人教版高中数学(理科)选修正态分布教案

合集下载

人教版高中数学(理科)选修正态分布教案

人教版高中数学(理科)选修正态分布教案

正态分布【考点透视】 一、考纲指要1.了解正态分布的意义,能借助正态曲线的图像理解正态曲线的性质.2.了解标准正态分布的意义和性质,掌握正态总体),(2σμN 转化为标准正态总体N (0,1)的公式)()(σμ-Φ=x x F 及其应用.3.通过生产过程的质量控制图,了解假设检验的基本思想.二、命题落点1.考查正态曲线函数的结构特征,及总体的正态总体),(2σμN 与标准正态总体N (0,1),如例1.例2.2.考查连续型随机变量ε的概率密度函数, 正态曲线的性质,如例3. 【典例精析】例1:设),(~2σμN X ,且总体密度曲线的函数表达式为:412221)(+--=x x ex f π,x∈R 。

(1)求μ,σ;(2)求)2|1(|<-x P 及)22121(+<<-x P 的值.解析:根据表示正态曲线函数的结构特征,对照已知函数求出μ和σ。

利用一般正态总体),(2σμN 与标准正态总体N (0,1)概率间的关系,将一般正态总体划归为标准正态总体来解决.(1)由于222)2(2)1(41222121)(--+--⋅==x x x eex f ππ,根据一般正态分布的函数表达形式,可知μ=1,2=σ,故X ~N (1,2). (2))2121()2|1(|+<<-=<-x P x P(1(1F Fφφ=-=-(1)(1)φφ=--2(1)120.84131φ=-=⨯-6826.0=.又)21()221()22121(--+=+<<-FFxP(2)(1)φφφφ=-=--(2)(1)10.97720.84131φφ=+-=+-8185.0=.例2:已知测量误差))(10,2(~cmNξ,必须进行多少次测量才能使至少有一次测量误差的绝对值不超过8cm的频率大于0.9.解析:设η表示n次测量中绝对值不超过8cm的次数,则),(~pnBη,其中)1028()1028()8|(|----=<=φφξPP8413.017258.0)1(1)6.0(+-=+-=φφ=0.5671。

高中数学教案正态分布

高中数学教案正态分布

高中数学教案-正态分布一、教学目标1. 了解正态分布的概念,理解正态分布曲线的特点及应用。

2. 学会计算正态分布的概率密度函数,掌握正态分布的性质。

3. 能够运用正态分布解决实际问题,提高解决问题的能力。

二、教学重点与难点1. 重点:正态分布的概念、性质及应用。

2. 难点:正态分布的概率密度函数的计算及应用。

三、教学准备1. 教学工具:黑板、粉笔、多媒体课件。

2. 教学素材:正态分布的相关案例、练习题。

四、教学过程1. 导入:通过一个具体案例,引发学生对正态分布的兴趣,例如“考试分数的分布”。

2. 新课讲解:a) 介绍正态分布的定义及特点b) 讲解正态分布的概率密度函数c) 阐述正态分布的性质3. 案例分析:分析一些实际问题,运用正态分布解决问题,如“药物疗效的评估”。

4. 练习巩固:让学生独立完成一些关于正态分布的练习题,加深对知识点的理解。

5. 总结拓展:引导学生思考正态分布在其他领域的应用,如“经济学、生物学”。

五、课后作业1. 复习正态分布的概念、性质及概率密度函数。

2. 完成课后练习题,巩固所学知识。

3. 选择一个感兴趣的领域,查找正态分布在该领域的应用案例,下节课分享。

六、教学评估1. 课堂提问:通过提问了解学生对正态分布概念的理解程度,以及对正态分布性质和概率密度函数的掌握情况。

2. 课后作业:检查学生完成课后练习题的情况,评估学生对正态分布知识的掌握程度。

3. 案例分析报告:评估学生在案例分析中的表现,考察学生运用正态分布解决实际问题的能力。

七、教学策略1. 采用直观演示法,通过多媒体课件展示正态分布曲线,帮助学生形象地理解正态分布的特点。

2. 采用案例分析法,让学生在实际问题中体验正态分布的应用,提高解决问题的能力。

3. 采用分组讨论法,鼓励学生互相交流、合作解决问题,提高学生的团队协作能力。

八、教学反思1. 反思教学内容:检查教学内容是否全面、深入,是否符合学生的认知水平。

2. 反思教学方法:评估所采用的教学方法是否有效,是否能够激发学生的兴趣和参与度。

正态分布高中数学教案

正态分布高中数学教案

正态分布高中数学教案
教学目标:
1. 了解正态分布的基本概念和性质;
2. 能够利用正态分布解决实际问题;
3. 训练学生的数理逻辑思维和解决问题的能力。

教学内容:
1. 正态分布的定义和特征;
2. 正态分布的标准化;
3. 正态分布在概率计算中的应用。

教学步骤:
1. 导入:通过一个例子引导学生了解正态分布的概念和特点;
2. 探究:讲解正态分布的定义和性质,帮助学生理解正态分布的特点;
3. 练习:让学生进行练习,例如计算正态分布的概率值;
4. 拓展:引导学生思考正态分布在实际问题中的应用;
5. 总结:对本节课的内容进行总结,并布置作业。

教学资源:
1. 教科书相关章节;
2. 教学投影仪;
3. 练习题和作业题。

教学评估:
1. 学生课堂表现;
2. 课后作业完成情况;
3. 学生对正态分布应用的理解和运用能力。

教学反思:
1. 是否能够引导学生正确理解和运用正态分布概念;
2. 是否能够激发学生探索正态分布在实际问题中的应用;
3. 是否能够提高学生数理逻辑思维和解决问题的能力。

高中高三数学《正态分布》教案、教学设计

高中高三数学《正态分布》教案、教学设计
5.写作任务:要求学生撰写一篇关于正态分布在实际生活中的应用的小论文,字数在500字左右。这样可以锻炼学生的书面表达能力,同时加深他们对正态分布的理解。
6.预习任务:布置下一节课的相关内容,要求学生进行预习,为课堂学习做好准备。
在布置作业时,要注意以下几点:
1.针对不同层次的学生,适当调整作业难度,确保每个学生都能在完成作业的过程中获得成就感。
1.提问:询问学生关于数据分布的知识,如“你们在生活中见过哪些数据呈现一定的分布规律?”
2.实例展示:利用多媒体展示一些生活中的数据分布图像,如学生身高、考试成绩等,让学生观察并总结这些分布的特点。
3.引入正态分布:通过分析实例,引导学生发现这些数据分布的共同点,即呈现出对称、钟形的形状,从而引出正态分布的概念。
-练习巩固:设计难易程度不同的练习题,让学生在练习中巩固所学知识,提高解题能力。
3.评价与反馈:
-采用多元化的评价方式,如课堂问答、小组讨论、课后作业等,全面了解学生的学习情况。
-针对学生的个体差异,给予有针对性的指导和建议,帮助他们克服学习难点,提高学习效果。
-定期进行教学反思,根据学生的学习情况和反馈,调整教学策略,不断提高教学质量。
因此,在教学过程中,应关注学生的个体差异,因材施教,充分调动他们的学习积极性,提高正态分布这一章节的教学效果。同时,注重培养学生的学习兴趣和实际应用能力,使他们在掌握知识的同时,增强数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.重点:正态分布的概念、性质、图像特点及其在实际中的应用。
2.难点:正态分布的概率计算、期望和方差的推导及在实际问题中的运用。
(三)情感态度与价值观
1.培养学生对数学学科的热爱,激发他们学习数学的兴趣,使他们认识到数学知识在现实生活中的重要作用。

