大学物理第二章
大学物理(第三版)热学 第二章

一、 理想气体的微观图象
1. 质点 P nkT P 0
在 T 一定的情况下 n 值小 意味着分子间距大 2 .完全弹性碰撞
3. 除碰撞外 分子间无相互作用 f=0
范德瓦耳斯力(简称:范氏力)
f
斥力
合力
r0
O
s
10 -9m r
d
引力
分子力
气体之间的距离
r 8r0 引力可认为是零 可看做理想气体
第3步:dt时间内所有分子对dA的冲量
dI dIi ix 0
1 2
i
dIi
nimi2xdtdA
i
dIi
2ni mi2xdtdA
第4步:由压强的定义得出结果
P
dF dA
dI dtdA
i
ni
m
2 ix
i dA
ixdt
P
dF dA
dI dtdA
2. 气体分子的自由度
单原子分子 双原子分子 多原子分子
i3 i5 i6
二、 能量按自由度均分原理 条件:在温度为T 的平衡态下 1.每一平动自由度具有相同的平均动能
1 2
kT
1 3
3 2
kT
1 2
m
1
3
2
1 2
m
2 x
1 2
m
2 y
1 2
m
2 z
每一平动自由度的平均动能为 1 kT
2
2.平衡态 各自由度地位相等
每一转动自由度 每一振动自由度也具有 与平动自由度相同的平均动能 其值也为 1 kT
大学物理课件第二章质点动力学

m0g N
N
a’ B mg
联立解得
(m m0 )sin m cos sin a g, a ' g 2 2 m0 m sin m0 m sin
例题2 质量为m的快艇以速率v0行驶,关闭发动 机后,受到的摩擦阻力的大小与速度的大小成 正比,比例系数为k,求关闭发动机后 (1)快艇速率随时间的变化规律; (2)快艇位置随时间的变化规律
B
A
F
B
m0g
A
解:隔离两物体,分别受力分析, aA-地对楔块A N sin m0a
N
F ( N cos m0 g ) 0
N
对物体B(aB地 aB A aA地 )
B
a
B-A
a
N sin m(aB A cos a)
A-地
mg
N cos mg m(aB A sin 0)
m0 m sin
(m m0 )sin 联立解得 a m cos sin g , aB A g 2 2 m0 m sin
B
A
F A a
解:隔离两物体,分别受力分析, 对楔块A N sin m0a N cos m0 g F 物体B相对楔块A以a’加速下滑
二、牛顿第二定律 1.动量: p mv
2.力的定义: dp d (mv ) F dt dt --牛顿第二定律(质点运动微分方程)
v c 物体质量为常量时:
dv F m ma dt
惯性演示实验
当锤子敲击在一大铁块上时,铁块下的手 不会感到有强烈的冲击;而当用一块木头取代 铁块时,木块下的手会感到明显的撞击。
大学物理第二章质点动力学PPT课件

•若物体与流体的相对速度接近空气中的声速时,阻 力将按 f v3 迅速增大。
•常见的正压力、支持力、拉力、张力、弹簧的恢复 力、摩擦力、流体阻力等,从最基本的层次来看, 都属于电磁相互作用。
2021
12
五、牛顿定律的应用
•应用牛顿运动定律解题时,通常要用分量式:
如在直角坐标系中:
在自然坐标系中:
Fn
man
mv2
2021
6
三、牛顿第三定律
物体间的作用是相互的。两个物体之间的作用
力和反作用力,沿同一直线,大小相等,方向相反,
分别作用在两个物体上。
F21F12
第三定律主要表明以下几点:
(1)物体间的作用力具有相互作用的本质:即力总 是成对出现,作用力和反作用力同时存在,同时消 失,在同一条直线上,大小相等而方向相反。
(4)由于力、加速度都是矢量,第二定律的表示式 是矢量式。在解题时常常用其分量式,如在平面直 角坐标系X、Y轴上的分量式为 :
2021
5
Fx mxamddxvtmdd22xt Fy myamddyvtmd d22yt
在处理曲线运动问题时,还常用到沿切线方向 和法线方向上的分量式,即:
Ft
mat
mdv dt
2021
27
1983年第17届国际计量大会定义长度单位用真空中 的光速规定:
c = 299792458 m/s
因而米是光在真空中1299,792,458秒的时间间 隔内所经路程的长度。
❖其它所有物理量均为导出量,其单位为导出单位
如:速度 V=S/ t, 单位:米/秒(m/s)
加速度a=△V/t,单位:米/秒2(m/s2)
•摩擦力:两个相互接触的物体在 沿接触面相对运动时,或者有相对 运动趋势时,在接触面之间产生的
大学物理-第二章-牛顿定律(运动定律)

二 弹性力:(压力、支持力、张力、弹簧弹性力等)
物体在受力形变时,有恢复原状的趋势, 这种抵抗外 力, 力图恢复原状的的力就是弹性力.
在弹性限度内弹性力遵从胡克定律
FP
FT
F FT
FT (l) FT (l)
F kx
al
l
FT (l l) FT (l l)
害处: 消耗大量有用的能量, 使机器运转部分发热等. 减少摩擦的主要方法:
化滑动摩擦为滚动摩擦, 化干摩擦为湿摩擦. 摩擦的必要性:
人行走, 车辆启动与制动, 机器转动(皮带轮), 弦乐器演奏等.
失重状态下悬浮在飞船舱内的宇航员, 因几乎受 不到摩擦力将遇到许多问题. 若他去拧紧螺丝钉, 自 己会向相反的方向旋转, 所以必须先将自己固定才行.
1、关于力的概念
1)力是物体与物体间的相互作用,这种作用可使物体产生形 变,可使物体获得加速度。
2)物体之间的四种基本相互作用;
两种长程作用电引磁力作作用用 两种短程作用弱 强相 相互 互作 作用 用
7
3)力的叠加原理 若一个物体同时受到几个力作用,则合力产生的加速
度,等于这些力单独存在时所产生的加速度之矢量和。 力的叠加原理的成立,不能自动地导致运动的叠加。 牛顿第二定律给出了力、质量、加速度三者间瞬 时的定量关系
17
讨论:胖子和瘦子拔河,两人彼此之间施与的力 是一对作用力和反作用力(绳子质量可略),大小 相等,方向相反,那么他们的输赢与什么有关?
50kg
胜负的关键在于脚下的摩擦力.
18
扩展:
四种基本相互作用
力的种类 相互作用的粒子 力的强度 力程
万有引力 一切质点
大学物理第2章 牛顿运动定律

