力学基础知识总结

合集下载

力学基础知识

力学基础知识

工程单位制
大小
单位制
国际单位制
物理量
类别
量纲


基本量纲
导出量纲 量纲幂次式
常用量 速度,加速度 体积流量,质量流量 密度,重度 力,力矩 压强,压力,弹性模量
粘度,运动粘度
其他量 角速度,角加速度 应变率
第三节 变形体力学基础
一、材料力学的任务 二、关于变形固体及其基本假设 三、内力、截面法、轴力及轴力图
光滑辊轴而成. 约束力:构件受到垂直于光滑面的约束力.
5.平面固定端约束
=
=

=
四.物体的受力分析和受力图
第二节 平面力系和平衡方程
一.平面力系的简化 二.平面力系的平衡方程
三.力学单位制与量纲 物理量的量纲
基本量纲dim m = M , dim l = L , dim t = T
导出量纲:用基本量纲的幂次表示。
二、关于变形固体及其基本假设
1.可变形固体
关于变形的基本概念和名词 弹性 ––– 物体在引起变形的外力被除去以后,
能即刻恢复它原有形状和尺寸的性质。
弹性变形 ––– 变形体在外力被除去后能 完全消失的变形。
塑性变形 ––– 变形体在外力被除去后不能 消失的变形。
2. 基本假设
• 连续性假设
认为组成物体的物质毫无空隙地充满了整个 物体的几何体积。
•小变形 假设物体产生的变形与整个物体的原始尺寸
相比是极其微小的。
PP
L
理论力学与材料力学的研究对象在模型上的区别。 理论力学:刚体 材料力学:变形固体完全弹性体
三.内力、截面法、轴力及轴力图
(一)内力的概念 它是由于外力的作用而使物体的各部分之间

