数字信号处理实验七(上机)报告
数字信号处理实验报告
实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。
二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。
2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。
信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。
根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。
三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。
(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。
数字信号处理实验报告
数字信号处理实验报告⼀、课程设计(综合实验)的⽬的与要求⽬的与要求:1.掌握《数字信号处理基础》课程的基本理论; 2.掌握应⽤MATLAB 进⾏数字信号处理的程序设计;实验内容:已知低通数字滤波器的性能指标如下:0.26p ωπ=,0.75dB p R =,0.41s ωπ=,50dB s A =要求:1. 选择合适的窗函数,设计满⾜上述指标的数字线性相位FIR 低通滤波器。
⽤⼀个图形窗⼝,包括四个⼦图,分析显⽰滤波器的单位冲激响应、相频响应、幅频响应和以dB 为纵坐标的幅频响应曲线。
2. ⽤双线性变换法,设计满⾜上述指标的数字Chebyshev I 型低通滤波器。
⽤⼀个图形窗⼝,包括三个⼦图,分析显⽰滤波器的幅频响应、以dB 为纵坐标的幅频响应和相频响应。
3. 已知模拟信号1234()2sin(2)5sin(2)8cos(2)7.5cos(2)x t f t f t f t f t ππππ=+++其中10.12f kHz =,2 4.98f kHz =,3 3.25f kHz =,4 1.15f kHz =,取采样频率10s f kHz =。
要求:(1) 以10s f kHz =对()x t 进⾏取样,得到()x n 。
⽤⼀个图形窗⼝,包括两个⼦图,分别显⽰()x t 以及()x n (0511n ≤≤)的波形;(2) ⽤FFT 对()x n 进⾏谱分析,要求频率分辨率不超过5Hz 。
求出⼀个记录长度中的最少点数x N ,并⽤⼀个图形窗⼝,包括两个⼦图,分别显⽰()x n 以及()X k 的幅值; (3) ⽤要求1中设计的线性相位低通数字滤波器对()x n 进⾏滤波,求出滤波器的输出1()y n ,并⽤FFT 对1()y n 进⾏谱分析,要求频率分辨率不超过5Hz 。
求出⼀个记录长度中的最少点数1y N ,并⽤⼀个图形窗⼝,包括四个⼦图,分别显⽰()x n (01x n N ≤≤-)、()X k 、1()y n (101y n N ≤≤-)和1()Y k 的幅值;(4) ⽤要求2中设计的Chebyshev 低通数字滤波器对()x n 进⾏滤波,求出滤波器的输出2()y n ,并⽤FFT 对2()y n 进⾏谱分析,要求频率分辨率不超过5Hz 。
数字信号处理实验(民航无线电监测关键技术研究)
《数字信号处理》实验报告实验名称数字信号处理实验(民航无线电监测关键技术研究)实验时间一、实验目的:通过实验,理解和掌握民航无线电监测关键技术中调制解调、FIR 数字滤波器、多采样率数字信号处理、FFT、语音数字信号处理、静噪等技术,培养学生对数字信号处理技术的兴趣,并提高学生基于数字信号处理技术的工程应用能力。
二、实验环境:Matlab三、实验原理、内容与分析(包括实验内容、MATLAB程序、实验结果与分析)实验总体框图如上图所示,主要实现民航无线电监测关键技术中调制解调、FIR 数字滤波器、多采样率数字信号处理、FFT、语音数字信号处理、静噪等技术。
1.有限长单位脉冲(FIR)滤波器的设计FIR 数字滤波器是一种非递归系统,其冲激响应h(n)是有限长序列,其差分方程表达式为:系统传递函数可表达为:N-1 为FIR 滤波器的阶数。
在数字信号处理应用中往往需要设计线性相位的滤波器,FIR 滤波器在保证幅度特性满足技术要求的同时,很容易做到严格的线性相位特性。
为了使滤波器满足线性相位条件,要求其单位脉冲响应h(n)为实序列,且满足偶对称或奇对称条件,即h(n)=h(N-1-n)或h(n)=-h(N-1-n)。
这样,当N 为偶数时,偶对称线性相位FIR 滤波器的差分方程表达式为:由上可见FIR 滤波器不断地对输入样本x(n)延时后,再做乘法累加算法,将滤波器结果y(n)输出,因此,FIR 实际上是一种乘法累加运算。
而对于线性相位FIR 而言,利用线性相位FIR 滤波器系数的对称特性,可以采用结构精简的FIR 结构将乘法器数目减少一半。
2.AM 调制解调AM 调制解调过程如下:3.多采样率数字信号处理一般认为,在满足采样定理的前提下,首先将以采样率F1 采集的数字信号进行D/A 转换, 变成模拟信号,再按采样率F2 进行A/D 变换,从而实现从F1 到F2 的采样率转换。
但这样较麻烦,且易使信号受到损伤,所以实际上改变采样率是在数字域实现的。
数字信号处理实验报告(自己的实验报告)
数字信号处理实验报告(⾃⼰的实验报告)数字信号处理实验报告西南交通⼤学信息科学与技术学院姓名:伍先春学号:20092487班级:⾃动化1班指导⽼师:张翠芳实验⼀序列的傅⽴叶变换实验⽬的进⼀步加深理解DFS,DFT 算法的原理;研究补零问题;快速傅⽴叶变换(FFT )的应⽤。
