多元线性回归模型公式定稿版
多元线性回归
![多元线性回归](https://img.taocdn.com/s3/m/377e2c0d0912a21614792948.png)
36
目录 上页 下页 返回 结束
§5.4 回归方程的显著性检验
2019/11/5
中国人民大学六西格玛质量管理研究中心
37
目录 上页 下页 返回 结束
§5.4 回归方程的显著性检验
2019/11/5
中国人民大学六西格玛质量管理研究中心
38
目录 上页 下页 返回 结束
§5.4 回归方程的显著性检验
2019/11/5
中国人民大学六西格玛质量管理研究中心
16
目录 上页 下页 返回 结束
§5.2 多元回归参数的估计
2019/11/5
中国人民大学六西格玛质量管理研究中心
17
目录 上页 下页 返回 结束
§5.2 多元回归参数的估计
2019/11/5
中国人民大学六西格玛质量管理研究中心
18
目录 上页 下页 返回 结束
§5.4 回归方程的显著性检验
在一元线性回归中,回归系数显著性的t检验与回归方 程显著性的F检验是等价的,而在多元线性回归中,这 两种检验不同。
2019/11/5
中国人民大学六西格玛质量管理研究中心
43
目录 上页 下页 返回 结束
§5.4 回归方程的显著性检验
2019/11/5
中国人民大学六西格玛质量管理研究中心
27
目录 上页 下页 返回 结束
§5.3 参数估计量的性质
2019/11/5
中国人民大学六西格玛质量管理研究中心
28
目录 上页 下页 返回 结束
§5.3 参数估计量的性质
性质4 Gauss-Markov定理
2019/11/5
中国人民大学六西格玛质量管理研究中心
29
第三章 多元线性回归模型
![第三章 多元线性回归模型](https://img.taocdn.com/s3/m/1a5a378051e79b8968022640.png)
即
Y Xb U
X 称为数据矩阵或设计矩阵。
6
二、古典假定
假定1:零均值假定 E(ui ) 0 (i 1,2,...,n)
1 E ( 1 ) E ( ) 2 2 E (μ) E 0 n E ( n )
写成矩阵形式:
Y1 1 X 21 Y 1 X 22 2 Yn 1 X 2 n X 31 X k 1 b 1 u1 X 32 X k 2 b 2 u 2 X 3 n X kn b k un
或
ei 1 X 21 X e 1 X 22 2i i X ki ei 1 X 2 n X 31 X k 1 e1 X 32 X k 2 e2 X e 0 X 3 n X kn en
9
当总体观测值难于得到时,回归系数向 量 b 是未知的,这时可以由样本观测值进行 估计,可表示为
ˆ ˆ Xb Y
但实际观测值与计算值有偏差,记为:
ˆ e Y Y
于是
ˆ e Y Xb
称为多元样本回归函数。
10
ˆ b 1 ˆ b2 ˆ b ˆ b k
同理
ˆ x x b ˆ x 2 x3 i yi b 2 2i 3i 3 3i
x2 i yi x x3 i yi x2 i x3 i ˆ b2 2 2 2 x2 x ( x x ) i 3i 2i 3i
2 3i
x3 i yi x x2 i yi x2 i x3 i ˆ b3 2 2 2 x2 x ( x x ) i 3i 2i 3i
多元线性回归方程公式
![多元线性回归方程公式](https://img.taocdn.com/s3/m/b8d26e8a0129bd64783e0912a216147917117e79.png)
多元线性回归方程公式
多元线性回归是一种数理统计方法,它将一个或多个自变量与多个因变量的关系进行描述和建模的一种方法。
它能够识别自变量与因变量之间的相关关系并用于预测,通常会以一个函数的形式来进行建模。
多元线性回归的一般形式是一个拟合的函数:
y=b0 + b1*x1 + b2*x2 +…… +bn*xn
其中,y是因变量,X1,X2,…,xn是自变量,b0,b1,b2,…,bn是参数。
多元线性回归可以用来应用于多种场合,比如分析市场营销数据,探索客户满意度,研究葡萄酒品质等。
通过多元线性回归,我们可以更深入地分析数据,找出自变量与因变量之间的关系。
此外,多元线性回归还可以有效地用于预测目标变量。
只要设计合理的模型,便可以用多元线性回归方程来预测一个变量如何受另一变量的影响。
总之,多元线性回归是一种有效的统计分析手段,可以进行有效的数据分析和预测,有助于更好地理解数据之间的关系,并帮助企业更有效地利用这些数据。
多元线性回归模型多元线性回归模型
![多元线性回归模型多元线性回归模型](https://img.taocdn.com/s3/m/75780089f78a6529657d5300.png)
1
e
1 2
2
(Yi
( ˆ0
ˆ1 X1i
ˆ2
X
2i
ˆk
X
ki
))2
(2
)
n 2
n
1
1 (YXβˆ )(YXβˆ )
e 2 2
(2
)
n 2
n
即为变量Y的或然函数
• 对数或然函数
为
L* Ln(L)
nLn( 2 ) 1 (Y Xβˆ ) (Y Xβˆ ) 2 2
对对数或然函数求极大值,也就是对
计量为:
ˆ 2
e
2 i
e e
n k 1 n k 1
*二、最大或然估计
• 对于多元线性回归模型
易知
Yi 0 1 X 1i 2 X 2i k X ki i
Yi ~ N (Xiβ , 2 )
• Y的随机抽取的n组样本观测值的联合概率 L(βˆ , 2 ) P(Y1,Y2 , ,Yn )
§3.2 多元线性回归模型的估计
一、普通最小二乘估计 *二、最大或然估计 *三、矩估计 四、参数估计量的性质 五、样本容量问题 六、估计实例
说明
估计方法: 3大类方法:OLS、ML或者MM – 在经典模型中多应用OLS – 在非经典模型中多应用ML或者MM – 在本节中, ML与MM为选学内容
一、普通最小二乘估计
求期望 :
Y Xβμ
XY XXβ Xμ
X(Y Xβ) Xμ
