线的性质是___________.(写出一条即可)【答案】(1)B D ∠=∠,见解析(2)AC BD ⊥(或AC 垂直平分线段BD )【分析】(1)B D ∠=∠,连接AC ,证明ABC ADC △△≌,即可得结论;(2)根据全等三角形的性质即可得筝形的两条对角线互相垂直.【详解】(1)解:证明:连接AC ,在ACB △和ACD 中,AB AD AC AC BC DC =⎧⎪=⎨⎪=⎩,()SSS ABC ADC ∴≌ ,B D ∴∠=∠;(2)证明:如图,连接BD ,交AC 于点O ,由(1)知ABC ADC △△≌,BAO DAO ∴∠=∠,在ABO 与ADO △中,AO AO BAO DAO AB AD =⎧⎪∠=∠⎨⎪=⎩()SAS ABO ADO ∴≅ BO DO ∴=,AOB AOD ∠=∠,180AOB AOD ︒∠+∠= ,90AOB AOD ∴∠=∠=︒,∴AC BD ⊥,∴两条对角线互相垂直.【点睛】本题考查了三角形全等的判定与性质,熟记三角形全等的判定方法是解题的关键.2.如图,在四边形ABCD 中,CB AB ⊥于点B ,CD AD ⊥于点D ,点E ,F 分别在AB ,AD上,AE AF =,CE CF =.(1)若8AE =,6CD =,求四边形AECF 的面积;(2)猜想∠DAB ,∠ECF ,∠DFC 三者之间的数量关系,并证明你的猜想.【答案】(1)48(2)∠DAB +∠ECF =2∠DFC ,证明见解析【解析】【分析】(1)连接AC ,证明△ACE ≌△ACF ,则S △ACE =S △ACF ,根据三角形面积公式求得S △ACF 与S △ACE ,根据S 四边形AECF=S △ACF +S △ACE 求解即可;(2)由△ACE ≌△ACF 可得∠FCA =∠ECA ,∠FAC =∠EAC ,∠AFC =∠AEC ,根据垂直关系,以及三角形的外角性质可得∠DFC +∠BEC =∠FCA +∠FAC +∠ECA +∠EAC =∠DAB +∠ECF .可得∠DAB +∠ECF =2∠DFC(1)解:连接AC ,如图,在△ACE 和△ACF 中AE AF CE CF AC AC =⎧⎪=⎨⎪=⎩3.在四边形ABDC中,AC=AB,DC=DB,∠CAB=60°,∠CDB=120°,E是AC上一点,F是AB延长线上一点,且CE=BF.(1)试说明:DE=DF:(2)在图中,若G在AB上且∠EDG=60°,试猜想CE,EG,BG之间的数量关系并证明所归纳结论.(3)若题中条件“∠CAB=60°,∠CDB=120°改为∠CAB=α,∠CDB=180°﹣α,G在AB上,∠EDG满足什么条件时,(2)中结论仍然成立?【答案】(1)见解析;猜想CE 、EG 、BG 之间的数量关系为:证明:在ABD ∆和ACD ∆中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,【模型四一线三等角模型】例题:(2023春·广西南宁·七年级南宁市天桃实验学校校考期末)(1)问题发现:如图1,射线AE 在MAN ∠的内部,点B 、C 分别在MAN ∠的边AM 、AN 上,且AB AC =,若90BAC BFE CDE ∠=∠=∠=︒,求证: ≌ABF CAD ;(2)类比探究:如图2,AB AC =,且BAC BFE CDE ∠=∠=∠.(1)中的结论是否仍然成立,请说明理由;(3)拓展延伸:如图3,在ABC 中,AB AC =,AB BC >.点E 在BC 边上,2CE BE =,点D 、F 在线段AE 上,BAC BFE CDE ∠=∠=∠.若ABC 的面积为15,2DE AD =,求BEF △与CDE 的面积之比.【答案】(1)证明见详解;(2)成立,证明见详解;(3)1:4【变式训练】1.已知CD 是经过BCA ∠顶点C 的一条直线,CA CB =.E 、F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠.(1)若直线CD 经过BCA ∠的内部,且E 、F 在射线CD 上,请解决下面问题:①如图1,若90BCA ∠=︒,90α∠=︒,求证:BE CF =;②如图2,若180BCA α∠+∠=︒,探索三条线段EF BE AF ,,的数量关系,并证明你的结论;(2)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,题(1)②中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确的结论再给予证明.【答案】(1)①见解析;②EF BE AF =-,见解析(2)不成立,EF BE AF =+,见解析【分析】(1)①利用垂直及互余的关系得到ACF CBE ∠=∠,证明BCE ≌CAF V 即可;②利用三等角模型及互补证明ACF CBE ∠=∠,得到BCE ≌CAF V 即可;(2)利用互补的性质得到EBC ACF ∠=∠,证明BCE ≌CAF V 即可.【详解】(1)①证明:∵90EE CD AF CD ACB ⊥⊥∠=︒,,,∴90BEC AFC ∠=∠=︒,∴9090BCE ACF CBE BCE ∠+∠=︒∠+∠=︒,,在BCE 和CAF V 中,EBC FCA BEC CFA BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴BCE ≌CAF V ()AAS ,∴BE CF =;②解:EF BE AF =-.证明:∵180BEC CFA ACB αα∠=∠=∠∠+∠=︒,,∴180180CBE BCE ACF ACB BCE BCE αα∠=︒-∠-∠∠=∠-∠=︒-∠-∠,,∴ACF CBE ∠=∠,在BCE 和CAF V 中,EBC FCA BEC CFA BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴BCE ≌CAF V ()AAS ,∴BE CF CE AF ==,,∴EF CF CE BE AF =-=-;(2)解:EF BE AF =+.理由:∵BEC CFA BCA αα∠=∠=∠∠=∠,,又∵180180EBC BCE BEC BCE ACF ACB ∠=∠=∠=︒∠+∠+∠=︒,,∴EBC BCE BCE ACF ∠+∠=∠+∠,∴EBC ACF ∠=∠,在BCE 和CAF V 中,EBC FCA BEC CFA BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴BCE ≌CAF V ()AAS ,∴AF CE BE CF ==,,∴EF BE AF =+.【点睛】本题主要考查三角形全等的判定及性质,能够熟练运用三等角模型快速证明三角形全等是解题关键.2.(2023春·上海·七年级专题练习)在直线m 上依次取互不重合的三个点,,D A E ,在直线m 上方有AB AC =,且满足BDA AEC BAC α∠=∠=∠=.(1)如图1,当90α=︒时,猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2,当0180α<<︒时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在ABC 中,BAC ∠是钝角,AB AC =,,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠,直线m 与CB 的延长线交于点F ,若3BC FB =,ABC 的面积是12,求FBD 与ACE △的面积之和.【答案】(1)DE =BD +CE(2)DE =BD +CE 仍然成立,理由见解析(3)△FBD 与△ACE 的面积之和为4【分析】(1)由∠BDA =∠BAC =∠AEC =90°得到∠BAD +∠EAC =∠BAD +∠DBA =90°,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD +CE ;(2)由∠BDA =∠BAC =∠AEC =α得到∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD +CE ;(3)由∠BAD >∠CAE ,∠BDA =∠AEC =∠BAC ,得出∠CAE =∠ABD ,由AAS 证得△ADB ≌△CAE ,得出S △ABD =S △CEA ,再由不同底等高的两个三角形的面积之比等于底的比,得出S △ABF 即可得出结果.