实验步骤1. 复习DFS 和DFT 的定义,性质和应⽤;2. 熟悉MATLAB 语⾔的命令窗⼝、编程窗⼝和图形窗⼝的使⽤;利⽤提供的程序例⼦编写实验⽤程序;按实验内容上机实验,并进⾏实验结果分析;写出完整的实验报告,并将程序附在后⾯。
实验内容1. 周期⽅波序列的频谱试画出下⾯四种情况下的的幅度频谱,并分析补零后,对信号频谱的影响。
2. 有限长序列x(n)的DFT(1)取x(n)(n=0:10)时,画出x(n)的频谱X(k) 的幅度;(2)将(1)中的x(n)以补零的⽅式,使x(n)加长到(n:0~100)时,画出x(n)的频谱X(k) 的幅度;(3)取x(n)(n:0~100)时,画出x(n)的频谱X(k) 的幅度。
利⽤FFT进⾏谱分析已知:模拟信号以t=0.01n(n=0:N-1)进⾏采样,求N 点DFT 的幅值谱。
请分别画出N=45; N=50;N=55;N=60时的幅值曲线。
数字信号处理实验⼀1.(1) L=5;N=20;60,7)4(;60,5)3(;40,5)2(;20,5)1()](~[)(~,2,1,01)1(,01,1)(~=========±±=??-+≤≤+-+≤≤=N L N L N L N L n x DFS k X m N m n L mN L mN n mN n x )52.0cos()48.0cos()(n n n x ππ+=)8cos(5)4sin(2)(t t t x ππ+=n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(1)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=20'); subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(2)L=5;N=40;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(2)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=40');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(3)L=5;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(3)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=60'); subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(4)L=7;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(4)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=7,N=60'); subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');2. (1)M=10;N=10;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(1)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10'); axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(2)M=10;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(2)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10'); axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(3)M=100;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(3)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=100'); axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');3.figure(1)subplot(2,2,1)N=45;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N); plot(q,abs(y))stem(q,abs(y))title('FFT N=45')%subplot(2,2,2)N=50;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N); plot(q,abs(y))title('FFT N=50')%subplot(2,2,3)N=55;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);title('FFT N=55')%subplot(2,2,4)N=16;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=16')function[Xk]=dfs(xn,N)n=[0:1:N-1];k=[0:1:N-1];WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;实验⼆⽤双线性变换法设计IIR 数字滤波器⼀、实验⽬的1.熟悉⽤双线性变换法设计IIR 数字滤波器的原理与⽅法; 2.掌握数字滤波器的计算机仿真⽅法;3.通过观察对实际⼼电图的滤波作⽤,获得数字滤波器的感性知识。