推论:当你不去追求一个美眉,这个美眉就会待在那里不动。 2、第二定律(F=ma,物体的加速度,与施加在该物体上的外力成正比); 推论:当你强烈地追求一个美眉,这个美眉也会有强烈的反应。 评述:这个显然也是错误的!如果你是一只蛤蟆,那么公主是不会动心的。 你的鲜花送得越勤,电话费花得越多,可能对方越是反感,还可能肥了不费力 气的对手。更可能的情况是,当多个人同时在追求一个美眉时,该美眉反而无 动于衷,心想:机会多着呢,再挑一挑。所以,紧了绷,轻了松,火候要拿捏 得好。
mgR 2 F r2
R2 dv mg 2 m 由牛顿第二定律得: r dt 2 dv dv dr dv gR 又 v dr vdv 2 dt dr dt dr r
当r0 = R 时,v = v0,作定积分,得:
v gR 2 R r 2 dr v0 vdv r
故有
k
例题2-4 不计空气阻力和其他作用力,竖直上抛物体的初速 v0最小应取多大,才不再返回地球?
分析:初始条件,r R 时的速度为 v0 只要求出速率方程 v v ( r ) “不会返回地球”的数学表示式为: 当
r 时, v 0
结论:用牛顿运动定律求出加速度后,问 题变成已知加速度和初始条件求速度方程或运动 方程的第二类运动学问题。 解∶地球半径为R,地面引力 = 重力= mg, 物体距地心 r 处引力为F,则有:
说明
1)定义力
2)力的瞬时作用规律
3)矢量性
4)说明了质量的实质 : 物体惯性大小的量度
5)适用条件:质点、宏观、低速、惯性系
在直角坐标系中,牛顿第二定律的分量式为
d ( mv x ) Fx dt
大学物理第二章液体表面现象

日 常 生 活 中 观 察 到 的 现 象
空气中或荷叶上的小水滴呈球状 小昆虫能停留在水面不下沉 加热使玻璃的锐利边缘熔化, 边缘变得圆滑 密度比水大的小钢针可以浮在水面 水滴在水龙头上悬挂一段时间不掉下来
表明液 体表面具有 像绷紧的弹 性膜那样的 张力。这种 张力与固体 弹性膜的张 力不同,它 不是由于弹 性形变引起 的,称为表 面张力。
2 1 1 h ( + ) 5.5 102 (m) g R r
第三节 润湿和不润湿 毛细现象
一、润湿与不润湿
1. 定义
润湿: 液体沿固体表面 延展的现象,称液体润 湿固体。 不润湿:液体在固体表 面上收缩的现象,称液 体不润湿固体。
润湿、不润湿与相互接触的液体、固体的性质有关。
2. 接触角
从表面层中任取 一分子B,其受合力 与液面垂直,指向 液内,这使得表面 层内的分子与液体 内部的分子不同,都 受一个指向液体内 部的合力 。 在这些力作用下, 液体表面的分子有 被拉进液体内部的 趋势。
f
在宏观上就表现为液体表面有收缩的趋势。
②从能量观点来分析
把分子从液体内部移到表面层,需克服 f ⊥ 作功;外力作功,分子势能增加,即表面层内分子 的势能比液体内部分子的势能大,表面层为高 势能区;各个分子势能增量的总和称为表面能, 用E 表示。 任何系统的势能越小越稳定,所以表面层 内的分子有尽量挤入液体内部的趋势,即液面 有收缩的趋势,这种趋势在宏观上就表现为液 体的表面张力。表面张力是宏观力,与液面相 切; f ⊥是微观力,与液面垂直。
2 pi p0 R
2 2 2 R 1.44 106 (m) pi p0 2 p0 p0 p0
例2.5 在内半径r=0.3 mm的细玻璃管中注水,一部分水 在管的下端形成一凸液面,其半径R=3 mm,管中凹 液面的曲率半径与毛细管的内半径相同。求管中所悬 水柱的长度h。设水的表面张力系数=73×10-3N· -1 m
大学物理课后习题答案第二章

(2)小球上升到最大高度所花的时间T.
[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程
,
分离变量得 ,
积分得 .
当t= 0时,v=v0,所以 ,
因此 ,
小球速率随时间的变化关系为
.
(2)当小球运动到最高点时v= 0,所需要的时间为
第二章运动定律与力学中的守恒定律
(一) 牛顿运动定律
2.1一个重量为P的质点,在光滑的固定斜面(倾角为α)上以初速度 运动, 的方向与斜面底边的水平约AB平行,如图所示,求这质点的运动轨道.
[解答]质点在斜上运动的加速度为a = gsinα,方向与初速度方向垂直.其运动方程为
x = v0t, .
将t = x/v0,代入后一方程得质点的轨道方程为
(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角;
(4)用与斜面平行的加速度 把小车沿斜面往上推(设b1=b);
(5)以同样大小的加速度 (b2=b),将小车从斜面上推下来.
[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力 的作用,摆线偏角为零,线中张力为T = mg.
(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于
这也是桌子受板的压力的大小,但方向相反.
板在桌子上滑动,所受摩擦力的大小为:fM= μkNM= 7.35(N).
这也是桌子受到的摩擦力的大小,方向也相反.
(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为
f =μsmg=ma`,
可得a` =μsg.
板的运动方程为
F – f – μk(m + M)g=Ma`,
大学物理-流体力学