【详解】(1)解:DE =BD +CE ,理由如下,∵∠BDA =∠BAC =∠AEC =90°,∴∠BAD +∠EAC =∠BAD +∠DBA =90°,∴∠DBA =∠EAC ,∵AB =AC ,【模型五三垂直模型】例题:(2023春·辽宁本溪·七年级统考期末)已知90ACB ∠=︒,AC BC =,AD NM ⊥,BE NM ⊥,垂足分别为点D ,E .(1)如图①,求证:AD BE DE=+(2)如图②,(1)中的结论还成立吗?如果不成立,请写出线段AD BE DE ,,之间的数量关系,并说明理由.【答案】(1)见解析(2)(1)中的结论不成立.结论:DE AD BE =+,理由见解析【分析】(1)证明()AAS ADC CEB ≌△△,推出CD BE =,AD CE =,再利用线段间的代换即得结论;(2)证明()AAS ADC CEB ≌△△,推出CD BE =,AD CE =,利用线段间的代换即可得到结论,进而作出判断.【详解】(1)证明:∵AD NM ⊥,BE NM ⊥,∴90ADC CEB ∠=∠=︒,∴90CAD ACD ∠+∠=︒∵90ACB ∠=︒,∴90BCE ACD ∠+∠=︒,∴CAD BCE ∠=∠,在ADC △和CEB 中ADC CEB CAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS ADC CEB ≌△△,∴CD BE =,AD CE =,∴CE CD DE BE DE =+=+,∴AD BE DE =+;(2)(1)中的结论不成立.结论:DE AD BE =+;理由如下:∵AD NM ⊥,BE NM ⊥,∴90ADC CEB ∠=∠=︒∵90ACB ∠=︒,∴90BCE ACD ∠+∠=︒,∴CAD BCE∠=∠在ADC △和CEB 中ADC CEB CAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ADC CEB ≌△△,∴CD BE =,AD CE =,∵DE CD CE =+,∴DE AD BE =+.【点睛】本题考查了全等三角形的判定和性质,属于常考题型,证明三角形全等是解题的关键.【变式训练】1.(2023春·甘肃酒泉·八年级校联考期末)在ABC 中,90ACB ∠= ,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①ADC CEB △≌△;②DE AD BE =+;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE AD BE =-;【答案】(1)①见解析,②见解析(2)见解析【分析】(1)①由已知推出90ADC BEC ∠=∠= ,90DAC ACD ∠+∠=o 推出DAC BCE =∠∠,根据角角边即可推出.②由①得到,AD CE CD BE ==,即可求出答案.(2)与(1)类似证出ADC CEB △≌△,得到,AD CE CD BE ==代入已知即可知道答案.【详解】(1)①证明:AD DE ⊥ ,BE DE ⊥,90ADC BEC ∴∠=∠= ,90ACB ∠= ,90ACD BCE ∴∠+∠= ,90DAC ACD ∠+∠=o ,DAC BCE ∴∠=∠,在ADC △和CEB 中,CDA BEC DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ADC CEB ∴△≌△.②证明:由(1)知:ADC CEB △≌△,AD CE ∴=,CD BE =,DC CE DE += ,AD BE DE ∴+=.(2)证明:BE EC ⊥ ,AD CE ⊥,90ADC BEC ∴∠=∠= ,90EBC ECB∴∠+∠=o,90ACB∠=,90ECB ACE∴∠+∠= ,ACD EBC∴∠=∠,在ADC△和CEB中,ACD CBEADC BECAC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,()AASADC CEB∴△≌△,AD CE∴=,CD BE=,DE EC CD AD BE∴=-=-.