高中数学人教版必修4导学案
(人教版)高中数学必修四导学案例全集

第一章三角函数1.1 任意角和弧度制1.1.1 任意角一、授课目的:1、知识与技术〔1〕实行角的见解、引入大于360 角和负角;〔2〕理解并掌握正角、负角、零角的定义;〔 3〕理解任意角以及象限角的见解;(4) 掌握全部与角终边相同的角〔包括角〕的表示方法;〔5〕成立运动变化见解,深刻理解实行后的角的见解;〔6〕揭穿知识背景,惹起学生学习兴趣 . 〔7〕创立问题状况,激发学生解析、研究的学习态度,增强学生的参加意识 .2、过程与方法经过创立情境:“转体 720 ,逆〔顺〕时针旋转〞,角有大于 360 角、零角和旋转方向不相同所形成的角等,引入正角、负角和零角的见解;角的见解获取实行今后,将角放入平面直角坐标系,引入象限角、非象限角的见解及象限角的判断方法;列出几个终边相同的角,画出终边所在的地址,找出它们的关系,研究拥有相同终边的角的表示;讲解例题,总结方法,牢固练习.3、神情与价值经过本节的学习,使同学们对角的见解有了一个新的认识,即有正角、负角和零角之分 . 角的见解实行今后,知道角之间的关系 . 理解掌握终边相同角的表示方法,学会运用运动变化的见解认识事物.二、授课重、难点重点 :理解正角、负角和零角的定义,掌握终边相同角的表示法.难点 :终边相同的角的表示.三、学法与授课用具从前的学习使我们知道最大的角是周角 , 最小的角是零角 . 经过回忆和观察平常生活中实质例子 , 把对角的理解进行了实行 . 把角放入坐标系环境中今后 , 认识象限角的见解 . 经过角终边的旋转掌握终边相同角的表示方法 . 我们在学习这局部内容时 , 第一要弄清楚角的表示符号 , 以及正负角的表示 . 其他还有相同终边角的会集的表示等 .授课用具 : 电脑、投影机、三角板四、授课设想【创立情境】思虑 : 你的手表慢了 5 分钟,你是怎样将它校准的?假设你的手表快了小时,你应该怎样将它校准?当时间校准今后,分针转了多少度?[ 取出一个钟表 , 实质操作 ] 我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上, 这就是说角已不能是限制于 0 360 之间,这正是我们这节课要研究的主要内容——任意角.【研究新知】1.初中时,我们已学习了0360 角的见解,它是怎样定义的呢?[ 展现投影 ] 角能够看作平面内一条射线绕着端点从一个地址旋转到另一个地址所成的图形 . 如图 1.1-1 ,一条射线由原来的地址OA,绕着它的端点 O 按逆时针方向旋转到停止地址 OB ,就形成角.旋转开始时的射线 OA 叫做角的始边, OB 叫终边,射线的端点 O 叫做叫的极点 .2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体 720 〞〔即转体2周〕,“转体 1080 〞〔即转体 3 周〕等 , 都是遇到大于360的角以及按不相同方向旋转而成的角.同学们思虑一下: 可否再举出几个现实生活中“大于360的角或按不相同方向旋转而成的角〞的例子 , 这些说了然什么问题 ?又该怎样区分和表示这些角呢 ?[ 展现课件 ] 如自行车车轮、螺丝扳手等按不相同方向旋转时成不相同的角 ,这些都说了然我们研究实行角见解的必要性.为了差异起见,我们规定 : 按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).若是一条射线没有做任何旋转 , 我们称它形成了一个零角(zero angle).[ 展现课件 ] 如教材图 1.1.3(1)中的角是一个正角,它等于750;图 1.1.3(2)中,正角210 ,负角150 ,660 ;这样,我们就把角的见解实行到了任意角〔any angle 〕, 包括正角、负角和零角 . 为了简单起见,在不惹起混淆的前提下,“角〞或“ 〞可简记为 .3.在今后的学习中,我们常在直角坐标系内谈论角,为此我们必定认识象限角这个见解 .角的极点与原点重合,角的始边与x 轴的非负半轴重合。
【B版】人教课标版高中数学必修四《弧度制和弧度制与角度制的换算》导学案-新版

1.1.2 弧度制和弧度制与角度制的换算学习目标1.理解弧度制的意义;2.能正确的应用弧度与角度之间的换算;3.记住公式=l rα(l 为以α作为圆心角时所对圆弧的长,r 为圆半径); 4.熟练掌握弧度制下的弧长公式、扇形面积公式及其应用。
重点、难点弧度与角度之间的换算;弧长公式、扇形面积公式的应用。
学习过程(一)复习:初中时所学的角度制,是怎么规定r 角的?角度制的单位有哪些,是多少进制的?(二) 叫做1弧度的角,用符号 表示,读作 。
练习:圆的半径为r ,圆弧长为2r 、3r 、2r 的弧所对的圆心角分别为多少? <思考>:圆心角的弧度数与半径的大小有关吗?由上可知:如果半径为r 的园的圆心角α所对的弧长为l ,那么,角α的弧度数的绝对值是: ,α的正负由 决定。
正角的弧度数是一个 ,负角的弧度数是一个 ,零角的弧度数是 。
<说明>:我们用弧度制表示角的时候,“弧度”或rad 经常省略,即只写一实数表示角的度量。
例如:当弧长4l r π=且所对的圆心角表示负角时,这个圆心角的弧度数是44l r r rπαπ-=-=-=-. (三)角度与弧度的换算3602rad π= 180r a dπ=1rad 0.01745rad 180π=≈ 1801rad 5718'π⎛⎫=≈ ⎪⎝⎭1 归纳:把角从弧度化为度的方法是: 把角从度化为弧度的方法是:<试一试>:一些特殊角的度数与弧度数的互相转化,请补充完整例1、把下列各角从度化为弧度:(1)252 (2)1115' (3)30 (4)6730'变式练习:把下列各角从度化为弧度:(1)22 º30′ (2)—210º (3)1200º例2、把下列各角从弧度化为度:(1)35π (2) 3.5 (3) 2 (4)4π变式练习:把下列各角从弧度化为度:(1)12π (2)43π- (3)310π(四)弧度数表示弧长与半径的比,是一个实数,这样在角集合与实数集之间就建立了一个一一对应关系.(五) 弧度下的弧长公式和扇形面积公式 弧长公式:l r α=⋅扇形面积公式:12S lr =.说明:以上公式中的α必须为弧度单位.例3、知扇形的周长为8cm ,圆心角α为2rad ,,求该扇形的面积。
高中必修4导学案数学

高中必修4导学案数学一、函数1.1 函数的概念在数学中,函数是一种特殊的关系,它将一个或多个自变量映射到唯一的因变量上。
函数通常用f(x)或者y来表示,其中x为自变量,y 为因变量。
1.2 函数的图象函数的图象是自变量与因变量之间的对应关系,在直角坐标系中通常用曲线或折线表示。
通过函数的图象可以直观地了解函数的性质和规律。
1.3 函数的性质函数的性质包括定义域、值域、奇偶性、周期性等,这些性质对于研究函数的特点和行为至关重要。
二、指数与对数2.1 指数函数指数函数是一种以自然常数e为底的函数,其特点是随着自变量的增大,函数值呈指数增长或指数衰减的规律。
2.2 对数函数对数函数是指数函数的逆运算,以对数底为底的函数。
对数函数可以帮助我们解决指数方程和指数不等式等问题。
2.3 指数对数的性质指数对数具有一系列重要的性质,如对数的底可以是任意正数,指数对数的运算法则等,这些性质对于深入理解指数对数函数至关重要。
三、三角函数3.1 基本概念三角函数包括正弦函数、余弦函数、正切函数等,它们是角度的三角函数关系,描述了直角三角形中角度和边长之间的关系。
3.2 三角函数的性质三角函数具有周期性、奇偶性等性质,这些性质在解三角方程、三角不等式等问题时起到重要作用。
3.3 三角函数的应用三角函数在物理、工程、地理等领域有着广泛的应用,如波动方程、电路分析、地理测量等,它们帮助我们更好地理解和解决实际问题。
四、数列与数学归纳法4.1 数列的概念数列是按照一定规律排列的一组数,其中每一个数称为数列的项,数列是研究数学规律和数学性质的重要工具。
4.2 数列的性质数列有等差数列、等比数列等不同类型,每种数列都有其特定的性质和规律,通过对数列的性质研究可以更深入地理解数学知识。
4.3 数学归纳法数学归纳法是一种证明数学命题成立的方法,通过证明第一个命题为真,然后利用归纳假设证明下一个命题也为真,从而证明所有命题成立。
综上所述,高中必修4导学案数学涵盖了函数、指数对数、三角函数、数列和数学归纳法等内容,这些知识对于学生打下数学基础,培养逻辑思维和数学推理能力具有重要意义。
新人教A版必修4高中数学2.5.1平面几何中的向量方法导学案

1高中数学 2.5.1平面几何中的向量方法导学案新人教A 版必修4 学习目标1. 掌握向量理论在平面几何中的初步运用;会用向量知识解决几何问题;2. 能通过向量运算研究几何问题中点,线段,夹角之间的关系. 学习过程一、课前准备(预习教材P109—P111)复习:(1)若O 为ABC 重心,则OA +OB +OC =(2)水渠横断面是四边形ABCD ,DC = 12AB ,且|AD |=|BC |,则这个四边形为 .类比几何元素之间的关系,你会想到向量运算之间都有什么关系?(3)两个人提一个旅行包,夹角越大越费力.为什么?二、新课导学 ※ 探索新知问题1:平行四边形是表示向量加法与减法的几何模型. 如下图,AC AB AD=-,你能发现平行四边形对角线=+,DB AB AD的长度与两条邻边长度之间的关系吗?结论:23结论:问题3:用向量方法解决平面几何问题的“三步曲”是怎样的?⑴⑵⑶※ 典型例题1、在ABC ∆中,若()()0CA CB CA CB +⋅-=,判断ABC ∆的形状.42、设ABCD 是四边形,若AC BD ⊥,证明:2222AB CD BC DA +=+三、小结反思1、在梯形ABCD 中,CD // AB,E 、F 分别是AD 、BC 的中点,且EF =12(AB +CD ).求证:EF// AB// CD.2、求证:直角三角形斜边上的中线等于斜边上的一半。
课后作业1. 已知直线ax+by+c=0与圆O:x2+y2=4相交于A、B两5点,且|AB|=23,则OA→·OB→=________.2. 在平面直角坐标系xOy中,已知点A(-1,-2),B(2,3),C(-2,-1)(1)求以线段AB、AC为邻边的平行四边形的两条对角线的长;(2)设实数t满足(AB→-tOC→)·OC→=0,求t的值.6。
高中数学 新人教A版必修4导学案全套

任意角高中数学1.1.1任意角导学案新人教A版必修4一、学习目标:1.理解并掌握任意角、象限角、终边相同的角的定义。
2.会写终边相同的角的集合并且会利用终边相同的角的集合判断任意角所在的象限。
二、重点、难点:任意角、象限角、终边相同的角的定义是本节课的重点,用集合和符号来表示终边相同的角是本节课的难点三、知识链接:1.初中是如何定义角的?2.什么是周角,平角,直角,锐角,钝角?四、学习过程:(一)阅读课本1-3页解决下列问题。
问题1、按方向旋转形成的角叫做正角,按 - 方向旋转形成的角叫做负角,如果一条射线没有作____旋转,我们称它形成了一个零角。
零角的与重合。
如果α是零角,那么α= 。
问题2、问题3、象限角与象限界角为了讨论问题的方便,我们总是把任意大小的角放到平面直角坐标系内加以讨论,具体做法是:(1)使角的顶点和坐标重合;(2)使角的始边和x轴重合.这时,角的终边落在第几象限,就说这个角是的角(有时也称这个角属于第几象限);如果这个角的终边落在坐标轴上,那么这个角就叫做,这个角不属于任何一个象限。
问题4、在平面直角坐标系中作出下列各角并指出它们是第几象限角:(1)420o (2) -75o(3) 855o(4) -510o问题6、以上各角的终边有什么关系?这些有相同的始边和终边的角,叫做 。
把与-32o角终边相同的所有角都表示为 ,所有与角α 终边相同的角,连同角α 在内可构成集合为 .。
即任一与角α终边相同的角,都可以表示成角α与整数个周角的和。
例1. 在0︒~360︒之间,找出与下列各角终边相同的角,并分别指出它们是第几象限角:(1)︒480; (2)︒-760; (3)03932'︒.变式练习 1、 在0︒~360︒之间,找出与下列各角终边相同的角,并分别指出它们是第几象限角:(1)420 º (2)—54 º18′ (3)395º 8 ′ (4)—1190º 30′2、写出与下列各角终边相同的角的集合,并把集合中适合不等式-720oβ≤<360o 的元素写出来:(1)1303o 18, (2)--225o问题8、(1)写出终边在x 轴上角的集合 (2) 写出终边在y 轴上角的集合变式练习 写出终边在直线y =x 上角的集合s,并把s 中适合不等式-360≤β<720o 元素β写出来。
最新人教 B 版高中数学必修4第一章导学案