为 U 形管中液体密度, 为流体密度。
较适合于测定气体的流速。
h
A B
常用如图示形式的比多管测液体的流速
1 2
v2
PA
PB
gh
v 2gh
3.飞机机翼周围的空气是如何流动的
假设在机翼右方的空气是水平方向以速度v1向左运动的,如图。 由于机翼倾斜,流经机翼的流线向 下偏移,如图中的v2。这两个矢量 之差v2- v1正是指向机翼对空气的 作用力的方向。根据牛顿第三定律, 空气对机翼施加大小相等、方向相 反的反作用,如图中的F。 这个力 的垂直分量正是飞机的升力(lift)。
所以: E
S
表示增大液体单位表面积所增加的表面能
2、表面张力系数的基本性质 (1)不同液体的表面张力系数不同,密度小、容易蒸发的 液体表面张力系数小。 (2)同一种液体的表面张力系数与温度有关,温度越高, 表面张力系数越小。 (3)液体表面张力系数与相邻物质的性质有关。 (4)表面张力系数与液体中的杂质有关。
二、液体的表面张力现象及微观本质
液体表面像张紧的弹性膜一样,具有收缩的趋势。
(1)毛笔尖入水散开,出水毛聚合; (2)水黾能够站在水面上; (3)硬币能够放在水面上; (4)荷花上的水珠呈球形; (5)肥皂膜的收缩;
液体表面具有收缩趋势的力, 这种存在于液体表面上的张力称为 表面张力。
表面张力的微观本质是表面层分子之 间相互作用力的不对称性引起的。
高尔夫球运动起源于15世纪的苏格兰。
起初,人们认为表面光滑的球飞行阻力 小,因此当时用皮革制球。
最早的高尔夫球(皮革已龟裂)
后来发现表面有很多划痕的旧球反而飞得更远。 这个谜直到20世纪建立流体力学边界层理论后才解开。
光滑的球
大学物理-第二章-薛定谔方程

的概率最大
4
4
n → ∞时,粒子在势阱内的概率趋于均匀与经典结论一致
2) 势阱中粒子的能量(能量本征值):
由: k
2mE n
2
a
22
h2
E
n2
n2
2ma 2
8ma 2
Ek
p2 2m
说明势阱中粒子的能量是量子化的,整数 n 称为能量量子数。
能级图为n 4
n3
E4 16E1
E3 9E1
h2 En 8ma 2 n2
➢薛定谔方程是作为假设提出来的,它的正确性被无数事实所证实
i
[
2
2 U(r , t)]
t 2m
i Hˆ t
2) 由于方程是线性的,满足薛定谔方程的波函数服从叠加原理
(量子力学第一原理)
设:下列波函数均满足薛定谔方程:
1 2 3
——都是可能存在的状态
则: C11 C22 C33
势阱内:(0<x<a)
2 d 2( x)
E( x)
2m dx2
2mE k2 2
d 2( x) k 2( x) 0
dx2
势阱外(x ≤ 0 或x ≥a): (x) 0
势阱内(0<x<a) :
d 2( x) k 2( x) 0
dx2
k 2mE 2
其解为: (x) Asin(kx )
d 2 3
E
2m dx2
3
根据波函数要求是单值、有限、连续条件解得
Aeik1x Aeik1x 1
Bek2x 2
Ceik1x 3
在粒子总能量低于
势垒壁高 (E U ) 0
的情况下
“隧道效应”
粒子有一定的概率穿透势垒。粒子能穿透比其动能 更高的势垒的现象,称为隧道效应
大学物理第二章

G 6 . 754 10
11 11
N•m2/kg2 N•m2/kg2
目前的国际公认值: G
6 . 6726 10
旋吊线
悬吊在半空中可以 自由转动的木杆
小铅球
卡文迪许
大铅球
卡文迪许扭称
3.理论预言的实践检验——哈雷彗星和海王星的发现
哈雷彗星
海王星
4.牛顿在科学研究方法上的贡献
三、牛顿的自然哲学思想
牛顿在《自然哲学的数学原理》中,提出了4条《哲 学中的推理法则》: 简单性原理:除那些真实而已足够说明其现象者外, 不必再去寻求自然界事物的其他原因。
统一性原理:物体的属性,凡是既不能增强也不能减 弱者,又为我们实验所能及的范围的一切物体所具有者, 就应视为所有物理的普遍属性。
勇敢地否定了亚里士多德把运动划分为“自然运动” 和“强迫运动”,而是抓住了运动基本特征量——速 度和加速度,把运动分为“匀速”和“变速”。 用思想实验和斜面实验驳斥了亚里
士多德的“重物下落快”的错误观 点,发现自由落体定律。
伽利略斜面实验
伽利略与斜塔
三、对科学方法的贡献
斜面实验在2002年被评为历史上“最美丽”的十大物 理实验之一。从斜面实验看伽利略的研究方法: 对现象的观察 实验验证(s~t2) 提出假设(匀加速运动假设)
“我把这部著作叫做 《自然哲学的数学原理》, 因为哲学的全部任务看来 就在于从各种运动现象来 研究各种自然之力,而后 用这些力去论证其他的现 象。”
《自然哲学的数学原理》
值得思考:牛顿在这里不仅讲了研究的目的,还讲了科学 研究方法。即从特殊(现象)到一般(规律),再从一般回 到特殊。前者是英国哲学家培根强调的“归纳法”,它以实 验为基础;后者是被数学家兼哲学家的笛卡儿所强调的“演 绎法”,它要用数学工具。
大学物理_第2章_质点动力学_习题答案