【点睛】本题考查了全等三角形的性质和判定,等根据已知条件证出符合全等的条件是解题的关键.2.如图,已知:在ABC中,90ACB∠=︒,AC BC=,直线MN经过点C,AD MN⊥,BE MN⊥.(1)当直线MN绕点C旋转到图(1)的位置时,求证:ADC CEB≅;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE AD BE=-;(3)当直线MN绕点C旋转到图(3)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系:____________.【答案】(1)见解析;(2)见解析;(3)DE=BE-AD【分析】(1)由已知推出∠ADC=∠BEC=90°,因为∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE,根据AAS即可得到答案;(2)结论:DE=AD-BE.与(1)证法类似可证出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,即可得到答案.(3)结论:DE=BE-AD.证明方法类似.【详解】解:(1)证明:如图1,∵AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠BEC =90°,∵∠ACB =90°,∴∠ACD +∠BCE =90°,∠DAC +∠ACD =90°,∴∠DAC =∠BCE ,在△ADC 和△CEB 中,CDA BEC DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS );(2)如图2,∵BE ⊥EC ,AD ⊥CE ,∴∠ADC =∠BEC =90°,∴∠EBC +∠ECB =90°,∵∠ACB =90°,∴∠ECB +∠ACE =90°,∴∠ACD =∠EBC ,在△ADC 和△CEB 中,ACD CBE ADC BEC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS ),∴AD =CE ,CD =BE ,∴DE =EC -CD =AD -BE .(3)DE =BE -AD ;如图3,∵∠ACB =90°,∴∠ACD +∠BCE =90°∵AD ⊥MN ,BE ⊥MN ,∴∠ADC =∠CEB =90°,∴∠ACD +∠DAC =90°,∴∠DAC =∠ECB ,在△ACD 和△CBE 中,ADC CEB DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),∴AD =CE ,CD =BE ,∴DE =CD -CE =BE -AD .【点睛】本题主要考查了余角的性质,全等三角形的性质和判定等知识点,能根据已知证明△ACD ≌△CBE 是解此题的关键,题型较好,综合性比较强.【模型六旋转型模型】例题:在Rt △ABC 中,∠ACB =90°,CA =CB ,点D 是直线时针旋转90°,得到线段CE ,连接EB .(1)操作发现如图1,当点D 在线段AB 上时,请你直接写出AB 与(2)①如图2中,结论:BE=AB+BD.理由:∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,∵CA=CB,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,∵AD=AB+BD,AD=BE,∴BE=AB+BD.②如图3中,结论:BD=AB+BE.理由:∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,∵CA=CB,CD=CE,∴△ACD≌△BCE(SAS)∴AD=BE,∵BD=AB+AD,AD=BE,∴BD=AB+BE.