课题:角的概念的推广12第一章第 1 节第 1 3课时【学习目标】1.了解角的概念及推广。
2.掌握终边相同的角及象限角的概念。
45【学习重点】角的概念的推广。
6【学习难点】1.角的旋转合成。
2.终边相同的角的集合。
7【学习方法】阅读,讨论,练习8【学习过程】9一、预习成果展示(学生以思维导图形式展示预习成果)1011121314二、小组探究解疑(小组合作学习新知,讨论解疑)15161.角的概念的推广:172.角的加减法运算:183.终边相同的角的集合:194.象限角(轴上角):20三、反馈矫正点拨(将难点问题集中呈现,教师点拨)211.(1)分别写出终边在x正半轴和负半轴,y正半轴和负半轴,x轴和y轴上的角的集合。
22232425(2)分别写出第一象限、第二象限、第三象限和第四象限的角的集合。
262728292.在直角坐标系中,判断下列语句的真假: 30(1)第一象限的角一定是锐角。
31(2)终边相同的角一定相等。
32(3)相等的角终边一定相同。
33(4)小于90°的角一定是锐角。
34(5)象限角为钝角的终边一定在第二象限。
35(6)终边在直线y=3x 上的象限角表示为0060360k +⋅,k ∈Z 。
36373.在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几38象限角: 39(1)-150° (2)650° (3)-950°15′ 40414243444.射线OA 绕端点O 逆时针旋转270°到达OB 位置,由OB 位置顺时针旋转一45周到达OC 位置,求∠AOC 的大小? 464748495051四、 强化巩固练习(通过精选习题训练巩固新知) 521.若α分别是第一,二,三,四象限的角,那么2α分别是第几象限角?α2的53终边又分别在哪呢?(你能总结出一点规律吗) 54555657582.小明发现自己的手表走慢了10分钟,他想把时间调准那么时针和分针各旋59转了多大的角度呢? 606162633.(1)若︒<<<︒-9090βα ,则βα-的取值范围是_________________. 6465(2)若︒<<<︒-6030βα ,则βα-的取值范围是_________________. 6667五、 反思总结提升(绘制完善思维导图总结本课内容) 687071727374【课后作业】75《阳光课堂》对应练习(一)767778课题:弧度制和弧度制与角度制的换算79第一章第 1 节第 2 80课时81【学习目标】1.了解弧度的意义。
新人教A版必修4高中数学2.2.2向量的减法运算及其几何意义导学案

高中数学 2.2.2向量的减法运算及其几何意义导学案新人教A版必修4学习目标1. 通过实例,掌握向量减法的运算,并理解其几何意义;2. 能运用向量减法的几何意义解决一些问题.教学重点会用向量减法的三角形法则作两个向量的差向量.教学难点三角形不等式学习过程一、课前准备(预习教材P85—P87)复习:求作两个向量和的方法有法则和法则.二、新课导学※探索新知探究:向量减法——三角形法则问题1:我们知道,在数的运算中,减去一个数等于加上这个数的相反数,向量的减法是否也有类似的法则?如何理解向量的减法呢?1、相反向量:与a的向量,叫做a的相反向量,记作a .零向量的相反向量仍是 .问题2:任一向量a与其相反向量a-的和是什么?如果a、b是互为相反的向量,那么a=,b=,a b+= .1、向量的减法:我们定义,减去一个向量相当于加上这个向量的相反向量,即,a b是互为相反的向量,那么a=,b=_________,a b=____________。
+问题3:请同学们利用相反向量的概念,思考()a b+-的作图方法.※典型例题例1、阅读并讨论P86例3和例4变式:如图,在平行四边形ABCD中,下列结论中错误的是( ) A. AB→=DC→ B. AD→+AB→=AC→C. AB→-AD→=BD→D. AD→+CB→=0例2、在△ABC中,O是重心,D、E、F分别是BC、AC、AB的中点,化简下列两式:⑴CB CE BA-+;⑵OE OA EA-+.变式:化简AB FE DC++.三、小结反思1、向量减法的含义;2、求两向量的差;3、两向量a与b的差ba-起点,终点和指向。
※当堂检测(时量:5分钟满分:10分)计分:1、化简下列各式:①AB AC DB--;②AB BC AD DB+--.2、在平行四边形ABCD中,BC CD AD+-等于()A.BA B.BD C.AC D.AB3、下列各式中结果为O的有()①++AB BC CA②+++OA OC BO CO③-+-AB AC BD CD④+-+MN NQ MP QPA.①② B.①③C.①③④ D.①②③4、下列四式中可以化简为AB的是()①+AC CBAC CB②-③+OA OB④-OB OAA.①④ B.①② C.②③ D.③④5、已知ABCDEF是一个正六边形,O是它的中心,其中OA a OB b OC c则EF=(),,===A .a b +B .b a -C .-c bD .-b c课后作业1、化简:AB DA BD BC CA ++--=_______________。
人教版高一数学必修4全套导学案.doc

第二章平面向量2.1 向量的概念及表示【学习目标】1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量的概念;并会区分平行向量、相等向量和共线向量;2.通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别;3.通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力。
【学习重难点】重点:平行向量的概念和向量的几何表示;难点:区分平行向量、相等向量和共线向量;【自主学习】1.向量的定义:__________________________________________________________;2.向量的表示:(1)图形表示:(2)字母表示:3.向量的相关概念:(1)向量的长度(向量的模):_______________________记作:______________(2)零向量:___________________,记作:_____________________(3)单位向量:________________________________(4)平行向量:________________________________(5)共线向量:________________________________(6)相等向量与相反向量:_________________________思考:(1)平面直角坐标系中,起点是原点的单位向量,它们的终点的轨迹是什么图形?____ (2)平行向量与共线向量的关系:____________________________________________ (3)向量“共线”与几何中“共线”有何区别:__________________________________ 【典型例题】例1.判断下例说法是否正确,若不正确请改正:(1)零向量是唯一没有方向的向量;(2)平面内的向量单位只有一个;(3)方向相反的向量是共线向量,共线向量不一定是相反向量;b c,则a和c是方向相同的向量;(4)向量a和b是共线向量,//(5)相等向量一定是共线向量;例2.已知O 是正六边形ABCDEF 的中心,在图中标出的向量中: (1)试找出与EF 共线的向量; (2)确定与EF 相等的向量; (3)OA 与BC 相等吗?【课堂练习】1.判断下列说法是否正确,若不正确请改正:(1)向量AB 和CD 是共线向量,则A B C D 、、、四点必在一直线上; (2)单位向量都相等;(3)任意一向量与它的相反向量都不想等; (4)四边形ABCD 是平行四边形当且仅当ABCD =;(5)共线向量,若起点不同,则终点一定不同;2.平面直角坐标系xOy 中,已知||2OA =,则A 点构成的图形是__________3. 四边形ABCD 中,则四边形ABCD 的形状是_________4.设0a ≠,则与a 方向相同的单位向量是______________5.若E F M N 、、、分别是四边形ABCD 的边AB BC CD DA 、、、的中点。
2020年高中数学人教A版 必修4 导学案《任意角》(含答案)

