青海师范大学附属中学数学三角形填空选择达标检测(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

青海师范大学附属中学数学三角形填空选择达标检测(Word 版 含

解析)

一、八年级数学三角形填空题(难)

1.如图,在ABC ∆中,A α∠=.ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠: 1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;;2019A BC ∠与2019A CD ∠的平分线相交于点2020A ,得2020A ∠,则2020A ∠=________________.

【答案】

20202α

【解析】

【分析】 根据角平分线的定义,三角形的外角性质及三角形的内角和定理可知

21211112222

a A A A A a ∠=∠=∠=∠=,,…,依此类推可知2020A ∠的度数. 【详解】

解:∵∠ABC 与∠ACD 的平分线交于点A 1,

∴11118022

A ACD AC

B AB

C ∠=︒-∠-∠-∠ 1118018022

ABC A A ABC ABC =︒-∠+∠-︒-∠-∠-∠()() 1122

a A =∠=, 同理可得221122a A A ∠=

∠=, …

∴2020A ∠=

20202α. 故答案为:

2020

2α. 【点睛】 本题是找规律的题目,主要考查三角形的外角性质及三角形的内角和定理,同时也考查了角平分线的定义.

2.将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=40°,∠2=50°,那么∠ 3的度数等于______________.

【答案】12°

【解析】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是108°,则∠3=360°-60°-90°-108°-∠1-∠2=12°.

点睛:本题考查的是多边形的内角,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.

3.小明在用计算器计算一个多边形的内角和时,得出的结果为2005°,小芳立即判断他的结构是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.你认为正确的内角和应该是________.

【答案】1980

【解析】

【详解】

解:设多边形的边数为n,多加的角度为α,则

(n-2)×180°=2005°-α,

当n=13时,α=25°,

此时(13-2)×180°=1980°,α=25°

故答案为1980.

4.某多边形内角和与外角和共1080°,则这个多边形的边数是__________.

【答案】6

【解析】

∵多边形内角和与外角和共1080°,

∴多边形内角和=1080°−360°=720°,

设多边形的边数是n,

∴(n−2)×180°=720°,解得n=6.

故答案为6.

点睛:先根据多边形的外角和为360°求出其内角和,再根据多边形内角和定理即可求出多边形的边数.

5.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.

【答案】160.

【解析】

试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.

试题解析:360÷45=8,

则所走的路程是:6×8=48m,

则所用时间是:48÷0.3=160s.

考点:多边形内角与外角.

6.一个多边形内角和是一个四边形内角和的4倍,则这个多边形的边数是_________【答案】10

【解析】

【分析】

【详解】

解:本题根据题意可得:(n-2)×180°=4×360°,解得:n=10.

故答案为:10 .

考点:多边形的内角和定理.

7.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()

A.144°B.84°C.74°D.54°

【答案】B

【解析】

正五边形的内角是∠ABC=()

52180

5

-⨯

=108°,∵AB=BC,∴∠CAB=36°,正六边形的内角

是∠ABE=∠E=()

62180

6

-⨯

=120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–

120°–120°–36°=84°,故选B.

8.若正多边形的一个外角是45°,则该正多边形的边数是_________.

【答案】8;

【解析】

【分析】

根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用360°÷45°可求得边数.

【详解】

∵多边形外角和是360度,正多边形的一个外角是45°,

∴360°÷45°=8

即该正多边形的边数是8.

【点睛】

本题主要考查了多边形外角和是360度和正多边形的性质(正多边形的各个内角相等,各个外角也相等).

9.如图,∠A=50°,∠ABO=28°,∠ACO=32°,则∠BOC=______°.

【答案】110

【解析】

已知∠A =50°,∠ABO =28°,∠ACO =32°,根据三角形外角的性质可得

∠BDC =∠A +∠ABO =78°,∠BOC =∠BDC +∠ACO =110°.

10.如图所示,请将1

2A ∠∠∠、、用“>”排列__________________.

【答案】21A ∠∠∠>>

【解析】

【分析】

根据三角形的外角的性质判断即可.

【详解】

解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A

∴∠2>∠1>∠A ,

故答案为:∠2>∠1>∠A .

相关文档
最新文档