四大力学基础知识点

四大力学基础知识点

四大力学基础知识点四大力学基础知识点包括:牛顿第一定律、牛顿第二定律、牛顿第三定律和动能定理。

下面将分别介绍这四个知识点。

一、牛顿第一定律,也称为惯性定律。

它指出:一个物体如果没有受到外力的作用,将保持静止或匀速直线运动的状态。

简单来说,物体会保持原有的运动状态,直到有外力作用改变它的状态。

这个定律是运动学的基础,也是力学的起点。

二、牛顿第二定律,也称为运动定律。

它给出了物体受力的数学表达式:物体所受合力等于其质量乘以加速度。

数学公式表达为F=ma,其中F代表合力,m代表物体的质量,a代表物体的加速度。

这个定律揭示了力与物体运动之间的关系,说明了力是导致物体加速度改变的原因。

三、牛顿第三定律,也称为作用-反作用定律。

它表明:任何一个物体施加在另一个物体上的力,必然会有一个相等大小、方向相反的力作用在施力物体上。

简单来说,力的作用总是成对的,对物体A 施加的力会有一个相等大小、方向相反的力作用在物体B上。

这个定律解释了物体之间相互作用的本质,也是力学中平衡与不平衡的基础原理。

四、动能定理,又称为功-能定理。

它指出:当物体受到合力作用时,由于合力对物体做功,物体的动能会发生变化。

动能定理的数学表达式为:物体的动能的变化等于合力对物体所做的功。

动能定理揭示了力对物体能量的转化关系,说明了物体的能量是由外力对其做功而改变的。

这四个力学基础知识点构成了力学的核心内容,通过它们我们可以深入理解物体的运动规律和相互作用方式。

牛顿的力学理论为我们解释了宏观物体运动的规律,也为工程技术的发展提供了坚实的理论基础。

无论是物体的静止还是运动,都可以通过这些基础知识点进行分析和描述。

在实际应用中,我们可以借助这些知识点来解决各种物理问题,从而推动科学技术的进步。

力学的研究不仅帮助我们更好地理解自然界的现象,也为人类创造更美好的生活提供了有力的支持。

理论力学知识点总结

理论力学知识点总结

理论力学知识点总结理论力学是研究物体运动规律的一门基础物理学科,它主要研究在力的作用下物体的运动状态。

以下是理论力学的知识点总结:1. 基本概念- 力:物体间的相互作用,可以改变物体的运动状态。

- 质量:物体所含物质的多少,是物体惯性大小的量度。

- 惯性:物体保持其运动状态不变的性质。

- 运动:物体位置随时间的变化。

- 静止:物体相对于参照系位置不发生改变的状态。

2. 牛顿运动定律- 第一定律(惯性定律):物体在没有外力作用下,将保持静止或匀速直线运动。

- 第二定律(加速度定律):物体的加速度与作用力成正比,与物体质量成反比,方向与作用力方向相同。

- 第三定律(作用与反作用定律):对于任何两个相互作用的物体,它们之间的作用力和反作用力大小相等、方向相反。

3. 功和能- 功:力在物体上做功,等于力与位移的乘积,是能量转化的量度。

- 动能:物体由于运动而具有的能量,与物体质量和速度的平方成正比。

- 势能:物体由于位置而具有的能量,与物体位置有关。

- 机械能守恒定律:在没有非保守力做功的情况下,系统的机械能(动能加势能)保持不变。

4. 动量和角动量- 动量:物体运动状态的量度,等于物体质量与速度的乘积。

- 角动量:物体绕某一点旋转运动状态的量度,等于物体质量、速度与该点到物体距离的乘积。

- 动量守恒定律:在没有外力作用的系统中,系统总动量保持不变。

- 角动量守恒定律:在没有外力矩作用的系统中,系统总角动量保持不变。

5. 刚体运动- 平动:刚体上所有点的运动状态相同,即刚体整体移动。

- 转动:刚体绕某一点或某一轴的旋转运动。

- 刚体的转动惯量:衡量刚体对转动的抵抗程度,与刚体的质量分布和旋转轴的位置有关。

6. 振动和波动- 简谐振动:物体在回复力作用下进行的周期性振动,其运动方程为正弦或余弦函数。

- 阻尼振动:在阻尼力作用下的振动,振幅随时间逐渐减小。

- 波动:能量在介质中的传播,包括横波和纵波。

7. 分析力学- 拉格朗日力学:通过拉格朗日量(动能减势能)来描述物体的运动。

力学基础知识点总结

力学基础知识点总结

力学基础知识点总结力学是物理学的一个重要分支,研究物体的运动和相互作用。

它在我们的日常生活、工程技术以及科学研究中都有着广泛的应用。

下面就来总结一下力学的基础知识点。

一、力的概念力是物体对物体的作用。

力不能脱离物体而单独存在,一个力必然涉及两个物体,即施力物体和受力物体。

力的单位是牛顿(N)。

力的三要素包括力的大小、方向和作用点。

这三个要素决定了力对物体的作用效果。

例如,用大小相同但方向不同的力推一个物体,物体的运动方向可能不同;作用点不同,物体的转动效果也可能不同。

二、常见的力1、重力:由于地球的吸引而使物体受到的力。

重力的方向总是竖直向下,大小与物体的质量成正比,即 G = mg,其中 g 为重力加速度,通常取 98N/kg。

2、弹力:发生弹性形变的物体,由于要恢复原状,对与它接触的物体产生的力。

常见的弹力有支持力、压力、拉力等。

弹力的大小与形变程度有关。

3、摩擦力:两个相互接触的物体,当它们相对运动或有相对运动趋势时,在接触面上会产生一种阻碍相对运动的力。

摩擦力分为静摩擦力、滑动摩擦力和滚动摩擦力。

静摩擦力的大小取决于使物体产生相对运动趋势的外力;滑动摩擦力的大小与接触面的粗糙程度和压力大小有关,其计算公式为 f =μN,其中μ 为动摩擦因数,N 为压力。

三、牛顿运动定律1、牛顿第一定律:也称为惯性定律,内容是一切物体总保持匀速直线运动状态或静止状态,直到外力迫使它改变运动状态为止。

惯性是物体保持原有运动状态的性质,质量是物体惯性大小的唯一量度。

2、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同。

其表达式为 F = ma。

3、牛顿第三定律:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。

四、力的合成与分解如果一个力的作用效果与几个力共同作用的效果相同,这个力就叫做那几个力的合力,那几个力就叫做这个力的分力。

力的合成与分解遵循平行四边形定则。

理论力学教材知识点总结

理论力学教材知识点总结

理论力学教材知识点总结1. 牛顿运动定律牛顿运动定律是理论力学的基础,它包括牛顿第一定律、牛顿第二定律和牛顿第三定律。

牛顿第一定律:一个物体如果受到合外力作用,将保持静止状态或匀速直线运动状态。

这一定律反映出了物体的运动状态与外力的关系。

