计量经济学多元线性回归模型
计量经济学-多元线性回归模型

Y=β0+β1X1+β2X2+...+βkXk+ε,其中Y为因变 量,X1, X2,..., Xk为自变量,β0, β1,..., βk为回归 系数,ε为随机误差项。
多元线性回归模型的假设条件
包括线性关系假设、误差项独立同分布假设、无 多重共线性假设等。
研究目的与意义
研究目的
政策与其他因素的交互作用
多元线性回归模型可以引入交互项,分析政策与其他因素(如技 术进步、国际贸易等)的交互作用,更全面地评估政策效应。
实例分析:基于多元线性回归模型的实证分析
实例一
预测某国GDP增长率:收集该国历史数据,包括GDP、投资、消费、出口等变量,建立 多元线性回归模型进行预测,并根据预测结果提出政策建议。
最小二乘法原理
最小二乘法是一种数学优化技术,用 于找到最佳函数匹配数据。
残差是观测值与预测值之间的差,即 e=y−(β0+β1x1+⋯+βkxk)e = y (beta_0 + beta_1 x_1 + cdots + beta_k x_k)e=y−(β0+β1x1+⋯+βkxk)。
在多元线性回归中,最小二乘法的目 标是使残差平方和最小。
t检验
用于检验单个解释变量对被解释变量的影响 是否显著。
F检验
用于检验所有解释变量对被解释变量的联合 影响是否显著。
拟合优度检验
通过计算可决系数(R-squared)等指标, 评估模型对数据的拟合程度。
残差诊断
检查残差是否满足独立同分布等假设,以验 证模型的合理性。
04
多元线性回归模型的检验与 诊断
计量经济学第3章 多元线性回归模型(1)

BB ( X X ) 1 0
这意味着 BB ( X X ) 1为半正定矩阵。这样的协方差 矩阵之差 ˆ ) BB 2 ( X X ) 1 2 [ BB ( X X ) 1 ] 2 0 Var (b) Var ( 也是半正定矩阵。因此多元线性回归参数的最小二 乘估计是最小方差的线性无偏估计。
i
21
•
但是需注意:多元线性回归模型解释变量的 数目有多有少,而上述可决系数R2又可以证明是 解释变量数目的增函数。这意味着不管增加的解 释变量是否对改善模型、拟合程度有意义,解释 变量个数越多,可决系数一定会越大。因此,以 这种可决系数衡量多元回归模型的拟合优度是有 问题的,而且会导致片面追求解释变量数量的错 误倾向。正是由于存在这种缺陷,可决系数R2在 多元线性回归分析拟合优度评价方面的作用受到 很大的限制。
10
Q ˆ X Y ˆ X X ˆ ) 2 X Y 2 X X ˆ 0 (Y Y 2 ˆ ˆ
• 其中矩阵求导:
f ( B) A f ( B) BA B f ( B ) f ( B) BAB 2 AB B
11
Q ˆ ˆ X ˆ X ˆ X ) (1) 0 2 ( Y i 0 1 1 i 2 2 i k ki ˆ 0 Q ˆ ˆ X ˆ X ˆ X ) ( X ) 0 2 (Yi 0 1 1i 2 2i k ki 1i ˆ 1 Q ˆ ˆ X ˆ X ˆ X ) ( X ) 0 2 (Yi 0 1 1i 2 2i k ki ki ˆ k
• 整理该向量方程,得到下列形式的正规方程组
ˆ X Y X X
• 当X X 可逆,也就是X是满秩矩阵(满足假设5)时,在 上述向量方程两端左乘的 X X 逆矩阵,得到
计量经济学第二章(第二部分)

其中,有k个解释变量;k+1个回归参数
3
计量经济学 第二章B
同 上
(2)矩阵形式: Y XB N Y1 Y2 Y ... Y n 1 1 X ... 1 0 u1 1 u2 , B , N ... ... u n 1 k (k 1) 1 n n 1 X 11 X 12 ... X 1n X 21 X 22 ... X 2n ... ... ... ... X k1 X k2 ... X kn n (k 1)
2
(2)当 R
2
k n -1
时,
R
2
<0 ,此时, 使
2
用 R 将失去意义。因此, R 只适
2
用于Y与解释变量整体相关程度较的
情况。
34
计量经济学 第二章B
四、回归方程的显著性检验
(1) 提出原假设 (2) 构造统计量 H 0 : 1 2 ... k 0 F ESS/k RSS/n (3) 对于给定的显著性水平 (4)判定方程的显著性, 若 F F , 则拒绝原假设 若 F F ,则接受原假设 H 0,即模型的线性关系 F 检验; - k -1 ~ F(k, n - k - 1) ( 在 H 0 成立时) F
不管其质量的好坏,而所要求的样本容量
的下限。
20
计量经济学 第二章B
同 上
ˆ 由 B ( X X)
-1
ˆ X Y 中看到,要使 B
存在,
必须保证(XˊX)-1存在,因此,必须满
足|XˊX|≠0 ,即XˊX为满秩矩阵,而
计量经济学-3多元线性回归模型