(3)如图2中,∵AB=5,BD=7,∴BE=AD=5+7=12,【变式训练】(1)当两个三角板如图(1)所示的位置摆放时,D、B,C在同一直线上,【类比探究】(2)当三角板ABC保持不动时,将三角板DBE绕点B顺时针旋转到如图的数量关系和位置关系,并说明理由.【拓展延伸】【详解】(1)∵ABC 和DBE 是两个都含有45︒角的大小不同的直角三角板,∴90DBE ABC ∠=∠=︒,AB BC =,BD BE =,∴()SAS DBA EBC ≅ ,∴AD CE =;(2)AD CE =,AD CE ⊥,理由如下:∵90DBE ABC ∠=∠=︒,∴90DBA BCE DBC ∠=∠=︒-∠,∵AB BC =,BD BE =,∴()SAS DBA EBC ≅ ,∴AD CE =,ADB CEB ∠=∠,延长AD 与CE 交于点O ,∵90BDE BED ∠+∠=︒,∴90BDE BEC CED ∠+∠+∠=︒,∴90BDE ADB CED ∠+∠+∠=︒,∴90ODE OED ∠+∠=︒,∴90O ∠=︒,∴AD CE ⊥;(3)过A 作AC AM ⊥交CD 延长线于M ,过A 作AN CD ⊥交CD 于N ,∵45ACD ∠=︒,∴45ACD M ∠=∠=︒,∴AC AM =,∵90,BAD AB AD∠=︒=∴90BAC DAM DAC ∠=∠=︒-∠【答案】(1),BC AD BC AD =⊥;(2)45︒;(3)见解析,45︒;(4)存在,2BM AM OM=+【分析】(1)由条件根据三角形全等判定定理SAS 得BOC AOD ≌△△,可证;(3)类比上面思路,通过构建三角形全等BON AOM ≌△△推出ON OM =,进而易得45COM ∠=︒,(4)根据(3)的结论,推导出NOM △是等腰直角三角形,然后根据等腰直角三角形的性质,化简即可得到答案.【详解】(1)由题意得,AO BO =,OC OD =,90AOB COD ∠=∠=︒,()SAS BOC AOD ∴≌△△,BC AD ∴=,CBO DAO ∠=∠,在Rt AOD 中,90DOA ADO ∠+∠=︒,90CBO ADO ∴∠+∠=︒,90BMD ∴∠=︒,即BC AD ⊥,故答案为:,BC AD BC AD =⊥.(2)45OCD ODC ∠=∠=︒ ,CD BO ∥,45COB OCD ∴∠=∠=︒,又90AOB ∠=︒,45AOC AOB BOC ∴∠=∠-∠=︒,即45α=︒,故答案为:45︒.(3)如图,过O 点作NO OM ⊥,交MB 于N 点,由(1)易知()SAS BOC AOD ≌,CBO DAO ∴∠=∠,BON NOA NOA AOM ∠+∠=∠+∠ ,BON AOM ∴∠=∠,又AO BO =,易得()ASA BON AOM ≌△△,【模型七倍长中线模型】例题:(2023春·全国·七年级专题练习)[阅读理解]课外兴趣小组活动时,老师提出了如下问题:如图1,在ABC ∆中,若8AB =,6AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图2,延长AD 到点E ,使DE AD =,连结BE ,请根据小明的方法思考:(1)由已知和作图能得到ADC EDB ≌△△,其理由是什么?(2)AD 的取值范围是什么?[感悟]解题时,条件中出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和结论转化到一个三角形中.[问题解决](3)如图3,AD 是ABC ∆的中线,BE 交AC 于点F ,且AE EF =,试说明AC BF =.【答案】(1)见解析(2)17AD <<(3)见解析【分析】(1)根据AD DE =,ADC BDE ∠=∠,BD DC =推出ADC ∆和EDB ∆全等即可;(2)根据全等得出6BE AC ==,2AE AD =,由三角形三边关系定理得出86286AD -<<+,求出即可;(3)延长AD 到M ,使AD DM =,连接BM ,根据SAS 证ADC MDB ∆∆≌,推出BM AC =,CAD M ∠=∠,根据AE EF =,推出CAD AFE BFD ∠=∠=∠,求出BFD M ∠=∠,根据等腰三角形的性质求出即可.