1.1.1 任意角[新知初探]1.任意角(1)角的概念:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的表示:如图,OA是角α的始边,OB是角α的终边,O是角的顶点.角α可记为“角α”或“∠α”或简记为“α”.(3)角的分类:名称定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转形成的角[点睛] 对角的概念的理解的关键是抓住“旋转”二字:①要明确旋转的方向;②要明确旋转量的大小;③要明确射线未作任何旋转时的位置.2.象限角把角放在平面直角坐标系中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.[点睛] 象限角的条件是:角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.[点睛] 对终边相同的角的理解(1)终边相同的角不一定相等,但相等的角终边一定相同;(2)k∈Z,即k为整数这一条件不可少;(3)终边相同的角的表示不唯一.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)-30°是第四象限角.( )(2)钝角是第二象限的角.( )(3)终边相同的角一定相等.( )2.与45°角终边相同的角是( )A.-45° B.225° C.395° D.-315°3.下列说法正确的是( )A.锐角是第一象限角B.第二象限角是钝角C.第一象限角是锐角D.第四象限角是负角4.将35°角的终边按顺时针方向旋转60°所得的角度数为________,将35°角的终边按逆时针方向旋转一周后的角度数________.任意角的概念[典例]A.终边与始边重合的角是零角B.终边和始边都相同的两个角一定相等C.在90°≤β<180°范围内的角β不一定是钝角D.小于90°的角是锐角理解与角的概念有关问题的关键关键在于正确理解象限角与锐角、直角、钝角、平角、周角等的概念,弄清角的始边与终边及旋转方向与大小.另外需要掌握判断结论正确与否的技巧,判断结论正确需要证明,而判断结论不正确只需举一个反例即可.如图,射线OA绕端点O旋转90°到射线OB的位置,接着再旋转-30°到OC的位置,则∠AOC的度数为________.终边相同角的表示[典例] 写出与080°范围内与75°角终边相同的角.1.终边落在直线上的角的集合的步骤(1)写出在0°~360°范围内相应的角;(2)由终边相同的角的表示方法写出角的集合;(3)根据条件能合并一定合并,使结果简洁.2.终边相同角常用的三个结论(1)终边相同的角之间相差360°的整数倍.(2)终边在同一直线上的角之间相差180°的整数倍.(3)终边在相互垂直的两直线上的角之间相差90°的整数倍.[活学活用]分别写出终边在下列各图所示的直线上的角的集合.象限角的判断[典例]作出下列各角,并指出它们是第几象限角.(1)-75°;(2)855°;(3)-510°.象限角的判定方法(1)根据图象判定.依据是终边相同的角的概念,因为0°~360°之间的角的终边与坐标系中过原点的射线可建立一一对应的关系.(2)将角转化到0°~360°范围内.在直角坐标平面内,在0°~360°范围内没有两个角终边是相同的.[活学活用]若α是第四象限角,则180°-α一定在( )A .第一象限B .第二象限C .第三象限D .第四象限角αn,nα(n∈N *)所在象限的确定 [典例] 已知α是第二象限角,求角2所在的象限.[一题多变]1.[变设问]在本例条件下,求角2α的终边的位置.2.[变条件]若角α变为第三象限角,则角α2是第几象限角?倍角、分角所在象限的判定思路(1)已知角α终边所在的象限,确定nα终边所在的象限,可依据角α的范围求出nα的范围,再直接转化为终边相同的角即可.注意不要漏掉nα的终边在坐标轴上的情况. (2)已知角α终边所在的象限,确定αn 终边所在的象限,分类讨论法要对k 的取值分以下几种情况进行讨论:k 被n 整除;k 被n 除余1;k 被n 除余2,…,k 被n 除余n -1.然后方可下结论.几何法依据数形结合思想,简单直观.层级一学业水平达标1.-215°是( )A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角2.下面各组角中,终边相同的是( )A.390°,690° B.-330°,750°C.480°,-420° D.3 000°,-840°3.若α=k·180°+45°,k∈Z,则α所在的象限是( )A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限4.终边在第二象限的角的集合可以表示为( )A.{α|90°<α<180°}B.{α|90°+k·180°<α<180°+k·180°,k∈Z}C.{α|-270°+k·180°<α<-180°+k·180°,k∈Z}D.{α|-270°+k·360°<α<-180°+k·360°,k∈Z}5.将-885°化为α+k·360°(0°≤α<360°,k∈Z)的形式是( )A.-165°+(-2)×360° B.195°+(-3)×360°C.195°+(-2)×360° D.165°+(-3)×360°6.在下列说法中:①时钟经过两个小时,时针转过的角是60°;②钝角一定大于锐角;③射线OA绕端点O按逆时针旋转一周所成的角是0°;④-2 000°是第二象限角.其中错误说法的序号为______(错误说法的序号都写上).7.α满足180°<α<360°,5α与α有相同的始边,且又有相同的终边,那么α=________. 8.若角α=2 016°,则与角α具有相同终边的最小正角为________,最大负角为________.9.在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是第几象限角:(1)549°;(2)-60°;(3)-503°36′.10.已知角的集合M={α|α=30°+k·90°,k∈Z},回答下列问题:(1)集合M中大于-360°且小于360°的角是哪几个?(2)写出集合M中的第二象限角β的一般表达式.层级二应试能力达标1.给出下列四个结论:①-15°是第四象限角;②185°是第三象限角;③475°是第二象限角;④-350°是第一象限角.其中正确的个数为( )A.1 B.2C.3 D.42.若角2α与240°角的终边相同,则α=( )A.120°+k·360°,k∈ZB.120°+k·180°,k∈ZC.240°+k·360°,k∈ZD.240°+k·180°,k∈Z3.若α与β终边相同,则α-β的终边落在( )A.x轴的非负半轴上B.x轴的非正半轴上C.y轴的非负半轴上D.y轴的非正半轴上4.设集合M={α|α=45°+k·90°,k∈Z},N={α|α=90°+k·45°,k∈Z},则集合M与N的关系是( )A.M∩N=∅ B.M N C.N M D.M=N5.从13:00到14:00,时针转过的角为________,分针转过的角为________.6.已知角2α的终边在x轴的上方,那么α是第______象限角.7.试写出终边在直线y=-3x上的角的集合S,并把S中适合不等式-180°≤α<180°的元素α写出来.8.如图,分别写出适合下列条件的角的集合:(1)终边落在射线OB上;(2)终边落在直线OA上;(3)终边落在阴影区域内(含边界).参考答案[小试身手]1.答案:(1)√ (2)√ (3)× 2.答案:D 3.答案:A4.答案:-25° 395°[典例][解析] 终边与始边重合的角还可能是360°,720°,…,故A 错;终边和始边都相同的两个角可能相差360°的整数倍,如30°与-330°,故B 错;由于在90°≤β<180°范围内的角β包含90°角,所以不一定是钝角,C 正确;小于90°的角可以是0°,也可以是负角,故D 错误. [答案] C [活学活用]解析:∠AOC =∠AOB +∠BOC =90°+(-30°)=60°. 答案:60° [典例][解] 与75°角终边相同的角的集合为 S ={β|β=k·360°+75°,k ∈Z}.当360°≤β<1 080°时,即360°≤k·360°+75°<1 080°, 解得1924≤k<21924.又k ∈Z ,所以k =1或k =2.当k =1时,β=435°;当k =2时,β=795°.综上所述,与75°角终边相同且在360°≤β<1 080°范围内的角为435°角和795°角. [活学活用]解:(1)在0°~360°范围内,终边在直线y =0上的角有两个,即0°和180°,因此,所有与0°角终边相同的角构成集合S 1={β|β=0°+k·360°,k ∈Z},而所有与180°角终边相同的角构成集合S 2={β|β=180°+k·360°,k ∈Z},于是,终边在直线y =0上的角的集合为S =S 1∪S 2={β|β=k·180°,k ∈Z}.(2)由图形易知,在0°~360°范围内,终边在直线y =-x 上的角有两个,即135°和315°,因此,终边在直线y =-x 上的角的集合为S ={β|β=135°+k·360°,k ∈Z}∪{β|β=315°+k·360,k ∈Z}={β|β=135°+k·180°,k ∈Z}. [典例][解] 作出各角,其对应的终边如图所示:(1)由图①可知:-75°是第四象限角. (2)由图②可知:855°是第二象限角. (3)由图③可知:-510°是第三象限角. [活学活用]解析:选C ∵α与-α的终边关于x 轴对称,且α是第四象限角,∴-α是第一象限角. 而180°-α可看成-α按逆时针旋转180°得到, ∴180°-α是第三象限角.[典例][解] 法一:∵α是第二象限角, ∴k·360°+90°<α<k·360°+180°(k∈Z). ∴k 2·360°+45°<α2<k2·360°+90°(k∈Z). 当k 为偶数时,令k =2n(n ∈Z),得n·360°+45°<α2<n·360°+90°,这表明α2是第一象限角;当k 为奇数时,令k =2n +1(n ∈Z),得n·360°+225°<α2<n·360°+270°,这表明α2是第三象限角.∴α2为第一或第三象限角. [一题多变]1.解:∵α是第二象限角,∴k·360°+90°<α<k·360°+180°(k∈Z). ∴k·720°+180°<2α<k·720°+360°(k∈Z). ∴角2α的终边在第三或第四象限或在y 轴的非正半轴上.2.解:如图所示,先将各象限分成2等份,再从x 轴正半轴的上方起,按逆时针方向,依次将各区域标上一、二、三、四,则标有三的区域即为角α2的终边所在的区域,故角α2为第二或第四象限角.层级一 学业水平达标1.解析:选B 由于-215°=-360°+145°,而145°是第二象限角,则-215°也是第二象限角.2.解析:选B ∵-330°=-360°+30°,750°=720°+30°, ∴-330°与750°终边相同.3.解析:选A 由题意知α=k·180°+45°,k ∈Z ,当k =2n +1,n ∈Z ,α=2n·180°+180°+45°=n·360°+225°,在第三象限, 当k =2n ,n ∈Z ,α=2n·180°+45°=n·360°+45°,在第一象限. ∴α是第一或第三象限的角.4.解析:选 D 终边在第二象限的角的集合可表示为{α|90°+k·360°<α<180°+k·360°,k ∈Z},而选项D 是从顺时针方向来看的,故选项D 正确. 5.解析:选B -885°=195°+(-3)×360°,0°≤195°<360°,故选B.6.解析:①时钟经过两个小时,时针按顺时针方向旋转60°,因而转过的角为-60°,所以①不正确.②钝角α的取值范围为90°<α<180°,锐角θ的取值范围为0°<θ<90°,因此钝角一定大于锐角,所以②正确.③射线OA 按逆时针旋转一周所成的角是360°,所以③不正确.④-2 000°=-6×360°+160°与160°终边相同,是第二象限角,所以④正确. 答案:①③7.解析:5α=α+k·360°,k ∈Z ,∴α=k·90°,k ∈Z.又∵180°<α<360°,∴α=270°. 答案:270°8.解析:∵2 016°=5×360°+216°,∴与角α终边相同的角的集合为{α|α=216°+k·360°,k ∈Z},∴最小正角是216°,最大负角是-144°.答案:216° -144° 9.解:(1)549°=189°+360°,而180°<189°<270°,因此,549°角为第三象限角,且在0°~360°范围内,与189°角有相同的终边.(2)-60°=300°-360°,而270°<300°<360°,因此,-60°角为第四象限角,且在0°~360°范围内,与300°角有相同的终边.(3)-503°36′=216°24′-2×360°,而180°<216°24′<270°,因此,-503°36′角是第三象限角,且在0°~360°范围内,与216°24′角有相同的终边.10.解:(1)令-360°<30°+k·90°<360°,则-133<k<113,又∵k ∈Z ,∴k =-4,-3,-2,-1,0,1,2,3,∴集合M 中大于-360°且小于360°的角共有8个,分别是-330°,-240°,-150°,-60°,30°,120°,210°,300°. (2)集合M 中的第二象限角与120°角的终边相同, ∴β=120°+k·360°,k ∈Z.层级二 应试能力达标1.解析:选D ①-15°是第四象限角;②180°<185°<270°是第三象限角;③475°=360°+115°,而90°<115°<180°,所以475°是第二象限角;④-350°=-360°+10°是第一象限角,所以四个结论都是正确的.2.解析:选B 角2α与240°角的终边相同,则2α=240°+k·360°,k∈Z,则α=120°+k·180°,k∈Z.选B.3.解析:选A ∵α=β+k·360°,k∈Z,∴α-β=k·360°,k∈Z,∴其终边在x轴的非负半轴上.4.解析:选C 对于集合M,α=45°+k·90°=45°+2k·45°=(2k+1)·45°,即M={α|α=(2k+1)·45°,k∈Z};对于集合N,α=90°+k·45°=2×45°+k·45°=(k+2)·45°,即N={α|α=(k+2)·45°,k∈Z}={α|α=n·45°,n∈Z}.∵2k+1表示所有的奇数,而n表示所有的整数,∴N M,故选C.5.解析:经过一小时,时针顺时针旋转30°,分针顺时针旋转360°,结合负角的定义可知时针转过的角为-30°,分针转过的角为-360°.答案:-30°-360°6.解析:由题意知k·360°<2α<180°+k·360°(k∈Z),故k·180°<α<90°+k·180°(k∈Z),按照k的奇偶性进行讨论.当k=2n(n∈Z)时,n·360°<α<90°+n·360°(n∈Z),∴α在第一象限;当k=2n+1(n∈Z)时,180°+n·360°<α<270°+n·360°(n∈Z),∴α在第三象限.故α是第一或第三象限角.答案:一或三7.解:终边在直线y=-3x上的角的集合S={α|α=k·360°+120°,k∈Z}∪{α|α=k·360°+300°,k∈Z}={α|α=k·180°+120°,k∈Z},其中适合不等式-180°≤α<180°的元素α为-60°,120°.8.解:(1)终边落在射线OB上的角的集合为S1={α|α=60°+k·360°,k∈Z}.(2)终边落在直线OA上的角的集合为S2={α|α=30°+k·180°,k∈Z}.(3)终边落在阴影区域内(含边界)的角的集合为S3={α|30°+k·180°≤α≤60°+k·180°,k∈Z}.。
人教版高中数学全套教案导学案高中数学 (1.2.1 任意角的三角函数)教案 新人教A版必修4