2020/12/8
计量经济学-3多元线性回归模型
•第一节 概念和基本假定
•一、基本概念: • 设某经济变量Y 与P个解释变量:X1,X2,…,XP存在线性依
存关系。 • 1.总体回归模型:
•其中0为常数项, 1 ~ P 为解释变量X1 ~ XP 的系数,u为随机扰动项。 • 总体回归函数PRF给出的是给定解释变量X1 ~ XP 的值时,Y的期 望值:E ( Y | X1,X2,…,XP )。 • 假定有n组观测值,则可写成矩阵形式:
计量经济学-3多元线性回归模型
•2.样本回归模型的SRF
计量经济学-3多元线性回归模型
•二、基本假定: • 1、u零均值。所有的ui均值为0,E(ui)=0。 • 2、u同方差。Var(ui)=δ2,i=1,2,…,n
计量经济学-3多元线性回归模型
•
计量经济学-3多元线性回归模型
•
•第二节 参数的最小二乘估 计
•五、预测
•(一)点预测 •点预测的两种解释:
计量经济学-3多元线性回归模型
•(二)区间预测
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
•例5,在例1中,若X01=10,X02=10,求总体均值E(Y0|X0) 和总体个别值Y0的区间预测。
•
Yi=β0+β1Xi1+β2Xi2+ui
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
•三、最小二乘估计的性质
计量经济学-3多元线性回归模型
5、计量经济学【多元线性回归模型】

二、多元线性回归模型的参数估计
2、最小二乘估计量的性质 当 ˆ0, ˆ1, ˆ2, , ˆk 为表达式形式时,为随机变量, 这时最小二乘估计量 ˆ0, ˆ1, ˆ2, , ˆk 经过证明同样也 具有线性性、无偏性和最小方差性(有效性)。 也就是说,在模型满足那几条基本假定的前提 下,OLS估计量具有线性性、无偏性和最小方差性 (有效性)这样优良的性质, 即最小二乘估计量
用残差平方和 ei2 最小的准则: i
二、多元线性回归模型的参数估计
1、参数的普通最小二乘估计法(OLS) 即:
min ei2 min (Yi Yˆi )2 min Yi (ˆ0 ˆ1X1i ˆ2 X 2i ˆk X ki )2
同样的道理,根据微积分知识,要使上式最小,只 需求上式分别对 ˆj ( j 0,1, k) 的一阶偏导数,并令 一阶偏导数为 0,就可得到一个包含 k 1 个方程的正 规方程组,这个正规方程组中有 k 1个未知参数 ˆ0, ˆ1, ˆ2, , ˆk ;解这个正规方程组即可得到这 k 1 个参数 ˆ0, ˆ1, ˆ2, , ˆk 的表达式,即得到了参数的最小 二乘估计量;将样本数据代入到这些表达式中,即可 计算出参数的最小二乘估计值。
该样本回归模型与总体回归模型相对应,其中残差 ei Yi Yˆi 可看成是总体回归模型中随机误差项 i 的 估计值。
2、多元线性回归模型的几种形式: 上述几种形式的矩阵表达式: 将多元线性总体回归模型 (3.1) 式表示的 n 个随机方 程写成方程组的形式,有:
Y1 0 1 X11 2 X 21 .Y.2.........0.......1.X...1.2........2.X...2.2. Yn 0 1 X1n 2 X 2n
ˆ0, ˆ1, ˆ2, , ˆk 是总体参数真值的最佳线性无偏估计 量( BLUE );即高斯—马尔可夫定理 (GaussMarkov theorem)。
第四章 多元线性回归模型(计量经济学,潘省初)