高中数学教案正态分布

高中数学教案正态分布

高中数学教案精选--正态分布一、教学目标:1. 了解正态分布的定义、特点及应用领域。

2. 学会绘制正态分布密度函数的图像。

3. 掌握正态分布的性质,并能运用其解决实际问题。

二、教学重点与难点:1. 重点:正态分布的定义、特点及应用。

2. 难点:正态分布密度函数的绘制及其性质的运用。

三、教学过程:1. 引入:通过生活中的实例,如考试及格率、商品合格率等,引导学生思考概率分布的概念。

2. 讲解:介绍正态分布的定义、特点及应用领域,如自然界中的现象、社会科学研究等。

3. 演示:利用计算机软件或板书,展示正态分布密度函数的图像,引导学生观察其特点。

4. 练习:让学生绘制一些典型的正态分布密度函数图像,加深对正态分布的理解。

5. 应用:结合实际问题,如医学领域的疾病发病率、社会科学领域的调查结果等,引导学生运用正态分布解决问题。

四、课后作业:1. 复习正态分布的定义、特点及应用。

2. 练习绘制正态分布密度函数的图像。

3. 选择一个实际问题,运用正态分布进行分析。

五、教学评价:1. 课堂讲解:评价学生对正态分布的理解程度,观察其是否能清晰地表达正态分布的概念。

2. 作业练习:评价学生对正态分布密度函数绘制和应用的能力,关注其在实际问题中的运用。

3. 课后反馈:了解学生对正态分布知识的掌握情况,以及在学习过程中遇到的问题,以便进行教学调整。

六、教学策略与方法:1. 案例分析:通过分析具体案例,让学生了解正态分布的实际应用,提高学习的兴趣和积极性。

2. 小组讨论:组织学生进行小组讨论,分享各自对正态分布的理解和应用,促进知识的交流和深化。

3. 问题解决:设置一些具有挑战性的问题,引导学生运用正态分布的知识进行解决,培养学生的解决问题能力。

七、教学资源:1. 教材:正态分布的相关章节。

2. 计算机软件:用于绘制正态分布密度函数图像的软件。

3. 网络资源:有关正态分布的案例、实例和拓展知识。

八、教学进度安排:1. 第一课时:介绍正态分布的定义、特点及应用。

人教版高中选修2-3《正态分布》教案

人教版高中选修2-3《正态分布》教案

人教版高中选修2-3《正态分布》教案一、教学目标1.知识与技能:–能够通过计算、观察与分析进行正态分布的基本参数估计与计算;–能够根据数据特征确定正态分布的使用条件,并运用正态分布解决实际问题。

2.过程与方法:–提高学生数理思维能力及运用计算机软件进行数据统计和分析的能力;–提高学生观察、归纳、分析问题及解决问题的能力。

3.情感态度与价值观:–培养学生科学态度,认识正态分布的重要性和应用价值,拓宽学生科学视野。

二、教学重、难点1.教学重点:–正态分布的基本概念与相关参数的计算;–正态分布的性质及模型的应用;–正态分布与假设检验。

2.教学难点:–正态分布在实际中的广泛应用。

三、教学内容1. 正态分布的基本概念与参数1.正态分布的定义–介绍正态分布的基本特征和概念。

2.正态分布的概率密度函数和分布函数–掌握正态分布的概率密度函数和分布函数的定义;–画出正态分布的概率密度函数和分布函数的图像。

3.正态分布的标准化–掌握正态分布的标准化转化法,以及标准正态分布表的使用方法。

2. 正态分布的参数估计与计算1.正态分布的基本形式–介绍正态分布的基本形式,以及参数的含义;–学习如何通过样本来估计总体的参数。

2.样本均值和样本标准差–掌握样本均值和样本标准差的定义和计算方法;–从样本中估计总体的均值和标准差。

3.抽样分布–掌握样本均值和样本标准差的概率分布,以及如何计算抽样分布。

3. 正态分布的应用1.正态分布的性质及模型的应用–描述正态分布的各种统计特征;–掌握利用正态分布进行概率估计的方法;–了解正态分布在实际问题中的应用,如质量控制、投资、风险评估等。

2.正态分布与假设检验–了解假设检验的基本内容及步骤;–学习如何从正态分布的角度来诠释假设检验。

四、教学方法1.授课讲解:对正态分布相关概念和公式进行讲解,以期解决学生对于正态分布不熟悉的情况。

2.讲解示范法:用实例向学生呈现正态分布的应用场景及应用方法,以期加深学生对于正态分布在实践中的应用认识。

高中数学正态分布教案及反思

高中数学正态分布教案及反思

高中数学正态分布教案及反思
一、教学目标
1. 理解正态分布的定义和性质。

2. 掌握使用正态分布表求解实际问题。

3. 能够在实际问题中应用正态分布理论解决问题。

二、教学重点和难点
重点:正态分布的定义和性质。

难点:应用正态分布理论解决实际问题。

三、教学流程
1. 导入:通过引入一个实际问题,引发学生对正态分布的思考。

2. 讲解:介绍正态分布的定义、性质以及正态分布表的使用方法。

3. 练习:让学生通过练习掌握正态分布的应用,并解决一些实际问题。

4. 拓展:让学生通过拓展性问题,进一步巩固对正态分布的理解。

5. 总结:对本节课的内容进行简单总结,澄清学生的疑惑。

四、课后作业
1. 完成练习题,巩固对正态分布的掌握。

2. 思考如何在日常生活中应用正态分布理论。

反思范本:
在本节课中,我认为我的教学方法比较灵活,能够引发学生的兴趣,让他们更加主动地参
与学习。

但是在讲解部分,我发现有些学生对正态分布的概念理解不够清晰,可能是因为
我在讲解时没有用简单明了的语言表达,导致学生理解困难。

在以后的教学中,我会更加
注重引导学生思考,让他们通过实际问题解决的方式来学习,以加深对知识的理解。

同时,我也会在备课时更加充分地考虑学生的接受能力,选择合适的教学方法和语言表达,让教
学效果更加明显。

《正态分布》的教学设计

《正态分布》的教学设计

《正态分布》的教学设计《正态分布》的教学设计作为一名教职工,就不得不需要编写教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。

那么你有了解过教学设计吗?下面是小编收集整理的《正态分布》的教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

今天我说课的内容是《正态分布》。

下面我从教材分析、目标分析、教学方法、学法指导、教学程序等几个方面来汇报对教材的钻研情况和本节课的教学设想。

一、教材分析正态分布是高中新教材人教A版选修2-3的第二章《随机变量及其分布》的最后一节内容,前面学习了离散型随机变量,离散型随机变量的取值是可列的。

今天我们会学习连续型随机变量,连续型随机变量是在某个区间内可取任何值。

其重要的代表——正态分布。

《正态分布》该节内容通过研究频率分布直方图、频率分布折线图、总体密度曲线,引出拟合的函数式,进而得到正态分布的概念,然后,分析正态曲线的特点和性质,最后研究了它的应用——随机变量落在某个区间的概率。

教材利用高尔顿板引入正态分布的密度曲线。

更直观,更易于解释曲线的来源。

正态分布是描述随机现象的一种最常见的分布,在现实生活中有非常广泛的应用。

二、目标分析本节课是一节概念课教学,应该让学生参与讨论、发现规律、探索并总结出性质和特点。

教学目标:1、理解并掌握正态分布和正态曲线的概念、意义及性质,并会画正态曲线。

2、通过正态分布的图形特征,归纳正态曲线的性质。

3、会用函数的概念、性质解决有关正态分布的问题。

能力目标:能用正态分布、正态曲线研究有关随机变量分布的规律,引导学生通过观察并探究规律,提高分析问题,解决问题的能力;培养学生数形结合,函数与方程等数学思想方法。