《数字信号处理》实验报告
《数字信号处理》上机实验指导书一、引言“数字信号处理”是一门理论和实验密切结合的课程,为了深入地掌握课程内容,应当在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助学生深入地理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
所以,根据本课程的重点要求编写了四个实验。
第一章、二章是全书的基础内容,抽样定理、时域离散系统的时域和频域分析以及系统对输入信号的响应是重要的基本内容。
由于第一、二章大部分内容已经在前期《信号与系统》课程中学习完,所以可通过实验一帮助学生温习以上重要内容,加深学生对“数字信号处理是通过对输入信号的一种运算达到处理目的” 这一重要概念的理解。
这样便可以使学生从《信号与系统》课程顺利的过渡到本课程的学习上来。
第三章、四章DFT、FFT是数字信号处理的重要数学工具,它有广泛的使用内容。
限于实验课时,仅采用实验二“用FFT对信号进行谱分析”这一实验。
通过该实验加深理解DFT的基本概念、基本性质。
FFT是它的快速算法,必须学会使用。
所以,学习完第三、四章后,可安排进行实验二。
数字滤波器的基本理论和设计方法是数字信号处理技术的重要内容。
学习这一部分时,应重点掌握IIR和FIR两种不同的数字滤波器的基本设计方法。
IIR滤波器的单位冲激响应是无限长的,设计方法是先设计模拟滤波器,然后再通过S~Z平面转换,求出相应的数字滤波器的系统函数。
这里的平面转换有两种方法,即冲激响应不变法和双线性变换法,后者没有频率混叠的缺点,且转换简单,是一种普遍应用的方法。
学习完第六章以后可以进行实验三。
FIR滤波器的单位冲激响应是有限长的,设计滤波器的目的即是求出符合要求的单位冲激响应。
窗函数法是一种基本的,也是一种重要的设计方法。
学习完第七章后可以进行实验四。
以上所提到的四个实验,可根据实验课时的多少恰当安排。
例如:实验一可根据学生在学习《信号与系统》课程后,掌握的程度来确定是否做此实验。
若时间紧,可以在实验三、四之中任做一个实验。
《数字信号处理》上机实习报告
数字信号处理实习报告一、从给定的程序(文件包Friday.rar)中,选择一个源程序做详细标注。
(目的:熟悉Matlab程序)程序名:Gibbs_Phenomena_CFSTzhushi.m程序思路:学习matlab基础程序二、能够利用Matlab熟悉地画图,内容包括:X、Y坐标轴上的label,每幅图上的title,绘画多条曲线时的legend,对图形进行适当的标注等。
(1)在一副图上画出多幅小图;(2)画出一组二维图形;(3)画出一组三维图形;(4)画出复数的实部与虚部。
(5)完成对一个源程序进行详细注释。
例1X、Y坐标轴上的label,每幅图上的title,(1)在一副图上画出多幅小图;(3)画出一组三维图形;(5)完成对一个源程序进行详细注释。
使用subplot画出两个三维椭球,一个制作三维网格图,一个为表面图。
x轴范围[-3,3],y轴范围[-16,16],z轴范围[-2,2]程序名:tuoqiu.m对此源程序的注释:sita=0:0.1:2*pi;%设置sita角度的范围arfa=sita'; %确定arfa的范围X = 9*cos(arfa)*cos(sita); %用三角坐标将x表示出来Y =256*cos(arfa)*sin(sita); %用三角坐标将y表示出来Z = 4*sin(arfa)*ones(size(sita)); %用三角坐标将z表示出来subplot(1,2,1),mesh(X,Y,Z) %画三维椭球网格图使用meshtitle('三维网格图');%注释命令xlabel ('x区间(-3:3)'); %在x轴上添加注释x的坐标ylabel ('y区间(-16:16)'); %在y轴上添加注释y的坐标zlabel ('z区间(-2:2)'); %在z轴上添加注释z的坐标subplot(1,2,2),surf(X,Y,Z)% 在第二个小图上画出椭球的三维曲面图title('三维曲面图') %注释命令xlabel ('x区间(-3:3)'); %在x轴上添加注释x的坐标ylabel ('y区间(-16:16)'); %在y轴上添加注释y的坐标zlabel ('z区间(-2:2)'); %在z轴上添加注释z的坐标运行结果:例2绘画多条曲线时的legend,对图形进行适当的标注等。
数字信号处理上机实验报告
实验一系统响应及系统稳定性一、实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
二、实验内容(1)给定一个低通滤波器的差分方程为y(n)=(n)+(n-1)+(n-1)输入信号x1(n)=R8(n)x2(n)=u(n)(a) 分别求出系统对x1(n)=R8(n) 和x2(n)=u(n)的响应序列,并画出其波形。
(b) 求出系统的单位冲响应,画出其波形。