【详解】(1) 在ADC ∆和EDB ∆中AD DE ADC BDE BD CD =⎧⎪∠=∠⎨⎪=⎩,()ADC EDB SAS ∴∆∆≌,∴全等的理由是:SAS ;(2) 由(1)知:ADC EDB ∆∆≌,6BE AC ∴==,2AE AD =, 在ABE ∆中,8AB =,由三角形三边关系定理得:86286AD -<<+,17AD ∴<<;(3)证明:延长AD 到M ,使AD DM =,连接BM ,AD 是ABC ∆中线,CD BD ∴=,在ADC ∆和MDB △中DC DB ADC MDB DA DM =⎧⎪∠=∠⎨⎪=⎩ΔΔ()ADC MDB SAS ∴≌,BM AC ∴=,CAD M ∠=∠,AE EF = ,CAD AFE ∴∠=∠,AFE BFD ∠=∠ ,BFD CAD M ∴∠=∠=∠,BF BM AC ∴==,即AC BF =.【点睛】本题属于三角形综合题,考查了三角形的中线,三角形的三边关系定理,等腰三角形性质和判定,全等三角形的性质和判定等知识点,掌握中线倍长模型,添加辅助线是关键.【变式训练】如图①,在ABC 中,若5AB =,3AC =,求BC 边上的中线延长AD 到点E 使DE AD =,再连接BE ,这样就把AB ,AC 关系可判断线段AE 的取值范围是;则中线AD 的取值范围是(2)问题解决:如图②,在ABC 中,D 是BC 边的中点,DE DF ⊥于点D ,【答案】(1)28,14AE AD <<<<;(2)EF EB CF >+,见解析;(3)BE DF EF+=【分析】(1)延长AD 到点E 使DE AD =,再连接BE ,证明(SAS)ADC EDB ≌△△,可得AC BE =,再由三角形三角关系可得28AE <<,14AD <<;(2)延长FD 至G ,使FD DG =,连接BG ,证明(SAS)CFD GBD ≌,可得BG FC =,连接EG ,可知EFG 是等腰三角形,则FE EG =,在EBG 中,EG EB BG >+,即EF EB CF >+;(3)延长AB 至H 使BH DF =,连接CH ,证明(SAS)CBH CDF ≌,可推导出80CEH ∠=︒,再证明(SAS)FCE HCE ≌,则EH EF =,能推导出BE DF EF +=.【详解】解:(1)延长AD 到点E 使DE AD =,再连接BE ,CD BD = ,ADC BDE ∠=∠,AD DE =,(SAS)ADC EDB ∴△≌△,AC BE ∴=,在ABE 中,AB BE AE AB BE -<<+,28AE ∴<<,2AE AD = ,14AD ∴<<,故答案为:28AE <<,14AD <<;(2)延长FD 至G ,使FD DG =,连接BG ,CD BD = ,CDF BDG ∠=∠,FD DG =,(SAS)CFD GBD ∴ ≌,BG FC ∴=,连接EG ,ED FD ⊥ ,FD DG =,EFG ∴△是等腰三角形,FE EG ∴=,在EBG 中,EG EB BG >+,即EF EB CF >+;(3)延长AB 至H 使BH DF =,连接CH ,180ABC D ∠+∠=︒ ,180ABC CBH ∠+∠=︒,D CBH ∴∠=∠,CD CB = ,BH DF =,(SAS)CBH CDF ∴ ≌,CH CF ∴=,BCH DCF ∠=∠,160BCD ∠=︒ ,80ECF ∠=︒,80DCF ECB ∴∠+∠=︒,80CEH ∴∠=︒,FC CH = ,EC EC =,(SAS)FCE HCE ∴ ≌,EH EF ∴=,BE BH EH += ,BE DF EF ∴+=.【点睛】本题考查全等三角形的综合应用,熟练掌握三角形全等的判定及性质,三角形中线的定义,三角形三边关系是解题的关键.2.(2023春·江苏泰州·七年级统考期末)【发现问题】(1)数学活动课上,王老师提出了如下问题:如图1,在ABC 中,6AB =,4AC =,求BC 边上的中线AD 的取值范围.【探究方法】第一小组经过合作交流,得到了如下的解决方法:①延长AD 到E ,使得DE AD =;②连接BE ,通过三角形全等把AB 、AC 、2AD 转化在ABE ③利用三角形的三边关系可得AE 的取值范围为AB BE AE -<______.