教学重点:归纳正态分布曲线的性质特点,掌握3σ原则。

教学难点:正态分布的意义的理解和性质的应用。

三、教法分析1.教学手段:运用多媒体辅助教学,增强教学的直观性,激发学生的学习兴趣。

人教版选修2-3《正态分布》教案

人教版选修2-3《正态分布》教案
通过对生活中大量的实际例子进行分析,借助先进的计算机技术,从学生原有的知识结构出发,让学生更顺畅、直观地感受到正态曲线,这一特殊总体密度曲线的魅力。并引出研究的主题,逐步揭开了正态分布的神秘面纱。
“博古通今”
师:幻灯展示正态分布定义。
生:朗读定义。
师:结合实例对定义做出解释。
生:展示课前搜集并整理的有关正态分布的历史资料,并进行讲解。
生:小组讨论,而后由学生代表展示研讨成果,并由其他小组补充完善。
师:总结学生发言并板书,给出标准正态分布。
通过小组的合作探究,让学生的思维得以碰撞,在养成分析总结的习惯的同时,也体会到解决问题的快乐,感受到与他人合作交流的重要性。
“天生我学必有用”
师:回顾引例中身高的正态分布曲线,引导学生分析其实际意义及应用。另举一例:“两次标准化考试的数学成绩的概率密度曲线图,且两次成绩都服从正态分布”,引导学生对比分析。
生答
师:回顾“钢管尺寸”的实际例子,给出正态分布的原则,并作出解释。
回归到实际生活之中,通过对几个实际问题的分析与解决,让学生充分体会“数学源于生活,而又服务于生活”。
“喜庆丰收”
师:以上就是我们今天的内容,哪位同学愿意与大家分享自己在本节课的收获?
生:(小结)
课堂小结由学生来完成,让学生自己归纳、总结本节课内容,不仅利于学生对知识的系统理解,也让学生学会反思,更为他们提供了更多的展示自我的机会。
教材分析
正态分布是人教A版选修2—3第二章第四节的内容,在这之前学生已经学习了离散型随机变量,正态分布的随机变量是连续型随机变量,因此正态分布既是对前面内容的一种补充,也是必修三第二章概率知识的后续。
教学目标
1.知识目标:理解并掌握正态分布和正态曲线的概念及性质,能简单应用。

高中数学选修2-32.4正态分布教学设计

高中数学选修2-32.4正态分布教学设计

《正态分布》教学案【教学目标】一、知识与技能1、结合正态曲线,加深对正态密度函数的理解;2、通过正态分布的图形特征,归纳正态曲线的性质.二、过程与方法讲授法与引导发现法.通过教师先讲,师生再共同探究的方式,让学生深刻理解相关概念,领会数形结合的数学思想方法,体会数学知识的形成.三、情感态度与价值观通过教学中一系列的探究过程使学生体验发现的快乐,形成积极的情感,培养学生的进取意识和科学精神.【教学重难点】重点:正态分布曲线的特点及其所表示的意义;难点:了解在实际中什么样的随机变量服从正态分布,并掌握正态分布曲线所表示的意义.【教学方法】讲授法与引导发现法【教学过程设计】(一)复习准备1、总体密度曲线:在频率分布直方图中,随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,这条光滑曲线为总体密度曲线,a b2、图中阴影部分的面积,就是总体在区间内取值的百分比,即概率(二)创设情境计算机模拟演示高尔顿板试验学生经过观察小球在槽中的堆积形状发现:下落的小球在槽中的分布是有规律的.设计意图:提高学生的学习积极性,提高学习数学的兴趣.让学生体验“正态分布曲线“的生成和发现历程.(二)构建概念1.用频率分布直方图从频率角度研究小球的分布规律.师生互动:引导学生思考回顾,教师通过课件演示作图过程.(1)将球槽编号,算出各个球槽内的小球个数,作出频率分布表.师生互动:在这里引导学生回忆得到,此处的纵坐标为频率除以组距.设计意图:通过把与新内容有关的旧知识抽出来作为新知识的“生长点”,为引入新知搭桥铺路,形成正迁移.(2)以球槽的编号为横坐标,以小球落入各个球槽内的频率与组距的比值为纵坐标,画出频率分布直方图。

连接各个长方形上端的中点得到频率分布折线图.师生互动:教师提出问题:这里每个长方形的面积的含义是什么?学生经过回忆,易得:长方形面积代表相应区间内数据的频率设计意图:通过这里的思考回忆,加深对频率分布直方图的理解.师生互动:分析表达式特点:解析式中前有一个系数,后面是一个以为底数的指数形式,幂指数为,解析式中含两个常数和,还含有两个参数和,分别指总体随机变量的平均数和标准差,可用样本平均数和标准差去估计.师生互动:学生感悟体验,对试验的结果进行定向思考.(3)随着试验次数增多,折线图就越来越接近于一条光滑的曲线.师生互动:增大试验次数,让学生观察并总结折线图的变化规律(4)从描述曲线形状的角度自然引入了正态密度函数的表达式:设计意图:与旧教材不同的是,该处在学生从形的角度直观认识了正态曲线之后才给出曲线对应的表达式,这样处理能更直观,学生更易理解正态曲线的来源.(5)例1、下列函数是正态密度函数的是( B )都是实数师生互动:学生通过观察解析式的结构特征可知只有B选项符合正态密度函数解析式的特点.设计意图:设计这一题主要为了加强学生对正态密度函数的理解.2.(1)继续探究:当我们去掉高尔顿板试验最下边的球槽,并沿其底部建立一个水平坐标轴,其刻度单位为球槽的宽度,用表示落下的小球第一次与高尔顿板底部接触时的坐标.师生互动:引导学生得到:此时小球与底部接触时的坐标是一个连续型随机变量.设计意图:这个步骤实现了由离散型随机变量到连续型随机变量的过渡.(2)提出问题:图中阴影部分面积有什么意义?师生互动:启发学生回忆:频率分布直方图中面积对应频率,不难理解,图中阴影部分的面积,就可以看成多个矩形面积的和,也就是落在区间的频率;再结合定积分的意义,阴影部分面积就是正态密度函数在该区间上的积分值,这样,概率与积分间就建立了一个等量关系.设计意图:通过设疑,引起学生对问题的深入思考,加深对定积分几何意义的理解.直接问落在区间上的概率,学生不容易反应过来,改为问面积的意义后,便于学生理解该问题.(3)在前面分析的基础上,引出正态分布概念:一般地,如果对于任何实数<,随机变量满足:,则称的分布为正态分布,常记作.如果随机变量服从正态分布,则记作.(三)列举实例请学生结合高尔顿板试验讨论提出的问题,并尝试归纳服从或近似服从正态分布的随机变量所具有的特征:1.小球落下的位置是随机的吗?2.若没有上部的小木块,小球会落在哪里?是什么影响了小球落下的位置?3.前一个小球对下一个小球落下的位置有影响吗?哪个小球对结果的影响大?4.你能事先确定某个小球下落时会与哪些小木块发生碰撞吗?师生互动:学生通过讨论,教师引导学生得出问题的结果:1.它是随机的.2.竖直落下.受众多次碰撞的影响3.互不相干、不分主次.4.不能,具有偶然性.然后归纳出特征:一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用之和,它就服从或近似服从正态分布.教师列举实例分析,帮助学生更加透彻的理解.设计意图:“什么样的随机变量服从(或近似服从)正态分布?”是本节课的难点,采用设置问题串的方式,将复杂的问题分解成几个容易解决的问题,能有效突破难点.通过举例,让学生体会到生活中处处有正态分布,感受到数学的实际应用.(四)深入探究1.引导学生结合三幅图像及高尔顿板试验,根据问题归纳正态曲线的性质:(1)曲线在轴的上方,与轴不相交;(2)曲线是单峰的,图像关于直线对称;(3)曲线在处达峰值;(4)曲线与轴之间的面积为1;师生互动:引导学生联系三幅图像,结合高尔顿板试验思考以下问题:(1)曲线在坐标平面的什么位置?曲线为什么与x轴不相交?(2)曲线有没有对称轴?(3) 曲线有没有最高点?坐标是?(4)曲线与轴围成的面积是多少?结合解析式及概率的性质,分析正态曲线的特点。