E(X(Y Xβ) 0
E(X(Y Xβ) 0
称为原总体回归方程的一组矩条件,表明了原总 体回归方程所具有的内在特征。
1 X(Y Xβˆ ) 0 n
由此得到正规方程组
多元线性回归模型多元线性回归模型
![多元线性回归模型多元线性回归模型](https://img.taocdn.com/s3/m/82a77b94d1f34693daef3e8d.png)
2
i E(i )
假设3,E(X’)=0,即
E
X 1i i
X 1i E(i )
0
X Ki i X Ki E(i )
假设4,向量 有一多维正态分布,即
μ~ N(0, 2I)
XY XXβˆ 0
得到: 于是:
XY XXβˆ
βˆ (XX)1 XY
例3.2.1:在例2.1.1的家庭收入-消费支出例中,
1 X 1
(
X
'
X
)
1 X1
1 X2
1 Xn
1 1
X 2
Xn
多元线性回归模型:表现在线性回归模型中的 解释变量有多个。
一般表现形式:
Yi 0 1X1i 2 X 2i k X ki i i=1,2…,n
其中:k为解释变量的数目,j称为回归参数
(regression coefficient)。
习惯上:把常数项看成为一虚变量的系 数,该虚变量的样本观测值始终取1。于是: 模型中解释变量的数目为(k+1)
ˆk
在离差形式下,参数的最小二乘估计结果为
βˆ (xx)1 xY
ˆ0 Y ˆ1 X1 ˆk X k
⃟随机误差项的方差的无偏估计
可以证明,随机误差项的方差的无偏估
计量为:
ˆ 2
ei2 ee
n k 1 n k 1
*二、最大或然估计
由此得到正规方程组
多元线性回归模型原理2页
![多元线性回归模型原理2页](https://img.taocdn.com/s3/m/90d2adb4d5d8d15abe23482fb4daa58da1111c55.png)
多元线性回归模型原理2页多元线性回归是一种广泛应用于统计数据分析的方法。
它被用来建立一个模型,通过对多个自变量和一个因变量进行回归分析,来估计因变量和自变量之间的关系。
这种方法可帮助我们预测因变量的未来值,或探索不同自变量与因变量之间的关系。
多元线性回归的模型假设因变量与自变量之间存在线性关系,即当自变量发生变化时,因变量会发生相应的变化。
模型建立的目的就是通过数据分析寻找这些关系,并预测它们在未来的表现。
Y = β0 + β1X1 + β2X2 + … + βpXp + ε其中Y是因变量,X1到Xp是自变量,β0到βp是模型的系数,ε是模型的误差项。
模型中的系数β0到βp表示因变量与自变量之间的关系。
收集足够的数据,利用最小二乘法等统计方法,可以估计这些系数的值,使得模型可以更好地拟合数据。
最终的模型可用于预测新的数据。
对于每个自变量,我们可以计算出其特定的β系数,以确定它们对因变量的影响程度。
这些系数越大,说明自变量对因变量的影响越大。
而且,如果某个系数的值为负数,则说明它与因变量的关系相反,即自变量的增加导致因变量的减少。
多元线性回归模型的可靠性除了系数估计,还需要考虑误差项ε的大小。
如果误差项的值较小,说明模型可以更好地拟合数据,而模型的可靠性也较高。
在分析多元线性回归模型时,我们要考虑很多因素。
例如,我们需要判断每个变量对于预测因变量的重要性,并根据问题的实际需要选择最合适的自变量。
同时,我们也需要注意模型的稳定性和可靠性,避免出现模型过拟合或欠拟合的问题。
总的来说,多元线性回归是一种灵活而常用的数据分析方法,可以帮助我们更好地理解因变量与自变量之间的关系,并预测未来的趋势。
在实际应用中,我们可以根据具体情况灵活运用这种方法,以获得最佳的结果。
第十章:多元线性回归
![第十章:多元线性回归](https://img.taocdn.com/s3/m/642f7c687fd5360cba1adbad.png)
胰岛素 (μU/ml) X3
4.53 7.32 6.95 5.88 4.05 1.42 12.60 6.75 16.28 6.59 3.61 6.61 7.57 1.42 10.35 8.53 4.53 12.79 2.53 5.28 2.96 4.31 3.47 3.37 1.20 8.61 6.45
ˆ ) 2 [Y (b b X b X b X )]2 Q (Y Y 0 1 1 2 2 m m
求偏导数
原
理
最小二乘法
l11b1 l12b2 l1m bm l1Y l b l b l b l 21 1 22 2 2m m 2Y l m1b1 l m 2 b2 l mm bm l mY b0 Y (b1 X 1b2 X 2 bm X m )
2. 决定系数R 2: SS回 SS残 2 R 1 SS总 SS总
0 R 2 1 ,说明自变量 X 1 , X 2 ,, X m 能够
解释Y 变化的百分比,其值愈接近于 1,说明 模型对数据的拟合程度愈好。本例
133.7107 R 0.6008 222.5519
2
表明血糖含量变异的 60%可由总胆固醇、 甘油 三脂、胰岛素和糖化血红蛋白的变化来解释。
其中;SSR是由x和y的直线回归关系引起的,可以由回归
直线做出解释;SSE是除了x对y的线性影响之外的随机因素所 引起的Y的变动,是回归直线所不能解释的。
可决系数(判定系数、决定系数)
回归平方和在总离差平方和中所占的比例可以作为一个统 计指标,用来衡量X与Y 的关系密切程度以及回归直线的代表
性好坏,称为可决系数。
结果
0.1424 t1 0.390 0.3656 0.2706 t3 2.229 0.1214 0.3515 t2 1.721 0.2042 0.6382 t4 2.623 0.2433
多元线性回归
![多元线性回归](https://img.taocdn.com/s3/m/112c7b14df80d4d8d15abe23482fb4daa58d1dc2.png)