Y1 β 0 β 1 X 11 β 2 X 21 β 3 X 31 ... β K X K 1 u1 Y2 β 0 β 1 X 12 β 2 X 22 β 3 X 32 ... β K X K 2 u2 ...... Yn β 0 β 1 X 1n β 2 X 2 n β 3 X 3n ... β K X Kn un
ˆ 116.7 0.112 X 0.739 P Y (9.6) (0.003) (0.114)
R 2 0.99
Y和X的计量单位为10亿美元 (按1972不变价格计算).
食品价格平减指数 P 100,( 1972 100) 总消费支出价格平减指数
3
多元线性回归模型中斜率系数的含义
上述假设条件可用矩阵表示为以下四个条件:
9
(1) E(u)=0 (2)
由于
E (uu) 2 I n
u1 u2 uu u1 u2 ... u n
2
u12 u1u2 ...... u1un 2 u2u1 u2 ...... u2un ... un ................................. 2 unu1 unu2 ...... un
一.假设条件 (1)E(ut)=0, t=1,2,…,n (2)E(ui uj)=0, i≠j (3)E(ut2)=σ2, t=1,2,…,n (4)Xjt是非随机量, j=1,2, … k
t=1,2, … n
8
除上面4条外,在多个解释变量的情况下,还有 两个条件需要满足: (5)(K+1)< n; 即观测值的数目要大于待估计的参数的个数 (要有足够数量的数据来拟合回归线)。 (6)各解释变量之间不存在严格的线性关系。
《计量经济学》第三章 多元线性回归模型

Yi 1 2 X 2i 3 X 3i ... k X ki ui
7
多元样本回归函数
Y 的样本条件均值表示为多个解释变量的函数
ˆ ˆ ˆ ˆ ˆ Yi 1 2 X 2i 3 X3i ... k X ki
或
ˆ ˆ ˆ ˆ Yi 1 2 X 2i 3 X3i ... k X ki ei
22
ˆ ˆ 因 2 是未知的,可用 2代替 2 去估计参数 β 的标
准误差:
ˆ ● 当为大样本时,用估计的参数标准误差对 β 作标 准化变换,所得Z统计量仍可视为服从正态分布 ˆ ●当为小样本时,用估计的参数标准误差对 β 作标
准化变换,所得的t统计量服从t分布: ˆ βk - βk t ~ t (n - k ) ^ ˆ SE( βk )
i i
i
e e 0 4.残差 ei 与 X 和
3.
i
e X
i
3i
ei X 2i 0
2i
X 3i 都不相关,即
ˆ 5.残差 ei 与 Yi 不相关,即
e Yˆ 0
i i
18
二、OLS估计式的性质-统计性质
OLS估计式(用矩阵表式) 1.线性特征:
ˆ = (X X)-1 X Y β
2 i
ˆ ei2 (Yi - Yi )2
ˆ X X ... X )]2 ˆ min e [Yi -(1 ˆ2 2i ˆ3 3i k ki
求偏导,令其为0:
( ei2 ) 0 ˆ
j
13
即 ˆ ˆ ˆ ˆ -2 Yi - (1 2 X 2i 3 X 3i ... ki X ki ) 0
计量经济学多元线性回归

Yˆi ˆ0 ˆ1 X1i ˆ2 X 2i ˆki X Ki
i=1,2…n
• 根据最 小二乘原 理,参数 估计值应
该是右列
方程组的 解
ˆ
0
Q
0
ˆ1
Q
0
ˆ
2
Q
0
ˆ k
Q
0
n
n
其
Q ei2 (Yi Yˆi )2
i 1
i 1
中n
2
(Yi (ˆ0 ˆ1 X1i ˆ2 X 2i ˆk X ki ))
可以证明,随机误差项u的方差的无偏估 计量为:
ˆ 2
e
2 i
e e
n k 1 n k 1
2、极大似然估计
• 对于多元线性回归模型
易知 Yi ~ N (Xiβ , 2 )
• Y的随机抽取的n组样本观测值的联合概率
L(βˆ , 2 ) Y1,Y2 ,,Yn )
1
e
1 2
2
(Yi
(
ˆ0
ˆ1
i1
• 于是得到关于待估参数估计值的正规方程组:
((ˆˆ00(ˆ0ˆˆ11XX1ˆ1i1i X1ˆiˆ22i XXˆ222ii
X 2i ˆk ˆk X ki ˆk X ki
X ki) ) X 1i )X 2i
Yi Yi Yi
X 1i X 2i
(ˆ0 ˆ1 X 1i ˆ2 X 2i ˆk X ki ) X ki Yi X ki
ei称为残差或剩余项(residuals),可看成是 总体回归函数中随机扰动项ui的近似替代。
样本回归函数的矩阵表达:
Yˆ Xβˆ
其中:
ˆ0
βˆ
ˆ1
ˆ k
多元线性回归模型计量经济学