《正态分布》教案

《正态分布》教案

《正态分布》教案一、教学目标1. 让学生理解正态分布的概念和特点。

2. 让学生掌握正态分布的图形绘制和参数计算。

3. 让学生能够应用正态分布解决实际问题。

二、教学内容1. 正态分布的定义和性质2. 正态分布的概率密度函数和累积分布函数3. 正态分布的参数估计和假设检验4. 正态分布的应用实例三、教学方法1. 采用讲授法讲解正态分布的基本概念和性质。

2. 采用案例分析法分析正态分布的实际应用。

3. 采用互动讨论法引导学生探讨正态分布的问题解决方法。

四、教学准备1. 正态分布的教学PPT2. 正态分布的案例资料3. 正态分布的计算软件或工具五、教学过程1. 导入:通过一个与生活相关的正态分布实例,如身高、体重等,引出正态分布的概念。

2. 讲解:讲解正态分布的定义、性质、概率密度函数和累积分布函数。

3. 案例分析:分析正态分布的实际应用,如医学、工程等领域。

4. 实践操作:引导学生使用计算软件或工具,绘制正态分布图形,计算相关参数。

5. 互动讨论:引导学生探讨正态分布的问题解决方法,如参数估计、假设检验等。

6. 总结:对本节课的主要内容进行总结,强调正态分布的重要性和应用价值。

7. 作业布置:布置相关的练习题,巩固所学内容。

六、教学评估1. 课堂问答:通过提问的方式,了解学生对正态分布概念的理解程度。

2. 练习题:布置针对性的练习题,检查学生对正态分布知识的掌握情况。

3. 小组讨论:评估学生在小组讨论中的表现,了解他们能否将正态分布应用于实际问题。

七、教学拓展1. 对比其他概率分布:介绍与正态分布相关的其他概率分布,如二项分布、Poisson分布等,让学生了解它们的异同。

2. 正态分布的近似:讲解正态分布的近似方法,如68-95-99.7规则,让学生了解如何快速判断正态分布的数据范围。

八、教学难点与解决策略1. 正态分布的图形绘制和参数计算:通过示例和软件工具,让学生直观地理解正态分布的图形和参数。

2. 正态分布的假设检验:通过实际案例,讲解正态分布的假设检验方法,让学生掌握如何应用。

高中数学教案正态分布

高中数学教案正态分布

高中数学教案--正态分布一、教学目标1. 让学生理解正态分布的概念,掌握正态分布曲线的特点及性质。

2. 培养学生运用正态分布解决实际问题的能力。

3. 引导学生运用数形结合的思想方法,分析正态分布的概率规律。

二、教学内容1. 正态分布的概念及特点2. 正态分布曲线的性质3. 正态分布的应用三、教学重点与难点1. 重点:正态分布的概念、特点及性质。

2. 难点:正态分布曲线的应用。

四、教学方法1. 采用讲授法、案例分析法、讨论法相结合的教学方法。

2. 利用多媒体课件辅助教学,增强学生的直观感受。

3. 引导学生主动探究,培养学生的动手实践能力。

五、教学过程1. 导入新课利用多媒体展示正态分布的实际例子,如考试成绩分布、身高分布等,引导学生思考正态分布的特点。

2. 讲解正态分布的概念及特点讲解正态分布的定义、概率密度函数、期望、方差等概念,并通过示例让学生理解正态分布的特点。

3. 分析正态分布曲线的性质分析正态分布曲线的对称性、尖峭性与平坦性,引导学生掌握正态分布曲线的特点。

4. 应用正态分布解决实际问题给出实际问题,如求某考生被录取的概率,引导学生运用正态分布公式进行计算。

5. 课堂小结总结本节课所学内容,强调正态分布的概念、特点及应用。

6. 布置作业布置一些有关正态分布的练习题,巩固所学知识。

7. 课后反思对本节课的教学情况进行反思,针对学生的掌握情况,调整教学策略。

六、教学评价1. 评价目标:通过评价学生对正态分布的理解和应用能力,检验教学目标的达成情况。

2. 评价方法:课堂问答:检查学生对正态分布概念和性质的理解。

练习题:评估学生运用正态分布解决实际问题的能力。

小组讨论:观察学生在讨论中的参与度和理解程度。

3. 评价内容:正态分布的定义和特征。

正态分布曲线的图形识别和特点描述。

正态分布公式和期望、方差的计算。

实际问题中正态分布的应用。

七、教学拓展1. 拓展话题:介绍正态分布在其他领域的应用,如物理学、生物学、社会科学等。

高中数学教案-正态分布

高中数学教案-正态分布

高中数学教案-正态分布教学目标:1. 理解正态分布的概念及其性质;2. 学会正态分布曲线的绘制;3. 能够应用正态分布解决实际问题。

教学重点:正态分布的概念及其性质,正态分布曲线的绘制。

教学难点:正态分布曲线的绘制,应用正态分布解决实际问题。

教学准备:PPT,黑板,粉笔,教学案例材料。

教学过程:一、导入(5分钟)1. 引入正态分布的概念,引导学生思考在日常生活中遇到的概率问题。

2. 通过举例,如考试及格率、身高分布等,让学生感知正态分布的存在。

二、新课讲解(15分钟)1. 讲解正态分布的定义及其数学表达式;2. 介绍正态分布的性质,如对称性、渐进线等;3. 讲解正态分布曲线的绘制方法,如标准正态分布曲线。

三、案例分析(10分钟)1. 提供几个实际案例,让学生应用正态分布进行分析;2. 引导学生思考如何利用正态分布解决实际问题。

四、课堂练习(5分钟)1. 布置几道有关正态分布的练习题,让学生独立完成;2. 对学生的练习结果进行讲解和指导。

2. 布置课后作业,巩固学生对正态分布的理解和应用能力。

教学反思:六、正态分布的参数估计(15分钟)1. 讲解正态分布的参数估计方法,包括均值和标准差的估计;2. 通过实例,让学生了解如何利用样本信息估计总体正态分布的参数;3. 介绍正态分布的置信区间和假设检验方法。

七、正态分布的应用(15分钟)1. 提供几个实际问题,让学生运用正态分布进行分析解决;2. 引导学生思考正态分布在不同领域的应用,如医学、工程等;3. 强调正态分布在水位监测、质量控制等方面的应用价值。

八、正态分布与其他分布的比较(10分钟)1. 介绍正态分布与其他常见分布(如均匀分布、指数分布等)的区别和联系;2. 通过图表和实例,让学生了解不同分布的特点及适用场景;3. 引导学生思考如何根据实际问题选择合适的概率分布模型。

九、正态分布的扩展(10分钟)1. 讲解正态分布的扩展形式,如对数正态分布、威布尔分布等;2. 介绍扩展正态分布的应用场景和解决实际问题的方法;3. 引导学生思考如何灵活运用正态分布及其扩展形式。

《正态分布》教案

《正态分布》教案

《正态分布》教案一、教学目标1. 让学生理解正态分布的概念,掌握正态分布曲线的特点及应用。

2. 培养学生运用正态分布解决实际问题的能力。

3. 引导学生运用数形结合的思想方法,分析正态分布的概率性质。

二、教学内容1. 正态分布的概念2. 正态分布曲线的特点3. 正态分布的应用4. 标准正态分布5. 正态分布的概率计算三、教学重点与难点1. 教学重点:正态分布的概念、正态分布曲线的特点及应用。