多元线性回归模型一、多元线性回归模型的一般形式设随机变量y 与一般变量p x x x ,,,21 的线性回归模型为:εββββ+++++=p p x x x y 22110 写成矩阵形式为:εβ+=X y其中:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n y y y y 21 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X 212222********* ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p ββββ 10 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n εεεε 21 二、多元线性回归模型的基本假定1、解释变量p x x x ,,,21 是确定性变量,不是随机变量,且要求n p X r a n k <+=1)(。
这里的n p X rank <+=1)(表明设计矩阵X 中自变量列之间不相关,样本容量的个数应大于解释变量的个数,X 是一满秩矩阵。
2、随机误差项具有0均值和等方差,即:⎪⎩⎪⎨⎧⎩⎨⎧=≠====),,2,1,(,,0,),cov(,,2,1,0)(2n j i j i j i n i E j i i σεεε 0)(=i E ε,即假设观测值没有系统误差,随机误差i ε的平均值为0,随机误差i ε的协方差为0表明随机误差项在不同的样本点之间是不相关的(在正态假定下即为独立),不存在序列相关,并且具有相同的精度。
3、正态分布的假定条件为:⎩⎨⎧=相互独立n i n i N εεεσε ,,,,2,1),,0(~212,矩阵表示:),0(~2n I N σε,由该假定和多元正态分布的性质可知,随机变量y 服从n 维正态分布,回归模型的期望向量为:βX y E =)(;n I y 2)var(σ= 因此有),(~2n I X N y σβ 三、多元线性回归方程的解释对于一般情况含有p 个自变量的回归方程p p x x x y E ββββ++++= 22110)(的解释,每个回归系数i β表示在回归方程中其他自变量保持不变的情况下,自变量i x 每增加一个单位时因变量y 的平均增加程度。
§3.1 多元线性回归模型
![§3.1 多元线性回归模型](https://img.taocdn.com/s3/m/ca9c58d233d4b14e85246811.png)
Y = Xβ+ μ β
1 X 11 1 X 12 X= M M 1 X 1n X 21 L X k1 X 22 L X k 2 M M X 2 n L X kn n×( k +1)
β0 β 1 β= β 2 M β k ( k +1)×1
1 2 μ= M n n×1
i ~ N (0, σ 2 )
上述假设的矩阵符号表示 上述假设的矩阵符号表示 式: 假设1 +1)矩阵 是非随机的, +1, 假设1,n×(k+1)矩阵 是非随机的,且X的秩ρ=k+1, × +1)矩阵X是非随机的 的秩 +1 满秩。 即X满秩。 满秩 假设2 假设2,
1 E ( 1 ) E (μ = E M = M = 0 ) E ( ) n n
样本回归函数: 样本回归函数:用来估计总体回归函数
Yi = β 0 + β 1 X 1i + β 2 X 2i + L + β ki X ki
其随机表示式: 随机表示式:
Yi = β0 + β1 X1i + β2 X2i +L+ βki Xki + ei
样本回归函数的矩阵表达: 样本回归函数的矩阵表达:
第三章 经典单方程计量经济学模 型:多元回归
多元线性回归模型 多元线性回归模型的参数估计 多元线性回归模型的统计检验 多元线性回归模型的预测 回归模型的其他形式 回归模型的参数约束
§3.1 多元线性回归模型
一、多元线性回归模型 二、多元线性回归模型的基本假定
一、多元线性回归模型
Yi =β0 +β1X1i +β2X2i ++βk Xki +i
(优选)多元回归模型
![(优选)多元回归模型](https://img.taocdn.com/s3/m/aba0a1717375a417866f8ff7.png)
i ~ N (0, 2 )
上述假设的矩阵符号表示 式:
假设1,n(k+1)矩阵X是非随机的,且X的秩=k+1,
即X满秩。 假设2,
E (μ)
E
1
E(1
)
0
n E( n )
E (μμ )
E
1
1
n
E
12
1 n
n
n
1
2 n
var(1 )
cov(1, n ) 2 0
i=1,2…n
根据最小二乘原理,参数估计值应该是下列方程组的解
ˆ
0
Q
0
ˆ1
Q
0
ˆ
2
Q
0
ˆ k
Q
0
其中
n
n
Q ei2 (Yi Yˆi ) 2
i 1
i 1
n
2
(Yi (ˆ0 ˆ1 X 1i ˆ2 X 2i ˆk X ki ))
i 1
于是得到关于待估参数估计值的正规方程组:
ˆ 2
e
2 i
e e
n k 1 n k 1
样本容量问题
⒈ 最小样本容量
所谓“最小样本容量”,即从最小二乘原理 和最大或然原理出发,欲得到参数估计量,不管 其质量如何,所要求的样本容量的下限。
模型中解释变量的数目为(k+1)
Yi 0 1 X 1i 2 X 2i k X ki i
也被称为总体回归函数的随机表达形式。它 的 非随机表达式为:
E(Yi | X1i , X 2i , X ki ) 0 1 X1i 2 X 2i k X ki
方程表示:各变量X值固定时Y的平均响应。
多元线性回归的计算方法
![多元线性回归的计算方法](https://img.taocdn.com/s3/m/f6c749f8b14e852458fb5744.png)
多元线性回归的计算方法 摘要在实际经济问题中,一个变量往往受到多个变量的影响。
例如,家庭消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。
这样的模型被称为多元线性回归模型。