多重共线性诊断
通过计算自变量之间的相关系 数、条件指数等方法诊断是否
存在多重共线性问题。
异方差性检验
通过计算异方差性统计量、图 形化方法等检验误差项是否存
在异方差性。
03
多元线性回归模型的应用
经济数据的收集与整理
原始数据收集
通过调查、统计、实验等方式获取原始数据,确保数据的真实性 和准确性。
数据清洗和整理
在实际应用中,多元线性回归模型可能无法处理 非线性关系和复杂的数据结构,需要进一步探索 其他模型和方法。
随着大数据和人工智能技术的发展,多元线性回 归模型的应用场景将更加广泛和复杂,需要进一 步探索如何利用新技术提高模型的预测能力和解 释能力。
07
参考文献
参考文献
期刊论文
学术期刊是学术研究的重要载体, 提供了大量关于多元线性回归模 型计量经济学的最新研究成果。
学位论文
学位论文是学术研究的重要组成 部分,特别是硕士和博士论文, 对多元线性回归模型计量经济学 进行了深入的研究和探讨会议论文集中反映了多元线性回 归模型计量经济学领域的最新进 展和研究成果。
THANKS
感谢观看
模型定义
多元线性回归模型是一种用于描 述因变量与一个或多个自变量之 间线性关系的统计模型。
假设条件
假设误差项独立同分布,且误差项 的均值为0,方差恒定;自变量与 误差项不相关;自变量之间不存在 完全的多重共线性。
模型参数估计
最小二乘法
01
通过最小化残差平方和来估计模型参数,是一种常用的参数估
计方法。
05
案例分析
案例选择与数据来源
案例选择
选择房地产市场作为案例,研究房价 与影响房价的因素之间的关系。
高级计量经济学 第二章 多元线性回归模型

本章内容
古典线性回归(Ordinary Linear Squares)
模型估计方法和统计检验
其他模型估计方法
最大似然法(Maximum Likelihood) 广义矩法(Generalized Method of Moments)
模型设定与设定误差 虚拟变量的使用 建立多元回归模型时应注意的问题
斜率(dY/dX)
β1 β1Y/X β1Y β1/X -β1/X2 -β1Y/X2 β1+2β2X β1+β2Z
弹性(dY/dX)(X/Y)
β1X/Y β1 β1X β1/Y
-β1/(XY) -β1/X
(β1+2β2X)X/Y (β1+β2Z)X/Y
5
假定2:矩阵X是满秩的
X是一个n K 矩阵,X的秩应该等于K; 该假定也被称做识别条件。只有当识别条件得到
用下标R和UR区分有约束和无约束的回归方程R2 ,q为约束条件的个数,相应的F统计值计算公式 为:
F q ,N k 1E ER U S S E R N S S U S K R q S R 1 U 2 R R U 2 R R 2R N qK
最大似未知的总体分布,样 本数据提供了有关概率分布参数的信息,估计方法建立在 样本来自哪个概率分布的可能性最大基础之上。
对估计系数的统计检验
利用前述的估计量方差矩阵可以得到每个 估计参数的标准差sj,估计参数与该标准差 的比值为相应的t统计值。
利用t统计表(或相应的软件)可以得到与 模型自由度相对应的显著性水平,据此可 以判断结果在统计意义上的可靠性。
对模型参数的联合检验
同样的方法可以用于检验有关多个估计参数之间 关系的联合假设。
《计量经济学》第五章最新完整知识

第五章 多元线性回归模型在第四章中,我们讨论只有一个解释变量影响被解释变量的情况,但在实际生活中,往往是多个解释变量同时影响着被解释变量。
需要我们建立多元线性回归模型。
一、多元线性模型及其假定 多元线性回归模型的一般形式是i iK K i i i x x x y εβββ++++= 2211令列向量x 是变量x k ,k =1,2,的n 个观测值,并用这些数据组成一个n ×K 数据矩阵X ,在多数情况下,X 的第一列假定为一列1,则β1就是模型中的常数项。
最后,令y 是n 个观测值y 1, y 2, …, y n 组成的列向量,现在可将模型写为:εββ++=K K x x y 11构成多元线性回归模型的一组基本假设为 假定1. εβ+=X y我们主要兴趣在于对参数向量β进行估计和推断。
假定2. ,0][][][][21=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n E E E E εεεε 假定3. n I E 2][σεε='假定4. 0]|[=X E ε我们假定X 中不包含ε的任何信息,由于)],|(,[],[X E X Cov X Cov εε= (1)所以假定4暗示着0],[=εX Cov 。
(1)式成立是因为,对于任何的双变量X ,Y ,有E(XY)=E(XE(Y|X)),而且])')|()([(])')((),(EY X Y E EX X E EY Y EX X E Y X Cov --=--=))|(,(X Y E X Cov =这也暗示 βX X y E =]|[假定5 X 是秩为K 的n ×K 随机矩阵 这意味着X 列满秩,X 的各列是线性无关的。
在需要作假设检验和统计推断时,我们总是假定: 假定6 ],0[~2I N σε 二、最小二乘回归 1、最小二乘向量系数采用最小二乘法寻找未知参数β的估计量βˆ,它要求β的估计βˆ满足下面的条件 22min ˆ)ˆ(ββββX y X y S -=-∆ (2)其中()()∑∑==-'-=⎪⎪⎭⎫ ⎝⎛-∆-nj Kj j ij i X y X y x y X y 1212ββββ,min 是对所有的m 维向量β取极小值。
计量经济学-多元线性回归模型