牛顿第二定律:物体的加速度与作用在其上的合外力成正比,与物体的质量成反比。

即F=ma,其中F为合外力,m为物体的质量,a为物体的加速度。

牛顿第三定律:任何两个物体之间的相互作用都是相等的,方向相反。

即作用力等于反作用力,它们的方向相反,大小相等。

这三条定律是理论力学的基石,它们为我们理解物体的运动提供了基本的规律。

在学习理论力学的过程中,我们要深刻理解这些定律,并能够灵活运用它们来解决实际问题。

2. 力的概念力是物体之间相互作用的表现,它是导致物体产生加速度的原因。

力的大小可以用牛顿(N)作为单位来表示,力的方向对物体的运动状态有着重要的影响。

在学习力的概念时,我们要了解各种不同类型的力,例如重力、弹力、摩擦力、弦力等,以及它们的性质和作用规律。

3. 动力学动力学是研究物体运动状态变化规律的学科,它包括物体的运动参数、牛顿第二定律、动量定理、动量守恒定律等内容。

动量是描述物体运动状态的物理量,它等于物体质量乘以速度。

动量定理指出,当合外力作用于物体时,物体的动量将发生改变,这个变化率等于作用力的大小与方向。

动量守恒定律说明了在某些特定条件下,物体的总动量是守恒的,即在某个过程中总动量保持不变。

通过学习动力学,我们可以更好地理解物体的运动状态变化规律,掌握物体的动量和动能等重要概念。

4. 静力学静力学是研究物体静止状态和平衡的学科,它包括物体受力平衡条件、力的分解、受力分析等内容。

物体受力平衡条件是指物体受到的各个力的合力和合力矩均为零时,物体处于平衡状态。

通过受力平衡条件,我们可以分析物体受力的情况,判断物体的平衡状态。

力的分解是指将一个斜面上的力分解为平行于斜面和垂直于斜面的两个分力,这样可以更好地分析斜面上物体的运动状态。

高一力学知识点总结

高一力学知识点总结

高一力学知识点总结一、力学的基本概念1、定义:力学是研究物体运动和静止状态的科学,它是物理学的基础。

2、基本量:力学中的基本量包括质量、长度、时间、力、速度、加速度等。

3、运动的基本规律:牛顿三定律,它包括惯性定律、动力学定律和作用反作用定律。

二、运动学1、直线运动:直线运动是指物体在运动过程中沿直线路径运动。

直线运动中经常涉及的量包括位移、速度和加速度。

2、曲线运动:曲线运动是指物体在运动过程中沿曲线路径运动。

曲线运动中的量包括切向速度和切向加速度。

3、匀变速直线运动:匀变速直线运动是指物体在运动过程中速度保持不变,而加速度保持不变或者变化的运动。

在匀变速直线运动中常用的公式包括速度公式、位移公式和加速度公式。

4、自由落体运动:自由落体运动是指物体在重力作用下运动的特殊情况。

自由落体运动中的公式包括位移公式、速度公式和加速度公式。

5、抛体运动:抛体运动是指物体在给定初速度的情况下,同时受到重力和阻力的作用运动。

抛体运动中的常用公式包括抛物线方程和飞行时间公式。

三、牛顿运动定律1、牛顿第一定律(惯性定律):物体如果没有受到外力,则保持静止或匀速直线运动。

2、牛顿第二定律(动力学定律):物体所受的合力等于物体质量与加速度的乘积。

3、牛顿第三定律(作用反作用定律):任何一个物体受到外力的作用时,必然伴随着一个与这个外力大小相等、方向相反的作用力。

四、摩擦力1、定义:摩擦力是指两个接触物体之间由于不完全光滑所产生的相互阻碍相对运动的力。

2、摩擦力的类型:静摩擦力和动摩擦力。

3、静摩擦力和动摩擦力的关系:静摩擦力大于动摩擦力。

4、摩擦力的应用:摩擦力常常在物体的运动、静止和力的传递过程中起着重要的作用。

例如:车辆的制动、货物的搬运等。

五、弹力1、定义:弹力是一种物体在往复形变时所表现出来的力。

2、胡克定律:胡克定律是描述弹簧弹力的科学原理,它指出弹簧的伸长(或压缩)与作用在弹簧上的力成正比。

3、弹簧的力学能量:弹簧的弹力与弹簧形变时的势能之间存在一种关系,即弹簧的弹力与弹簧形变的势能成正比。

力学基础知识点总结

力学基础知识点总结

力学基础知识点总结力学是研究物体运动与力的学科,它是物理学的一个重要分支。

在力学的学习过程中,我们需要掌握一些基础知识点,以建立系统的力学思维和解题能力。

本文将对力学的基础知识点进行总结,并提供相关实例与应用。

1. 牛顿三定律牛顿三定律是力学的基石,对力与物体的运动关系进行了阐述。

a. 第一定律:也称为惯性定律,指出物体在无外力作用下将保持静止或匀速直线运动。

b. 第二定律:力的大小等于物体的质量与加速度的乘积,表示为F=ma。

c. 第三定律:也称为作用-反作用定律,指出任何两个物体之间的作用力与反作用力大小相等、方向相反、作用在同一直线上。

举例:一个足球静止在地上,当我们用力踢它时,足球才会发生运动。

这符合第一定律,即足球保持静止的状态。

2. 力的合成与分解力的合成与分解是力学中的重要概念,用于分析多个力对物体产生的合力与分力的影响。

a. 合力:多个力的矢量和被称为合力,可以通过平行四边形法则或三角形法则进行合成。

b. 分力:一个力可以被分解为两个或多个力,其合力等于原力的大小和方向。

举例:一个箱子放在斜面上,斜面上有重力和支持力的作用。

通过分解重力与支持力,我们可以计算斜面上的合力大小及其方向。

3. 动量与冲量动量和冲量描述的是物体运动的特性,对于研究碰撞和运动过程中力的作用有重要意义。

a. 动量:物体的动量等于其质量与速度的乘积,表示为p=mv。

b. 冲量:力作用时间的累积效果,等于物体受到的力在时间上的积分,表示为J=∫Fdt。

举例:当我们用力推一个静止的小球,小球将获得动量,速度增大,动量增加。

若在碰撞过程中施加较大的冲量,则小球的速度变化较大。

4. 力的类型力可以分为接触力和非接触力,根据力的性质以及其作用对象的不同。

a. 接触力:通过物体之间直接接触而产生的力,如摩擦力、弹力等。

b. 非接触力:物体间无直接接触而产生的力,如重力、电磁力等。

举例:我们站立在地面上是因为地球对我们有引力作用,这是一种非接触力。

力学知识点总结大全

力学知识点总结大全

力学知识点总结大全一、力学基础知识1. 力的概念力是物体之间相互作用的结果,是引起物体运动、形变或状态变化的原因。

根据牛顿第一定律,物体要想改变它的状态,必须有力的作用。

2. 力的性质力有大小、方向和作用点,可以通过矢量来表示。

力的大小用单位牛顿(N)来表示,方向则通过力的矢量来描述。

作用点是力的作用点。

3. 力的合成与分解对于一个物体来说,当施加多个力时,可以通过合力的概念来表示总的受力情况;而对于一个力来说,可以通过分解的方法将其拆分成不同的力的合力来表示。