任意角的三角函数1.2.1 任意角的三角函数整体设计教学分析学生已经学过锐角三角函数,它是用直角三角形边长的比来刻画的.锐角三角函数的引入与“解三角形”有直接关系.任意角的三角函数是刻画周期变化现象的数学模型,它与“解三角形”已经没有什么关系了.因此,与学习其他基本初等函数一样,学习任意角的三角函数,关键是要使学生理解三角函数的概念、图象和性质,并能用三角函数描述一些简单的周期变化规律,解决简单的实际问题.本节以锐角三角函数为引子,利用单位圆上点的坐标定义三角函数.由于三角函数与单位圆之间的这种紧密的内部联系,使得我们在讨论三角函数的问题时,对于研究哪些问题以及用什么方法研究这些问题等,都可以从圆的性质(特别是对称性)中得到启发.三角函数的研究中,数形结合思想起着非常重要的作用.利用信息技术,可以很容易地建立角的终边和单位圆的交点坐标、单位圆中的三角函数线之间的联系,并在角的变化过程中,将这种联系直观地体现出来.所以,信息技术可以帮助学生更好地理解三角函数的本质.激发学生对数学研究的热情,培养学生勇于发现、勇于探索、勇于创新的精神;通过学生之间、师生之间的交流合作,实现共同探究、教学相长的教学情境.三维目标1.通过借助单位圆理解并掌握任意角的三角函数定义,理解三角函数是以实数为自变量的函数,并从任意角的三角函数定义认识正弦、余弦、正切函数的定义域,理解并掌握正弦、余弦、正切函数在各象限内的符.2.通过对任意角的三角函数定义的理解,掌握终边相同角的同一三角函数值相等.3.正确利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值表示出来,即用正弦线、余弦线、正切线表示出来.4.能初步应用定义分析和解决与三角函数值有关的一些简单问题.重点难点教学重点:任意角的正弦、余弦、正切的定义,终边相同的角的同一三角函数值相等.教学难点:用角的终边上的点的坐标来刻画三角函数;三角函数符;利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值用几何形式表示.课时安排2课时教学过程第1课时导入新课思路 1.我们把角的范围推广了,锐角三角函数的定义还能适用吗?譬如三角形内角和为180°,那么sin200°的值还是三角形中200°的对边与斜边的比值吗?类比角的概念的推广,怎样修正三角函数定义?由此展开新课.另外用“单位圆定义法”单刀直入给出定义,然后再在适当时机联系锐角三角函数,这也是一种不错的选择.思路 2.教师先让学生看教科书上的“思考”,通过这个“思考”提出用直角坐标系中角的终边上点的坐标表示锐角三角函数的问题,以引导学生回忆锐角三角函数概念,体会引进象限角概念后,用角的终边上点的坐标比表示锐角三角函数的意义,从而为定义任意角的三角函数奠定基础.教科书在定义任意角的三角函数之前,作了如下铺垫:直角三角形为载体的锐角三角函数→象限角为载体的锐角三角函数→单位圆上点的坐标表示的锐角三角函数. 推进新课新知探究提出问题问题①:在初中时我们学了锐角三角函数,你能回忆一下锐角三角函数的定义吗? 问题②:你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗?活动:教师提出问题,学生口头回答,突出它是以锐角为自变量,边的比值为函数值的三角函数,教师并对回答正确的学生进行表扬,对回答不出来的同学给予提示和鼓励.然后教师在黑板上画出直角三角形.教师提示:前面我们对角的概念已经进行了扩充,并且学习了弧度制,知道了角的集合与实数集是一一对应的,在此基础上,我们来研究任意角的三角函数.教师在直角三角形所在的平面上建立适当的坐标系,画出角α的终边;学生给出相应点的坐标,并用坐标表示锐角三角函数.图1如图1,设锐角α的顶点与原点O 重合,始边与x 轴的正半轴重合,那么它的终边在第一象限.在α的终边上任取一点P(a,b),它与原点的距离22b a >0.过P 作x 轴的垂线,垂足为M,则线段OM 的长度为a,线段MP 的长度为b.根据初中学过的三角函数定义,我们有sin α=OP MP =r b ,cos α=OP OM =r a ,tan α=OP MP =ab . 讨论结果:①锐角三角函数是以锐角为自变量,边的比值为函数值的三角函数.②sin α=OP MP =rb ,cos α=OP OM =r a ,tan α=OM MP =a b . 提出问题问题①:如果改变终边上的点的位置,这三个比值会改变吗?为什么?问题②:你利用已学知识能否通过取适当点而将上述三角函数的表达式简化?活动:教师先让学生们相互讨论,并让他们动手画画图形,看看从图形中是否能找出某种关系来.然后提问学生,由学生回答教师的问题,教师再引导学生选几个点,计算一下对应的比值,获得具体认识,并由相似三角形的性质来证明.最后可以发现,由相似三角形的知识,对于确定的角α,这三个比值不会随点P 在α的终边上的位置的改变而改变.过图形教师引导学生进行对比,学生通过对比发现取到原点的距离为1的点可以使表达式简化.此时sin α=OPMP =b,cos α=OP OM =a,tan α=OM MP =a b . 在引进弧度制时我们看到,在半径为单位长度的圆中,角α的弧度数的绝对值等于圆心角α所对的弧长(符由角α的终边的旋转方向决定).在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆.这样,上述P 点就是α的终边与单位圆的交点.锐角三角函数可以用单位圆上点的坐标表示.同样地,我们可以利用单位圆定义任意角的三角函数.图2如图2所示,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1)y 叫做α的正弦,记作sin α,即sin α=y;(2)x 叫做α的余弦,记作cos α,即cos α=x; (3)x y 叫做α的正切,记作tan α,即tan α=xy (x≠0). 所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.教师出示定义后,可让学生解释一下定义中的对应关系.教师应指出任意角的正弦、余弦、正切的定义是本节教学的重点.用单位圆上点的坐标表示任意角的三角函数,与学生在锐角三角函数学习中建立的已有经验有一定的距离,与学生在数学必修一的学习中建立起来的经验也有一定的距离.学生熟悉的函数y=f(x)是实数到实数的一一对应,而这里给出的三角函数首先是实数(弧度数)到点的坐标的对应,然后才是实数(弧度数)到实数(横坐标或纵坐标)的对应,这就给学生的理解造成一定的困难.教师在教学中可以在学生对锐角三角函数已有的几何直观认识的基础上,先建立直角三角形的锐角与第一象限角的联系,在直角坐标系中考查锐角三角函数,得出用角的终边上点的坐标(比值)表示锐角三角函数的结论,然后再“特殊化”引出用单位圆上点的坐标表示锐角三角函数的结论.在此基础上,再定义任意角的三角函数.在导学过程中教师应点拨学生注意,尽管我们从锐角三角函数出发来引导学生学习任意角的三角函数,但任意角的三角函数与锐角三角函数之间并没有一般与特殊的关系.教师在教学中应当使学生体会到,用单位圆上点的坐标表示锐角三角函数,不仅简单、方便,而且反映本质.教师可以引导学生通过分析三角函数定义中的自变量是什么,对应关系有什么特点,函数值是什么.特别注意α既表示一个角,又是一个实数(弧度数).“它的终边与单位圆交于点P(x,y)”包含两个对应关系.从而可以把三角函数看成是自变量为实数的函数.值得注意的是:(1)正弦、余弦、正切、余切、正割、余割都是以角为自变量,以比值为函数值的函数.(2)sin α不是sin 与α的乘积,而是一个比值;三角函数的记是一个整体,离开自变量的“sin”“tan”等是没有意义的.讨论结果:①这三个比值与终边上的点的位置无关,根据初中学过的三角函数定义,有sin α=OP MP =rb ,cos α=OP OM =r a , tan α=OP MP =a b . 由相似三角形的知识,对于确定的角α,这三个比值不会随点P 在α的终边上的位置的改变而改变.②能.提出问题问题①:学习了任意角,并利用单位圆表示了任意角的三角函数,引入一个新的函数,我们可以对哪些问题进行讨论?问题②:根据三角函数的定义,正弦、余弦、正切的定义域、值域是怎样的?活动:教师引导学生结合在数学必修一中的有关函数的问题,让学生回顾所学知识,并总结回答老师的问题,教师对学生总结的东西进行提问,并对回答正确的学生进行表扬,回答不正确或者不全面的学生给予提示和补充.教师让学生完成教科书上的“探究”,教师提问或让学生上黑板板书.按照这样的思路,我们一起来探究如下问题:请根据任意角的三角函数定义,先将正弦、余弦、正切函数在弧度制下的定义域填入下表,再将这三种函数的值在各象限的符填入图3中的括内. 三角函数定义域 sin αcos αtan α图3教师要注意引导学生从定义出发,利用坐标平面内点的坐标的特征得定义域、函数值的符等结论.对于正弦函数sin α=y,因为y 恒有意义,即α取任意实数,y 恒有意义,也就是说sin α恒有意义,所以正弦函数的定义域是R;类似地可写出余弦函数的定义域;对于正切函数tan α=x y ,因为x=0时,xy 无意义,即tan α无意义,又当且仅当角α的终边落在纵轴上时,才有x=0,所以当α的终边不在纵轴上时,xy 恒有意义,即tan α恒有意义,所以正切函数的定义域是α≠2π +k π(k∈Z ).(由学生填写下表) 三角函数定义域 sin αR cos αR tan α {α|α≠2π+k π,k∈Z } 三角函数的定义告诉我们,各三角函数在各象限内的符,取决于x,y 的符,当点P 在第一、二象限时,纵坐标y>0,点P 在第三、四象限时,纵坐标y<0,所以正弦函数值对于第一、二象限角是正的,对于第三、四象限角是负的(可制作课件展示);同样地,余弦函数在第一、四象限是正的,在第二、三象限是负的;正切函数在第一、三象限是正的,在第二、四象限是负的.从而完成上面探究问题.即“一全正,二正弦,三正切,四余弦”.讨论结果:①定义域、值域、单调性等.②y=sin α与y=cos α的定义域都是全体实数R ,值域都是[-1,1].y=tan α的定义域是{α|α≠2π +k π(k∈Z )},值域是R . 应用示例思路1例1 已知角α的终边经过点P 0(-3,-4),求角α的正弦、余弦和正切值.活动:教师留给学生一定的时间,学生独立思考并回答.明确可以用角α终边上任意一点的坐标来定义任意角的三角函数,但用单位圆上点的坐标来定义,既不失一般性,又简单,更容易看清对应关系.教师要点拨引导学生习惯画图,充分利用数形结合,但要提醒学生注意α角的任意性.如图4,设α是一个任意角,P(x,y)是α终边上任意一点,点P 与原点的距离r=22y x +>0,那么:图4①r y 叫做α的正弦,即sin α=ry ; ②r x 叫做α的余弦,即cos α=rx ; ③x y 叫做α的正切,即tan α=x y (x≠0). 这样定义三角函数,突出了点P 的任意性,说明任意角α的三角函数值只与α有关,而与点P 在角的终边上的位置无关,教师要让学生充分思考讨论后深刻理解这一点. 解:由已知,可得OP 0=22)4()3(-+-=5.图5如图5,设角α的终边与单位圆交于点P(x,y).分别过点P 、P 0作x 轴的垂线MP 、M 0P 0,则|M 0P 0|=4,|MP|=-y,|OM 0|=3,|OM|=-x,△OMP∽△OM 0P 0,于是sin α=y=1y =||||OP MP -=||||000OP P M -=54-; cos α=x=1x =||||OP OM -=||||00OP OM -=53-;tan α=x y =a cos sin =34. 点评:本例是已知角α终边上一点的坐标,求角α的三角函数值问题.可以先根据三角形相似将这一问题化归到单位圆上,再由定义得解.变式训练求35π的正弦、余弦和正切值.图6解:在平面直角坐标系中,作∠AOB=35π,如图6. 易知∠AOB 的终边与单位圆的交点坐标为(21,23-), 所以sin 35π=23-,cos 35π=21,tan 35π=3-. 例2 求证:当且仅当下列不等式组成立时,角θ为第三象限角.⎩⎨⎧><.0tan ,0sin θθ 活动:教师引导学生讨论验证在不同的象限内各个三角函数值的符有什么样的关系,提示学生从三角函数的定义出发来探究其内在的关系.可以知道:三角函数的定义告诉我们,各三角函数在各象限内的符,取决于x,y 的符,当点P 在第一、二象限时,纵坐标y>0,点P 在第三、四象限时,纵坐标y<0,所以正弦函数值对于第一、二象限角是正的,对于第三、四象限角是负的;同样地,余弦函数在第一、四象限是正的,在第二、三象限是负的;正切函数在第一、三象限是正的,在第二、四象限是负的.证明:我们证明如果①②式都成立,那么θ为第三象限角.因为①sin θ<0成立,所以θ角的终边可能位于第三或第四象限,也可能位于y 轴的非正半轴上;又因为②式tan θ>0成立,所以θ角的终边可能位于第一或第三象限.因为①②式都成立,所以θ角的终边只能位于第三象限.于是角θ为第三象限角.反过来请同学们自己证明.点评:本例的目的是认识不同位置的角对应的三角函数值的符,其条件以一个不等式出现,在教学时要让学生把问题的条件、结论弄清楚,然后再给出证明.这一问题的解决可以训练学生的数学语言表达能力.变式训练(2007北京高考)已知cos θ·tan θ<0,那么角θ是( )A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角答案:C例3 求下列三角函数值: (1)sin390°;(2)cos 619π;(3)tan(-330°). 活动:引导学生总结终边相同角的表示法有什么特点,终边相同的角相差2π的整数倍,那么这些角的同一三角函数值有何关系?为什么?引导学生从角的终边的关系到角之间的关系再到函数值之间的关系进行讨论,然后再用三角函数的定义证明.由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等.由此得到一组公式(公式一):sin(α+k·2π)=sin α,cos(α+k·2π)=cos α,tan(α+k·2π)=tan α,其中k∈Z .利用公式一,可以把求任意角的三角函数值,转化为求0到2π(或0°到360°)角的三角函数值.这个公式称为三角函数的“诱导公式一”. 解:(1)sin390°=sin(360°+30°)=sin30°=21; (2)cos 619π=cos(2π+67π)=cos 67π=23-; (3)tan(-330°)=tan(-360°+30°)=tan30°=33. 点评:本题主要是对诱导公式一的考查,利用公式一将任意角都转化到0—2π范围内求三角函数的值.思路2例1 已知角α的终边在直线y=-3x 上,则10sin α+3sec α=.活动:要让学生独立思考这一题目,本题虽然是个填空题,看似简单但内含分类讨论思想,可以找两个学生来板演这个例题.对解答思路正确的学生给以鼓励,对思路受阻的学生要引导其思路的正确性.并适时地点拨学生:假如是个大的计算题应该怎样组织步骤.解:设角α终边上任一点为P(k,-3k)(k≠0),则 x=k,y=-3k,r=22(-3k)k +=10|k |.(1)当k>0时,r=10k ,α是第四象限角,sin α=r y =kk 103-=10103-,sec α=x r =k k 10=10,∴10sin α+3sec α=10×10103-+310=-310+310=0. (2)当k<0时,r=k 10-,α为第二象限角,sin α=r y =kk 103--=10103,sec α=x r =k k 10-=10-, ∴10sin α+3sec α=10×10103+3×(10-)=310-310=0. 综合以上两种情况均有10sin α+3sec α=0.点评:本题的解题关键是要清楚当k>0时,P(k,-3k)是第四象限内的点,角α的终边在第四象限;当k<0时,P(k,-3k)是第二象限内的点,角α的终边在第二象限内,这与角α的终边在y=-3x 上是一致的.变式训练设f(x)=sin 3πx,求f(1)+f(2)+f(3)+…+f(72)的值. 解:∵f(1)=sin3π=23,f(2)=sin 32π=23,f(3)=sin π=0, f(4)=sin 44π=23-,f(5)=sin 35π=23-,f(6)=sin2π=0, ∴f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0.而f(7)=sin 37π=sin 3π,f(8)=sin 38π=sin 32π,…,f(12)=sin 312π=sin2π, ∴f(7)+f(8)+f(9)+f(10)+f(11)+f(12)=0.同理f(13)+f(14)+f(15)+f(16)+f(17)+f(18)=0,…,f(67)+f(68)+…+f(72)=0, ∴f(1)+f(2)+f(3)+…+f(72)=0.求函数y=a sin +tan α的定义域.活动:让学生先回顾求函数的定义域需要注意哪些特点,并让学生归纳出一些常见函数有意义的要求,根据函数有意义的特征来求自变量的范围.对于三角函数这种特殊的函数在解三角不等式时要结合三角函数的定义进行.求含正切函数的组合型三角函数的定义域时,正切函数本身的定义域往往被忽略,教师提醒学生应引起注意这种情况.同时,函数的定义域是一个集合,所以结论要用集合形式表示.解:要使函数y=a sin +tan α有意义,则sin α≥0且α≠k π+2π(k∈Z ). 由正弦函数的定义知道,sin α≥0就是角α的终边与单位圆的交点的纵坐标非负. ∴角α的终边在第一、二象限或在x 轴上或在y 轴非负半轴上,即2k π≤α≤π+2k π(k∈Z ).∴函数的定义域是{α|2k π≤α<2π+2k π或2π+2k π<α≤(2k+1)π,k∈Z }.点评:本题的关键是弄清楚要使函数式有意义,必须sin α≥0,且tan α有意义,由此推导出α的取值范围就是函数的定义域.变式训练求下列函数的定义域:(1)y=sinx+cosx;(2)y=sinx+tanx; (3)y=xx x tan cos sin +;(4)y=x sin +tanx. 解:(1)∵使sinx,cosx 有意义的x∈R ,∴y=sinx+cosx 的定义域为R .(2)要使函数有意义,必须使sinx 与tanx 有意义.∴有⎪⎩⎪⎨⎧+≠∈2ππk x R x ∴函数y=sinx+tanx 的定义域为{x |x≠k π+2π,k∈Z }. (3)要使函数有意义,必须使tanx 有意义,且tanx≠0. ∴有⎪⎩⎪⎨⎧≠+≠πππk x ,k x 2(k∈Z ),∴函数y=xx x tan cos sin +的定义域为{x |x≠2πk ,k∈Z }. (4)当sinx≥0且tanx 有意义时,函数有意义, ∴有⎪⎩⎪⎨⎧+≠+≤≤2x ,1)(2k 2k ππππk x (k∈Z ). ∴函数y=sinx +tanx 的定义域为[2k π,2k π+2π)∪(2k π+2π,(2k+1)π](k∈Z ). 知能训练课本本节练习.解答: 1.sin 67π=21-;cos 67π=23-;tan 67π=33 点评:根据定义求某个特殊角的三角函数值.2.sin θ=135;cos θ=1312-;tan θ=125-. 点评:已知角α终边上一点的坐标,由定义求角α的三角函数值.3. 角α0° 90° 180° 270° 360° 角α的弧度数 0 2π Π 23π 2πsinα0 1 0 -1 0cosα 1 0 -1 0 1tanα0 不存在0 不存在0点评:熟悉特殊角的三角函数值,并进一步地理解公式一.4.当α为钝角时,cosα和tanα取负值.点评:认识与三角形内角有关的三角函数值的符.5.(1)正;(2)负;(3)零;(4)负;(5)正;(6)正.点评:认识不同位置的角对应的三角函数值的符.6.(1)①③或①⑤或③⑤;(2)①④或①⑥或④⑥;(3)②④或②⑤或④⑤;(4)②③或②⑥或③⑥.点评:认识不同象限的角对应的三角函数值的符.7.(1)0.874 6;(2)3;(3)0.5;(4)1.点评:求三角函数值,并进一步地认识三角函数的定义及公式一.课堂小结本节课我们给出了任意角三角函数的定义,并且讨论了正弦、余弦、正切函数的定义域,任意角的三角函数实质上是锐角三角函数的扩展,是将锐角三角函数中边的比变为坐标与距离、坐标与坐标的比,记忆方法可用锐角三角函数类比记忆,至于三角函数的定义域可由三角函数的定义分析得到.本节课我们重点讨论了两个内容,一是三角函数在各象限内的符,二是一组公式,两者的作用分别是:前者确定函数值的符,后者将任意角的三角函数化为0°到360°角的三角函数,这两个内容是我们日后学习的基础,经常要用,请同学们熟记.作业课本习题1.2A组题1—9.设计感想关于三角函数定义法,总的说来就两种:“单位圆定义法”与“终边定义法”.这两种方法本质上是一致的.正因为此,各种数学出版物中,两种定义方法都有采用.在学习本节的过程中可以与初中学习的三角函数定义进行类比、学习.理解任意角三角函数的定义不但是学好本节内容的关键,也是学好本章内容的关键.在教学中,教师应该充分调动学生独立思考和总结的能力,以巩固对知识的理解和掌握.教师在教学中,始终引导学生紧扣三角函数的定义,善于利用数形结合.在利用三角函数定义进行求值时,应特别强调要注意横向联系,即不仅仅能求出该值,还要善于观察该值与其他三角函数值之间的联系,找出规律来求解.(设计者:房增凤)第2课时导入新课思路 1.(情境导入)同学们都在一些旅游景地或者在公园中见过大观览车,大家是否想过大观览车在转动过程中,座椅离地面的高度随着转动角度的变化而变化,二者之间有怎样的相依关系呢?思路 2.(复习导入)我们研究了三角函数在各象限内的符,学习了将任意角的三角函数化成0°—360°角的三角函数的一组公式,前面还分析讨论了三角函数的定义域,这些内容的研究,都是建立在任意角的三角函数定义之上的,这些知识在以后我们继续学习“三角”内容时,是经常、反复运用的,请同学们务必在理解的基础上要加强记忆.由三角函数的定义我们知道,对于角α的各种三角函数我们都是用比值来表示的,或者说是用数来表示的,今天我们再来学习正弦、余弦、正切函数的另一种表示方法——几何表示法.我们知道,直角坐标系内点的坐标与坐标轴的方向有关.因此自然产生一个想法是以坐标轴的方向来规定有向线段的方向,以使它们的取值与点的坐标联系起来.推进新课新知探究提出问题问题①:回忆上节课学习的三角函数定义并思考:三角函数的定义能否用几何中的方法来表示,应怎样表示呢?问题②:回忆初中学过的线段,若加上方向会怎样呢?什么是有向线段?活动:指导学生在平面直角坐标系内作出单位圆,设任意角α的顶点在原点,始边与x 轴的非负半轴重合,终边与单位圆相交于点P(x,y),x 轴的正半轴与单位圆相交于A(1,0),过P 作x 轴的垂线,垂足为M;过A 作单位圆的切线,这条切线必平行于y 轴(垂直于同一条直线的两直线平行),设它与角α的终边或其反向延长线交于点T.教师点拨学生观察线段的方向与点P 的坐标.显然,线段OM 的长度为|x|,线段MP 的长度为|y|,它们都只能取非负值. 当角α的终边不在坐标轴上时,我们可以把OM 、MP 都看作带有方向的线段:如果x>0,OM 与x 轴同向,规定此时OM 具有正值x;如果x<0,OM 与x 轴正向相反(即反向),规定此时OM 具有负值x,所以不论哪一种情况,都有OM=x.如果y>0,把MP 看作与y 轴同向,规定此时MP 具有正值y;如果y<0,把MP 看作与y 轴反向,规定此时MP 具有负值y,所以不论哪一种情况,都有MP=y.引导学生观察OM 、MP 都是带有方向的线段,这种被看作带有方向的线段叫做有向线段. 于是,根据正弦、余弦函数的定义,就有sin α=r y =1y =y=MP, cos α=r x =1x =x=OM. 这两条与单位圆有关的有向线段MP 、OM 分别叫做角α的正弦线、余弦线.类似地,我们把OA 、AT 也看作有向线段,那么根据正切函数的定义和相似三角形的知识,就有tan α=x y =OAAT =AT. 这条与单位圆有关的有向线段AT,叫做角α的正切线.讨论结果:①能.②被看作带有方向的线段叫做有向线段.提出问题问题①:怎样把三角函数线与有向线段联系在一起?问题②:正弦线、余弦线、正切线在平面直角坐标系中是怎样规定的?当角α的终边变化时,它们有什么变化?活动:师生共同讨论,最后一致得出以下几点:(1)当角α的终边在y 轴上时,余弦线变成一个点,正切线不存在.(2)当角α的终边在x 轴上时,正弦线、正切线都变成点.(3)正弦线、余弦线、正切线都是与单位圆有关的有向线段,所以作某角的三角函数线时,一定要先作单位圆.(4)线段有两个端点,在用字母表示正弦线、余弦线、正切线时,要先写起点字母,再写终点字母,不能颠倒;或者说,含原点的线段,以原点为起点,不含原点的线段,以此线段与x 轴的公共点为起点.(5)三种有向线段的正负与坐标轴正反方向一致,三种有向线段的数量与三种三角函数值相同.正弦线、余弦线、正切线统称为三角函数线.讨论结果:①略.②略.示例应用思路1例1 如图7,α,β的终边分别与单位圆交于点P,Q,过A(1,0)作切线AT,交图7射线OP 于点T,交射线OQ 的反向延长线于T′,点P 、Q 在x 轴上的射影分别为点M 、N,则sin α=______________,cos α=______________,tan α=______________,sin β=______________,cos β=______________,tan β=______________.活动:根据三角函数线的定义可知,sin α=MP,cos α=OM,tan α=AT,sin β=NQ,cos β =ON,tan β=AT′.答案:MP OM AT NQ ON AT′点评:掌握三角函数线的作法,注意用有向线段表示三角函数线时,字母的书写顺序不能随意颠倒.变式训练利用三角函数线证明|sin α|+|cos α|≥1.解:当α的终边落在坐标轴上时,正弦(或余弦)线变成一个点,而余弦(或正弦)线的长等于r,所以|sin α|+|cos α|=1.当角α终边落在四个象限时,利用三角形两边之和大于第三边有|sin α|+|cos α|=|OM |+|MP |>1,∴|sin α|+|cos α|≥1.例2 在单位圆中画出适合下列条件的角α的终边或终边所在的范围,并由此写出角α的集合:(1)sin α=21;(2)sin α≥21. 活动:引导学生画出单位圆,对于(1),可设角α的终边与单位圆交于A(x,y),则sin α=y,所以要作出满足sin α=21的终边,只要在单位圆上找出纵坐标为21的点A,则OA 即为角α的终边;对于(2),可先作出满足sin α=21的角的终边,然后根据已知条件确定角α的范围.图8。
高中数学必修4全一册课堂导学案(28份) 人教课标版26(精品教案)