e e ˆ n k 1 n k 12e i2 3-21
*二、最大或然估计
对于多元线性回归模型
Yi 0 1 X 1i 2 X 2 i k X ki i
易知
Yi ~ N ( X i β , 2 )
Y的随机抽取的n组样本观测值的联合概率 ˆ, L (β 2 ) P (Y1 , Y2 , , Yn )
解该(k+1) 个方程组成的线性代数方程组,即
$ ,, 可得到(k+1) 个待估参数的估计值 j , j 012,, k 。
3-14
正规方程组的矩阵形式
n X 1i X ki
X X
1i 2 1i
X X X
ki
X
ki
X 1i
ˆ 0 1 1 ˆ X 11 X 12 1i ki 1 2 ˆ X ki k X k1 X k 2
ˆ 1 ˆ ˆ 2 β ˆ k
在离差形式下,参数的最小二乘估计结果为
ˆ β ( x x) 1 x Y
ˆ ˆ ˆ 0 Y 1 X 1 k X k
3-20
随机误差项的方差2的无偏估计
可以证明:随机误差项 的方差的无偏估计量为:
第三章
多元线性回归模型
多元线性回归模型 多元线性回归模型的参数估计 多元线性回归模型的统计检验 多元线性回归模型的预测 回归模型的其他形式 回归模型的参数约束
3-1
§3.1 多元线性回归模型
一、多元线性回归模型 二、多元线性回归模型的基本假定
计量经济学(2012B)(第二章多元线性回归)详解

2 2i
n
n
2 i
i ( yi ˆ1x1i ˆ2 x2i )
i 1
i 1
n
i yi
n
(
y
ˆ x
ˆ x
) y
i1
i
1 1i
2 2i
i
i 1
n
y 2
(ˆ
n
x
y
ˆ
n
x
y )
i1
i
1 i1 1i i
2 i1 2 i i
TSS ESS
2.5 单个回归参数的置信区间 与显著性检验
一、置信区间
H (4)
的拒绝域为:
0
F F (2, n 3)
(5) 推断:若
F F (2, n 3)
,则拒绝 H , 0
认为回归参数整体显著;
H 若 F F (2, n 3)
,则接受
,
0
认为回归参数整体上不显著。
回归结果的综合表示
yˆi 0.0905 0.426x1i 0.0084x2i
Sˆj : 或 t:
模型的估计效果. (5) 拟合优度与F 检验中的 F 统计量的关系是什么?这两个
量在评价二元线性回归模型的估计效果上有何区别? (6) 试比较一元线性回归与二元线性回归的回归误差,哪
个拟合的效果更好?
应用:
(1)预测当累计饲料投入为 20磅时,鸡的平均
重量是多少? yˆ 5.2415 f
(磅)
(2)对于二元线性回归方程,求饲料投入的边际生产率?
(0.1527) (0.0439)
(0.5928) (9.6989)
(0.0027) (3.1550)
R2 0.9855, R2 0.9831 , F 408.9551
计量经济学-多元线性回归分析

yi ˆ1 x1i ˆ2 x2i ˆk xki ei 其矩阵形式为
i=1,2…n
y xβˆ e
其中 :
y1
y
y2
yn
x11
x
x12
x 21
x 22
xk1 xk2
x1n x2n xkn
ˆ1
βˆ
ˆ 2
ˆk
在离差形式下,参数旳最小二乘估计成果为
模型中解释变量旳数目为(k)
模型:Yt 1 2t X 2t k X kt ut
也被称为总体回归函数旳随机体现形式。它 旳 非随机体现式为:
E(Yi | X 2i , X 3i , X ki ) 1 2 X 2i 3 X 3i k X ki
方程表达:各变量X值固定时Y旳平均响应。
0.17033
2.652155 0.0157
R-squared
0.9954 Mean dependent var
928.4909
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)
βˆ (xx)1 xY
ˆ0 Y ˆ1 X 1 ˆk X k
⃟随机误差项旳方差旳无偏估计
能够证明,随机误差项旳方差旳无偏估计量为
ˆ 2 ei2 ee
nk nk
四、参数估计量旳性质
在满足基本假设旳情况下,其构造参数旳一般
最小二乘估计、最大或然估计及矩估计仍具有: 线性性、无偏性、有效性。
ˆ1
Байду номын сангаас
Q0
ˆ2
Q
计量经济学第三章第3节多元线性回归模型的显著性检验