多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。
这里只介绍多元线性回归的一些基本问题。
但由于各个自变量的单位可能不一样,比如说一个消费水平的关系式中,工资水平、受教育程度、职业、地区、家庭负担等等因素都会影响到消费水平,而这些影响因素(自变量)的单位显然是不同的,因此自变量前系数的大小并不能说明该因素的重要程度,更简单地来说,同样工资收入,如果用元为单位就比用百元为单位所得的回归系数要小,但是工资水平对消费的影响程度并没有变,所以得想办法将各个自变量化到统一的单位上来。
前面学到的标准分就有这个功能,具体到这里来说,就是将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到的回归系数就能反映对应自变量的重要程度。
这时的回归方程称为标准回归方程,回归系数称为标准回归系数,表示如下:Zy=β1Zx1+β2Zx2+…+βkZxk注意,由于都化成了标准分,所以就不再有常数项a 了,因为各自变量都取平均水平时,因变量也应该取平均水平,而平均水平正好对应标准分0,当等式两端的变量都取0时,常数项也就为0了。
多元线性回归模型的建立多元线性回归模型的一般形式为Yi=β0+β1X1i+β2X2i+…+i i i i h x υβ+ =1,2,…,n其中 k 为解释变量的数目,j β=(j=1,2,…,k)称为回归系数(regression coefficient)。
上式也被称为总体回归函数的随机表达式。
它的非随机表达式为E(Y∣X1i,X2i,…Xki,)=β0+β1X1i+β2X2i+…+βkXkiβj 也被称为偏回归系数(partial regression coefficient) 多元线性回归的计算模型一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。
多元线性回归模型
![多元线性回归模型](https://img.taocdn.com/s3/m/8976f0d628ea81c758f578f0.png)
多元线性回归模型1.假定条件、最小二乘估计量和高斯—马尔可夫定理 多元线性回归模型:y t = β0 +β1x t 1 + β2x t 2 +…+ βk - 1x t k -1 + u t , (1.1)其中y t 是被解释变量(因变量),x t j 是解释变量(自变量),u t 是随机误差项,βi , i = 0, 1, … , k - 1是回归参数(通常未知)。
)1(21)1(110)(111222111111)1(21111⨯⨯-⨯---⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡T T k k k T k T TjT k j k j T Tu u u x x x x x x x x x y y yβββ (1.3)Y = X β + u , (1.4)为保证得到最优估计量,回归模型(1.4)应满足如下假定条件。
假定 ⑴ 随机误差项u t 是非自相关的,每一误差项都满足均值为零,方差 σ2相同且为有限值,即E(u ) = 0 = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡00 , V ar (u ) = E(u ˆu ˆ' ) = σ 2I = σ 2⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10000001假定 ⑵ 解释变量与误差项相互独立,即 E(X 'u ) = 0假定 ⑶ 解释变量之间线性无关。
rk(X 'X ) = rk(X ) = k 其中rk (⋅)表示矩阵的秩。
假定⑷ 解释变量是非随机的,且当T → ∞ 时T – 1X 'X → Q其中Q 是一个有限值的非退化矩阵。
最小二乘 (OLS) 法的原理是求残差(误差项的估计值)平方和最小。
代数上是求极值问题。
min S = (Y - X βˆ)' (Y - X βˆ) = Y 'Y -βˆ'X 'Y - Y ' X βˆ +βˆ'X 'X βˆ= Y 'Y - 2βˆ'X 'Y + βˆ'X 'X βˆ (1.5)因为Y 'X βˆ是一个标量,所以有Y 'X βˆ = βˆ'X 'Y 。
多元线性回归的计算方法
![多元线性回归的计算方法](https://img.taocdn.com/s3/m/f6c749f8b14e852458fb5744.png)
多元线性回归的计算方法 摘要在实际经济问题中,一个变量往往受到多个变量的影响。
例如,家庭消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。
这样的模型被称为多元线性回归模型。
多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。
这里只介绍多元线性回归的一些基本问题。
但由于各个自变量的单位可能不一样,比如说一个消费水平的关系式中,工资水平、受教育程度、职业、地区、家庭负担等等因素都会影响到消费水平,而这些影响因素(自变量)的单位显然是不同的,因此自变量前系数的大小并不能说明该因素的重要程度,更简单地来说,同样工资收入,如果用元为单位就比用百元为单位所得的回归系数要小,但是工资水平对消费的影响程度并没有变,所以得想办法将各个自变量化到统一的单位上来。
前面学到的标准分就有这个功能,具体到这里来说,就是将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到的回归系数就能反映对应自变量的重要程度。
这时的回归方程称为标准回归方程,回归系数称为标准回归系数,表示如下:Zy=β1Zx1+β2Zx2+…+βkZxk注意,由于都化成了标准分,所以就不再有常数项a 了,因为各自变量都取平均水平时,因变量也应该取平均水平,而平均水平正好对应标准分0,当等式两端的变量都取0时,常数项也就为0了。