4. 牛顿定律牛顿的三大定律是力学的基础,包括牛顿第一定律(惯性定律)、牛顿第二定律(运动定律)、牛顿第三定律(作用-反作用定律)。

5. 动量和冲量动量是物体运动的特性,是质量和速度的乘积;而冲量是力在时间内对物体物体的作用。

6. 动力学动力学是力学中的一个分支,它研究物体在受到力的影响下的运动规律,涉及到牛顿第二和第三定律的应用。

7. 势能和功势能是物体由于位置而具有的能量,包括重力势能、弹性势能等;而功是力对物体的作用,是力的大小与移动距离乘积。

二、质点力学1. 质点的运动质点是物体的简化模型,它不考虑物体的形状和大小,只考虑质点的位置和速度。

质点运动可以通过位移、速度和加速度来描述。

2. 牛顿运动定律牛顿第二定律描述了质点在力的作用下的运动规律,即F=ma,力的大小与物体的加速度成正比。

3. 立体运动立体运动是质点在空间中的运动,可以通过三维坐标来描述。

4. 弹性碰撞弹性碰撞是物体之间在碰撞中动能守恒的碰撞,它们的速度和动能在碰撞前后保持不变。

5. 火箭技术火箭技术是利用动量守恒定律和火箭运动定律研究飞行器的动力和轨迹。

三、刚体力学1. 刚体的概念刚体是物理中的一种理想模型,它不考虑物体的形变,只考虑物体的位置和姿态。

2. 刚体的平动和转动刚体的平动是指刚体作为一个整体进行平移运动的现象;转动则是刚体绕轴进行旋转的运动。

3. 刚体定轴转动刚体定轴转动是指刚体绕一个固定轴进行的运动,可以通过角速度和角加速度来描述。

力学基础知识

力学基础知识

力学基础知识力学是物理学的一个重要分支,研究物体的运动规律和力的作用。

它是我们理解自然界中各种物体运动现象的基础,无论是天体运动还是日常生活中的行人走动,都可以通过力学的知识来描述和解释。

本文将介绍力学的一些基础知识,包括质点、速度、加速度、牛顿定律等内容。

一、质点质点是力学中最基本的概念,指一个物体可以看作是一个具有质量但没有体积的点。

质点可以用来描述宏观物体的运动,忽略了物体的大小和形状,只关心其质量和位置。

二、位移、速度和加速度位移是一个物体从一个位置变化到另一个位置的路径长度。

在力学中,我们通常以直线上的位移为例进行讨论。

速度是位移对时间的变化率,即单位时间内物体位置的改变量。

而加速度则是速度对时间的变化率。

三、牛顿定律牛顿定律是力学中的重要定律,它描述了质点所受到的力与质点的加速度之间的关系。

牛顿第一定律,也称为惯性定律,表明在没有外力作用下,物体将保持其匀速直线运动或静止状态。

牛顿第二定律则表明物体所受的合力等于质量乘以加速度,即F=ma。

牛顿第三定律指出,任何一个物体对另一个物体施加力的同时,另一个物体也会对其施加一个大小相等、方向相反的力。

四、重力和摩擦力重力是地球或其他天体对物体产生的吸引力,在力学中占有重要地位。

根据万有引力定律,两个物体之间的引力与它们的质量和距离有关。

摩擦力是物体表面之间的接触力,阻碍了物体相对滑动的运动。

五、动能和势能动能是物体由于运动而具有的能量,可以表示为运动质点的质量乘以速度的平方的一半。

势能则是物体由于位置而具有的能量,比如重力势能和弹性势能等。

根据机械能守恒定律,一个封闭系统中的机械能总量保持不变。

六、力学中的一些应用力学在日常生活中有着广泛的应用,例如跳伞运动员的运动轨迹、物体的自由落体、飞机的飞行原理等都可以通过力学的知识进行解释。

此外,力学还在工程学、天文学、生物学等领域有着重要的应用,对于我们认识世界和改善生活起着关键作用。

总结力学是物理学的重要分支,研究物体的运动规律和力的作用。

力学基础知识

力学基础知识

力学基础知识力学作为物理学的一个重要分支,研究的是物体在受力作用下的运动规律和相互作用原理。

在学习力学基础知识时,我们需要了解一些基本概念、定律和公式。

本文将从质点运动、牛顿三定律、动量守恒和万有引力四个方面介绍力学的基础知识。

一、质点运动质点是物理中的一个理想模型,假设物体的大小和形状可以忽略不计,只考虑物体的质量和所受力。

质点的运动可以分为直线运动和曲线运动。

1. 直线运动质点在直线上的运动可以用位移、速度和加速度等物理量来描述。

- 位移:一个物体从原始位置到最终位置的变化量,用Δx表示。

- 平均速度:位移与运动时间的比值,用v表示,计算公式为v = Δx/Δt。

- 瞬时速度:物体在某一瞬间的速度。

- 平均加速度:速度变化量与时间的比值,用a表示,计算公式为a = Δv/Δt。

- 瞬时加速度:物体在某一瞬间的加速度。

2. 曲线运动曲线运动包括圆周运动和非匀速直线运动。

- 圆周运动:质点绕固定点做圆周运动,有向心加速度的概念。

向心加速度的大小和方向决定了质点在圆周运动中的加速度。

- 非匀速直线运动:质点在直线上做变速运动,速度随时间的变化率不为零。

二、牛顿三定律牛顿三定律是力学的基本定律,描述了物体的受力和运动之间的关系。

1. 第一定律(惯性定律):一个物体如果不受外力作用,将保持静止或匀速直线运动。

2. 第二定律(运动定律):物体所受的合力等于其质量乘以加速度。

F = ma,其中F为合力,m为物体质量,a为加速度。

3. 第三定律(作用-反作用定律):任何两个物体之间的相互作用力具有相等的大小和相反的方向。

三、动量守恒动量是物体运动状态的量度,定义为物体质量与速度的乘积。

在一个系统内,如果没有外力作用,系统的总动量将保持不变。

1. 动量:一个物体的动量p定义为p = mv,其中m为物体质量,v为物体速度。

2. 动量定理:物体所受合外力的时间积分等于物体的动量变化。

∑Fdt = Δp,其中∑F为所受合外力,t为时间。

力学基础知识

力学基础知识

力学基础知识一、引言力学是物理学的一个重要分支,主要研究物体的运动规律和相互作用关系。

力学基础知识是理解和掌握力学的必要前提,本文将从牛顿运动定律、牛顿万有引力定律、质心运动定律、动量守恒定律和角动量守恒定律等方面进行介绍。

二、牛顿运动定律1.第一定律:惯性定律任何物体都有惯性,即物体在没有受到外力作用时,会保持静止或匀速直线运动状态。

2.第二定律:加速度与外力成正比当物体受到外力作用时,其加速度与所受外力成正比,与物体质量成反比。

3.第三定律:作用力与反作用力相等反向任何两个物体之间的相互作用都包含着相等而反向的两个力。

三、牛顿万有引力定律1.引力的概念引力是一种能够使两个物体相互吸引或排斥的作用。

2.万有引力公式F=G*(m1*m2)/(r^2),其中G为万有引力常数(约为6.67×10^-11N·m^2/kg^2),m1和m2分别为两个物体的质量,r为它们之间的距离。