第二章 质点动力学2-1一物体从一倾角为30︒的斜面底部以初速v 0=10m·s -1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s -1,求该物体与斜面间的摩擦系数。
解:物体与斜面间的摩擦力f =uN =umgcos30︒物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-2(2)s ∴=把式(2)代入式(1)得,220.198u =2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。
解:小球在运动的过程中受到重力G 和轨道对它的支持力T.取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdtv F T mg m Rαα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )m cos 3cos '3cos ,e v vdv rg d v vrv mg mg rmg αααωααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为θ 的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两习题2-2图者间摩擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。
解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+- 2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。
大学物理 第二章 牛顿运动定律

牛顿运动定律 四、牛顿运动定律应用中要注意的问题
(1)牛顿运动定律适用于质点。 (2)牛顿力学适用于宏观物体的低速运动
情况。 (3)牛顿力学只适用于惯性参照系
大学物理
牛顿运动定律
2. 2 力学中常见的力
一、基本自然力 力的表现形式不同,则可分为 重力; 正压力; 弹力 摩擦力;电力; 磁力 核力 ……
的物体上的。 3)、作用力与反作用力是同时出现,同时消失的;作用力
与反作用力的类型也是相同的。如果作用力是万有引力,则反 作用力也是万有引力。
大学物理
牛顿运动定律
The two elephants exert action and reaction forces on each other.
大学物理
大学物理
牛顿运动定律
三、牛顿第三定律
1.内容 牛顿第三定律有多种表述形式, 表述一:物体之间的作用力与反作用力大小相等,方向
相反,作用在不同的物体上。 力定义:力就是物体间的相互作用。
2.特点: 1)、作用力与反作用力大小相等;方向相反。力线是在同
一直线上的。 2)、作用力与反作用力不能抵消,因为它们是作用在不同
F FS cos FN sin m1a
m1、m2相对静止,摩擦力为静摩 擦力
FS FN
由上四式有:
F
(m1
m2
)g
sin cos
cos sin
大学物理
牛顿运动定律
(2)小木块m2有沿斜面上滑的趋势。 参照图(c),对小木块除了静摩擦力 FS改为沿斜面向下外,其它力方向 不变,
F Kma
在国际单位制下,力是以牛顿(N)为单位,加速
度以ms-2为单位,质量以kg为单位,这时k=1。故有:
大学物理第2章课后答案

第二章 质点动力学四、习题选解2-1 光滑的水平桌面上放有三个相互接触的物体,它们的质量分别为.4,2,1321kg m kg m kg m ===(1)如图a 所示,如果用一个大小等于N 98的水平力作用于1m 的左方,求此时2m 和3m 的左边所受的力各等于多少?(2)如图b 所示,如果用同样大小的力作用于3m 的右方。
求此时2m 和3m 的左边所受的力各等于多少?(3)如图c 所示,施力情况如(1), 但3m 的右方紧靠墙壁(不能动)。
求此时2m 和3m 左边所受的力各等 于多少?解:(1)三个物体受到一个水平力的作用,产生的加速度为a()a m m m F 321++=232114-⋅=++=sm m m m F a用隔离法分别画出32,m m 在水平方向的受力图(a ),题2-1(a )图由a m F =a m f f23212=- a m f323= 2332f f =N f 5623=N f 8412=(2)由()a m m m F321++=232114-⋅=++=sm m m m F a用隔离法画出321m m m 、、在水平方向的受力图(b )由a m F= 得⎪⎪⎪⎩⎪⎪⎪⎨⎧====-=-3223122112121232323f f ff a m f a m f f a m f F解得: N f 1412= N f 4223=题2-1(b )图(3)由于321m m m 、、都不运动,加速度0=a ,三个物体彼此的作用力都相等,都等于FN f f 982312== 2-2 如图所示,一轻质弹簧连接着1m 和2m 两个物体,1m 由细线拉着在外力作用下以加速a 竖直上升。
问作用在细线上的张力是多大?在加速上升的过程中,若将线剪断,该瞬时1m 、2m 的加速度各是多大?解:(1)分别画出1m 、2m 受力的隔离体如图(a ),题2-2(a )图取向上为正方向,由牛顿第二定律⎪⎩⎪⎨⎧='=-'=--f f a m g m f a m g m f T 2211故 ()()a g m m g m g m a m a m T ++=+++=212121 (2)将线剪断,画出21m m 、的隔离体图,如图(b )题2-2(b )图 取竖直向上为正方向,由牛顿第二定律得⎪⎩⎪⎨⎧='=-'=--f f a m g m f a m g m f 222111 得⎪⎩⎪⎨⎧+--==-=)(/)'(121222a g m m g a a m g m f a 1a 的方向向下,2a的方向向上。
大学物理第二章 守恒定律