多元线性回归模型的建立多元线性回归模型的一般形式为Yi=β0+β1X1i+β2X2i+…+i i i i h x υβ+ =1,2,…,n其中 k 为解释变量的数目,j β=(j=1,2,…,k)称为回归系数(regression coefficient)。
上式也被称为总体回归函数的随机表达式。
它的非随机表达式为E(Y∣X1i,X2i,…Xki,)=β0+β1X1i+β2X2i+…+βkXkiβj 也被称为偏回归系数(partial regression coefficient) 多元线性回归的计算模型一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。
多元线性回归模型的公式和参数估计方法以及如何进行统计推断和假设检验
![多元线性回归模型的公式和参数估计方法以及如何进行统计推断和假设检验](https://img.taocdn.com/s3/m/0b31acaa5ff7ba0d4a7302768e9951e79b8969b6.png)
多元线性回归模型的公式和参数估计方法以及如何进行统计推断和假设检验多元线性回归模型是一种常用的统计分析方法,它在研究多个自变量与一个因变量之间的关系时具有重要的应用价值。
本文将介绍多元线性回归模型的公式和参数估计方法,并讨论如何进行统计推断和假设检验。
一、多元线性回归模型的公式多元线性回归模型的一般形式如下:Y = β0 + β1X1 + β2X2 + ... + βkXk + ε其中,Y表示因变量,X1至Xk表示自变量,β0至βk表示模型的参数,ε表示误差项。
在多元线性回归模型中,我们希望通过样本数据对模型的参数进行估计,从而得到一个拟合度较好的回归方程。
常用的参数估计方法有最小二乘法。
二、参数估计方法:最小二乘法最小二乘法是一种常用的参数估计方法,通过最小化观测值与模型预测值之间的残差平方和来估计模型的参数。
参数估计的公式如下:β = (X^T*X)^(-1)*X^T*Y其中,β表示参数矩阵,X表示自变量的矩阵,Y表示因变量的矩阵。
三、统计推断和假设检验在进行多元线性回归分析时,我们经常需要对模型进行统计推断和假设检验,以验证模型的有效性和可靠性。
统计推断是通过对模型参数的估计,来对总体参数进行推断。
常用的统计推断方法包括置信区间和假设检验。
1. 置信区间:置信区间可以用来估计总体参数的范围,它是一个包含总体参数真值的区间。
2. 假设检验:假设检验用于检验总体参数的假设是否成立。
常见的假设检验方法有t检验和F检验。
在多元线性回归模型中,通常我们希望检验各个自变量对因变量的影响是否显著,以及模型整体的拟合程度是否良好。
对于各个自变量的影响,我们可以通过假设检验来判断相应参数的显著性。
通常使用的是t检验,检验自变量对应参数是否显著不等于零。
对于整体模型的拟合程度,可以使用F检验来判断模型的显著性。
F检验可以判断模型中的自变量是否存在显著的线性组合对因变量的影响。
在进行假设检验时,我们需要设定显著性水平,通常是α=0.05。
(完整版)多元线性回归模型公式
![(完整版)多元线性回归模型公式](https://img.taocdn.com/s3/m/1b9d4ca5ad02de80d5d840c9.png)
二、多元线性回归模型在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。
因此,多元地理回归模型更带有普遍性的意义。
(一)多元线性回归模型的建立假设某一因变量y 受k 个自变量k x x x ,...,,21的影响,其n 组观测值为(ka a a a x x x y ,...,,,21),n a ,...,2,1=。
那么,多元线性回归模型的结构形式为:a ka k a a a x x x y εββββ+++++=...22110(3。
2。
11)式中:k βββ,...,1,0为待定参数; a ε为随机变量。
如果k b b b ,...,,10分别为k ββββ...,,,210的拟合值,则回归方程为ŷ=k k x b x b x b b ++++...22110(3。
2.12)式中:0b 为常数;k b b b ,...,,21称为偏回归系数。
偏回归系数i b (k i ,...,2,1=)的意义是,当其他自变量j x (i j ≠)都固定时,自变量i x 每变化一个单位而使因变量y 平均改变的数值。
根据最小二乘法原理,i β(k i ,...,2,1,0=)的估计值i b (k i ,...,2,1,0=)应该使()[]min (2)12211012→++++-=⎪⎭⎫⎝⎛-=∑∑==∧n a ka k a a a na a a xb x b x b b y y y Q (3。
2.13)有求极值的必要条件得⎪⎪⎩⎪⎪⎨⎧==⎪⎭⎫ ⎝⎛--=∂∂=⎪⎭⎫⎝⎛--=∂∂∑∑=∧=∧n a ja a a jn a a a k j x y y b Q y y b Q 110),...,2,1(0202(3.2.14) 将方程组(3。
2.14)式展开整理后得: ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=++++=++++=++++=++++∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑===================na a ka k n a ka n a ka a n a ka a n a ka n a aa k n a ka a n a a n a a a na a na aa k n a ka a n a a a n a a n a a na ak n a ka n a a n a a y x b x b x x b x x b x y x b x x b x b x x b x yx b x x b x x b x b x y b x b x b x nb 11221211101121221221121012111121211121011112121110)(...)()()(...)(...)()()()(...)()()()(...)()( (3.2。