实验程序:A=[1,];B=[,]; %%系统差分方程系数向量 B 和 Ax1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号 x1(n)=R8(n) x2n=ones(1,128); %产生信号 x2(n)=u(n)y1n=filter(B,A,x1n); %求系统对 x1(n)的响应 y1(n)n=0:length(y1n)-1;subplot(2,2,1);stem(n,y1n,'.');title('(a) 系统对 R_8(n)的响应y_1(n)');xlabel('n');ylabel('y_1(n)');y2n=filter(B,A,x2n); %求系统对 x2(n)的响应 y2(n)n=0:length(y2n)-1;subplot(2,2,2);stem(n,y2n,'.');title('(b) 系统对 u(n)的响应y_2(n)');xlabel('n');ylabel('y_2(n)');hn=impz(B,A,58); %求系统单位脉冲响应 h(n) n=0:length(hn)-1;subplot(2,2,3);y=hn;stem(n,hn,'.');title('(c) 系统单位脉冲响应h(n)');xlabel('n');ylabel('h(n)');运行结果图:(2)给定系统的单位脉冲响应为h1(n)=R10(n)h2(n)= δ(n)+δ(n-1)+δ(n-2)+δ(n-3)用线性卷积法分别求系统h1(n)和h2(n)对x1(n)=R8(n)的输出响应,并画出波形。
数字信号处理(西电上机实验)
数字信号处理实验报告实验一:信号、系统及系统响应一、实验目的:(1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。
(2) 熟悉时域离散系统的时域特性。
(3) 利用卷积方法观察分析系统的时域特性。
(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。
二、实验原理与方法:(1) 时域采样。
(2) LTI系统的输入输出关系。
三、实验内容、步骤(1) 认真复习采样理论、离散信号与系统、线性卷积、序列的傅里叶变换及性质等有关内容,阅读本实验原理与方法。
(2) 编制实验用主程序及相应子程序。
①信号产生子程序,用于产生实验中要用到的下列信号序列:a. xa(t)=A*e^-at *sin(Ω0t)u(t)A=444.128;a=50*sqrt(2)*pi;b. 单位脉冲序列:xb(n)=δ(n)c. 矩形序列:xc(n)=RN(n), N=10②系统单位脉冲响应序列产生子程序。
本实验要用到两种FIR系统。
a. ha(n)=R10(n);b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)③有限长序列线性卷积子程序用于完成两个给定长度的序列的卷积。
可以直接调用MATLAB语言中的卷积函数conv。
conv用于两个有限长度序列的卷积,它假定两个序列都从n=0 开始。
调用格式如下:y=conv (x, h)四、实验内容调通并运行实验程序,完成下述实验内容:①分析采样序列的特性。
a. 取采样频率fs=1 kHz, 即T=1 ms。
b. 改变采样频率,fs=300 Hz,观察|X(ejω)|的变化,并做记录(打印曲线);进一步降低采样频率,fs=200 Hz,观察频谱混叠是否明显存在,说明原因,并记录(打印)这时的|X(ejω)|曲线。
②时域离散信号、系统和系统响应分析。
a. 观察信号xb(n)和系统hb(n)的时域和频域特性;利用线性卷积求信号xb(n)通过系统hb(n)的响应y(n),比较所求响应y(n)和hb(n)的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。
数字信号处理实验报告
数字信号处理实验报告一、实验目的本次数字信号处理实验的主要目的是通过实际操作和观察,深入理解数字信号处理的基本概念和方法,掌握数字信号的采集、处理和分析技术,并能够运用所学知识解决实际问题。
二、实验设备与环境1、计算机一台,安装有 MATLAB 软件。
2、数据采集卡。
三、实验原理1、数字信号的表示与采样数字信号是在时间和幅度上都离散的信号,可以用数字序列来表示。
在采样过程中,根据奈奎斯特采样定理,为了能够准确地恢复原始信号,采样频率必须大于信号最高频率的两倍。
2、离散傅里叶变换(DFT)DFT 是将时域离散信号变换到频域的一种方法。
通过 DFT,可以得到信号的频谱特性,从而分析信号的频率成分。
3、数字滤波器数字滤波器是对数字信号进行滤波处理的系统,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。
FIR 滤波器具有线性相位特性,而 IIR 滤波器则在性能和实现复杂度上有一定的优势。
四、实验内容与步骤1、信号的采集与生成使用数据采集卡采集一段音频信号,或者在 MATLAB 中生成一个模拟信号,如正弦波、方波等。
2、信号的采样与重构对采集或生成的信号进行采样,然后通过插值算法重构原始信号,观察采样频率对重构信号质量的影响。
3、离散傅里叶变换对采样后的信号进行DFT 变换,得到其频谱,并分析频谱的特点。
4、数字滤波器的设计与实现(1)设计一个低通 FIR 滤波器,截止频率为给定值,观察滤波前后信号的频谱变化。
(2)设计一个高通 IIR 滤波器,截止频率为给定值,比较滤波前后信号的时域和频域特性。
五、实验结果与分析1、信号的采集与生成成功采集到一段音频信号,并在MATLAB 中生成了各种模拟信号,如正弦波、方波等。
通过观察这些信号的时域波形,对不同类型信号的特点有了直观的认识。
2、信号的采样与重构当采样频率足够高时,重构的信号能够较好地恢复原始信号的形状;当采样频率低于奈奎斯特频率时,重构信号出现了失真和混叠现象。
数字信号处理上机实验
实验1 抽样定理的实验体会实验内容:把下述三个连续时间信号()x t 转换成离散时间信号()s x nT ,在计算机上绘出()s x nT 的图形。
1/s s f T =为抽样频率。
自行依次选取不同的抽样频率,如00000.5,,2,5s f f f f f =等。