2.2保守力与势能
• 2.2.1保守力与非保守力 • 保守力:沿闭合路径做功为0,做功只与始 末位置有关 • 保守力: 重力,弹力, 万有引力, • 非保守力:摩擦力 • 2.2.2势能 • A = EPA - EPB • (1)势能是相对量,与势能零点选择有关
• (2)势能的引进条件是物体间存在着相互 作用的保守力,对于一种保守力就有一种 相关的势能 • (3)保守力不存在势能的概念 • (4)势能是属于系统的,而不是属于一种 物体的
第二章 守恒定律
2.1功与动能定理
• 2.1.1 变力做功 • dA = Fdr 即F对物体做的功等于力在物体 位移方向的分量与位移大小的乘积 • 2.1.2 功率 • P = F*dr/dt=FV • 2.1.3 质点的动能定理 • A= EK2-EK1 EK = 1/2*M*V*V; 即合外力 对物体做功等于物体动能的增量
2.5动能定理和动量守恒定律
• 2.5.1动量 P =MV • F= Ma • 2.5.2 质点的动量定理 I = P2 - P1即物体 所受合外力在一段时间内的冲量等于物体 动量的增量 • 2.5.3质点系的动量定理 • 质点系的动量定理:作用于系统的合外力的 冲量的增量
• 2.5.4 质点系的动量守恒定律 • 质点系的动量守恒定律:当系统所受的合 外力为0时,系统总动量保持不变 • 质点系的动量守恒定律注意: (1)系统不受外力或者所受外力的矢量和 为0 (2)在研究打击,爆炸的问题时所受的外 力如摩擦力,重力,空气阻力可以忽略
2.3功能定理与机械能守恒定律
• 2.3.1 A外 + A非保守内力 = E2 - E1 即外力 和非保守力所做的功的总和等于系统机械 能的增量,这一结论称为质点系的功能定 理
大学物理第二章 力 动量 能量

一、功
1. 恒力的功 等于恒力在位移上的投影与位移的乘积 .
W Fs cos W F r
r s
F
F
2. 变力功的计 r 算 (1) 无限分割轨道;取位移 dr, dr ds ;
(2) 位移元上的力F 在ds上可视为恒力; r b O (3) 利用恒力功计算式计算 F r F 在 dr 上的功(元功); r a dW F dr F cosds
t
F1
F21 F12
m1
F2
m2
故
t
t0
( F1 F2 )dt (m1v1 m2 v2 ) (m1v01 m2 v02 )
推广到由多个质点组成的系统
t
t0
n n Fdt pi p0i n i 1 i 1 i 1
<Ek0, W <0 , 外力对物体作负功,或物体克服阻力作功.
四、质点组的动能定理
受外力 ,内力 、 ,初 F1 F、 F12 F21 2
两个质点质量为 m1、m2 ,
质点系
v10 v 速度为 、 , 末速度v1 v 2 20 为 、 位移为 、 . r2 r1,
冲量是矢量,其方向为合外力的方向.
冲量的单位: N· s,(牛顿 · 秒).
明确几点: 1. 动量是状态量;冲量是过程量. 2. 动量方向为物体运动速度方向;冲量方向为合外力
方向,即加速度方向或速度变化方向.
3. 平均冲力 由于力是随时间变化的,当变化较快时,力的瞬 时值很难确定,用一平均的力 F 代替该过程中的变力.
大学物理 第二章牛顿运动定律

赵 承 均
万有引力定律 任意两质点相互吸引,引力的大小与两者质量乘积成正比, 任意两质点相互吸引,引力的大小与两者质量乘积成正比,与其距离的 平方成反比,力的方向沿着两质点连线的方向。 平方成反比,力的方向沿着两质点连线的方向。
r m1m2 r F = −G 3 r r
赵 承 均
&& mx = p sin ωt
o
v Fx
x
x
即:
m
dv = p sin ωt dt
重 大 数 理 学 院
r r F ( t ) = ma ( t ) r & = mv ( t ) r && ( t ) = mr
此微分形式表明:力与加速度成一一对应关系。 此微分形式表明:力与加速度成一一对应关系。
赵 承 均
牛顿第二定律适用于质点,或通过物理简化的质点。 牛顿第二定律适用于质点,或通过物理简化的质点。 牛顿第二定律适用于宏观低速情况, 牛顿第二定律适用于宏观低速情况,而在微观 ( l ≤ 1 0 − 1 0 m 情况与实验有很大偏差。 高速 ( v ≥ 1 0 − 2 c ) 情况与实验有很大偏差。 牛顿第二定律适用于惯性系,而对非惯性系不成立。 牛顿第二定律适用于惯性系,而对非惯性系不成立。
赵 承 均
牛顿第二定律 在力的作用下物体所获得的加速度的大小与作用力的大小成正比, 在力的作用下物体所获得的加速度的大小与作用力的大小成正比, 与物体的质量成反比,方向与力的方向相同。 与物体的质量成反比,方向与力的方向相同。
r r F = ma
在国际单位中,质量的单位为kg(千克),长度的单位为m 在国际单位中,质量的单位为kg(千克),长度的单位为m(米), kg ),长度的单位为 时间的单位为s ),这些是基本单位。力的单位为N 牛顿), 这些是基本单位 ),是 时间的单位为s(秒),这些是基本单位。力的单位为N(牛顿),是导 出单位: 出单位: =1kg× 1N =1kg×1m/s2
大学物理第二章