3.引力的特点引力具有普遍性、相对性、吸引和作用力相等反向等特点。

四、质心运动定律1.质心的概念质心是指一个系统中所有物体所构成的整体在空间中的平衡点。

2.质心运动定律系统中所有物体所受合外力等于系统总质量乘以质心加速度,即F=ma_cm。

五、动量守恒定律1.动量的概念动量是一个物体在运动过程中所具有的一种物理量,其大小与速度和质量有关。

2.动量守恒定律在一个封闭系统内,当外力为零时,系统总动量保持不变。

3.弹性碰撞和非弹性碰撞弹性碰撞是指两个物体在碰撞过程中能够完全恢复原状;非弹性碰撞则是指两个物体在碰撞过程中会发生形变或损失能量。

六、角动量守恒定律1.角动量的概念角动量是一个物体在绕轴旋转时所具有的一种物理量,其大小与质量、速度和离轴距离有关。

2.角动量守恒定律在一个封闭系统内,当外力矩为零时,系统总角动量保持不变。

3.角动量定理对于绕定轴旋转的刚体,其角动量L等于惯性矩I乘以角速度ω,即L=Iω。

七、结论力学基础知识是力学研究的基础,其中包括牛顿运动定律、牛顿万有引力定律、质心运动定律、动量守恒定律和角动量守恒定律等方面。

力学概念知识点总结归纳

力学概念知识点总结归纳

力学概念知识点总结归纳力学的基本概念包括质点、位移、速度、加速度、力、力的合成、摩擦力、惯性力、弹性力等。

质点是一个极小的物体,它的大小和形状可以忽略不计,只考虑其质量和位置。

位移是指物体由一个位置到另一个位置的变化,通常用矢量表示。

速度是指物体在单位时间内经过的位移,是位移的导数。

加速度是速度随时间的变化率,描述了物体在单位时间内速度的变化量,是速度的导数。

力是导致物体产生运动变化的原因,它是一种物体之间相互作用的表现,通常用矢量表示。

力的合成是指多个力作用在物体上时,可以合成一个合力,这个合力将产生与原来多个力作用相同效果的作用。

摩擦力是物体表面之间由于相互接触而产生的力,它是阻碍物体相对运动的力。

惯性力是指物体在惯性参考系中的力,是由于运动参考系的加速度产生的看似真实的力。

弹性力是指弹性体变形时所产生的力,它是一种恢复变形后形体的能力。

静力学是研究物体在静止状态下受力的平衡条件以及这些受力的效应的学科。

动力学是研究物体在运动状态下受力的作用和运动规律的学科。

弹性力学是研究物体弹性变形和回复的规律以及弹性体的性质的学科。

这些分支都是力学的重要组成部分,也是它的核心内容。

力学在物理学中扮演着重要的角色,它的概念和原理为我们理解宇宙万物的运动提供了基础。

此外,力学还与许多其他学科有着密切的关联,如工程学、地质学、天文学等,它们的发展离不开力学理论的支持。

力学是一门古老的学科,它的研究历史可以追溯到古希腊时期。

阿基米德、伽利略、牛顿等学者都对力学做出了杰出的贡献,为力学的发展奠定了基础。

随着科学技术的发展和实验方法的进步,力学理论得到了不断完善和发展,形成了今天我们所熟知的力学体系。

总的来说,力学是一门研究物体运动和受力规律的学科,它包含着许多基本的概念和原理,如质点、位移、速度、加速度、力、静力学、动力学、弹性力学等。

力学的研究对于我们理解自然界的运动规律和应用科学技术有着重要的意义和价值。

通过不断地学习和研究力学,我们可以更好地认识世界,推动科学技术的发展,促进人类社会的进步与发展。

经典力学基础知识

经典力学基础知识

经典力学基础知识经典力学是物理学的基石,它描述了运动物体的力学行为。

在这篇文章中,我们将介绍一些经典力学的基础知识,包括牛顿定律、动量、能量以及它们在力学问题中的应用。

一、牛顿定律牛顿定律是经典力学的基础,它由三个定律组成。

1. 牛顿第一定律(惯性定律):物体在没有外力作用下保持匀速直线运动或静止。

2. 牛顿第二定律(动力学定律):物体的加速度与作用在其上的合力成正比,反比于物体质量。

描述为 F = ma,其中 F 是合力,m 是物体质量,a 是加速度。

3. 牛顿第三定律(作用与反作用定律):任何作用在物体上的力都会有一个等大反向的反作用力。

牛顿定律对于解决力学问题非常重要,它们提供了基础的框架和原理。

二、动量动量是物体运动的关键性质,定义为物体质量和速度的乘积。

动量用字母 p 表示,计算公式为 p = mv,其中 m 是物体质量,v 是物体速度。

动量守恒定律是动量的重要性质。

根据动量守恒定律,一个系统在没有外力作用下,总动量保持不变。

这意味着如果一个物体增加了动量,其他物体的动量将相应减少,以保持总动量的恒定。

三、能量能量是物理系统进行工作和转化的重要概念。

在经典力学中,考虑的能量形式主要包括动能和势能。

1. 动能:动能是物体由于其运动而具有的能量。

动能的大小取决于物体的质量和速度,计算公式为 K.E. = 1/2 mv²。

2. 势能:势能是物体由于其位置而具有的能量。

常见的势能形式包括重力势能、弹性势能和化学势能等。

能量守恒定律是能量转化的基本原理。

根据能量守恒定律,一个系统的总能量在没有能量输入或输出的情况下保持不变。

四、应用经典力学的基础知识可以应用于各种力学问题的解决。

1. 运动学问题:通过应用牛顿第一、二定律以及动量和能量的概念,可以准确描述物体的运动状态和轨迹。

2. 力学系统分析:通过考虑物体间的相互作用力、动量守恒和能量守恒,可以分析力学系统的运动和稳定性。

3. 物体碰撞:根据动量守恒和能量守恒定律,可以计算物体碰撞后的速度和能量变化,解决碰撞问题。

力学基础知识必备

力学基础知识必备

时速度 vt v 。(此推论在“研究匀变速直线运动的规律”的学生实验中经常用到)
2
(2)某面位移中点的瞬时速度为: vt
2
v02 vt2 2
(3)匀变速直线运动的物体,在任意两个连续相等的时间里的位移之差是个恒量:
即 x xn1 xn aT 2 恒量
(4)初速度为零的匀加速直线运动(设 T 为相等的时间间隔)。
② 在 x-t 图像中切线的斜率表示速率。在 v-t 图像中切线的斜率表示加速度。
切线的斜率应该由坐标系的标度求出,而不能由切线的正切值求出
14、自由落体运动
(1)定义:物体只在重力作用下从静止开始下落的运动叫做自由落体运动。
(2)特点为:初速度为零,加速度为 g。
(3)自由落体运动的加速度:在同一地点,物体自由下落的加速度都相同,这个加
8
多。
(2)竖直下抛运动的规律:规定抛出点为原点,竖直向下的方向为正方向。
规律公式:
h
v0t
1 2
gt
2
正方向
vt v0 gt
如图甲所示 (3)竖直上抛运动
V0 a=g
正方向
a=-g V0
①研究方法


A、分段法:可将其分为两个过程来处理:上升过程为 a=-g 的匀减速速直线运动,下
落过程为自由落体运动。利用匀变速直线运动的规律和自由落体运动规律公式求解。
的共同速度
所处的位置 ⑤ t1 时刻物体的位移为 x1
⑤ t1 时刻物体的速度为 V1(图 中阴影部分的面积表示①质 点在 0-t1 时间内的位移
7
(1) 上表格中表示 x t 图像和 v t 图像的比较。
(2) 说明
① X-t 图像和 v-t 图像都描述物体做直线运动的情况,不表示物体的运动轨

力学基础知识

力学基础知识
物体间相互作用的形式: ◎直接接触作用; ◎间接接触作用------“场力”
第2页
力的基本概念
二、力的单位
在国际单位制中, 力的单位是牛顿,简称“牛”,
国际符号是“N”。
工程单位制中, 以“公斤力”或“吨力”作为力的单位。
换算:1公斤力=9.8牛≈10牛
第3页
力的基本概念
三、力的三要素
实践证明: 力作用在物体上所产生的效果,不 但与力的大小和方向有关,而且 与力的作用点有关。 改变三要素中任何一个时,力 对物体的作用效果也随之改变。
两个物体上。
注意:作用力与反作用力是分别作用在两个不同的物体上的,因此不能将 作用力与反作用力看成一平衡力系而互相抵消。
第 10 页
力的合成与分解
一、力的合成
当一个物体同时受到几个力的作用时,如果找到这
样的一个力,其产生的效果与原来几个力共同作用 的效果相同,则这个力叫做原来那几个力的合力。 求几个已知力的合力的方法叫做力的合成。 作用在同一直线上各力的合力,其大小等于各力的代数和。
பைடு நூலகம்
第 11 页
力的合成与分解
二、力的分解
一个已知力(合力)作用在物体上产生的 效果可以用两个或两个以上同时作用的力
(分力)来代替。由合力求分力的方法叫
做力的分解。
作用在同一直线上各力的合力,其大小等于各力的代数和。
第 12 页
力的合成与分解
三、力的平衡条件
力系: 同时作用在同一 个物体上的几个 力称为力系。
物体转动的效应与力、力臂大小成正比。
第 14 页
谢谢啊!
第 15 页
的大小相等,方向相反,且作用在同一条直线上。
F1= -F2 刚体是指在外 力作用下可忽 略几何形状改 变的物体

理论力学知识点详细总结

理论力学知识点详细总结

理论力学知识点详细总结引言理论力学是物理学的一个重要分支,研究物体的运动规律和力学特性。

它是一门基础学科,也是物理学中最早发展的学科之一。

理论力学对于理解和解释自然界的很多现象都起着关键作用,广泛应用于航天、航空、土木工程、机械制造等领域。

本文将对理论力学的主要知识点进行详细总结,包括牛顿力学、拉格朗日力学和哈密顿力学等内容。

一、牛顿力学牛顿力学是经典力学的基础理论,是研究物体运动规律和力学现象的最基本方法。

牛顿力学建立在牛顿三大定律的基础上,主要包括运动学和动力学两大部分。

1. 运动学运动学是研究物体运动的几何学方法,包括位置、速度、加速度等概念。

基本知识点包括:① 位移:物体从一个位置移动到另一个位置的距离和方向称为位移。

位移可用位移矢量表示。

② 速度:物体单位时间内移动的位移称为速度。

平均速度可用位移除以时间计算,瞬时速度可用极限定义。

③ 加速度:物体单位时间内速度变化的量称为加速度。

平均加速度可用速度变化除以时间计算,瞬时加速度可用速度的导数定义。

2. 动力学动力学是研究物体受力运动的学科,主要包括牛顿运动定律和牛顿万有引力定律。

① 牛顿三大定律:第一定律指出,物体在不受外力作用时保持匀速直线运动或静止;第二定律指出,物体受到的力与其加速度成正比,与质量成反比;第三定律指出,相互作用的两个物体之间的作用力和反作用力大小相等、方向相反。