多元线性回归模型公式
![多元线性回归模型公式](https://img.taocdn.com/s3/m/2d2965b131b765ce04081405.png)
多元线性回归模型公式-CAL-FENGHAI.-(YICAI)-Company One1二、多元线性回归模型在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。
因此,多元地理回归模型更带有普遍性的意义。
(一)多元线性回归模型的建立假设某一因变量y 受k 个自变量k x x x ,...,,21的影响,其n 组观测值为(ka a a a x x x y ,...,,,21),n a ,...,2,1=。
那么,多元线性回归模型的结构形式为:a ka k a a a x x x y εββββ+++++=...22110(3.2.11)式中:k βββ,...,1,0为待定参数; a ε为随机变量。
如果k b b b ,...,,10分别为k ββββ...,,,210的拟合值,则回归方程为=k k x b x b x b b ++++...22110(3.2.12)式中:0b 为常数;k b b b ,...,,21称为偏回归系数。
偏回归系数i b (k i ,...,2,1=)的意义是,当其他自变量j x (i j ≠)都固定时,自变量i x 每变化一个单位而使因变量y 平均改变的数值。
根据最小二乘法原理,i β(k i ,...,2,1,0=)的估计值i b (k i ,...,2,1,0=)应该使()[]min (2)12211012→++++-=⎪⎭⎫⎝⎛-=∑∑==∧n a ka k a a a na a a xb x b x b b y y y Q (3.2.13)有求极值的必要条件得⎪⎪⎩⎪⎪⎨⎧==⎪⎭⎫ ⎝⎛--=∂∂=⎪⎭⎫⎝⎛--=∂∂∑∑=∧=∧n a ja a a jn a a a k j x y y b Q y y b Q 110),...,2,1(0202(3.2.14) 将方程组(3.2.14)式展开整理后得:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=++++=++++=++++=++++∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑===================na a ka k n a ka n a ka a n a ka a n a ka n a aa k n a ka a n a a n a a a na a na aa k n a ka a n a a a n a a n a a na ak n a ka n a a n a a y x b x b x x b x x b x y x b x x b x b x x b x y x b x x b x x b x b x y b x b x b x nb 11221211101121221221121012111121211121011112121110)(...)()()(...)(...)()()()(...)()()()(...)()( (3.2.15)方程组(3.2.15)式,被称为正规方程组。
第4章多元线性回归模型
![第4章多元线性回归模型](https://img.taocdn.com/s3/m/413e3da1284ac850ad0242fc.png)
ˆ j பைடு நூலகம் j s ˆ
j
~ t Nk
ˆ ˆ ˆ 这是因为Var( )=E( -β )( -β )’,而
ˆ (xx)1 xy (xx)1 x(x ) (xx)1 x ˆ 所以 Var() E[(xx)1 x][(xx)1 x] E[(xx)1 xx(xx)1 ]
RSS R T SS
2
(Yi Y) 2 ˆ
( Y Y)
i
2
1
( Y Y)
i
i2 ˆ
2
第4章 多元线性回归模型
3、调整的R2,记
R 1
2
与R2关系
( Y Y)
i
2
i2 /( N k ) ˆ
2
/( N 1)
N 1 R 1 (1 R ) Nk
x)1 xE()x(xx)1 2 (xx)1 (x
第4章 多元线性回归模型
ˆ ) 2 (xx)1 即 Var ( 对二元线性回归模型有 x 1 x x x ) (x x x x x x (1 r
第4章 多元线性回归模型
§4.2 回归统计量 1、高斯-马尔可夫定理 在多元回归模型假设1~5成立的条件下,β ˆ 的最小二乘(LS)估计 ,也是它的最小方差 线性无偏估计。 2、当误差项服从正态分布时,最小二乘估 计也是极大似然估计。以一元为例,对应的 似然方程为:
1 1 N 1/ 2 2 ln L N ln ln(2) 2 ( yi x i) 2 2 i 1
第4章 多元线性回归模型
多元线性回归模型原理定稿版
![多元线性回归模型原理定稿版](https://img.taocdn.com/s3/m/ee577ab6856a561252d36fd5.png)
多元线性回归模型原理 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】研究在线性关系相关性条件下,两个或者两个以上自变量对一个因变量,为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。
多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型类似,只是在计算上为复杂需借助计算机来完成。