Dt ≈ 0,
a物= 0
上面的线的Dl = 0, DT = 0, 两根线都不断 [D]
mg
[例14] 作业、p-21 力学单元2 例-2-5 如图已知:小车:M,物体mA,mB,m=0, 求物体A与小车无滑动时的F。 解:此时各物体的 a 相同, 列方程: F= (M +mA+mB)a T= mAa Tcosq = mBa Tsinq = mBg
质量为20 g的子弹,以400 m/s的速率 射入一静止的质量为980 g的摆球中,求:子弹射 入摆球后与摆球一起开始运动的速率。
解:子弹射入木球过程 ∵ F ≠ 0 , ∴ Dp≠0 ∵M0=0,∴DL0=0
o
30
v2
mvlsina=(m+M)Vl
mvsina V= = 4 m/s m+M
作业、p-366 附录 E一-2 如图已知:体重、身高相同的甲乙两人,他 们从同一高度由初速为零向上爬,经过一定 时间,甲相对绳子的速率是乙相对绳子速率 的两倍,则到达顶点的情况? 解: 甲乙两人受力相同, a、v、时时刻刻相同,
y0
y0 /2
v0
v0/2
Ix = mvx - mvx0 = -mv0 /2 Iy = mvy - mvy0
= ( 1+ 2 ) m gy0
x
如图 ,质量为m的小球,自距斜面高h 处自由下落到倾角为的光滑固定斜面上。设碰撞 是完全弹性的,则小球对斜面的冲量 I 解:完全弹性碰撞: DEk = 0
[例9]
[例11]
已知: M、m,线断开后,猴高度不 变。求:棒的加速度。
解:∵猴高度不变
∴ F猴= 0
N = mg N + Mg = Ma 解得:a =( m+M)g/M
大学物理第二章牛顿定律

2-2
几种常见的力
m1 r m2
一, 万有引力
mm2 F =G 12 r
引力常数 重力 地表附近
−11
G = 6.67×10 N⋅ m ⋅ kg
2
−2
P= mg,
Gm g ≈ 2E ≈ 9.80m⋅s-2 R
Gm g = 2E r
二. 弹性力 由物体形变而产生的. 由物体形变而产生的. 常见弹性力有:正压力、张力、弹簧弹性力等. 常见弹性力有:正压力、张力、弹簧弹性力等. 弹簧弹性力
3 dimG = L M−1T−2
o
dv t ↑ v↑ ↓, dt mg − F = =恒 量 kA
讨论潜艇运 动情况: 动情况:
t = 0 v = 0, t →∞ v = vmax
极限速率(收尾速率) 极限速率(收尾速率)
例3:一小钢球,从静止开始自光滑圆柱形轨道的顶 :一小钢球, 点下滑。 小球脱轨时的角度θ 点下滑。求:小球脱轨时的角度
三. 力学相对性原理 (1)在有些参照系中牛顿定律成立,这些系 在有些参照系中牛顿定律成立, 在有些参照系中牛顿定律成立 称为惯性系。 (2) 凡相对于惯性系作匀速直线运动的一切 ) 参考系都是惯性系.作加速直线运动为非惯性系 速直线运动为非惯性系. 参考系都是惯性系.作加速直线运动为非惯性系 (3) 对于不同惯性系,牛顿力学的规律都具有 ) 对于不同惯性系, 相同的形式, 相同的形式,与惯性系的运动无关 伽利略相对性原理. 伽利略相对性原理.
F f c mg
o
dv mg − F −kAv = m dt v t mv d ∫ mg −F −kAv = ∫dt 0 0
+
m m -F g -kA v − =t l n kA m −F g m − F −kA g v =e m −F g
《大学物理》第二章《质点动力学》课件