② 牛顿万有引力定律:物体间的引力与它们的质量和距离平方成反比。

万有引力定律可用来解释行星运动、天体引力等现象。

二、拉格朗日力学拉格朗日力学是研究自由度受限制的多体系统的运动方程和动力学的方法。

它是经典力学的重要分支,由拉格朗日于18世纪提出,是经典力学的另一种处理方法。

主要包括拉格朗日方程和哈密顿原理等内容。

1. 拉格朗日方程拉格朗日方程是描述多体系统的运动方程的方法,它由拉格朗日量和运动方程组成。

主要包括:① 拉格朗日量:拉格朗日力学的核心概念,它是系统动能和势能的差的函数。

力学的知识点总结

力学的知识点总结

力学的知识点总结力学是物理学的一个分支,涉及到物体的运动和静止的规律。

它是研究自然界中物体相互作用和物体运动的学科,也是物理学的基础和核心。

力学中包含的知识点较多,下面我将对一些重要的知识点作出总结和阐述。

一、牛顿第一定律和第二定律牛顿第一定律,也称为惯性定律,指物体静止或匀速直线运动时,如果外力作用于物体,则物体会继续保持这种状态,即继续保持静止或匀速直线运动状态。

只有当外力作用于物体时,物体的状态才会发生变化。

牛顿第二定律,也称为动力学基本定理,指物体所受合力等于物体质量乘以其加速度。

即F=ma,其中F为物体所受合力,m为物体质量,a为物体的加速度。

该定律体现了力与运动的关系,是力学中最基本的定律之一。

二、功和功率功是描述力对物体作用效果的物理量,即F×s,其中F为力,s 为物体移动的距离。

功和能量的单位均为焦耳(J)。

功率是描述物体工作效率的物理量,即单位时间内所做的功。

其计算公式为P=W/t,其中P为功率,W为做的功,t为时间。

功率和能量的单位均为瓦特(W)。

三、机械能守恒定律机械能守恒定律是指在一个孤立系统中,机械能的总量始终保持不变。

机械能包括物体的动能和势能,即E=K+U,其中E为机械能,K为动能,U为势能。

在一个孤立系统中,当物体从一个位置变为另一个位置时,动能和势能可以互相转换,并且机械能的总量始终不变。

因此,根据机械能守恒定律,可以计算出物体在不同位置的速度和高度等参数。

四、牛顿第三定律牛顿第三定律,也称为作用力和反作用力定律,指任何两个物体间相互作用时,所施加的力必须是相互作用的一对力,且大小相等、方向相反、作用在不同物体上。

牛顿第三定律告诉我们,任何一种力都必须是相互作用的一对力,即作用力和反作用力。

这个定律对于摩擦、弹簧等情况都非常重要。

五、圆周运动圆周运动是指物体沿圆周运动的过程。

在圆周运动中,物体受到向心力的作用,该力指向圆心。

向心力公式为F=mω²r,其中m 为物体质量,ω为物体角速度,r为圆周半径。

力学基础知识点汇总

力学基础知识点汇总

力学基础知识点汇总力学是物理学的一个分支,研究物体运动与力的关系。

以下是力学的基础知识点汇总:1.物体的运动:物体的运动可以分为直线运动和曲线运动。

直线运动可以通过物体的位置-时间图和速度-时间图来描述,曲线运动则需要使用曲线的方程来描述。

2.物体的力:力是物体产生运动或变形的原因。

力的大小通常用牛顿(N)作为单位。

常见的力有重力、浮力、弹力、摩擦力等。

3.牛顿定律:牛顿定律是力学的基础公式。

牛顿第一定律(惯性定律)认为物体如果不受力作用,将维持匀速直线运动或保持静止。

牛顿第二定律(力的定律)表明力是物体运动状态变化的原因,力与物体的加速度成正比。

牛顿第三定律(作用-反作用定律)则说明所有的作用力都有一个与之相等大小、方向相反的反作用力。

4. 重力:重力是地球或其他天体对物体产生的力,它的大小与物体的质量和距离地心的距离有关。

在地球表面上,物体的重力可以通过公式F = mg 计算,其中 F 是物体所受的重力,m 是物体的质量,g 是重力加速度。

5.弹力:弹力是由弹簧或其他弹性物体对物体压缩或伸展时产生的力。

弹力的大小与物体的位移成正比。

6.摩擦力:摩擦力是两个物体之间接触时产生的力。

它可以分为静摩擦力和动摩擦力。

静摩擦力是阻止物体开始运动的力,而动摩擦力是阻碍物体在表面上滑动的力。

摩擦力的大小与物体之间相互作用的力有关。

7. 动能和势能:动能是物体由于运动而具有的能量,可以通过公式K = 1/2 mv² 计算,其中 K 是动能,m 是物体的质量,v 是物体的速度。

势能是物体由于位置而具有的能量,可以通过公式 Ep = mgh 计算,其中Ep 是势能,m 是物体的质量,g 是重力加速度,h 是物体的高度。

8. 动量和冲量:动量是物体的运动状态的量度,可以通过公式 p = mv 计算,其中 p 是动量,m 是物体的质量,v 是物体的速度。

冲量是力作用在物体上产生的改变动量的量度。

9. 转动和力矩:物体的转动是指物体绕一些轴旋转的运动。

高中力学知识点总结7篇

高中力学知识点总结7篇

高中力学知识点总结7篇篇1一、力学基础知识概述力学是研究物体机械运动规律的科学,是高中物理的核心组成部分。

在高中阶段,涉及的力学知识点主要包括牛顿运动定律、能量转换与守恒、功与能原理等。

掌握这些知识点对解决力学相关问题具有重要意义。

二、牛顿运动定律要点(一)牛顿第一定律(惯性定律)此定律说明了物体不受外力作用时的运动状态:静止或匀速直线运动。

一切物体都有保持其原有运动状态的性质,即惯性。

(二)牛顿第二定律(加速度定律)描述了力与物体加速度之间的关系,具体表述为:物体的加速度与作用力成正比,与物体质量成反比。

公式表示为F=ma。

(三)牛顿第三定律(作用与反作用)描述了力的相互作用关系,指出作用力与反作用力的大小相等、方向相反,并且作用于相互作用的两个物体上。

三、能量转换与守恒要点(一)动能和势能动能是物体因运动而具有的能量,势能分为重力势能和弹性势能。

动能和势能可以相互转化。

(二)机械能守恒定律在只有重力或弹簧弹力做功的情况下,物体的动能和势能相互转化但总量保持不变。

这是力学中非常重要的一个定律,能帮助解决很多实际问题。

四、功与能原理要点(一)功的概念功是力在距离上的累积效应,是用来描述力对物体所做功的能量转化量度的物理量。

功的计算公式为W=Fs。

(二)能量转化与做功的关系功是能量转化的量度,做功的过程就是能量转化的过程。

做功的过程伴随着能量的转移或转化,功是能量转化的量度。

通过做功可以实现动能和势能之间的转化以及其他形式的能量转化。

五、力学中的其他重要知识点除了上述内容外,高中力学还包括圆周运动、万有引力定律、动量定理等重要知识点。

这些知识点在实际问题中的应用也非常广泛,需要同学们深入理解和掌握。

六、总结与应用建议高中力学知识点众多且相互联系,要想掌握并熟练运用这些知识解决实际问题,需要同学们多做习题以加深理解,并注重理论与实际相结合。

此外,在学习时要注意知识点的层次性和系统性,遵循从基础到进阶的学习路径,逐渐深化对力学知识的理解与应用能力。