方法总结:解题时,条件中若出现“中点”、“中线”字样,可以考虑倍长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(2)如图2,AD 是ABC 的中线,AE 是ADC △的中线,且中:直接写出所有正确选项的序号是______.①CAE DAE∠=∠②2AB AE =③DAE DAB ∠=∠④【问题拓展】(2)由“SAS ”可证AEC HED △≌△,可得AC DH =,ACD HDC ∠=∠,由“SAS ”可证ADB ADH ≌,可得AB AH =,BAD DAE ∠=∠,即可求解;(3)由“SAS ”可证AEO CEH △≌△,可得AO CH =,A HCO ∠=∠,由“SAS ”可证BOD HCO △≌△,可得BD OH =,可得结论;(4)由全等三角形的性质可得AEO CEH S S =△△,BOD HCO S S =△△,D COE ∠=∠,由三角形的面积公式可求解.【详解】解:(1)如图1中,延长AD 至点E ,使ED AD =.在ADC △和EDB △中,DA DE ADC EDB DC DB =⎧⎪∠=∠⎨⎪=⎩,(SAS)ADC EDB ∴△≌△,4AC BE ∴==,=6AB ,6464AE ∴-<<+,2210AD ∴<<<,15AD ∴<<,故答案为:15AD <<;(2)如图2,延长AE 至H ,使EH AE =,连接DH ,AE 是中线,DE EC ∴=,又AEC DEH ∠=∠ ,AE EH =,(SAS)AEC HED ∴△≌△,AC DH ∴=,ACD HDC ∠=∠,ADB ADC ACD ∠=∠+∠ ,ADH ADC CDH ∠=∠+∠,∴∠=∠,ADB ADH为中线,AD∴=,BD CD,=AC CD∴===,BD DC AC DH又AD AD=,∴△≌△,ADB ADH(SAS)∴=,BAD DAEAB AH∠=∠,∴=,AB AE2故答案为:②③;=,连接CH,(3)证明:如图3,延长OE至H,使EH OE是AC的中点,E∴=,AE CE又OE EH=,AEO CEH∠=∠,∴△≌△,(SAS)AEO CEH∠=∠,∴=,A HCOAO CH∴∥,AO CH∴∠+∠=︒,180AOC HCO与COD∠AOB∠互补,∴∠+∠=︒,AOC BOD180∴∠=∠,BOD OCH=,又CH OA OB,OC OD==∴△≌△,BOD HCO(SAS)∴=,BD OH。
人教版八年级上册第十二章全等基础模型课件
谢谢
模型解读
类型四: 三垂直型 模型解读:常用三个垂直作条件进行角度等量代换,即同(等) 角的余角相等,相等的角就是对应角,证三角形全等时必须还有 一组边相等.
基本模型: (1)一线三垂直型:
(2)三个直角不在同一直线上:
已知:AB⊥BC, DC⊥BC, AE⊥BD, AB=BC,
结论:△ABE≌△BCD, CE=AB-CD
基本模型: (1)共顶点:
(2)不共顶点:
针对训练
4.如图Z12-4-4,在△ABC和△AEF中,点E在BC边上,∠C=∠F, AC=AF,∠CAF=∠BAE,EF与AC交于点G.求证:AE=AB.
5.如图Z12-4-5,点C,E,F,B在同一条直线上,CE=BF,AB=DC 且AB∥DC.求证:∠A=∠D.
模型解读
类型二:翻折型 模型解读:将原图形沿着某一条直线折叠后,直线两边的部分 能够完全重合,这两个三角形称之为翻折型全等三角形.此类图 形中要注意其隐含条件,即公共边或公共角相等.
基本模型: (1)有公共边:
(2)有公共顶点:
针对训练
2.如图Z12-4-2,已知AC=BC,∠1=∠2,求证:OD平分∠AOB.
3.如图Z12-4-3,已知AB=AC,BE⊥AC于点E,CD⊥AB于点D.求证 :AD=AE.
模型解读
类型三:旋转型 模型解读:将三角形绕着公共顶点旋转一定角度后,两个三角 形能够完全重合,则称这两个三角形为旋转型三角形.识别旋转 型三角形时,注意涉及对顶角相等或者等角加(减)公共角的条件 .