2. 教学难点:正态分布的概率计算,标准正态分布表的使用。

四、教学方法1. 采用讲授法、案例分析法、讨论法、数形结合法等。

2. 利用多媒体课件辅助教学,增强直观性。

五、教学过程1. 导入:通过实际例子(如考试成绩分布)引出正态分布的概念。

2. 讲解:详细讲解正态分布的定义、特点及应用,引导学生掌握正态分布的基本知识。

3. 案例分析:分析实际问题,让学生运用正态分布解决具体问题。

4. 数形结合:利用图形(如正态分布曲线)帮助学生理解正态分布的概率性质。

5. 巩固练习:布置练习题,让学生巩固所学知识。

7. 布置作业:布置课后作业,巩固所学知识。

六、教学评价1. 评价方式:过程性评价与终结性评价相结合。

2. 评价内容:(1) 正态分布的概念、特点及应用的理解程度。

(2) 正态分布的概率计算能力。

(3) 数形结合思想的运用。

3. 评价方法:(1) 课堂问答、讨论。

(2) 课后练习及作业。

(3) 实际问题解决能力的展示。

七、教学资源1. 教材:《概率论与数理统计》。

2. 多媒体课件:正态分布的图形、案例分析等。

3. 标准正态分布表:供学生查询使用。

4. 实际案例资料:用于分析讨论。

八、教学进度安排1. 课时:2课时。

2. 教学计划:(1) 第一课时:正态分布的概念、特点及应用。

(2) 第二课时:正态分布的概率计算,案例分析。

九、教学反思1. 反思内容:(1) 学生对正态分布的理解程度。

(2) 教学方法的有效性。

(3) 学生实际问题解决能力的提升。

高中数学教案正态分布

高中数学教案正态分布

高中数学教案-正态分布一、教学目标1. 了解正态分布的概念,掌握正态分布曲线的特点及对称性。

2. 能够运用正态分布的知识解决实际问题,如求随机事件的概率、判断事件是否独立等。

3. 培养学生的逻辑思维能力、数据分析能力及运用数学解决实际问题的能力。

二、教学内容1. 正态分布的概念及特点2. 正态分布曲线的对称性3. 标准正态分布表的使用4. 利用正态分布解决实际问题5. 练习与拓展三、教学重点与难点1. 重点:正态分布的概念、特点及对称性,标准正态分布表的使用。

2. 难点:利用正态分布解决实际问题。

四、教学方法1. 讲授法:讲解正态分布的概念、特点、对称性及标准正态分布表的使用。

2. 案例分析法:分析实际问题,引导学生运用正态分布解决这些问题。

3. 练习法:布置练习题,巩固所学知识。

4. 小组讨论法:分组讨论,培养学生的合作与交流能力。

五、教学过程1. 导入:引入正态分布的概念,引导学生思考实际生活中的正态分布现象。

2. 讲解:讲解正态分布的特点、对称性及标准正态分布表的使用。

3. 案例分析:分析实际问题,引导学生运用正态分布解决这些问题。

4. 练习:布置练习题,让学生巩固所学知识。

5. 总结:对本节课的内容进行总结,强调重点知识点。

6. 拓展:引导学生思考正态分布在其他领域的应用,提高学生的综合素质。

7. 作业布置:布置课后作业,巩固所学知识。

8. 课堂小结:对本节课的教学情况进行总结,为学生反馈学习情况。

六、教学评估1. 课后作业:布置有关正态分布的习题,要求学生在规定时间内完成,以此评估学生对课堂所学知识的掌握程度。

2. 课堂提问:在授课过程中,教师应适时提问学生,了解学生对正态分布概念、特点及应用的理解情况。

3. 小组讨论:评估学生在小组讨论中的表现,包括分析问题、解决问题及合作交流能力。

4. 课后访谈:教师可对部分学生进行课后访谈,了解他们对正态分布知识的理解和应用情况。

七、教学反思在授课结束后,教师应认真反思教学过程,包括:1. 教学内容是否符合学生实际需求,是否有助于培养学生的数学素养。

高中数学教案--正态分布

高中数学教案--正态分布

高中数学教案--正态分布一、教学目标1. 了解正态分布的概念、特点及应用范围。

2. 掌握正态分布曲线的性质,包括对称性、渐进线等。

3. 学会如何计算正态分布的概率密度函数和累积分布函数。

4. 能够运用正态分布解决实际问题,提高数据分析能力。

二、教学重点与难点1. 教学重点:正态分布的概念、特点及应用范围;正态分布曲线的性质;正态分布的概率密度函数和累积分布函数的计算。

2. 教学难点:正态分布的概率密度函数和累积分布函数的计算及应用。

三、教学方法1. 采用讲授法,讲解正态分布的基本概念、性质和计算方法。

2. 利用数形结合法,通过图形演示正态分布曲线的特点。

3. 结合实际案例,让学生学会运用正态分布解决实际问题。

4. 开展小组讨论,培养学生的合作能力和解决问题的能力。

四、教学准备1. 教学课件:正态分布的图形、性质、计算方法及应用案例。

2. 练习题:涵盖正态分布的基本概念、性质和计算方法。

3. 实际案例数据:用于引导学生运用正态分布解决实际问题。

五、教学过程1. 导入:通过一个实际案例,引出正态分布的概念,激发学生的兴趣。

2. 新课讲解:讲解正态分布的基本概念、性质和计算方法。

3. 案例分析:分析实际案例,让学生学会运用正态分布解决实际问题。

4. 课堂练习:让学生独立完成练习题,巩固所学知识。

6. 课后作业:要求学生完成练习题,加深对正态分布的理解和应用。

教学反思:本节课通过讲解正态分布的基本概念、性质和计算方法,让学生学会了如何运用正态分布解决实际问题。

在教学过程中,注意引导学生参与课堂讨论,提高学生的积极性和合作能力。

通过课后作业的布置,巩固所学知识,为后续课程的学习打下基础。

六、教学评价1. 评价目标:了解学生对正态分布的概念、性质和应用的掌握情况。

2. 评价方法:课堂练习、课后作业、小组讨论、课堂表现。

3. 评价内容:正态分布的基本概念、性质、计算方法及实际应用。

4. 评价时间:单元测试、学期末考试。

(完整版)正态分布教学设计

(完整版)正态分布教学设计

正态分布教学设计刘一(湖北省沙市中学)一、教学目标分析结合课程标准的要求,学生的实际情况,本节课的教学目标如下:知识与技能目标:(1)学习正态分布密度函数解析式;(2)认识正态曲线的特点及其表示的意义;过程与方法目标:(1)设置课前自主学习学案,使学生在课前自学;(2)课堂采用小组合作探究,提高课堂效率;(3)课后设置课后查阅要求,将课堂学习延伸至课外学习.情感、态度与价值观:(1)以情境引入,以实验作载体,激发学生的学习兴趣,调动学生的学习热情;(2)运用讨论探究形式,增强学生的合作意识。

二、教学内容解析正态分布是人教A版选修2—3第二章第四节的内容,该内容共一课时。

之前,学生已经学习了频率分布直方图、离散型随机变量等相关知识,这为本节课学习奠定了基础,而正态分布研究是连续型随机变量,既是对前面内容的补充、拓展,又为学生初步应用正态分布知识解决实际问题提供了理论依据。