大一力学知识点归纳总结

大一力学知识点归纳总结

大一力学知识点归纳总结力学是物理学中最基础的学科之一,它研究物体的运动和相互作用。

在大一学习阶段,我们接触到了许多力学的基本知识点。

本文将对大一力学知识点进行归纳总结,帮助同学们更好地掌握这些概念和原理。

一、力学的基本概念力学的基本概念包括力、质点、质量、速度、加速度等。

力是物体产生运动或形变的原因,通常用矢量表示。

质点是指物体的形状和大小都可以忽略的对象,它只有质量但没有体积。

质量是物体惯性的度量,用于描述物体的数量级和质量大小。

速度是质点在单位时间内位移的大小和方向,加速度是质点在单位时间内速度的变化率。

二、牛顿运动定律牛顿运动定律是力学研究的基石,描述了物体的运动规律。

包括牛顿第一定律(惯性定律)、牛顿第二定律(运动定律)和牛顿第三定律(作用-反作用定律)。

牛顿第一定律指出,在没有外力作用的情况下,物体将保持静止或匀速直线运动。

牛顿第二定律描述了力对物体运动状态的影响,它表示物体的加速度与作用在物体上的力成正比,与物体的质量成反比。

牛顿第三定律指出,任何两个物体之间的相互作用力大小相等、方向相反。

三、运动学运动学研究物体的运动状态和运动规律,其中包括位移、速度和加速度的概念。

位移表示物体从起始位置到结束位置的位置变化,是一个矢量量。

速度是位移在单位时间内的变化率,是一个矢量量。

加速度是速度在单位时间内的变化率,也是一个矢量量。

在直线运动和曲线运动中,我们可以使用运动方程和曲线运动方程来描述物体的运动规律。

四、动力学动力学研究物体的运动和作用力之间的关系。

其中包括动量、能量和功的概念。

动量是描述物体运动状态的物理量,它等于物体的质量与速度的乘积。

根据动量定理,当物体受到作用力时,物体的动量将发生改变。

能量是物体的一种守恒量,包括动能和势能。

动能是物体由于运动而具有的能量,计算公式为动能=1/2mv²,其中m为物体的质量,v为物体的速度。

势能是物体由于其位置而具有的能量,计算公式为势能=mgh,其中m为物体的质量,g为重力加速度,h为物体的高度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 质点运动学 基础知识总结⒈基本概念 22)(dt r d dt v d a dtrd v t r r====)()()(t a t v t r ⇔⇔(向右箭头表示求导运算,向左箭头表示积分运算,积分运算需初始条件:000,,v v r r t t ===)⒉直角坐标系 ,,ˆˆˆ222z y x r kz j y i x r ++=++= r与x,y,z 轴夹角的余弦分别为r z r y r x /,/,/.v v v v v k v j v i v v zy x z y x ,,ˆˆˆ222++=++=与x,y,z 轴夹角的余弦分别为 v v v v v v z y x /,/,/.a a a a a k a j a i a a zy x z y x ,,ˆˆˆ222++=++=与x,y,z 轴夹角的余弦分别为 ./,/,/a a a a a a z y x222222,,,,dtzd dt dv a dt y d dt dv a dt x d dt dv a dtdzv dt dy v dt dx v z z y y x x z y x =========),,(),,(),,(z y x z y x a a a v v v z y x ⇔⇔⒊自然坐标系 ||,,ˆ);(ττττv v dtdsv v v s r r ====ρτττττ22222,,,ˆˆv a dt s d dt dv a a a a n a a a n n n ===+=+=)()()(t a t v t s ττ⇔⇔⒋极坐标系 22,ˆˆ,ˆθθθv v v v r v v rr r r r +=+==dtd r v dt dr v r θθ==, ⒌相对运动 对于两个相对平动的参考系',0't t r r r =+=(时空变换)0'v v v+= (速度变换)0'a a a+= (加速度变换)若两个参考系相对做匀速直线运动,则为伽利略变换,在图示情况下,则有:zz y y x x z z y y x x a a a a a a v v v v V v v tt z z y y Vt x x =====-====-=',','',','',',',' 第三章 基础知识总结⒈牛顿运动定律适用于惯性系、质点,牛顿第二定律是核心。

矢量式:22dtr d m dt v d m a m F=== 分量式:(弧坐标)(直角坐标)ρτττ2,,,v m ma F dt dv m ma F ma F ma F ma F n n z z y y x x =======⒉动量定理适用于惯性系、质点、质点系。

导数形式:dt pd F =微分形式:p d dt F=积分形式:p dt F I∆==⎰)((注意分量式的运用)⒊动量守恒定律适用于惯性系、质点、质点系。

若作用于质点或质点系的外力的矢量和始终为零,则质点或质点系的动量保持不变。

即∑==恒矢量。

则,若外p F0 (注意分量式的运用)⒋在非惯性系中,考虑相应的惯性力,也可应用以上规律解题。

在直线加速参考系中:0*a m f-= 在转动参考系中:ωω⨯=='2,*2*mv f r m f k c ⒌质心和质心运动定理 ⑴∑∑∑===i i c ii c i i c a m a m v m v m r m r m⑵∑=c a m F(注意分量式的运用)第四章 基础知识总结⒈功的定义式:⎰⋅=2112r r r d F A直角坐标系中:⎰⎰+==221121,,1212y x y x yxx x xdy F dx F A dxF A ,自然坐标系中:⎰=2112s s ds F A τ极坐标系中: ⎰+=2211,,12θθθθr r rrd F dr F A⒉⎰⋅-=-=b ap p k r d F a E b E mv E 保势能动能)()(,212重力势能 mgy y E p =)( 弹簧弹性势能 2)(21)(l r k r E p -= 静电势能 rQqr E p πε4)(=⒊动能定理适用于惯性系、质点、质点系∑∑∆=+k E A A内外⒋机械能定理适用于惯性系∑∑+∆=+)p k E E A A(非保内外⒌机械能守恒定律适用于惯性系若只有保守内力做功,则系统的机械能保持不变,C E E p k =+ ⒍碰撞的基本公式接近速度)(分离速度(牛顿碰撞公式)动量守恒方程)e v v e v v v m v m v m v m =-=-+=+)((2010122211202101 对于完全弹性碰撞 e = 1对于完全非弹性碰撞 e = 0对于斜碰,可在球心连线方向上应用牛顿碰撞公式。