相对论中的质点动力学
相对论简介
01
相对论是由爱因斯坦提出的理论,包括特殊相对论和广义相对
论,对经典力学和电动力学进行了修正和发展。
质点动力学
02
在相对论中,质点的运动遵循质点动力学规律,需要考虑相对
论效应。
实际应用
03
相对论中的质点动力学在粒子物理、宇宙学和天文学等领域具
有重要意义,如解释宇宙射线、黑洞和宇宙膨胀等现象。
牛顿运动定律的应用
通过牛顿第二定律分析质点在各种力作用下的运动规律。
弹性碰撞和非弹性碰撞
碰撞的定义
两个物体在极短时间内相互作用的过 程。
弹性碰撞
两个物体碰撞后,动能没有损失,只 发生形状和速度方向的改变。
非弹性碰撞
两个物体碰撞后,动能有一定损失, 不仅发生形状和速度方向的改变,还 可能有物质交换。
01
运动分析
火箭发射过程中,需要分析火箭的加速 度、速度和位移等运动参数,以确定最 佳发射时间和条件。
02
03
实际应用
火箭发射的运动分析对于航天工程、 军事和商业发射等领域具有重要意义。Fra bibliotek球自转的角动量守恒
1 2
地球自转
地球绕自身轴线旋转,具有角动量。
角动量守恒
在没有外力矩作用的情况下,地球自转的角动量 保持不变。
相对论和量子力学
随着科学技术的不断发展,相对论和量子力学逐 渐兴起,对质点动力学产生了深远的影响。相对 论提出了新的时空观念和质能关系,而量子力学 则揭示了微观世界的奇特性质。
牛顿时代
牛顿在《自然哲学的数学原理》中提出了三大运 动定律和万有引力定律,奠定了经典力学的基础 。
现代
现代物理学在继承经典理论的基础上,不断探索 新的理论框架和实验手段,推动质点动力学的发 展和完善。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题补充:刚体绕固定转轴转动时角加速度与力矩关系的数学表达式为=M J β;易1、转动惯量为1002.kg m 的刚体以角加速度为52.rad s -绕定轴转动,则刚体所受的合外力矩为500()N m ⋅ N.m 。
中2、一根匀质的细棒,可绕右端o 轴在竖直平内转动。
设它在水平位置上所受重力矩为M ,则当此棒被切去三分之二只剩右边的三分之一时,所受重力矩变为 9M。
易3、在刚体作定轴转动时,公式t t βωω+=0成立的条件是 β=恒量 。
中4、一飞轮以300rad1min -⋅的转速旋转,转动惯量为5kg.m2,现加一恒定的制动力矩,使飞轮在20s 内停止转动,则该恒定制动力矩的大小为 2.5(.)N m π .易5、如图所示,质量为M 、半径为R 的均匀圆盘对通过它的边缘端点A 且垂直于盘面的轴的转动惯量A J =232MR 。
难6、如图示一长为L ,质量为M 的均匀细杆,两端分别固定有质量都为m 的小球。
当转轴垂直通过杆的一端时,其转动惯量为 2213mL ML + ;当转轴通过垂直杆的1/3(1/2;1/4)处时,转动惯量为225199mL ML + 。
易7、瞬时平动刚体上各点速度大小相等,但方向可以 相同 (填不同或相同)。
易8、刚体的转动惯量与刚体的形状、大小、质量分布有关、与转轴位置 有关 (填无关或有关)。
易9、所谓理想流体是指 绝对不可压缩和 完全没有粘滞性 的流体,并且在同一流管内遵循 连续性 原理。
中10、一水平流管,满足定常流动时,流速大处流线分布较密,压强较 小 ; 流线分布较疏时,压强较 大 ;若此两处半径比为1∶2,则其流速比为 4:1易11、已知消防队员使用的喷水龙头入水口的截面直径是-26.410m ´,出水口的截面直径是-22.510m ´,若入水的速度是14.0m S -×,则射出水的速度为 126()m s -⋅易12、一长l 为的均匀细棒可绕通过其端、且与棒垂直的水平o 自由转动,其转动慣量为231ml J =,若将棒拉到水平位置,然后由静止释放,此时棒的角加速度大小为32gl。
易13、一飞轮的转动惯量为J ,在t=0时角加速度为0ω,次后飞轮的经历制动过程,阻力矩的大小与角速度成正比,即ωk M -=,式中比例恒量0φk ,当3ωω=时,飞轮的角加速度为 03k Jω- 。
易14、长为1m ,质量为0.6kg 的均匀细杆,可绕其中心且与杆垂直的水平轴转动其 转动惯量为2121ml J =.若杆的转速为30rad.min 1-,其转动动能为0.25()J 。
难15、均匀细棒的质量为M ,长为L ,其一端用光滑铰链固定,另一端固定一质量为m 的小球,现将棒在水平位置释放,则棒经过铅直位置时角速度大小为363Mg mgML mL++ (棒的转动惯量231ML J =)。
中16、一长为L 、质量可以忽略的直杆,可绕通过其一端的固定水平轴在竖直平面内自由转动,在杆的另一端固定着一质量为m 的小球,在杆与水平方向夹角为060时,将杆由静止释放。
则杆的刚被释放时的角加速度为2gL;杆转到水平位置时的角加速度为 gL。
难17、细棒可绕光滑水平轴转动,该轴垂直地通过棒的一个端点。
今使棒从水平位置开始下摆,在棒转到竖直位置的过程中,棒的角速度ω和角加速度β的变化情况是: ω由小到大, β由大到小。
中18、质量为m 和2m 的两个质点A 和B ,用一长为的轻质杆件相连,系统绕通过杆上的o 点与杆垂直的轴转动。
已知o 点与A 点相距l 31,B 点的线速度为v ,且与杆件垂直。
则该系统对转动的转动惯量J 为 2ml 。
二、判断题易1、平动刚体的轨迹可以是曲线; ( )√易2、瞬时平动刚体上各点速度大小相等,但方向可以不同; ( )× 易3、流体连续性原理又称为质量流量守恒定律 ( )√ 易4、在合力矩逐渐减小时,刚体转动的角速度也逐渐减小。
( )× 易5、刚体绕定轴转动的动能221ωJ E k =等于刚体上各质点动能的总和。
( )√ 易6、刚体的转动惯量与刚体的形状、大小、质量分布有关、与转轴位置无关。
( )× 易7、把飞轮的质量集中在轮的边缘上是为了减小飞轮对轴的转动惯量。
( )× 易8、力矩的数学表达式为F r M ×=。
( )√易9、细棒可绕光滑水平轴转动,该轴垂直地通过棒的一个端点。
今使棒从水平位置开始下摆,在棒转到竖直位置的过程中,棒的角速度ω的变化情况是:ω从小到大。