(1) 工频信号:10()sin(2)x t A f t π=,220A =,050f Hz =Dt=0.00005;t=-0.005:Dt:0.05; A=220; fo=50;xa=A*sin(2*pi*fo*t); Ts=0.04;n=-25:1:25; x=A*sin(2*pi*fo*n*Ts); stem(n,x,'fill'); grid on ;图1.1 fs=25Hz 时()s x nT 的图形x nT的图形图1.2 fs=50Hz时()sx nT的图形图1.3 fs=100Hz时()s图1.3 fs=250Hz 时()s x nT 的图形(2) 衰减正弦信号:20()sin(2)t x t Ae f t απ-=,2A =,0.5α=,02f Hz =Dt=0.00005;t=-0.005:Dt:0.05; A=2;a=0.5;fo=2;xa=A*exp(-a*t).*sin(2*pi*fo*t); Ts=1;n=-25:1:25;x=A*exp(-a*n*Ts).*sin(2*pi*fo*n*Ts); stem(n,x,'fill'); grid on ;图2.1 fs=1Hz 时()s x nT 的图形x nT的图形图2.2 fs=2Hz时()sx nT的图形图2.3 fs=4Hz时()sx nT的图形图2.4 fs=10Hz时()s(3)谐波信号:3201()sin(2)iix t A f itπ==∑,11A=,20.5A=,30.2A=,5f Hz=Dt=0.00005;t=-0.005:Dt:0.05;A1=1;A2=0.5;A3=0.2;fo=5;xa=A1*sin(2*pi*fo*t)+A2*sin(2*pi*fo*2*t)+A3*sin(2*pi*pi*3*t);Ts=0.4;n=-25:1:25;x=A1*sin(2*pi*fo*n*Ts)+A2*sin(2*pi*fo*2*n*Ts)+A3*sin(2*pi*pi*3* n*Ts);stem(n,x,'fill');grid on;图3.1 fs=2.5Hz时()sx nT的图图3.2 fs=5Hz时()sx nT的图形x nT的图形图3.3 fs=10Hz时()sx nT的图形图3.4 fs=25Hz时()s实验2 离散信号的DTFT 和DFT实验内容: 分别计算16点序列 150,165cos )(≤≤=n n n x π的16点和32点DFT ,绘出幅度谱图形,并绘出该序列的DTFT 图形。
数字信号处理上机实验
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力通根保1据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试、中件资且卷管包中料拒试路含调试绝验敷线试卷动方设槽技作案技、术,以术管来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内 故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
数字信号处理实验报告完整版[5篇模版]
数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。
2.应用 DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。
2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。
而要研究离散时间信号,首先需要产生出各种离散时间信号。
使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。
通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。
数字信号处理上机实验报告
数字信号处理上机实验报告实验一熟悉MATLAB环境一、实验目的1、熟悉 MATLAB的主要操作命令。
2、学会简单的矩阵输入和数据读写。
3、掌握简单的绘图命令。
4、用 MATLAB编程并学会创建函数。
5、观察离散系统的频率响应。
二、实验容认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。
在熟悉 MATLAB基本命令的基础上,完成以下实验。
上机实验容:1、数组的加减乘除和乘方运算,输入A1234,B3456,求C A B ,D A B,E A. B,F A./ B,G A.^ B ,并用stem语句画出A、 B、C、 D、 E、F、 G。
程序:>> A=[1 2 3 4];B=[3 4 5 6];C=A+B; D=A-B; E=A.*B; F=A./B; G=A.^B;subplot(2,4,1);stem(A,'.'); subplot(2,4,2);stem(B,'.');subplot(2,4,3);stem(C,'.'); subplot(2,4,4);stem(D,'.');subplot(2,4,5);stem(E,'.'); subplot(2,4,6);stem(F,'.');subplot(2,4,7);stem(G,'.')2、用MATLAB实现下列序列。