高中数学必修4全一册课堂导学案(28份)人教课标版26(精品教案)2.4.1 向量在几何中的应用课堂导学三点剖析一、向量在平面几何中的应用因为向量有两个特征――长度和方向.所以成为数学中一个典型的数与形的有机结合.如全等、相似、长度、夹角、平行、垂直等问题.在解决这些问题时可考虑应用向量的线性运算和数量积问题.通过对问题的深入分析,认识向量的工具性作用,培养创新精神和解决实际问题的能力.【例】如下图,平行四边形中,点是的中点,点在上,且1,求证:、、三点共线. 3思路分析:共线问题,一般情况下可化成向量共线,再利用向量共线的条件证明. 证明:设AB,AD,1AB,211∴MB.∴MCMBBC.2211BD,∴BN(). 又BN3311∴MNMBBN()2311. 63∵BDADAB,MB∴MCMN.∴、、三点共线.各个击破类题演练如图,已知为△的重心,为平面上任一点,求证:PG1(PAPBPC). 3证明:设三条中线分别为、、.所以有GD11AD.由向量的中线公式有GD(GBGC),32AD1(ABAC), 21(ABAC).① 31同理,GAGB(CACB),②31GAGC(BABC),③31①②③得(GAGBGC)(ABBAACCACBBC).3所以GBGC所以GAGBGC.所以PGPGPGPG(PAAG)(PBBG)(PCCG)(PAPBPC)(AGBGCG)PAPBPC.所以PG1(PAPB). 3变式提升如图,为△的外心,为三角形内一点,满足OEOAOBOC.求证:AE⊥BC.思路分析:要证AE⊥BC,即证AE・BC,选取基底{OB,OC},将AE,BC表示出来即可.证明:∵BCOCOB,AEOEOA(OAOBOC)OAOBOC,∴AE・BC(OCOB)・(OCOB)OCOB.∵为外心,∴OCOB,即AE・BC. ∴AE⊥BC.二、向量在解析几何中的应用一般地,对于直线方程而言,向量(,)为该直线的方向向量,向量(,)与直线垂直,又称(,)为直线的法向量,有了方向向量和法向量,我们就可以用向量来研究平面内两条直线的位置关系,即两直线平行、垂直、夹角等问题. 【例】求过点(,)且平行于向量(,)的直线方程.思路分析:利用向量法来解决几何问题时,要将线段看成向量并用端点坐标来表示. 解法一:直线与(,)平行,∴直线斜率2. 3∴直线方程为2(),即. 3解法二:过点且平行于向量的直线是唯一确定的,把这条直线记为,在上任取一点(),则AP∥.如果点不与点重合,由向量平行,它们的坐标满足的条件为.解法三:设()为所求直线上任意一点,由题意知AP∥,而AP()(),∴()・()・,化简得,即为所求直线的方程. 类题演练在△中,已知(,),(,),(,),求边上的高所在的直线方程.思路分析:在过点的直线上任取一点,由已知直线的方向坐标得法向量的坐标,利用AC・求出直线方程.解:与边平行的向量为AC(,),设()是所求直线上任一点,BP(),所以边上的高所在直线方程为AC・(),即. 变式提升设(,),(,),点在直线上,且CA・CBAC・ABBA・BC,求〈CA,CB〉. 思路分析:本题利用向量的数量积运算与解析几何的联系. 解:设(),∵点在直线上,x?(?1)y?2,整理,得方程?323,). 251则AC(,)AB()BC().225∴AC・AB,CA・CB,BA・BC,4∴,∴(又∵CA・CBAC・ABBA・BC,∴(5)(). 4∴33.解得±.2427. 7∴〈CA,CB〉面对着学习,你就要有毅力。
2020版高中数学人教A版必修4 导学案 《正切函数的图象与性质》(含答案解析)