当增加一个对被解释变量有较大影响的解释变量时, 残差平方和减小的比n-k-1 减小的更显著,拟合优度 就增大,这时就可以考虑将该变量放进模型。 如果增加一个对被解释变量没有多大影响的解释变量, 残差平方和减小没有n-k-1减小的显著,拟合优度会减 小,其说明模型中不应该引入这个不重要的解释变量, 可以将其剔除。
在对话框中输入:
y c x y(-1)
y c x y(-1) y(-2)
字母之间用空格分隔。 注:滞后变量不需重新形成新的时间序列,软件 自动运算实现,k期滞后变量,用y(-k)表示。
• 使用k期滞后变量,数据将损失k个样本观察值, 例如:
序号 2000 2001 2002 2003 2004 2005 2006 2007 2008 y 3 4 5 6 7 8 9 10 11 Y(-1) Y(-2) Y(-3)
2
2
2
*赤池信息准则和施瓦茨准则
• 为了比较所含解释变量个数不同的多元回归模型的 拟合优度,常用的标准还有: 赤池信息准则(Akaike information criterion, AIC) e e 2( k 1) AIC ln n n 施瓦茨准则(Schwarz criterion,SC)
一元、二元模型的系数均大于0,符合经济意义,三元模型 系数的符号与经济意义不符。 用一元回归模型的预测值是1758.7,二元回归模型的预测值 是1767.4,2001年的实际值是1782.2。一元、二元模型预测 的绝对误差分别是23.5、14.8。
3) 三个模型的拟合优度与残差
二元:R2 =0.9954,E2 ei2 13405 三元:R2 =0.9957,E3 ei2 9707
746.5 788.3
高级计量经济学 第二章 多元线性回归模型

E[e1e1 X] E[e1e2 X] ... E[e1en X] E[e2e1 X] E[e2e2 X] ... E[e2en X]
...
E[ene1 X] E[ene2 X] ... E[enen X]
利用方差分解公式可以得到: V a r [ e ] E [ V a r [ e X ] ] V a r [ E [ e X ] ]2 I
( X ' X )1 X '[ 2I ]X ( X ' X )1 2 ( X ' X )1
19
对多元回归方程估计结果的解释
多元回归方程估计结果可以表达为
y ˆˆ1 x 1ˆ2 x 2 .. .ˆK x K
由方程可知:
y ˆ ˆ 1 x 1 ˆ 2 x 2 . .ˆ .K x K
E ˆ S 2SY iˆ0ˆ1X 1 iˆ2X 2 i 0
0
E ˆ S 2S Y iˆ0ˆ1 X 1 iˆ2 X 2 iX 1 i 0
1
E ˆ S 2S Y iˆ0ˆ1 X 1 iˆ2 X 2 iX 2 i 0
ˆˆ1 0
N X1i
ˆ2 X2i
X1i X12i X1iX2i
XX 1iX 2i2i1 XY 1iiYi X2 2i X2iYi
思考:如果X1=2X2会出现什么情况?
最小二乘法估计
X' Xˆ X'Y
如果 X'X存在逆矩阵(这是满秩假定所要求的),
那么其解为: ˆ(X'X)1X'Y
最小二乘法估计
(多元回归模型)
计量经济学多元线性回归模型及参数估计

-973 1314090 1822500 947508
-929 975870 1102500 863784
-445 334050 562500 198381
-412 185580 202500 170074
-159 23910 22500 25408
28 4140 22500
762
402 180720 202500 161283
2.多元线性回归模型的基本假定(矩阵形式)
V
ar
Cov( N
)
E
N
E(N
)N
E(
N
)
E(
NN
)
1
E
n2 1
2
12
n
E
2 1
n1
12 22
n2
1n
2n
n2
2
0
0
0
2
0
2
I
0
0
2
2.多元线性回归模型的基本假定(矩阵形式)
E(X
N )
E
1 X 11
ei 0 X i1ei 0 X i2ei 0
X ik ei 0
(*) (*)或(**)是多 元线性回归模型正
(**) 规方程组的另一种 写法。
离差形式的样本回归方程
由于
Yˆi ˆ0 ˆ1Xi1 ˆ2 Xi2 ˆk Xik
[Yi (ˆ0 ˆ1Xi1 ˆ2 Xi2 ˆk Xik )] 0
????eemm??所以有???eem??mnnee???ee?????????????????????????????????????????????nnnnnnnnmmmmmmmmme??????????????2121222211121121????????????????????????????????????????nnnnnnnnnnmmmmmmmmme?????????????????21221122221121221111因为xxxxim?????1为对称等幂矩阵即mm??mmmm???2????????nnnnnnnnnnmmmmmmmmme?????????????????????????????22112222211211221111??nnnnnmmmememem??????????22112222222111?????1212122??????????????kntrtrtrmtr????????xxxxixxxxi其中符号tr表示矩阵的迹其定义为矩阵主对角线元素的和
计量经济学 实验3 多元回归模型