( )√易10、伯努利方程说明,当理想流体在流管中作定常流动时,单位体积的动能(或称动能体密度)和重力势能(或称势能体密度)以及该处的压强之和为一常量。
()√三、选择题易1、一飞轮绕定铀转动,其角坐标与时间的关系为3a bt ct=++,式中a、b、c均为常量。
则:(1)飞轮绕定铀作匀速转动;(2)飞轮绕定铀作匀变速转动;(3)飞轮的角加速度与时间成正比;(4)上述说法都不对。
中2、刚体绕定轴做匀变速转动时,刚体上距转轴为r的任一点的()(1)切向、法向加速度的大小均随时间变化;(2)切向、法向加速度的大小均保持恒定;(3)切向加速度的大小恒定,法向加速度的大小随时间变化;(4)法向加速度的大小恒定,切向加速度的大小随时间变化中3、作定轴转动的刚体,以下说法正确的是:()(1)、作用于它的力越大,则其角速度一定越大;(2)、作用于它的力矩越大,则作用于它的力一定越大;(3)、角速度越大时,它所受的合外力矩越大;(4)、角加速度越大时,它所受的合外力矩越大。
易4、刚体平动时则:()(1)平动刚体的轨迹一定是直线;(2)平动刚体的轨迹可以是曲线;(3)某瞬时平动刚体上各点速度大小相等,但方向可以不同。
(4)上述说法都不对。
中5、对于作定轴转动的刚体,以下说法正确的是:()(1)、若作用于它的力很大,则其角速度一定很大;(2)、若作用于它的力矩很大,则作用于它的力一定很大;(3)、当其角速度很大时,它所受的合外力矩可以为零;(4)、若其转动动能很小,则它所受的合外力矩一定很小易6、花样滑冰运动员绕过自身的竖直轴转动,开始时两臂伸开,然后她将两臂收回;则她的转动惯量:(1)花样滑冰运动员的转动惯量变大;(2)花样滑冰运动员的转动惯量变小;(3)花样滑冰运动员的转动惯量不变;(4)上述说法都不对中7、细棒可绕光滑水平轴转动,该轴垂直地通过棒的一个端点。
今使棒从水平位置开始下摆,在棒转到竖直位置的过程中,棒的角速度ω的变化情况是:()(1)ω从小到大;(2)ω不变;(3)ω从大到小;(4)无法确定。
难8、一均匀细杆绕垂直通过其一端的轴(忽略转轴的摩擦),从水平位置由静止开始下摆。
则在下摆的过程中杆的另一端处的()(1)、ω逐渐增大;(2)、υ逐渐减小;(3)、β逐渐增大;(4)、无法确定。
易9、理想流体的不可压缩性表现在()(1)、它有流线和流管;(2)、满足连续性原理;(3)、满足定常流动;(4)、流体内部没有内摩擦力。
中10、几个力同时作用绕定轴转动的刚体上,如果这几个力的矢量和为零,则:()(1)、刚体必然不会转动;(2)、转速必然不变;(3)、转速必然会变;(4)、不能确定。
易11、如图所示,一圆盘绕通过盘心且与盘面垂直的轴0以角速度ω作转动。
今将两大小相等、方向相反、但不在同一直线上的力F和—F沿盘面同时作用到圆盘上,则圆盘的角速度:( )(1)必然减少; (2)必然增大;(3)不会变化; (4)如何变化,不能确定。
中12、一质量为m ,长为L 的均匀细棒,一端铰接于水平地板,且竖直直立着。
若让其自由倒下,则杆以角速度ω撞击地板。
如果把此棒切成L /2长度,仍由竖直自由倒下,则杆撞击地板的角速度应为 ( )。
(1)2ω; (2)ω2; (3)ω; (4)2ω难13、细棒可绕光滑水平轴转动,该轴垂直地通过棒的一个端点。
今使棒从水平位置开始下摆,在棒转到竖直位置的过程中,棒的角速度ω和角加速度β的变化情况是:( )(1)ω从小到大,β从大到小; (2)ω从小到大,β从小到大; (3)ω从大到小,;β从大到小(4)ω从大到小,β从小到大。
中14、一轻绳绕在具有水平转轴的定滑轮上,绳下端挂一物体,物体的质量为m ,此时滑轮的角加速度为β。
若将物体卸掉,而用大小为mg 、方向向下的力拉绳子,则滑轮的角加速度将:(1)变大; (2)不变; (3)变小; (4)无法判断。
易15、站在转台上的人伸出去的两手各握一重物,然后使他转动。
当他向着胸部收回他的双手及重物时,下列结论中,不正确的有 (1)系统的转动惯量减小。
(2)系统的转动角速度增加。
(3)系统的角动量不变。
(4)系统的转动动能保持不变。
易16、关于刚体的转动惯量:(1)刚体的转动惯量与刚体的形状、大小、质量分布有关、与转轴位置有关。
(2)刚体的转动惯量与刚体的形状、大小、质量分布无关、与转轴位置有关。
(3)刚体的转动惯量与刚体的形状、大小、质量分布有关、与转轴位置无关。
(4)刚体的转动惯量与刚体的形状、大小、质量分布无关、与转轴位置无关。
易17、一水平流管,理想流体满足定常流动时:(1)流速大处流线分布较密,压强较小;(2)流速小处流线分布较疏时,压强较小;(3)流速大处流线分布较密,压强较大;(4)流速小处流线分布较密,压强较大;。
难18、一轻绳绕在具有水平转轴的定滑轮上,绳下端挂一物体,物体的质量为m,此时滑轮的角加速度为β。
若将物体卸掉,而用大小为mg、方向向下的力拉绳子,则滑轮的角加速度、绳子的拉力T将:(1)β变大、T变小;(2)β变小、T变小;(3)β变小、T变大;(4)β变大、T变大;易19、如图所示,管中的水作稳定流动.水流过A管后,分B、C两支管流出。
已知三管的横截面积分别为A、B两管中的流速分别为则C管中的流速等于(1)15(2)35(3) 50(4) 65易20、流体在图所示的水平管中流动,在1处的横截面直径大于2处的横截面直径。
流体的流速和压强在1处和2处分别为、和、。
则它们之间的正确关系为(1)=,>; (2)> ,>;(3 ) > , <; (4) < ,<.四、计算题易1、一飞轮绕定轴转动,其角坐标与时间的关系为3a bt ct=++,式中a、b、c均为常量。
试求(1)飞轮的角速度和角加速度;(2)距转轴r处的质点的切向加速度和法向加速度解:(1)由角速度和角加速度的定义可得飞轮的角速度和角加速度分别为 23==+θωd b ct dt6==ωβd ct dt(2)距转轴r 处的质点的切向加速度和法向加速度分别为 6==τβa r ctr()2223==+ωn a r b ct r易2、一滑轮绕定轴转动,其角加速度随时间变化的关系为2at bt β=-,式中,a 、b均为常量,设t =0时,沿轮的角速度和角坐标分别为0ω和0θ,试求滑轮在t 时刻的角速度和角坐标。