三、教学问题诊断学生已在必修三中学习过频率分布直方图、总体密度曲线,但间隔时间较长,有些遗忘,可能会影响课堂进度。

正态曲线的特征较多,证明也较为复杂,如果等到课堂上才开始思考,必定影响课堂容量.本班学生为理科名校班,学生能力较强,要给学生发挥主观能动性的空间。

教学重点:(1)正态分布密度函数解析式;(2)正态曲线的特点及其所表示的意义.教学难点:正态曲线的特点四、教学对策分析通过两个概念复习题,让学生熟悉本节课需要用到的知识.设计了很多学生发言的环节,让学生充分的展现自己的能力。

为完成教学任务,教师需要在课前为学生提供学案,课堂中引导学生,掌控学习进度。

五、教学基本流程课前自主学习情境引入高尔顿板实验总体密度曲线正态曲线与函数课堂练习 正态分布正态曲线特点 课堂检测条件及举例课堂小结课后查阅六、教学过程设计(1)课前自主学习:1。

频率分布直方图用什么表示频率?2.由频率分布直方图得到总体密度曲线的过程是:首先绘制样本的频率分布折线图,然后随着 的无限增加,作图时 的减小、 的增加,频率分布折线图越来越接近一条光滑曲线,这条曲线就是 曲线。

最新人教版高中数学选修2-3《正态分布》示范教案

最新人教版高中数学选修2-3《正态分布》示范教案

最新人教版高中数学选修2-3《正态分布》示范教案2.4 正态分布整体设计:正态分布是高中数学新增内容之一,也是统计学中的重要内容。

它是学生进一步应用正态分布解决实际问题的理论依据,同时也是许多分布的近似描述。

因此,正态分布在理论研究中占有很重要的地位。

教材分析:本章节的课时分配为1课时,教学目标包括掌握正态分布在实际生活中的意义和作用,加深对正态密度函数和正态曲线的理解,以及归纳正态曲线的性质。

教学方法主要是通过观察并探究规律,提高分析问题和解决问题的能力,同时培养数形结合、函数与方程等数学思想方法。

情感、态度与价值观方面,通过教学中的探究过程,使学生体验发现的快乐,培养学生的进取意识和科学精神。

重点难点:教学重点为正态曲线的性质和标准正态曲线N(0,1);教学难点为通过正态分布的图形特征,归纳正态曲线的性质。

教学过程:复旧知:回顾曲边梯形的面积S=∫bf(x)dx的意义,以及频率分布直方图和频率分布折线图的作法和意义。

这一部分的设计意图是通过学过的知识来探究新问题,驱动学生思维的自觉性和主动性,让学生亲身感受知识的发生过程,既反映了数学的发展规律,又符合学生的思维特征和认知规律。