1.4.3 正切函数的性质与图象学习目标1.会求正切函数y=tan(ωx+φ)的周期.2.掌握正切函数y=tan x 的奇偶性,并会判断简单三角函数的奇偶性.3.掌握正切函数的单调性,并掌握其图象的画法.知识点一 正切函数的性质 思考1 正切函数的定义域是什么?思考2 诱导公式tan(π+x)=tan x ,x∈R 且x≠π2+kπ,k∈Z 说明了正切函数的什么性质?思考3 诱导公式tan(-x)=-tan x ,x∈R 且x≠π2+kπ,k∈Z 说明了正切函数的什么性质?思考4 从正切线上看,在⎝⎛⎭⎪⎫0,π2上正切函数值是增大的吗?梳理 函数y=tan x ⎝ ⎛⎭⎪⎫x∈R且x≠kπ+π2,k∈Z 的图象与性质见下表:解析式y=tan x图象定义域 {x|x∈R 且x≠kπ+π2,k∈Z }值域 R 周期 π 奇偶性 奇单调性在开区间⎝⎛⎭⎪⎫kπ-π2,kπ+π2(k∈Z )内都是增函数 知识点二思考1 利用正切线作正切函数图象的步骤是什么?答案为:根据正切函数的定义域和周期,首先作出区间(-π2,π2)上的图象.作法如下:(1)作直角坐标系,并在直角坐标系y 轴的左侧作单位圆. (2)把单位圆的右半圆分成8等份,分别在单位圆中作出正切线. (3)描点(横坐标是一个周期的8等分点,纵坐标是相应的正切线的长度). (4)连线,得到如图①所示的图象.(5)根据正切函数的周期性,把上述图象向左、右扩展,就可以得到正切函数y=tan x ,x∈R 且x≠π2+kπ(k∈Z )的图象,把它称为正切曲线(如图②所示).可以看出,正切曲线是被相互平行的直线x=π2+kπ,k∈Z 所隔开的无穷多支曲线组成的.思考 2 我们能用“五点法”简便地画出正弦函数、余弦函数的简图,你能类似地画出正切函数y=tan x ,x∈⎝ ⎛⎭⎪⎫-π2,π2的简图吗?怎样画?类型一 正切函数的定义域 例1 求下列函数的定义域.(1)y=11+tan x ; (2)y=lg(3-tan x).反思与感悟求定义域时,要注意正切函数自身的限制条件,另外解不等式时,要充分利用三角函数的图象或三角函数线.跟踪训练1 求函数y=tan x +1+lg(1-tan x)的定义域.类型二 正切函数的单调性及其应用 命题角度1 求正切函数的单调区间例2 求函数y=tan ⎝ ⎛⎭⎪⎫-12x +π4的单调区间及最小正周期.反思与感悟y=tan(ωx+φ) (ω>0)的单调区间的求法是把ωx+φ看成一个整体, 解-π2+kπ<ωx+φ<π2+kπ,k∈Z 即可.当ω<0时,先用诱导公式把ω化为正值再求单调区间. 跟踪训练2 求函数y=tan ⎝⎛⎭⎪⎫2x -π3的单调区间.命题角度2 利用正切函数的单调性比较大小例3.(1)比较大小:①tan 32°________tan 215°; ②tan18π5________tan(-28π9). (2)将tan 1,tan 2,tan 3按大小排列为________.(用“<”连接)反思与感悟运用正切函数的单调性比较大小的步骤:(1)运用函数的周期性或诱导公式将角化到同一单调区间内; (2)运用单调性比较大小关系. 跟踪训练3.比较大小:tan ⎝ ⎛⎭⎪⎫-7π4________tan ⎝ ⎛⎭⎪⎫-9π5.类型三 正切函数的图象及应用例4.画出函数y=|tan x|的图象,并根据图象判断其单调区间、奇偶性、周期性.反思与感悟(1)作出函数y=|f(x)|的图象一般利用图象变换方法,具体步骤是: ①保留函数y=f(x)图象在x 轴上方的部分;②将函数y=f(x)图象在x 轴下方的部分沿x 轴向上翻折.(2)若函数为周期函数,可先研究其一个周期上的图象,再利用周期性,延拓到定义域上即可.跟踪训练4 设函数f(x)=tan ⎝ ⎛⎭⎪⎫x 2-π3. (1)求函数f(x)的周期,对称中心; (2)作出函数f(x)在一个周期内的简图.1.函数y=tan(2x +π6)的最小正周期是( )A.πB.2πC.π2D.π62.函数f(x)=tan(x +π4)的单调递增区间为( )A.(kπ-π2,kπ+π2),k∈ZB.(kπ,(k +1)π),k∈ZC.(kπ-3π4,kπ+π4),k∈ZD.(kπ-π4,kπ+3π4),k∈Z3.在下列函数中同时满足:①在⎝⎛⎭⎪⎫0,π2上递增;②以2π为周期;③是奇函数的是( )A.y=tan xB.y=cos xC.y=tan x2D.y=-tan x4.方程tan ⎝ ⎛⎭⎪⎫2x +π3=3在区间[0,2π)上的解的个数是( ) A.5 B.4 C.3 D.25.比较大小:tan 1________tan 4.1.正切函数的图象正切函数有无数多条渐近线,渐近线方程为x=kπ+π2,k∈Z ,相邻两条渐近线之间都有一支正切曲线,且单调递增. 2.正切函数的性质(1)正切函数y=tan x 的定义域是⎩⎨⎧⎭⎬⎫x|x≠kπ+π2,k∈Z ,值域是R . (2)正切函数y=tan x 的最小正周期是π,函数y=Atan(ωx+φ) (Aω≠0)的周期为T=π|ω|. (3)正切函数在⎝ ⎛⎭⎪⎫-π2+kπ,π2+kπ(k∈Z )上单调递增,不能写成闭区间,正切函数无单调减区间. 课时作业一、选择题1.函数y=tan ⎝ ⎛⎭⎪⎫x +π5,x∈R 且x≠310π+kπ,k∈Z 的一个对称中心是( )A.(0,0)B.⎝ ⎛⎭⎪⎫π5,0 C.⎝ ⎛⎭⎪⎫45π,0 D.(π,0) 2.函数f(x)=lg(tan x +1+tan 2x)为( ) A.奇函数B.既是奇函数又是偶函数C.偶函数D.既不是奇函数又不是偶函数3.满足tan A>-1的三角形的内角A 的取值范围是( ) A.(0,34π) B.(0,π2)∪(π2,34π)C.(34π,π)D.(0,π2)∪(34π,π)4.下列各点中,不是函数y=tan(π4-2x)的图象的对称中心的是( )A.(π8,0)B.(-π8,0)C.(π4,0)D.(-38π,0)5.函数f(x)=tan ωx (ω>0)的图象的相邻两支截直线y=π4所得的线段长为π4,则f ⎝ ⎛⎭⎪⎫π4的值是( )A.0B.1C.-1D.π46.函数y=tan x +sin x -|tan x -sin x|在区间⎝ ⎛⎭⎪⎫π2,3π2内的图象是( )7.下列关于函数y=tan ⎝ ⎛⎭⎪⎫x +π3的说法正确的是( )A.在区间⎝ ⎛⎭⎪⎫-π6,5π6上单调递增B.最小正周期是πC.图象关于点⎝ ⎛⎭⎪⎫π4,0成中心对称 D.图象关于直线x=π6成轴对称二、填空题8.函数y=3tan(3x +π4)的对称中心的坐标是________.9.函数y=-tan 2x +4tan x +1,x∈⎣⎢⎡⎦⎥⎤-π4,π4的值域为____________.10.函数y=3tan ⎝ ⎛⎭⎪⎫ωx+π6的最小正周期是π2,则ω=________.11.函数y=1-tan x 的定义域是________.三、解答题12.判断函数f(x)=lg tan x +1tan x -1的奇偶性.13.求函数y=tan(x 2-π3)的定义域、周期、单调区间和对称中心.四、探究与拓展14.若tan x>tan π5且x 在第三象限,则x 的取值范围是________.15.设函数f(x)=tan(ωx+φ)(ω>0,0<φ<π2),已知函数y=f(x)的图象与x 轴相邻两个交点的距离为π2,且图象关于点M(-π8,0)对称.(1)求f(x)的解析式; (2)求f(x)的单调区间;(3)求不等式-1≤f(x)≤3的解集.答案解析知识点一 正切函数的性质思考1答案为:{x|x∈R 且x≠π2+kπ,k∈Z }.思考2答案为: 周期性. 思考3答案为: 奇偶性. 思考4答案为:是. 知识点二 正切函数的图象 思考2答案为:能,三个关键点:⎝ ⎛⎭⎪⎫π4,1,(0,0),⎝ ⎛⎭⎪⎫-π4,-1,两条平行线:x=π2,x=-π2. 梳理 (1)正切函数的图象(2)正切函数的图象特征正切曲线是被相互平行的直线x=π2+kπ,k∈Z 所隔开的无穷多支曲线组成的.例1解:(1)要使函数y=11+tan x 有意义,必须且只需⎩⎪⎨⎪⎧1+tan x≠0,x≠kπ+π2(k∈Z ),所以函数的定义域为{x|x ∈R 且x≠kπ-π4,x≠kπ+π2,k∈Z }.(2)因为3-tan x>0,所以tan x< 3. 又因为当tan x=3时,x=π3+kπ(k∈Z ),根据正切函数图象,得kπ-π2<x <kπ+π3 (k∈Z ),所以函数的定义域是{x|kπ-π2<x <kπ+π3,k∈Z }.跟踪训练1解:由题意得⎩⎪⎨⎪⎧tan x +1≥0,1-tan x>0,即-1≤tan x<1.在⎝ ⎛⎭⎪⎫-π2,π2内,满足上述不等式的x 的取值范围是⎣⎢⎡⎭⎪⎫-π4,π4,又y=tan x 的周期为π,所以函数的定义域是⎣⎢⎡⎭⎪⎫kπ-π4,kπ+π4(k∈Z ).例2解:y=tan ⎝ ⎛⎭⎪⎫-12x +π4=-tan ⎝ ⎛⎭⎪⎫12x -π4,由kπ-π2<12x -π4<kπ+π2(k∈Z ),得2kπ-π2<x<2kπ+32π(k∈Z ),所以函数y=tan ⎝ ⎛⎭⎪⎫-12x +π4的单调递减区间是⎝ ⎛⎭⎪⎫2kπ-π2,2kπ+32π,k∈Z ,周期T=2π.跟踪训练2解:∵y=tan x 在x∈⎝ ⎛⎭⎪⎫-π2+kπ,π2+kπ (k∈Z )上是增函数,∴-π2+kπ<2x-π3<π2+kπ,k∈Z ,即-π12+kπ2<x<5π12+kπ2,k∈Z .∴函数y=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是⎝ ⎛⎭⎪⎫-π12+kπ2,5π12+kπ2 (k∈Z ).例3.答案为:(1)①< ②< (2)tan 2<tan 3<tan 1解析:(1)①tan 215°=tan(180°+35°)=tan 35°, ∵y=tan x 在(0°,90°)上单调递增,32°<35°, ∴tan 32°<tan 35°=tan 215°. ②tan 18π5=tan(4π-2π5)=tan(-2π5),tan(-28π9)=tan(-3π-π9)=tan(-π9),∵y=tan x 在(-π2,π2)上单调递增,且-2π5<-π9,∴tan(-2π5)<tan(-π9),即tan 18π5<tan(-28π9).(2)tan 2=tan(2-π),tan 3=tan(3-π),∵-π2<2-π<3-π<1<π2,且y=tan x 在(-π2,π2)上单调递增,∴tan(2-π)<tan(3-π)<tan 1,即tan 2<tan 3<tan 1. 跟踪训练3.答案为:>;解析:∵tan ⎝ ⎛⎭⎪⎫-7π4=-tan ⎝ ⎛⎭⎪⎫2π-π4=tan π4,tan ⎝ ⎛⎭⎪⎫-9π5=-tan ⎝ ⎛⎭⎪⎫2π-π5=tan π5.又0<π5<π4<π2,y=tan x 在⎝ ⎛⎭⎪⎫0,π2内单调递增, ∴tan π5<tan π4,∴tan ⎝ ⎛⎭⎪⎫-7π4>tan ⎝ ⎛⎭⎪⎫-9π5.例4.解:由y=|tan x|,得y=⎩⎪⎨⎪⎧ tan x,kπ≤x<kπ+π2(k∈Z ),-tan x ,-π2+kπ<x<kπ(k∈Z ),其图象如图所示. 由图象可知,函数y=|tan x|是偶函数,单调递增区间为⎣⎢⎡⎭⎪⎫kπ,kπ+π2(k∈Z ), 单调递减区间为⎝ ⎛⎦⎥⎤-π2+kπ,kπ(k∈Z ),周期为π. 跟踪训练4解:(1)∵ω=12,∴周期T=πω=π12=2π. 令x 2-π3=kπ2(k∈Z ),得x=kπ+2π3(k∈Z ), ∴f(x)的对称中心是⎝ ⎛⎭⎪⎫kπ+2π3,0(k∈Z ). (2)令x 2-π3=0,则x=2π3;令x 2-π3=π2,则x=5π3; 令x 2-π3=-π2,则x=-π3.∴函数y=tan ⎝ ⎛⎭⎪⎫x 2-π3的图象与x 轴的一个交点坐标是⎝ ⎛⎭⎪⎫2π3,0, 在这个交点左,右两侧相邻的两条渐近线方程分别是x=-π3,x=5π3, 从而得到函数y=f(x)在一个周期⎝ ⎛⎭⎪⎫-π3,5π3内的简图(如图).1.答案为:C;解析 最小正周期为T=π|ω|=π2. 2.答案为:C ;3.答案为:C ;4.答案为:B ;解析:由tan ⎝⎛⎭⎪⎫2x +π3=3,解得2x +π3=π3+kπ(k∈Z ),∴x=kπ2(k∈Z ), 又∵x∈[0,2π),∴x=0,π2,π,3π2.故选B. 5.答案为:>;解析:由正切函数的图象易知tan 1>0,tan 4=tan(4-π),而0<4-π<1<π2, 函数y=tan x 在⎝ ⎛⎭⎪⎫-π2,π2上为增函数,所以tan 1>tan(4-π)=tan 4. 课时作业1.答案为:C ;2.答案为:A ; 解析:∵1+tan 2x >|tan x|≥-tan x ,∴其定义域为{x|x≠kπ+π2,k∈Z },关于原点对称. 又f(-x)+f(x)=lg(-tan x +1+tan 2x)+lg(tan x +1+tan 2x)=lg 1=0,∴f(x)为奇函数,故选A.3.答案为:D ;解析:因为A 为三角形的内角,所以0<A<π.又tan A>-1,结合正切曲线得A∈(0,π2)∪(3π4,π). 4.答案为:C ;解析:令π4-2x=kπ2,k∈Z ,得x=π8-kπ4.令k=0,得x=π8; 令k=1,得x=-π8;令k=2,得x=-3π8.故选C. 5.答案为:A ;解析:由题意,得T=πω=π4,∴ω=4.∴f(x)=tan 4x,f ⎝ ⎛⎭⎪⎫π4=tan π=0. 6.答案为:D ;解析:当π2<x<π时,tan x<sin x ,y=2tan x<0; 当x=π时,y=0;当π<x<3π2时,tan x>sin x ,y=2sin x<0.故选D. 7.答案为:B ;解析:令kπ-π2<x +π3<kπ+π2,解得kπ-5π6<x<kπ+π6,k∈Z , 显然⎝ ⎛⎭⎪⎫-π6,5π6不满足上述关系式,故A 错误;易知该函数的最小正周期为π,故B 正确; 令x +π3=kπ2,解得x=kπ2-π3,k∈Z ,任取k 值不能得到x=π4,故C 错误; 正切函数曲线没有对称轴,因此函数y=tan ⎝⎛⎭⎪⎫x +π3的图象也没有对称轴,故D 错误.故选B. 8.答案为:⎝ ⎛⎭⎪⎫kπ6-π12,0(k∈Z ); 解析:由3x +π4=kπ2(k∈Z ),得x=kπ6-π12(k∈Z ),所以对称中心的坐标为⎝ ⎛⎭⎪⎫kπ6-π12,0(k∈Z ). 9.答案为:[-4,4];解析:∵-π4≤x≤π4,∴-1≤tan x≤1.令tan x=t ,则t∈[-1,1], ∴y=-t 2+4t +1=-(t -2)2+5.∴当t=-1,即x=-π4时,y min =-4, 当t=1,即x=π4时,y max =4.故所求函数的值域为[-4,4]. 10.答案为:±2;解析:T=π|ω|=π2,∴ω=±2. 11.答案为:(kπ-π2,kπ+π4](k∈Z ); 12.解:由tan x +1tan x -1>0,得tan x>1或tan x<-1. ∴函数定义域为(kπ-π2,kπ-π4)∪(kπ+π4,kπ+π2)(k∈Z ),关于原点对称. f(-x)+f(x)=lg tan (-x )+1tan (-x )-1+lg tan x +1tan x -1=lg(-tan x +1-tan x -1·tan x +1tan x -1)=lg 1=0. ∴f(-x)=-f(x),∴f(x)是奇函数.13.解:①由x 2-π3≠kπ+π2,k∈Z ,得x≠2kπ+53π,k∈Z .∴函数的定义域为{x|x∈R 且x≠2kπ+53π,k∈Z }. ②∵T=π12=2π.∴函数的周期为2π. ③由kπ-π2<x 2-π3<kπ+π2,k∈Z ,解得2kπ-π3<x<2kπ+53π,k∈Z . ∴函数的单调增区间为(2kπ-π3,2kπ+53π),k∈Z . ④由x 2-π3=kπ2,k∈Z ,得x=kπ+23π,k∈Z . ∴函数的对称中心是(kπ+23π,0),k∈Z . 14.答案为:(kπ+6π5,kπ+3π2)(k∈Z ); 15.解:(1)由题意知,函数f(x)的最小正周期为T=π2,即π|ω|=π2. 因为ω>0,所以ω=2,从而f(x)=tan(2x +φ).因为函数y=f(x)的图象关于点M(-π8,0)对称, 所以2×(-π8)+φ=kπ2,k∈Z ,即φ=kπ2+π4,k∈Z . 因为0<φ<π2,所以φ=π4,故f(x)=tan(2x +π4). (2)令-π2+kπ<2x+π4<π2+kπ,k∈Z ,得-3π4+kπ<2x<kπ+π4,k∈Z , 即-3π8+kπ2<x<π8+kπ2,k∈Z . 所以函数的单调递增区间为(-3π8+kπ2,π8+kπ2),k∈Z ,无单调递减区间. (3)由(1)知,f(x)=tan(2x +π4). 由-1≤tan(2x+π4)≤3,得-π4+kπ≤2x+π4≤π3+kπ,k∈Z , 即-π4+kπ2≤x≤π24+kπ2,k∈Z . 所以不等式-1≤f(x)≤3的解集为{x|-π4+kπ2≤x≤π24+kπ2,k∈Z }.。
新人教A版必修4高中数学2.3.3平面向量的坐标运算导学案