a)x(n)0.8n0n15b) x(n)e(0. 2 3 j ) n0n 15c)x(n)3cos(0.125 n0.2 ) 2sin(0.25 n 0.1 ) 0 n 15程序:A)clear;clc;n=[0:15];x1=0.8.^n;subplot(3,1,1),stem(x1)title('x1=0.8^n')xlabel('n'); ylabel('x1');B)clear;clc;n=[0:15];x2=exp((0.2+3j)*n);subplot(3,1,1),stem(x2)title('x2=exp((0.2+3j)*n)')xlabel('n'); ylabel('x2');C)clear;clc;n=[0:15];x3=3*cos(0.125*pi*n+0.2*pi)+2*sin(0.25*pi*n+0.1*pi); subplot(3,1,1),stem(x3)title('x3=3*cos(0.125*pi*n+0.2*pi)+2*sin(0.25*pi*n+0.1*pi)') xlabel('n'); ylabel('x3');3、绘出下列时间常数的图形,对x 轴,y轴以及图形上方均须加上适当的标注:a)x(t )sin( 2 t )0t10sb)x(t )cos(100t )sin(t )0 t 4s>>m=0:0.01:10;n=0:0.01:4;x1t=sin(2*pi*m);x2t=cos(100*pi*n).*sin(pi*n);subplot(2,1,1);plot(m,x1t);subplot(2,1,2);plot(n,x2t);4、给定一因果系统 H(z)=(1+ 2z- 1z-2)/( 1- 0.67z 1z 2),求出并绘制H(z)的幅频响应与相频响应。
数字信号处理实验报告
数字信号处理实验报告数字信号处理实验报告一、实验目的本实验旨在通过数字信号处理的方法,对给定的信号进行滤波、频域分析和采样率转换等操作,深入理解数字信号处理的基本原理和技术。
二、实验原理数字信号处理(DSP)是一种利用计算机、数字电路或其他数字设备对信号进行各种处理的技术。
其主要内容包括采样、量化、滤波、变换分析、重建等。
其中,滤波器是数字信号处理中最重要的元件之一,它可以用来提取信号的特征,抑制噪声,增强信号的清晰度。
频域分析是指将时域信号转化为频域信号,从而更好地理解信号的频率特性。
采样率转换则是在不同采样率之间对信号进行转换,以满足不同应用的需求。
三、实验步骤1.信号采集:首先,我们使用实验室的信号采集设备对给定的信号进行采集。
采集的信号包括噪声信号、含有正弦波和方波的混合信号等。
2.数据量化:采集到的信号需要进行量化处理,即将连续的模拟信号转化为离散的数字信号。
这一步通常通过ADC(模数转换器)实现。
3.滤波处理:将量化后的数字信号输入到数字滤波器中。
我们使用不同的滤波器,如低通、高通、带通等,对信号进行滤波处理,以观察不同滤波器对信号的影响。
4.频域分析:将经过滤波处理的信号进行FFT(快速傅里叶变换)处理,将时域信号转化为频域信号,从而可以对其频率特性进行分析。
5.采样率转换:在进行上述处理后,我们还需要对信号进行采样率转换。
我们使用了不同的采样率对信号进行转换,并观察采样率对信号处理结果的影响。
四、实验结果及分析1.滤波处理:经过不同类型滤波器处理后,我们发现低通滤波器可以有效抑制噪声,高通滤波器可以突出高频信号的特征,带通滤波器则可以提取特定频率范围的信号。
这表明不同类型的滤波器在处理不同类型的信号时具有不同的效果。
2.频域分析:通过FFT处理,我们将时域信号转化为频域信号。
在频域分析中,我们可以更清楚地看到信号的频率特性。
例如,对于噪声信号,我们可以看到其频率分布较为均匀;对于含有正弦波和方波的混合信号,我们可以看到其包含了不同频率的分量。
数字信号处理实验(1-7)原始实验内容文档(含代码)
实验要求1.每个实验进行之前须充分预习准备,实验完成后一周内提交实验报告;2.填写实验报告时,分为实验题目、实验目的、实验内容、实验结果、实验小结五项;3.实验报告要求:实验题目、实验目的、实验内容、实验结果四项都可打印;但每次实验的实验内容中的重要代码(或关键函数)后面要用手工解释其作用。
实验小结必须手写!(针对以前同学书写实验报告时候抄写代码太费时间的现象,本期实验报告进行以上改革)。
实验一信号、系统及系统响应实验目的:1. 掌握使用MATLAB进行函数、子程序、文件编辑等基本操作;2. 编写一些数字信号处理中常用序列的3. 掌握函数调用的方法。
实验内容:1.在数字信号处理的基本理论和MATLAB信号处理工具箱函数的基础上,可以自己编写一些子程序以便调用。
(1)单位抽样序列δ(n-n0)的生成函数impseq.m(2)单位阶跃序列u(n-n0)的生成函数stepseq.m(3)两个信号相加的生成函数sigadd.m(4)两个信号相乘的生成函数sigmult.m(5)序列移位y(n)=x(n-n0)的生成函数sigshift.m(6)序列翻褶y(n)=x(-n)生成函数sigfold.m(7)奇偶综合函数evenodd.m(8)求卷积和2.产生系列序列,并绘出离散图。
(1) x1(n)=3δ(n-2)-δ(n+4) -5≤n≤5(2) x3(n)=cos(0.04πn)+0.2w(n) 0≤n≤50其中:w(n)是均值为0,方差为1 的白噪声序列。
3.设线性移不变系统的抽样响应h(n)=(0.9)^n*u(n),输入序列x(n)=u(n)-u(n-10),求系统的输出y(n).实验二 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
数字信号处理上机实验汇总(原创)
信 号 y=u(t+3)-2u(t) 1.5
1
0.5
0
y
-0.5
-1
-1.5 -5
-4
-3
-2
-1
0 t
1
2
3
4
5
(2)绘出复指数信号 x(t ) e0.2t cos(2t 0.5) 的波形。
2
运行结果:
连 续 复 指 数 信 号 x[t]=cos(2*t+0.5).*exp(0.2*t) 2000 1500 1000 500 0
验证结合律
y1(n)=(x1[n]*x2[n])*x3[n]
6000 4000 2000 0 -2000 -100
-80
-60
-40
-20
0 n
20
40
60
80
100