探究新知:教师提出问题:同学们知道高尔顿板试验吗?通过小球落入各个小槽中的频率分布情况来认识正态分布。

活动设计包括教师板书课题和学生阅读课本中关于高尔顿板的内容。

接着,教师提出问题:(1)运用多媒体画出频率分布直方图。

(2)当n由1,000增至2,000时,观察频率分布直方图的变化。

(3)请问当样本容量n无限增大时,频率分布直方图变化的情况如何?(频率分布就会无限接近一条光滑曲线——总体密度曲线)。

(4)样本容量越大,总体估计就越精确。

改写后的文章:2.4 正态分布整体设计:正态分布是高中数学新增内容之一,也是统计学中的重要内容。

它是学生进一步应用正态分布解决实际问题的理论依据,同时也是许多分布的近似描述。

因此,正态分布在理论研究中占有很重要的地位。

人教课标版高中数学选修2-3:《正态分布》教案-新版

人教课标版高中数学选修2-3:《正态分布》教案-新版

2.4 正态分布一、教学目标1.核心素养:学习正态分布的过程中,更进一步的体会数形结合思想的作用.培养了学生们直观想象和数学建模的能力.2.学习目标(1)通过道尔顿板重复实验,画出正态分布密度曲线.(2)随机变量取值的概率与面积的关系.(3)3σ原则的探索3.学习重点正态分布曲线的定义及其曲线特点,利用标准正态分布表求得标准正态总体在某一区间内取值的概率.4.学习难点正态分布的概念及其实际应用.二、教学设计(一)课前设计1.预习任务任务1阅读教材P70-P75,思考:正态分布密度曲线的概念?正态分布的概念?任务2思考正态分布密度曲线与x轴之间的面积为多少?2.预习自测1.若随机变量满足正态分布N(μ,σ2),则关于正态曲线性质的叙述正确的是() A.σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”B.σ越大,曲线越“瘦高”,σ越小,曲线越“矮胖”C.σ的大小,和曲线的“瘦高”、“矮胖”没有关系D.曲线的“瘦高”、“矮胖”受到μ的影响答案 A2.已知随机变量ξ服从正态分布N(4,σ2),则P(ξ>4)=()A.15 B.14 C.13 D.12答案 D解析由正态分布图像可知,μ=4是该图像的对称轴,∴P(ξ<4)=P(ξ>4)=1 2.3.设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(-1<ξ<0)=()A.12+p B.12-p C.1-2p D.1-p答案 B解析P(-1<ξ<0)=12P(-1<ξ<1)=12[1-2P(ξ>1)]=12-P(ξ>1)=12-p.(二)课堂设计1.知识回顾(1)几何分布.(2)频率分布直方图、折线图.2.问题探究问题探究一重复操作高尔顿板实验,探索正态分布密度曲线●活动一通过道尔顿板重复实验,并画出小球在球槽内的分布曲线.问题探究二随机变量取值的概率与面积的关系.★▲●活动一探讨随机变量取值与面积的关系如果随机变量ξ服从正态分布N(μ,σ2),那么对于任意实数a、b(a<b),当随机变量ξ在区间(a,b]上取值时,其取值的概率与正态曲线与直线x=a,x=b以及x轴所围成的图形的面积相等.如图(1)中的阴影部分的面积就是随机变量ξ在区间(a,b]上取值的概率.一般地,当随机变量在区间(-∞,a )上取值时,其取值的概率是正态曲线在x =a 左侧以及x 轴围成图形的面积,如图(2).随机变量在(a ,+∞)上取值的概率是正态曲线在x =a 右侧以及x 轴围成图形的面积,如图(3).根据以上概率与面积的关系,在有关概率的计算中,可借助与面积的关系进行求解.●活动二 在实际例子中的应用例题1 若随机变量X ~N (μ,σ2),则P (X ≤μ)=________. 【知识点:正态分布;数学思想:数形结合】详解: 若X ~N (μ,σ2),则其密度曲线关于X =μ对称,则P (X ≤μ)=12. 点拨:随机变量取值的概率与面积的关系 问题探究三 3σ原则★▲ ●活动一 3σ原则含义的理解由于正态变量在(-∞,+∞)内取值的概率是1,由上所述,容易推出,它在区间(μ-2σ,μ+2σ)之外取值的概率是 4.56%,在区间(μ-3σ,μ+3σ)之外取值的概率是0.26%.于是,正态变量的取值几乎都在距x =μ三倍标准差之内,这就是正态分布的3σ原则.●活动二 3σ原则的实际应用设X ~N (1,32),试求(1)P (-2<X ≤4);(2)P (4<X ≤7). 【知识点:正态分布的3σ原则;数学思想:数形结合】 详解:因为X ~N (1,32),所以μ=1,σ=3. (1)P (-2<X ≤4)=P (1-3<X ≤1+3)=P (μ-σ<X ≤μ+σ)=0.682 6.(2)因为P (4<X ≤7)=12[P (-5<X ≤7)-P (-2<X ≤4)]=12[P (1-6<X ≤1+6)-P (1-3<X ≤1+3)] =12[P (μ-2σ<X ≤μ+2σ)-P (μ-σ<X ≤μ+σ)] =12(0.954 4-0.682 6)=0.135 9. 点拨:正态分布的3σ原则的反复使用. 3.课堂总结【知识梳理】(1)正态分布与正态曲线:如果随机变量ξ的概率密度为:.(σμ,,R x ∈为常数,且0 σ),称ξ服从参数为σμ,的正态分布,用ξ~),(2σμN 表示.)(x f 的表达式可简记为),(2σμN ,它的密度曲线简称为正态曲线.(2)正态分布的期望与方差:若ξ~),(2σμN ,则ξ的期望与方差分别为:2,σξμξ==D E . (3)标准正态分布:如果随机变量ξ的概率函数为)(21)(22+∞-∞=- x ex x πϕ,则称ξ服从标准正态分布. 即ξ~)1,0(N 有)()(x P x ≤=ξϕ,)(1)(x x --=ϕϕ求出,而P (a <ξ≤b )的计算则是)()()(a b b a P ϕϕξ-=≤ .(4)正态分布与标准正态分布间的关系:若ξ~),(2σμN 则ξ的分布函数通常用)(x F 表示,且有)σμx (F(x)x)P(ξ-==≤ϕ.(5)“3σ”原则. 【重难点突破】(1)正态分布求概率有时候转化为标准正态分布来解决. (2)用“3σ”原则解题时,有时需要数形结合来解决. 4.随堂检测1.正态总体N (0,49),数值落在(-∞,-2)∪(2,+∞)的概率为( ) A .0.46 B .0.997 4 C .0.03 D .0.002 6 【知识点:正态分布;数学思想:数形结合】 答案 D解:P (-2<ξ≤2)=P (0-3×23<ξ≤0+3×23)=P (μ-3σ<ξ≤μ+3σ)=0.997 4, ∴数值落在(-∞,2)∪(2,+∞)的概率为1-0.997 4=0.002 6.2.若随机变量η服从标准正态分布N (0,1),则η在区间(-3,3]上取值的概率等于( ) A .0.682 6 B .0.954 4 C .0.997 4 D .0.317 4 【知识点:正态分布;数学思想:数形结合】 答案 C解:μ=0,σ=1,∴(-3,3]内概率就是(μ-3σ,μ+3σ)内的概率0.997 4.4.若随机变量ξ~N (2,100),若ξ落在区间(-∞,k )和(k ,+∞)内的概率是相等的,则k 等于( )A .2B .10 C. 2 D .可以是任意实数 【知识点:正态分布;数学思想:数形结合】答案 A5.已知正态分布落在区间(0.2,+∞)上的概率为0.5,那么相应的正态曲线f(x)在x=________时,达到最高点.【知识点:正态分布;数学思想:数形结合】答案0.2解:由于正态曲线关于直线x=μ对称和其落在区间(0.2,+∞)上的概率为0.5,得μ=0.2.6.已知X~N(2.5,0.12),求X落在区间(2.4,2.6]中的概率.【知识点:正态分布;数学思想:数形结合】解:∵X~N(2.5,0.12),∴μ=2.5,σ=0.1.∴X落在区间(2.4,2.6]中的概率为P(2.5-0.1<X≤2.5+0.1)=0.682 6.(三)课后作业基础型自主突破1.ξ的概率密度函数f(x)=12πe-x-22,下列错误的是()A.P(ξ<1)=P(ξ>1) B.P(-1≤ξ≤1)=P(-1<ξ<1) C.f(x)的渐近线是x=0 D.η=ξ-1~N(0,1)答案 C2.正态曲线φμ,σ(x)=12πσe-x-μ22σ2,x∈R,其中μ<0的图像是()【知识点:正态分布;数学思想:数形结合】答案 A解析因为μ<0,所以对称轴x=μ位于y轴左侧.3.下列说法不正确的是()A .若X ~N (0,9),则其正态曲线的对称轴为y 轴B .正态分布N (μ,σ2)的图像位于x 轴上方C .所有的随机现象都服从或近似服从正态分布D .函数f (x )=12πe -x 22 (x ∈R )的图像是一条两头低、中间高、关于y 轴对称的曲线答案 C解析 并不是所有的随机现象都服从或近似服从正态分布,还有些其他分布.4.如下图是正态分布N 1(μ,σ21),N 2(μ,σ22),N 3(μ,σ23)相应的曲线,则有( )A .σ1>σ2>σ3B .σ3>σ2>σ1C .σ1>σ3>σ2D .σ2>σ1>σ3 【知识点:正态分布;数学思想:数形结合】 答案 A解析 σ反映了随机变量取值的离散程度,σ越小,波动越小,取值越集中,图像越“瘦高”.5.正态曲线关于y 轴对称,当且仅当它所对应的正态总体的均值为( ) A .1 B .-1 C .0 D .与标准差有关 答案 C6.设随机变量ξ~N (2,4),则D (12ξ)的值等于( )A .1B .2 C.12 D .4 【知识点:正态分布】 答案 A解析 ∵ξ~N (2,4),∴D (ξ)=4. ∴D (12ξ)=14D (ξ)=14×4=1. 能力型 师生共研7.在正态分布总体服从N (μ,σ2)中,其参数μ,σ分别是这个总体的( ) A .方差与标准差B .期望与方差C .平均数与标准差D .标准差与期望 答案 C解析 由正态分布概念可知C 正确.8.若随机变量ξ的密度函数为f (x )=12πe -x 22,ξ在(-2,-1)和(1,2)内取值的概率分别为P 1,P 2,则P 1,P 2的关系为( )A .P 1>P 2B .P 1<P 2C .P 1=P 2D .不确定 【知识点:正态分布;数学思想:数形结合】 答案 C解析 由题意知,μ=0,σ=1,所以曲线关于x =0对称,根据正态曲线的对称性,可知P 1=P 2.9.设随机变量ξ~N (μ,σ2),且P (ξ≤C )=P (ξ>C )=P ,则P 的值为( ) A .0 B .1 C.12 D .不确定与σ无关 答案 C解析 ∵P (ξ≤C )=P (ξ>C )=P ,∴C =μ,且P =12.10.已知随机变量ξ服从正态分布N (0,σ2),若P (ξ>2)=0.023,则P (-2≤ξ≤2)=( ) A .0.477 B .0.628 C .0.954 D .0.977 答案 C解析 因为随机变量ξ服从正态分布N (0,σ2),所以正态曲线关于直线x =0对称,又P (ξ>2)=0.023,所以P (ξ<-2)=0.023,所以P (-2≤ξ≤2)=1-P (ξ>2)-P (ξ<-2)=1-2×0.023=0.954,故选C. 探究型 多维突破13.随机变量X ~N (μ,σ2),则Y =aX +b 服从( ) A .N (aμ,σ2) B .N (0,1) C .N (μa ,σ2a ) D .N (aμ+b ,a 2σ2) 【知识点:正态分布】 答案 D14.某中学共有210名学生,从中取60名学生成绩如下:【知识点:正态分布】解析 因为x =160(4×6+5×15+6×21+7×12+8×3+9×3)=6,s 2=160[6×(4-6)2+15×(5-6)2+21×(6-6)2+12×(7-6)2+3×(8-6)2+3×(9-6)2]=1.5, 以x =6,s ≈1.22作为总体预计平均成绩和标准差的估计值,即μ=6,σ=1.22, 则总体服从正态分布N (6,1.222),所以,正态分布的概率密度函数式:μμ,σ(x )=11.222πe -x -22×1.222 .自助餐1.若ξ~N (1,14),η=6ξ,则E (η)等于( )A .1 B.32 C .6 D .36 答案 C解析 ∵ξ~N (1,14),∴E (ξ)=1,∴E (η)=6E (ξ)=6.2.已知随机变量ξ服从正态分布N (2,σ2),P (ξ≤4)=0.84,则P (ξ≤0)=( ) A .0.16 B .0.32 C .0.68 D .0.84 【知识点:正态分布;数学思想:数形结合】 答案 A解析 利用正态分布图像的对称性,P (ξ≤0)=1-P (ξ≤4)=1-0.84=0.16.3.已知随机变量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.682 6,则P (X >4)=( ) A .0.158 8 B .0.158 7 C .0.158 6 D .0.158 5 【知识点:正态分布;数学思想:数形结合】 答案 B解析 由正态密度函数的对称性知P (X >4)=1-PX2=1-0.682 62=0.158 7,故选B.4.若随机变量ξ~N (0,1),则P (|ξ|>3)等于( )A .0.997 4B .0.498 7C .0.974 4D .0.002 6 【知识点:正态分布;数学思想:数形结合】答案 D5.已知ξ~N(0,62),且P(-2≤ξ≤0)=0.4,则P(ξ>2)等于()A.0.1 B.0.2 C.0.6 D.0.8【知识点:正态分布;数学思想:数形结合】答案 A6.已知一次考试共有60名同学参加,考生的成绩X~N(110,52),据此估计,大约应有57人的分数在下列哪个区间内?()A.(90,110] B.(95,125] C.(100,120] D.(105,115]【知识点:正态分布;数学思想:数形结合】答案 C解析由于X~N(110,52),所以μ=110,σ=5,因此考试成绩在区间(105,115],(100,120],(95,125]上的概率分别应是0.682 6,0.954 4,0.997 4,由于一共有60人参加考试,∴成绩位于上述三个区间的人数分别是:60×0.682 6=41人,60×0.954 4=57人,60×0.997 4=60人.7.设离散型随机变量ξ~N(0,1),则P(ξ≤0)=________;P(-2<ξ<2)=________.【知识点:正态分布;数学思想:数形结合】答案12,0.954 4解析因为标准正态曲线的对称轴为x=0,所以P(ξ≤0)=P(ξ>0)=12.而P(-2<ξ<2)=P(-2σ<ξ<2σ)=0.954 4.8.某种零件的尺寸X(cm)服从正态分布N(3,1),则不属于区间(1,5)这个尺寸范围的零件约占总数的________.【知识点:正态分布;数学思想:数形结合】答案 4.56%解析属于区间(μ-2σ,μ+2σ)即区间(1,5)的取值概率约为95.44%,故不属于区间(1,5)这个尺寸范围的零件数约占总数的1-95.44%=4.56%.9.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为________.【知识点:正态分布;数学思想:数形结合】答案0.810.设随机变量ξ~N(3,4),若P(ξ>c+2)=P(ξ<c-2),求c的值.【知识点:正态分布;数学思想:数形结合】解析由ξ~N(3,4)可知,密度函数关于直线x=3对称(如下图所示),又P(ξ>c+2)=P(ξ<c-2),故有3-(c-2)=(c+2)-3,∴c=3.11.若在一次数学考试中,某班学生的分数为X,且X~N(110,202),满分为150分,这个班的学生共有54人,求这个班在这次数学考试中及格(不小于90分)的人数和130分以上(不包括130分)的人数.【知识点:正态分布;数学思想:数形结合】解析∵X~N(110,202),∴μ=110,σ=20.∴P(110-20<X≤110+20)=0.682 6.∴X>130的概率为12×(1-0.682 6)=0.158 7.∴X≥90的概率为0.682 6+0.158 7=0.841 3.∴及格的人数为54×0.841 3≈45(人),130分以上的人数为54×0.158 7≈9(人).12.设随机变量X服从正态分布X~N(8,1),求P(5<X≤6).【知识点:正态分布;数学思想:数形结合】解析由已知得μ=8,σ=1,∵P(6<X≤10)=0.954 4,P(5<X≤11)=0.997 4,∴P(5<X≤6)+P(10<X≤11)=0.997 4-0.954 4=0.043.如图,由正态曲线分布的对称性,得P(5<X≤6)=P(10<X≤11)=0.0432=0.021 5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正态分布2
目的要求
1.利用标准正态分布表求得标准正态总体在某一区间内取值的概率。