1高中数学 2.3.3平面向量的坐标运算导学案新人教A 版必修4【学习过程】 一、自主学习(一)知识链接:复习:⑴向量()122,0e e e ≠是共线的两个向量,则12,e e 之间的关系可表示为 .⑵向量12,e e 是同一平面内两个不共线的向量,a 为这个平面内任一向量,则向量a 可用12,e e 表示为 。
(二)自主探究:(预习教材P96—P97) 探究:平面向量的坐标运算问题1:已知()11,a x y =,()22,b x y =,能得出a b +,a b -,a λ的坐标吗?1、已知:==1122(,),(,)a x y b x x ,λ为一实数+a b =__________________________ _。
-a b =___________。
这就是说,两个高量和(差)的坐标分别等于__________________ ____。
λa =_______________这就是说,实数与向量的积的坐标等于:________________________。
问题2:如图,已知()11,A x y ,()22,B x y ,则怎样用坐标表示向2量AB 呢?2、若已知(,)A x y 11,(,)B x y 22,则AB =_____________=___________________ 即一个向量的坐标等于此向量的有向线段 的________________________。
问题3:你能在上图中标出坐标为()2121,x x y y --的P 点吗?标出P 点后,你能发现向量的坐标与点的坐标之间的联系吗?二、合作探究1、已知()2,8a b +=-,()8,16a b -=-,求a 和b .2、已知平行四边形ABCD 的顶点()1,2A --,()3,1B -,()5,6C ,试求:(1)顶点D 的坐标.(2)若AC 与BD 的交点为O ,试求点O 的坐标.3、已知△ABC 中,A (7,8),B (3,5),C (4,3),M 、N 是AB 、AC 的中点,D 是BC 的中点,MN 与AD 交于点F ,求DF →.3三、目标检测(A 组必做,B 组选做)A 组1. 若向量()2,3a x =-与向量()1,2b y =+相等,则( )A .1,3x y == B.3,1x y == C.1,5x y ==- D.5,1x y ==-2. 已知(),AB x y =,点B 的坐标为()2,1-,则OA 的坐标为( ) A.()2,1x y -+ B.()2,1x y +- C.()2 1x y ---, D.()2,1x y ++3. 已知()3,1a =-,()1,2b =-,则32a b --等于( )A.()7,1B.()7,1--C.()7 1-,D.()7,1-4. 设点()1,2A -,()2,3B ,()3,1C -且AD =2AB 3BC -,求D 点的坐标。
高中数学 234平面向量共线的坐标表示导学案(无答案)新人教版必修4 学案