计算公式如下:设随机y 与一般变量12,,k x x x 的线性回归模型为: 其中01,,k βββ是1k +个未知参数,0β称为回归常数,1,k ββ称为回归系数;y 称为被解释变量;12,,k x x x 是k 个可以精确可控制的一般变量,称为解释变量。
当1p =时,上式即为一元线性回归模型,2k ≥时,上式就叫做多元形多元回归模型。
ε是随机误差,与一元线性回归一样,通常假设同样,多元线性总体回归方程为01122k k y x x x ββββ=++++系数1β表示在其他自变量不变的情况下,自变量1x 变动到一个单位时引起的因变量y 的平均单位。
其他回归系数的含义相似,从集合意义上来说,多元回归是多维空间上的一个平面。
多元线性样本回归方程为:01122ˆˆˆˆˆk ky x x x ββββ=++++ 多元线性回归方程中回归系数的估计同样可以采用最小二乘法。
由残差平方和:ˆ()0SSE y y∑=-=根据微积分中求极小值得原理,可知残差平方和SSE 存在极小值。
欲使SSE 达到最小,SSE 对01,,k βββ的偏导数必须为零。
将SSE 对01,,k βββ求偏导数,并令其等于零,加以整理后可得到1k +各方程式:ˆ2()0i SSE y yβ∂=--=∂∑ 通过求解这一方程组便可分别得到01,,k βββ的估计值0ˆβ,1ˆβ,···ˆk β回归系数的估计值,当自变量个数较多时,计算十分复杂,必须依靠计算机独立完成。
多元线性回归的计算模型
![多元线性回归的计算模型](https://img.taocdn.com/s3/m/b1e9723c580216fc700afd6a.png)
多元线性回归的计算模型[1]一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。
当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元性回归。
设y为因变量,为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为:其中,b0为常数项,为回归系数,b1为固定时,x1每增加一个单位对y的效应,即x1对y的偏回归系数;同理b2为固定时,x2每增加一个单位对y的效应,即,x2对y的偏回归系数,等等。
如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为:其中,b0为常数项,为回归系数,b1为固定时,x2每增加一个单位对y的效应,即x2对y的偏回归系数,等等。
如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为:y = b0 + b1x1 + b2x2 + e建立多元性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自变量的选择,其准则是:(1)自变量对因变量必须有显著的影响,并呈密切的线性相关;(2)自变量与因变量之间的线性相关必须是真实的,而不是形式上的;(3)自变量之彰应具有一定的互斥性,即自变量之彰的相关程度不应高于自变量与因变量之因的相关程度;(4)自变量应具有完整的统计数据,其预测值容易确定。
多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和()为最小的前提下,用最小二乘法求解参数。
以二线性回归模型为例,求解回归参数的标准方程组为解此方程可求得b0,b1,b2的数值。
亦可用下列矩阵法求得即[编辑]多元线性回归模型的检验[1]多元性回归模型与一元线性回归模型一样,在得到参数的最小二乘法的估计值之后,也需要进行必要的检验与评价,以决定模型是否可以应用。
多元线性回归模型公式之欧阳家百创编
![多元线性回归模型公式之欧阳家百创编](https://img.taocdn.com/s3/m/8b044f0fa58da0116d174904.png)
二、多元线性回归模型欧阳家百(2021.03.07)在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。
因此,多元地理回归模型更带有普遍性的意义。
(一)多元线性回归模型的建立假设某一因变量y 受k 个自变量k x x x ,...,,21的影响,其n 组观测值为(ka a a a x x x y ,...,,,21),n a ,...,2,1=。
那么,多元线性回归模型的结构形式为:a ka k a a a x x x y εββββ+++++=...22110(3.2.11)式中:k βββ,...,1,0为待定参数;a ε为随机变量。
如果k b b b ,...,,10分别为k ββββ...,,,210的拟合值,则回归方程为ŷ=k k x b x b x b b ++++...22110(3.2.12)式中:0b 为常数;k b b b ,...,,21称为偏回归系数。
偏回归系数i b (k i ,...,2,1=)的意义是,当其他自变量j x (i j ≠)都固定时,自变量i x 每变化一个单位而使因变量y 平均改变的数值。