已知:AB⊥BC, CD⊥BD, AE⊥BD, AB=BC,
结论:△ABE≌△BCD, DE=AE-CD
针对训练
6.如图Z12-4-6,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB ,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点 F.若EF=5 cm,求AE的长.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形中的平移与旋转模型
学校:___________姓名:___________班级:___________考号:___________
一.选择题(共6小题)
1.如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=75°,∠ACB=35°,然后在M处立了标杆,使∠CBM=75°,∠MCB=35°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC ≌△ABC的理由是()
A.SAS B.AAA C.SSS D.ASA
第1题第2题第3题第4题
2.为了测量池塘两侧A,B两点间的距离,在地面上找一点C,连接AC,BC,使∠ACB=90°,然后在BC的延长线上确定点D,使CD=BC,得到△ABC≌△ADC,通过测量AD的长,得AB的长.那么△ABC≌△ADC的理由是()
A.SAS B.AAS C.ASA D.SSS
3.如图,已知AC=AD,再添加一个条件仍不能判定△ABC≌△ABD的是()
A.∠C=∠D=90°B.∠BAC=∠BAD C.BC=BD D.∠ABC=∠ABD
4.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍无法判定△ABE≌△ACD 的是()
A.AD=AE B.∠B=∠C C.CD=BE D.∠ADC=∠AEB
5.已知AB=AD,∠C=∠E,CD、BE相交于O,下列结论:(1)BC=DE,(2)CD=BE,(3)△BOC≌△DOE;其中正确的结论有()
A.0个B.1个C.2个D.3个
第5题第6题第7题第8题
6.如图,AB,CD相交于点O,OA=OC,∠A=∠C,下列结论:(1)△AOD≌△COB;(2)AD=CB;(3)AB=CD.其中正确的个数为()A.0个B.1个C.2个D.3个
二.填空题(共6小题)
7.如图,点P是∠AOB内一点,PE⊥OA,PF⊥OB,垂足分别为E、F,若PE=PF,且∠OPF=72°,则∠AOB的度数为.8.如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=100°,则∠BCA的度数为.
9.如图,AD=BD,AD⊥BC,垂足为D,BF⊥AC,垂足为F,BC=6cm,DC=2cm,则AE=cm.
10.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为.
11.如图,已知,在△ABC中,AB=AC,点D是BC中点,DE⊥AB于点E,DF⊥AC于点F,DE=3,则DF的长是.12.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠AFC=∠AFE;②BF=DE:③∠BFE=∠BAE;④∠BFD=∠CAF.其中正确的结论是.(填写所正确结论的序号).
第11题第12题
三.解答题(共10小题)
13.已知:BE⊥CD,BE=DE,EC=EA.
求证:(1)△BEC≌△DEA;
(2)DF⊥BC.
14.如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.
15.如图,点B,F,E,D在同一条直线上,AB∥CD,AE∥CF,BF=DE.
(1)△ABE与△CDF全等吗?请说明理由.
(2)AB与CD相等吗?为什么?
16.如图,在线段BC上有两点E,F,在线段CB的异侧有两点A,D,满足AB=CD,AE=DF,CE=BF,连接AF;
(1)求证:∠B=∠C;
(2)若∠B=40°,∠DFC=30°,当AF平分∠BAE时,求∠BAF.
17.已知:如图,点E,D,B,F在同一条直线上,AD∥CB,∠BAD=∠BCD,DE=BF.求证:
(1)AD=BC;(2)AE∥CF.
18.如图AB=AD,AC=AE,∠BAE=∠DAC.求证:(1)∠C=∠E;(2)AM=AN.
19.如图,∠A=∠B,AE=BE,∠1=∠2,点D在AC边上.(1)求证:△AEC≌△BED.(2)若∠1=40°,求∠BDE的度数.
20.如图,△ABC的边AB与△EDC的边ED相交于点F,连接CF.已知AC=EC,BC=DC,∠BCD=∠ACE.(1)求证:AB=ED;(2)求证:FC平分∠BFE.
21.已知:如图,AD⊥BC,垂足为D,AD=BD,点E在AD上,∠CED=45°,
(1)请写出图中相等的线段:.(不包括已知条件中的相等线段)
(2)猜想BE与AC的位置关系,并说明理由.
22.在∠MAN内有一点D,过点D分别作DB⊥AM,DC⊥AN,垂足分别为B,C.且BD=CD,点E,F分别在边AM和AN上.(1)如图1,若∠BED=∠CFD,请说明DE=DF;
(2)如图2,若∠BDC=120°,∠EDF=60°,猜想EF,BE,CF具有的数量关系,并说明你的结论成立的理由.。