目录目录 (1)一、建立多元线性回归模型 (3)(一) 建立包括时间变量的三元线性回归模型; (3)1. 建立工作文件:CREATE A 78 94 (3)2. 输入统计资料:DATA Y L K (3)3. 生成时间变量t:GENR T=@TREND(77) (3)4. 建立回归模型:LS Y C T L K (3)(二) 建立剔除时间变量的二元线性回归模型; (4)(三) 建立非线性回归模型——C-D生产函数。
(5)二、比较、选择最佳模型 (8)(一) 回归系数的符号及数值是否合理; (8)(二) 模型的更改是否提高了拟合优度; (8)(三) 模型中各个解释变量是否显著; (8)(四) 残差分布情况 (8)实验三多元回归模型【实验目的】掌握建立多元回归模型和比较、筛选模型的方法。
【实验内容】建立我国国有独立核算工业企业生产函数。
根据生产函数理论,生产函数的基本形式为:()ε,tY=。
其中,L、K分别为生产过程中投入的劳动与资金,fL,K,时间变量t反映技术进步的影响。
表3-1列出了我国1978-1994年期间国有独立核算工业企业的有关统计资料;其中产出Y为工业总产值(可比价),L、K分别为年末职工人数和固定资产净值(可比价)。
资料来源:根据《中国统计年鉴-1995》和《中国工业经济年鉴-1995》计算整理【实验步骤】一、 建立多元线性回归模型(一) 建立包括时间变量的三元线性回归模型;在命令窗口依次键入以下命令即可:1. 建立工作文件: CREATE A 78 942. 输入统计资料: DATA Y L K3. 生成时间变量t : GENR T=@TREND(77)4. 建立回归模型: LS Y C T L K则生产函数的估计结果及有关信息如图3-1所示。
图3-1 我国国有独立核算工业企业生产函数的估计结果 因此,我国国有独立工业企业的生产函数为:K L t y 7764.06667.06789.7732.675ˆ+++-= (模型1)t =(-0.252) (0.672) (0.781) (7.433)9958.02=R 9948.02=R 551.1018=F 模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为0.6667,资金的边际产出为0.7764,技术进步的影响使工业总产值平均每年递增77.68亿元。
计量经济学-3多元线性回归模型