y2(n)=x1[n]*(x2[n]*x3[n])
10000
5000
0
-5000 -100
-80
-60
-40
-20
0 n
20
40
60
80
5
1
x(n)
0.5
0 -2
-1.5
-1
-0.5
0 n
0.5
1
1.5
2
1
h(n)
0.5
0 -2
-1.5
-1
-0.5
0 n
0.5
1
1.5
2
6
y ( n) =x(n)*h(n)
4
2
0 -4
-3
-2
-1
0 n
1
2
3
4
(2) 对下面三个序列, 用 conv_m()函数来验证卷积特性 (交换律、 结合律、 分配律) 交换律 结合律 分配律 其
《数字信号处理》上机实习报告-(7)
计算机编程与数字信号处理实习报告6月21日实习要求:从给定的程序(文件包Friday.rar )中,选择一个源程序做详细标注。
(目的:熟悉Matlab 程序)完成情况:完成了对程序Gibbs_Phenomena_CFST.m 的注释。
程序:Gibbs_Phenomena_CFST.m 。
6月22日实习要求:能够利用Matlab 熟悉地画图,内容包括:X 、Y 坐标轴上的label ,每幅图上的title ,绘画多条曲线时的legend ,对图形进行适当的标注等。
完成情况:完成了第二题前三小题:(1)在一副图上画出多幅小图;(2)画出一组二维图形;(3)画出一组三维图形。
程序:分别见graph.m 、twod_graph.m 、threed_graph.m (1)在一副图上画出多幅小图(2))画出一组二维图形x yy=x+10246810x yy=x2xyy=sin(x)-1-0.500.51xyy=cos(x)(3)画出一组三维图形6月23日xy一组二维图形的绘制实习要求:能够利用Matlab 熟悉地画图,内容包括:X 、Y 坐标轴上的label ,每幅图上的title ,绘画多条曲线时的legend ,对图形进行适当的标注等。
完成情况:完成了第二题后两小题:(4)画出复数的实部与虚部;(5)完成对一个源程序进行详细注释。
程序:complex_graph.m 、(4)画出复数的实部与虚部(5)完成对一个源程序进行详细注释6月24日实习要求:计算普通褶积与循环褶积,分别使用时间域与频率域两种方法进行正、反演计算,指出循环褶积计算时所存在的边界效应现象;编写一个做相关分析的源程序。
完成情况:计算普通褶积与循环褶积,分别使用时间域与频率域两种方法进行正、反演计算,并指出循环褶积计算时所存在的边界效应现象。
程序:普通褶积:lin_time.m 、lin_fre.m循环褶积:cyc_time.m 、cyc_fre.m 、cyc_bound.m6月25日实习要求:编写一个做相关分析的源程序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理实验报告
实验名称: 实验七
冲击响应不变法IIR 数字滤波器设计
实验时间: 2014 年 12 月 2 日 学号: 201211106134 姓名: 孙舸 成绩:
评语:
一、 实验目的:
1、掌握构成一个频率响应与给定的滤波特性相接近的模拟滤波器的设计原理;
2、掌握用冲激响应不变法设计IIR 数字滤波器的基本原理和算法;
3、了解数字滤波器和模拟滤波器的频率响应特性,掌握相应的计算方法,分析用冲激响应不变法获得的数字滤波器频率响应特性中出现的混叠现象。
二、 实验原理与计算方法:
1、冲激响应不变法设计IIR 数字滤波器的基本原理和算法
采用冲激响应不变法设计数字滤波器,就是使其单位样值响应)(n h 与相应的模拟滤波器的冲激响应)(t h a 在抽样点处的量值相等,即
)()
()(nT h t h n h a nT
t a === (1)
其中T 为抽样周期。
因此用冲激响应不变法设计IIR 数字滤波器的基本步骤,就是首先根据设计要求确定相应的模拟滤波器的传递函数)(s H a ,经Laplace 反变换求出冲激响应)(t h a 后,对它进行抽样得到的)(nT h a 等于数字滤波器的单位样值响应)(n h ,再经z 变换所得)(z H 就是数字滤波器的传递函数。
如果模拟滤波器的传递函数)(s H a 的N 个极点i s 都是单极点,则可以将)(s H a 写成部分分式展开的形式
∑
=-=
N
i i
i
a s s A s H 1
)( (2) 那么,经Laplace 反变换求出的模拟滤波器的冲激响应)(t h a 为
)()(1
t u e A t h N
i t s i a i ∑==
相对应的数字滤波器的单位样值响应为
)()
()(1
n u e
A t h n h N
i nT
s i nT
t a i ∑===
=
对上式作z 变换,得
∑∑∑
∑∑
=-=∞
=-∞==--=
=
=
n
i T s i
N i n n
Tn s i
n nT
s i N
i n z
e
A z e
A e
A z
z H i i i 1
1
1
1
1)( (3)
由上面的推导可见,只要模拟滤波器的传递函数)(s H a 的N 个极点i s 都是单极点,当已经求出各个极点值i s 和部分分式的系数i A 后,则可以从模拟滤波器的传递函数的表达式(2)直接得到数字滤波器的传递函数)(z H 的表达式(3)。
2、Butterworth 和Chebyshev 模拟滤波器的设计方法 (1)Butterworh 原型
MATLAB 提供了函数[z,p,k]=buttap(N)用来设计N 阶归一化的Butterworth 模拟低通滤波器;函数[b,a]=u_buttap(N,Omegac)给出未归一化的Butterworth 模拟低通滤波器原型;再利用函数[C,B,A]=sdir2cas(b,a)得到级联形式的N 阶Butterworth 模拟低通滤波器原型。