根据最小二乘法原理,i β(k i ,...,2,1,0=)的估计值i b (k i ,...,2,1,0=)应该使()[]min (2)12211012→++++-=⎪⎭⎫ ⎝⎛-=∑∑==∧n a ka k a a a n a a a x b x b x b b y y y Q (3.2.13) 有求极值的必要条件得⎪⎪⎩⎪⎪⎨⎧==⎪⎭⎫⎝⎛--=∂∂=⎪⎭⎫ ⎝⎛--=∂∂∑∑=∧=∧n a ja a a j n a a a k j x y y b Qy y b Q 110),...,2,1(0202(3.2.14) 将方程组(3.2.14)式展开整理后得:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=++++=++++=++++=++++∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑===================n a aka k n a ka n a ka a n a ka a n a ka n a a a k n a ka a n a a n a a a n a a na aa k n a ka a n a a a n a a n a a na ak n a ka n a a n a a y x b x b x x b x x b x y x b x x b x b x x b x y x b x x b xx b x b x y b x b x b x nb 112212111011212212*********11121211121011112121110)(...)()()(...)(...)()()()(...)()()()(...)()( (3.2.15)方程组(3.2.15)式,被称为正规方程组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元线性回归模型公式 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】
二、多元线性回归模型
在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。
因此,多元地理回归模型更带有普遍性的意义。
(一)多元线性回归模型的建立
假设某一因变量y 受k 个自变量k x x x ,...,,21的影响,其n 组观测值为
(ka a a a x x x y ,...,,,21),n a ,...,2,1=。
那么,多元线性回归模型的结构形式为:
a ka k a a a x x x y εββββ+++++=...22110()
式中:
k βββ,...,1,0为待定参数;
a ε为随机变量。
如果k b b b ,...,,10分别为k ββββ...,,,210的拟合值,则回归方程为
?=k k x b x b x b b ++++...22110()
式中:
0b 为常数;
k b b b ,...,,21称为偏回归系数。
偏回归系数i b (k i ,...,2,1=)的意义是,当其他自变量j x (i j ≠)都固定时,自变量i x 每变化一个单位而使因变量y 平均改变的数值。
根据最小二乘法原理,i β(k i ,...,2,1,0=)的估计值i b (k i ,...,2,1,0=)应该使
()[]min ...212211012→++++-=⎪⎭⎫ ⎝⎛-=∑∑==∧n a ka k a a a n
a a a x
b x b x b b y y y Q () 有求极值的必要条件得
⎪⎪⎩⎪⎪⎨⎧==⎪⎭⎫ ⎝⎛--=∂∂=⎪⎭⎫ ⎝⎛--=∂∂∑∑=∧=∧n a ja a a j
n a a a k j x y y b Q y y b Q 110),...,2,1(0202() 将方程组()式展开整理后得:
⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=++++=++++=++++=++++∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑===================n a a ka k n a ka n a ka a n a ka a n a ka n a a
a k n a ka a n a a n a a a n a a n a a a k n a ka a n a a a n a a n a a n a a k n a ka n a a n a a y x
b x b x x b x x b x y x b x x b x b x x b x y x b x x b x x b x b x y b x b x b x nb 11221211101
121221221121012111121211121011112121110)(...)()()(...)(...)()()()(...)()()()(...)()( () 方程组()式,被称为正规方程组。
如果引入一下向量和矩阵:
则正规方程组()式可以进一步写成矩阵形式
B Ab =(3.2.15’)
求解(3.2.15’)式可得:
Y X X X B A b T T 11)(--==()
如果引入记号:
则正规方程组也可以写成:
⎪⎪⎪⎩⎪⎪⎪⎨⎧----==+++=+++=+++k
k ky k kk k k y k k y k k x b x b x b y b L b L b L b L L b L b L b L L b L b L b L (22110221)
12222212111212111(3.2.15’’) (二)多元线性回归模型的显着性检验
与一元线性回归模型一样,当多元线性回归模型建立以后,也需要进行显着性检验。
与前面的一元线性回归分析一样,因变量y 的观测值n y y y ,...,,21之间的波动或差异,是由两个因素引起的,一是由于自变量k x x x ,...,,21的取之不同,另一是受其他随机因素的影响而引起的。
为了从y 的离差平方和中把它们区分开来,就需要对回归模型进行方差分析,也就是将y 的离差平方和T S 或(L yy )分解成两个部分,即回归平方和U 与剩余平方和Q :
在多元线性回归分析中,回归平方和表示的是所有k 个自变量对y 的变差的总影响,它可以按公式
计算,而剩余平方和为
以上几个公式与一元线性回归分析中的有关公式完全相似。
它们所代表的意义也相似,即回归平方和越大,则剩余平方和Q 就越小,回归模型的效果就越好。
不过,在多元线性回
归分析中,各平方和的自由度略有不同,回归平方和U的自由度等于自变量的个数k,而剩余平方和的自由度等于1
n,所以F统计量为:
-
-k
当统计量F计算出来之后,就可以查F分布表对模型进行显着性检验。