⒎克尼希定理∑+=22'2121i i c k v m mv E 绝对动能=质心动能+相对动能 应用于二体问题 222121u mv E c k μ+=212121m m m m m m m +=+=μu 为二质点相对速率第五章 基础知识总结⒈力矩 力对点的力矩F r o⨯=τ 力对轴的力矩 ⊥⊥⨯=F r k zˆτ⒉角动量质点对点的角动量 p r L o⨯=质点对轴的角动量 ⊥⊥⨯=p r k L zˆ⒊角动量定理适用于惯性系、质点、质点系⑴质点或质点系对某点的角动量对时间的变化率等于作用于质点或质点系的外力对该点的力矩之和∑=dt L d 0外τ⑵质点或质点系对某轴的角动量对时间的变化率等于作用于质点或质点系的外力对该轴的力矩之和∑=dtdL zz τ⒋角动量守恒定律适用于惯性系、质点、质点系⑴若作用于质点或质点系的外力对某点的力矩之和始终为零,则质点或质点系对该点的角动量保持不变⑵若作用于质点或质点系的外力对某轴的力矩之和始终为零,则质点或质点系对该轴的角动量保持不变⒌对质心参考系可直接应用角动量定理及其守恒定律,而不必考虑惯性力矩。

第六章 基础知识总结⒈ 开普勒定律⑴ 行星沿椭圆轨道绕太阳运行,太阳位于一个焦点上 ⑵ 行星位矢在相等时间内扫过相等面积⑶ 行星周期平方与半长轴立方成正比 T 2/a 3=C ⒉ 万有引力定律 2r m M Gf = ⒊ 引力势能 rm M p G r E -=)(⒋ 三个宇宙速度 环绕速度 s km Rg V /9.71==脱离速度 122V V == 11.2 km/s逃逸速度 V 3 = 16.7 km/s.第七章 基础知识总结⒈刚体的质心定义:∑⎰⎰==dm dm r r mr m r c i i c //求质心方法:对称分析法,分割法,积分法。

⒉刚体对轴的转动惯量定义:∑⎰==dm r I rm I ii 22平行轴定理 I o = I c +md 2 正交轴定理 I z = I x +I y.常见刚体的转动惯量:(略) ⒊刚体的动量和质心运动定理∑==c ca m F v m p⒋刚体对轴的角动量和转动定理∑==βτωI I L⒌刚体的转动动能和重力势能c p k mgy E I E ==221ω⒍刚体的平面运动=随质心坐标系的平动+绕质心坐标系的转动动力学方程:∑∑==c c ccI a m F βτ(不必考虑惯性力矩)动能:221221cc c k I mv E ω+= ⒎刚体的平衡方程∑=0F , 对任意轴∑=0τ第八章 基础知识总结⒈物体在线性回复力F = - kx ,或线性回复力矩τ= - c φ作用下的运动就是简谐振动,其动力学方程为 ,02022=+x dt x d ω(x 表示线位移或角位移);弹簧振子:ω02=k/m ,单摆:ω02=g/l ,扭摆:ω02=C/I.⒉简谐振动的运动学方程为 x = Acos(ω0t+α);圆频率、频率、周期是由振动系统本身决定的,ω0=2π/T=2πv ;振幅A 和初相α由初始条件决定。

⒊在简谐振动中,动能和势能互相转换,总机械能保持不变;对于弹簧振子,22021221A m kA E E p k ω==+。

⒋两个简谐振动的合成⒌阻尼振动的动力学方程为 022022=++x dt dx dtx d ωβ。

其运动学方程分三种情况:⑴在弱阻尼状态(β<ω0),振动的方向变化有周期性,220'),'cos(βωωαωβ-=+=-t Ae x t ,对数减缩 = βT ’.⑵在过阻尼状态(β>ω0),无周期性,振子单调、缓慢地回到平衡位置。

⑶临界阻尼状态(β=ω0),无周期性,振子单调、迅速地回到平衡位置⒍受迫振动动力学方程 t f x dt dx dtx d ωωβcos 202022=++; 其稳定解为 )cos(0ϕω+=t A x ,ω是驱动力的频率,A 0和φ也不是由初始条件决定,222220004)(/ωβωω+-=f A 2202ωωβωϕ--=tg 当2202βωω-=时,发生位移共振。

第九章 基础知识总结⒈平面简谐波方程 )cos()(cos kx t A t A y Vxωω==; v V T v k T λπλπω====,/1,2,2。

⒉弹性波的波速仅取决媒质性质:弹性体中横波的波速ρ/N V =,弹性体中纵波的波速ρ/Y V =,流体中纵波波速ρ/k V =,绳波波速ρ/T V =。

⒊波的平均能量密度2221A ρωε=,波的平均能流密度 V A I 2221ρω=。

⒋波由波密射向波疏媒质,在边界处,反射波与入射波相位相同;波由波疏射向波密媒质,在边界处,反射波比入射波相位落后π,相当损失半个波长;例如:在自由端无半波损失,在固定端有半波损失。

⒌振动方向相同、频率相同、位相差恒定的二列波叫相干波,相干波叠加叫波的干涉。

⒍振幅相同、传播方向相反的两列相干波叠加产生驻波现象;驻波方程t x A y ωλπcos cos 22=;波节两边质元振动相位相反,两个波节之间质元振动相位相同;相邻波节或相邻波腹间距离为λ/2,相邻波腹波节间距离为λ/4。

⒎多普勒公式:v v SV V V V --=0',在运用此公式时,以波速V 为正方向,从而确定V 0、V S的正负。

第十章 基础知识总结⒈理想流体就是不可压缩、无粘性的流体;稳定流动(或称定常流动)就是空间各点流速不变的流动。

⒉静止流体内的压强分布相对地球静止:gh p p gdy dp ρρ=--=21,(h 两点间高度)相对非惯性系静止:先找出等压面,再采用与惯性系相同的方法分析。

⒊连续性方程:当不可压缩流体做稳定流动时,沿一流管,流量守恒,即=∆=∆=2211s v s v Q 恒量⒋伯努力方程:当理想流体稳定流动时,沿一流线,=++221v gh p ρρ恒量⒌粘性定律:流体内面元两侧相互作用的粘性力与面元的面积、速度梯度成正比,即ηη.s f dydv∆=为粘性系数,与物质、温度、压强有关。

相关文档
最新文档