>>N=3;OmegaC=0.5; >> [b,a]=u_buttap(N,Omegac); >> [C,B,A]=sdir2cas(b,a)
(2)按给定技术指标设计Butterworth 模拟低通滤波器
函数[b,a]=afd_butt(Wp,Ws,Rp,As)用来实现按给定技术指标设计Butterworth 模拟低通滤波器;函数[db,mag,pha,w]=freqs_m(b,a,0.5*pi)绘制模拟滤波器频响特性,得出衰减值,幅频特性,相频特性和自变量w ;函数[H,w]=freqs(b,a,0.5*pi)绘制模拟滤波器频响特性,给出复函数H,再由abs(H)和angle(H)求出幅频和相频特性;[ha,x,t]=impulse(b,a)求出模拟滤波器冲激响应。
>>Wp=0.2*pi;Ws=0.3*pi;Rp=7;As=16; >> [b,a]=afd_butt(Wp,Ws,Rp,As) >> [db,mag,pha,w]=freqs_m(b,a,0.5*pi) >> [ha,x,t]=impulse(b,a) (3)数字滤波器设计-Butterworth
函数[b,a]=imp_incr(c,d,T)用来实现冲激响应不变的映射,c 、d 分别为模拟滤波器系统函数Ha(s)的分子、分母的系数;T 为抽样周期; %数字滤波器技术指标
>>wp=0.2*pi;ws=0.3*pi;Rp=1;As=15; %对应的模拟滤波器技术指标
>>T=1;Wp=wp/T;Ws=ws/T;
>>[cs,cd]=afd_butt(Wp,Ws,Rp,As);
>> [b,a]=imp_invr(cs,ds,T)
%并联形式的系统函数系数
>>[C,B,A]=dir2par(b,a)
函数[H,w]=freqz(b,a)绘制数字滤波器频响特性,给出复函数H,再由abs(H)和angle(H)求出幅频和相频特性。
(4)Chebyshev原型
MATLAB提供了函数[z,p,k]=cheblap(N,Rp)用来设计N阶通带波动为Rp的归一化Chebyshev模拟低通滤波器;函数[b,a]=u_chb1ap(N,Omegac)给出未归一化的Chebyshev 模拟低通滤波器原型。
(5)按给定技术指标设计Chebysheb模拟低通滤波器
函数[b,a]=afd_chb1(Wp,Ws,Rp,As)用来实现按给定技术指标设计Chebyshev模拟低通滤波器;函数[db,mag,pha,w]=freqs_m(b,a,0.5*pi)绘制频响特性;[ha,x,t]=impulse(b,a)求出模拟滤波器冲激响应。
>>Wp=0.2*pi;Ws=0.3*pi;Rp=1;As=16;
>> [b,a]=afd_chb1(Wp,Ws,Rp,As)
>> [db,mag,pha,w]=freqs_m(b,a,0.5*pi)
>> [ha,x,t]=impulse(b,a)
(6)数字滤波器设计-Chebyshev
函数[b,a]=imp_incr(c,d,T)用来实现冲激响应不变的映射,c、d分别为模拟滤波器系统函数Ha(s)的分子、分母的系数;T为抽样周期;
%数字滤波器技术指标
>>wp=0.2*pi;ws=0.3*pi;Rp=1;As=15;
%对应的模拟滤波器技术指标
>>T=1;Wp=wp/T;Ws=ws/T;
>>[cs,cd]=afd_chb1(Wp,Ws,Rp,As);
>> [b,a]=imp_invr(cs,ds,T)
%并联形式的系统函数系数
>>[C,B,A]=dir2par(b,a)
3、数字滤波器和模拟滤波器的频率响应特性
当已经求出模拟滤波器的传递函数)(s
H
a 和数字滤波器的传递函数)(z
H后,模拟滤
波器的频率响应为
Ω
Ωj s a a s H j H ==)()( (4)
而数字滤波器的频率响应为
ω
ωj e z j z H e H ==)
()( (5)
根据连续时间信号的Laplace 变换和抽样后所得的序列的z 变换之间的关系,有 ∑
∞
-∞
==+=n a e
z n T
j
s H T
z H j )2(1)
(π
ω
将(4)和(5)式代入上式,得模拟滤波器和数字滤波器的频率响应之间的关系为 ∑
∞
-∞=+=n a j T
n j H T e
H )2(1
)(πΩω
(6) 上式表明,数字滤波器的频谱是模拟滤波器频谱的周期延拓,其周期为抽样角频率
T
π
2。
如果模拟滤波器的频谱带宽不是有限的,数字滤波器的频谱在高频区(二分之一抽样角频率附近)就会造成频谱的混叠,如果频率高时幅度频谱衰减较小,这种混叠现象将相当明显。
由(6)式可以看出,当抽样周期T 很小时,数字滤波器的幅度频谱有极高的增益,为避免这样的问题,可将(3)式改写为
∑=--=
n
i T
s i
z e
TA z H i 1
1
1)( (7)
三、 实验内容及结果:
(一)
(1)内容:
设计一个Butterworth 滤波器,满足如下级数指标:
通带边界频率ωp =0.4π,通带衰减函数αp =0.5dB , 阻带边界频率ωs =0.6π,阻带衰减函数αs =50dB ,
采用冲激响应不变法,选取T =2,记录所得的模拟滤波器的阶数N ,求出有理函数形式的系统函数,画出模拟滤波器和数字滤波器的频率响应的幅频和相频特性曲线以及单位抽样响应h (n )和冲激响应h a (t )的图像。
(2)结果: a. 程序代码:
b.运行结果:
(二)
(1)内容:
将(一)中所得的模拟滤波器改为Chebyshev逼近,记录滤波器的阶数N,描绘出模拟滤波器和数字滤波器的幅频和相频特性曲线以及冲激响应h a(t)和单位抽样响应h(n)的图像。
(2)结果:
a.程序代码:
b.运行结果:。