计量经济学
Y1 1 X11 X12 X1P 0 u1
Y2 Yn
1 1
X 21
X n1
X 22
X n2
X 2P
2
0
0 0
2
2I
计量经济学
3、u无自相关,Cov(ui,u j) E{[ui Eui ][u j Euj ]}
E(uiu j) 0 i j
4、解释变量X(j j 1,2,,p)与随机扰动项ui不相关,即Cov(X j,ui) 0
5、u服从正态分布,ui ~ N(0, 2)
E
(ˆ1
1 )(ˆ0
0
)
(ˆ1 1 )2
(ˆ1
1 )(ˆ P
P
)
(ˆP P )(ˆ0 0 ) (ˆP P )(ˆ1 1)
(ˆP P )2
计量经济学
Var(ˆ0 ) Cov(ˆ0 , ˆ1 ) Cov(ˆ0 , ˆP )
6、无多重共线。设(X i1,X i2,,X iP)为(X1,X 2,,X P)的第i个观测值,
1 X11 X12 X1P
记:
X
1 1
X 21
X n1
X 22
X n2
X2P
X nP
则:X为n (p 1)矩阵,且Rank(X) p 1
计量经济学
容易证明:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Y1 Y 2 Yn
1 1 1
X 11 X 12 X 1n
X 21 X 22 X 2n
X k1 Xk2 X kn
第三章
◆ 学习目的
多元线性回归模型
理解多元线性回归模型的矩阵表示,掌握 多元线性回归模型的参数估计、检验和预测。
第三章
◆ 基本要求
多元线性回归模型
1)理解多元线性回归模型的矩阵表示,了解多元线性回归模型的基本假设;
2)掌握多元线性回归模型的普通最小二乘参数估计方法,了解多元线性回归模 型的普通最小二乘参数估计量与样本回归线的性质、多元线性回归模型的随机误 差项方差的普通最小二乘参数估计; 3)学会对多元线性回归模型进行拟合优度检验,对多元线性回归模型的参数进 行区间估计,对多元线性回归模型进行变量显著性检验和方程显著性检验;
记
Y1 Y Y 2 Yn
1 1 X 1 X 11 X 12 X 1n X 21 X 22 X 2n X k1 Xk2 X kn
0 1 k
1 2 n
二、多元线性回归模型的基本假设
一、多元线性回归模型的矩阵表示
Y1 0 1 X 11 2 X 21 k X k1 1 Y X X X 2 0 1 12 2 22 k k2 2 Yn 0 1 X 1n 2 X 2 n k X kn n
0 1 k
1 2 n
(3-2)
Yi 0 1 X 1i 2 X 2 i k X ki i
也被称为 总体回归函数的 随机表达形式。它 的 非随机 表达式为:
ei称为残差或剩余项(residuals),可看成是总 体回归函数中随机扰动项i的近似替代。: 样本回归函数ห้องสมุดไป่ตู้矩阵表达:
ˆ Xβ ˆ Y
或
e1 e e 2 e n
ˆ e Y Xβ
其中:
ˆ 0 ˆ ˆ 1 β ˆ k
n 为样本容量。
1 、 待估参数 0 、 2 、
k,反映其他解释变量保持不变情况下, 、
对应解释变量每变化一个单位引起的被解释变量的变化,也被称为偏回归系数。
第一节 多元线性回归模型的 矩阵表示与基本假设
一、多元线性回归模型的矩阵表示 二、多元线性回归模型的基本假设
讲课内容
一、多元线性回归模型的矩阵表示
E(Yi | X 1i , X 2i , X ki ) 0 1 X 1i 2 X 2i k X ki
方程表示: 各变量X值固定时,Y的平均响应。
j 也被称为 偏回归系数 ,表示在其他解释
变量保持不变的情况下,Xj每变化1个单位时, Y的均值E(Y)的变化; 或者说 j给出了 Xj的单位变化对 Y均值的“直 接”或“净”(不含其他变量)影响。
假设1,n(k+1)矩阵X是非随机的,且X的秩=k+1,即 X矩阵列满秩。
假设2,
1 E ( 1 ) E (μ) E 0 E ( ) n n
1 ) E E (μμ n
有
Y X
(3-3)
多元线性总体回归模型的矩阵形式
多元线性总体回归函数可用矩阵形式表示为
E (Y/X) X
(3-4)
样本回归函数:用来估计总体回归函数
ˆ ˆ X ˆ X ˆ X ˆ Y i 0 1 1i 2 2i ki ki
其随机表示式:
ˆ ˆ X ˆ X ˆ X e Yi 0 1 1i 2 2i ki ki i
4)学会进行多元线性回归模型被解释变量的总体均值和个别值的预测;
5)学会利用EViews软件进行多元线性回归模型的参数估计、检验和预测。
第三章
多元线性回归模型
◆多元线性回归模型的矩阵表示与基本假设
◆多元线性回归模型的参数估计 ◆多元线性回归模型的拟合优度检验 ◆多元线性回归模型的统计推断 ◆多元线性回归模型的预测
Cov ( i , j ) E ( i j ) 0
i j i, j 1,2,, n
假设3,解释变量与随机项不相关
Cov ( X ji , i ) 0
j 1,2, k
假设4,随机项满足正态分布
i ~ N (0, 2 )
上述假设的矩阵符号表示 式:
第一节 多元线性回归模型的 矩阵表示与基本假设
多元线性回归模型的一般形式是
Yi 0 1 X1i 2 X 2i
k X ki i
i 1, 2, ,n
k 、
0 、 1 、 其中,Y为被解释变量,X1 、X 2 、 、X k 为解释变量, 2 、
为随机误差项, 为待估参数,即回归系数, k 为解释变量个数,i 为观测值下标,
讲课内容
一、多元线性回归模型的矩阵表示
二、多元线性回归模型的基本假设
二、多元线性回归模型的基本假定
假设1,解释变量是非随机的或固定的,且 各X之间互不相关(无多重共线性)。
假设2,随机误差项具有零均值、同方差及 不序列相关性
E ( i ) 0
Var ( i ) E ( i2 ) 2