2.掌握正态分布与标准正态分布的转换。

3.了解正态总体的分布情况,简化正态总体的研究问题。

内容分析
1.标准正态分布是正态分布研究的重点,各式各样的正态分布可以通过)()(σμ
-Φ=x x F 转换
成标准正态曲线,转换后正态分布的各项性质保持不变,而标准正态分布的概率又可以通过查表求得,因而标准正态分布表的使用是本节课的重点之一。

2.介绍《标准正态分布表》的查法。

表中每一项有三个相关的量:x 、y 、P ,x 是正态曲线横轴的取值,y 是曲线的高度,P 是阴影部分的面积。

即)()(00x x P x <=Φ。

3.标准正态曲线关于y 轴对称。

因为当00>x 时,)()(00x x P x <=Φ;而当00<x 时,根据正态曲线的性质可得:)(1)(00x x -Φ-=Φ,并且可以求得在任一区间),(21x x 内取值的概率。

)()()(1221x x x x x P Φ-Φ=<<。

4.由例2、例3的讲授,对于任一正态总体),(2σμN 都可以通过)(
)(σμ-Φ=x x F ,求得其在
某一区间内取值的概率。

5.从下列三组数据不难看出,正态总体在(μ-3σ,μ+3σ)以外的概率只有万分之二十六,这是一个很小的概率。

这样,就简化了正态总体中研究的问题。

F (μ-σ,μ+σ)≈0.683,
F (μ-2σ,μ+2σ)≈0.954,
F (μ-3σ,μ+3σ)≈0.997。

教学过程
1.复习提问
(1)借助于正态曲线图形,回忆正态曲线的性质。

(2)运用正态曲线的性质,解决实际问题。

2.标准正态总体的概率问题,只要有标准正态分布表即可解决,如何查表是必须解决的问题。

3.对于标准正态总体N (0,1),)(0x Φ是总体取值小于0x 的概率,即:)()(00x x P x <=Φ,其中00>x ,图中阴影部分的面积表示为概率。

4.从图中不难发现,当00<x 时,)(1)(00x x -Φ-=Φ;而当00=x 时,Φ(0)=0.5。

例1 利用标准正态分布表,求标准正态总体在下面区间取值的概率。

(1)(0,1);(2)(1,3)。

解:(1)P =Φ(1)-Φ(0)=0.8413-0.5=0.3413;
(2)P=Φ(3)-Φ(1)=0.9987-0.8413=0.1574
小结:因)()(00x x P x <=Φ,通过上图可知,)(1)(00x x P x x P <-=>。

5.非标准正态总体在某区间内取值的概率问题,可以通过)()(σμ
-Φ=x x F 转化成标准正态总
体,然后查标准正态分布表即可。

在这里重点掌握如何转化。

首先要掌握正态总体的均值和标准差,然后进行相应的转化。

例2 利用标准正态分布表,求正态总体在下面区间取值的概率。

(1)在N (1,4)下,F (3)=?
(2)在),(2σμN 下,F (μ-1.84σ,μ+1.84σ)。

解:(2)9671.0)84.1())84.1(()84.1(=Φ=-+Φ
=+σμσμσμF 。

)84.1(1)84.1())84.1(()84.1(Φ-=-Φ=--Φ=-σμ
σμσμF 。

F (μ-1.84σ,μ+1.84σ)= F (μ+1.84σ)-F(μ-1.84σ)=2Φ(1.84)-1=0.9342。

例3 讲解重点,突出它的结论。

6.对于正态总体),(2σμN 取值的概率:
在区间(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)内取值的概率分别为68.3%、95.4%、99.7%。

因此我们时常只在区间(μ-3σ,μ+3σ)内研究正态总体分布情况,而忽略其中很小的一部分。

7.课堂总结。

相关文档
最新文档