2.3.4平面向量共线的坐标表示【学习目标】1.会推导并熟记两向量共线时坐标表示的充要条件; 2.能利用两向量共线的坐标表示解决有关综合问题。
3.通过学习向量共线的坐标表示,使学生认识事物之间的相互联系,培养学生辨证思维能力.【教学重点】 向量共线的坐标表示及直线上点的坐标的求解. 【教学难点】 定比分点的理解和应用 自主学习案 【复习引入】前面,我们学习了平面向量可以用坐标来表示,并且向量之间可以进行坐标运算。
这就为解决问题提供了方便。
我们又知道共线向量的条件是当且仅当有一个实数λ使得b =λa,那么这个条件是否也能用坐标来表示呢?因此,我们有必要探究一下这个问题:两向量共线的坐标表示。
【自主探究】思考:共线向量的条件是当且仅当有一个实数λ使得a=λb ,那么这个条件是否也能用坐标来表示呢?设a=(x 1, y 1) b =(x 2, y 2)( b ≠0) 其中b ≠a结论:a ∥b (b≠0)⇔x 1y 2-x 2y 1=0注意:1︒消去λ时不能两式相除,∵y 1, y 2有可能为0, ∵b≠0,∴x 2, y 2中至少有一个不为0. 2︒充要条件不能写成2211x y x y = ∵x 1, x 2有可能为0. 3︒从而向量共线的充要条件有两种形式:a ∥b (b≠0)01221=-=⇔y x y x ba λ合作探究案【课内探究】例1. 已知(4,2)a =,(6,)b y =,且//a b ,求y . 解:变式训练1:已知平面向量)2,1(=a ,),2(m b -= ,且b a //,则b a 32+等于_________.例2: 已知(1,1)A --,(1,3)B ,(2,5)C ,求证:A 、B 、C 三点共线. 证明:点评:若从同一点出发的两个向量共线,则这两个向量的三个顶点共线. 变式训练2:若A (x ,-1),B (1,3),C (2,5)三点共线,则x 的值为_________.例3:设点P 是线段P 1P 2上的一点, P 1、P 2的坐标分别是(x 1,y 1),(x 2,y 2). 当点P 是线段P 1P 2的中点时,求点P 的坐标; 当点P 是线段P 1P 2的一个三等分点时,求点P 的坐标. 解:点评:此题实际上给出了线段的中点坐标公式和线段三等分点坐标公式.变式训练3:当21PP P P λ=时,点P 的坐标是什么?【当堂检测】:1、已知AB =a +5b ,BC =-2a +8b ,CD =3(a -b),则( )A. A 、B 、D 三点共线 B .A 、B 、C 三点共线 C. B 、C 、D 三点共线D. A 、C 、D 三点共线2、若向量a=(-1,x)与b =(-x , 2)共线且方向相同,则x 为________.3、设3(,sin )2a α=,1(cos ,)3b α=,(0,2)απ∈,且//a b ,求角α. 4、已知a=(3,-1),b=(-1,2),则-3a-2b 等于( )A.(7,1)B.(-7,-1)C.(-7,1)D.(7,-1) 5、已知A(1,1),B(-1,0),C(0,1),D(x,y),若AB 和CD 是相反向量,则D 点的坐标是( ) A.(-2,0) B.(2,2) C.(2,0) D.(-2,-2) 6、若点A(-1,-1),B(1,3),C(x,5)共线,则使AB =λBC 的实数λ的值为( ) A.1 B.-2 C.0 D.27、设a=(23,sinα),b=(cosα,31),且a ∥b,则α的值是( ) A.α=2kπ+4π(k ∈Z) B.α=2kπ-4π(k ∈Z)C.α=kπ+4π(k ∈Z)D.α=kπ-4π(k ∈Z)7、已知A 、B 、C 三点共线,且A(3,-6),B(-5,2),若C 点的横坐标为6,则C 点的纵坐标为( ) A.-2 B.9 C.-9 D.13 8、若A(2,3),B(x,4),C(3,y),且AB =2AC ,则x=_______,y=________. 9、已知ABCD 中,AD =(3,7), AB =(-2,1),则CO 的坐标(O 为对角线的交点)为_________.10、向量OA =(k,12),OB =(4,5),OC =(10,k),当k 为何值时,A 、B 、C 三点共线?11.A(2,3),B(5,4),C(7,10),若AP =AB +λAC (λ∈R),试问:当λ为何值时,点P 在第一与第三象限的角平分线上?当λ在什么范围内取值时,点P 在第三象限内?12.边形ABCD 是正方形,BE ∥AC,AC=CE,EC 的延长线交BA 的延长线于点F,求证:AF=AE.【我的小结】【我的疑问】课后练习案1. 教材P100练习1-7.2. 同步作业P61练习题.3.。
人教版高中数学必修4全册导学案全集

人教版高中数学必修4全册导学案全集标题:人教版高中数学必修4全册导学案全集导学案是高中数学教学中的重要辅助教材,为学生提供了系统、全面的学习指导和练习题。
本文将全面介绍人教版高中数学必修4全册的导学案内容,帮助学生更好地掌握数学知识。
第一章函数及其应用本章主要介绍了函数的概念、函数的表示法、函数的性质以及函数方程的应用。
通过导学案中的练习题,学生可以锻炼观察问题、建立数学模型和解决实际问题的能力。
第二章二次函数本章重点讲解了二次函数的概念、图像、性质以及应用。
通过导学案中的案例分析,学生可以理解二次函数在现实中的应用,并能够运用二次函数来解决实际问题。
第三章三角函数本章主要介绍了正弦函数、余弦函数、正切函数以及它们的图像和性质。
导学案中的练习题旨在帮助学生熟悉三角函数的运算和性质,并能够应用三角函数解决实际问题。
第四章推理与证明本章重点讲解了数学中的命题、命题的联结词、命题的等价关系以及命题的推理方法。
导学案中的练习题旨在培养学生的逻辑思维和推理能力,并能够运用推理方法解决实际问题。
第五章指数与对数函数本章主要介绍了指数函数和对数函数的概念、性质、运算法则以及指数与对数方程的应用。
导学案中的实例分析和练习题有助于学生理解指数与对数函数在现实中的应用,并能够熟练运用它们解决实际问题。
第六章平面向量本章重点讲解了平面向量的概念、向量的运算法则、向量共线、共面以及平面向量与几何的应用等内容。
导学案中的案例分析和练习题旨在帮助学生理解平面向量的性质和应用,并能够运用平面向量解决实际问题。
第七章空间几何体的位置关系本章主要介绍了空间几何体的位置关系,包括平行、垂直、相交等。
导学案中的练习题旨在提高学生观察问题和分析问题的能力,并能够应用位置关系解决实际问题。
第八章空间向量与空间解析几何本章重点讲解了空间向量的概念、运算法则以及空间向量与几何的应用。
通过导学案中的案例分析和练习题,学生可以掌握空间向量的性质和应用,并能够运用空间向量解决实际问题。
高中数学 1.2 任意角的三角函数导学案 新人教A版必修4 学案

某某省某某市三水区实验中学高中数学 1.2 任意角的三角函数导学案新人教A版必修4【学习目标】1.掌握任意角的三角函数的定义。
2.已知角α终边上一点,会求角α的各三角函数值。
【重点难点】1. 熟练求值。
2. 理解任意角的三角函数的定义。
【预习指导】1.阅读教材第11~13页。
2.回顾初中学过的锐角三角函数的定义?(如图)在Rt△ABC中,sinA= ,cosA= , tanA= .3.思考:你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗?点的位置对这三个比值有影响吗?4.在平面直角坐标系中,我们称以______为圆心,以__________为半径的圆为单位圆。
【合作探究】1. 例题研讨:例1:求下列各角的正弦、余弦、正切值:π、4π、3π、53π(讨论求法→试求(学生板演)→订正)ABC→小结:画角的终边与单位圆,求交点,求值.例2:已知角α的终边经过点P(-4,-3),求角α的正弦、余弦和正切值.(学生试求→订正→小结解法)2. 任意角的三角函数的定义:①思考:已知角α终边上任意一点P (x, y),如何求它的三角函数值呢?②定义:一般地,设角α终边上任意一点的坐标为P (x,y),它与原点的距离为r,则sinα=;cosα=;tanα=.③讨论:这三个比值与点P的位置是否有关?当α的终边落在x轴、y轴上时,哪些三角函数值无意义?任何实数是不是都有三角函数值?为什么?【达标测评】(参考《全优》P7)1.若角α终边上有一点P(0,3),则下列函数值无意义的是() A.tan α B.sin αC.cos α D.无法确定2.已知角α的终边经过点P(m,-3),且cosα=-45,则m等于( )A.-114 B.114C.-4 D.43.若点P(4,y)是角α终边上一点,且sin α=-35,则y的值是________.【归纳小结】单位圆定义任意角的三角函数;2.由终边上任一点求任意角的三角函数;【巩固练习】(各班可按实际情况安排)1.练习:教材P15:1,3;2.作业:教材P15:2.第二课时:任意角的三角函数(二)【学习目标】1. 掌握各象限的三角函数值的符号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任意角1.1.1任意角班级姓名一、学习目标: 1.理解并掌握任意角、象限角、终边相同的角的定义。
2.会写终边相同的角的集合并且会利用终边相同的角的集合判断任意角所在的象限。
二、重点、难点:任意角、象限角、终边相同的角的定义是本节课的重点,用集合和符号来表示终边相同的角是本节课的难点三、知识链接:1.初中是如何定义角的?2.什么是周角,平角,直角,锐角,钝角?四、学习过程:(一)阅读课本1-3页解决下列问题。
问题1、按方向旋转形成的角叫做正角,按-方向旋转形成的角叫做负角,如果一条射线没有作____旋转,我们称它形成了一个零角。
零角的与重合。
如果是零角,那么= 。
问题2、问题3、画出下列各角(1)780o (2)-120o(3)-660o(4)1200o问题4、象限角与象限界角为了讨论问题的方便,我们总是把任意大小的角放到平面直角坐标系内加以讨论,具体做法是:(1)使角的顶点和坐标重合;(2)使角的始边和轴重合.这时,角的终边落在第几象限,就说这个角是的角(有时也称这个角属于第几象限);如果这个角的终边落在坐标轴上,那么这个角就叫做,这个角不属于任何一个象限。
问题5、在平面直角坐标系中作出下列各角并指出它们是第几象限角:(1)420o (2)-75o(3)855o(4)-510ox问题6、把角放到平面直角坐标系中后,给定一个角,就有唯一的终边与之对应。
反之,对于直角坐标系内任意一条射线,以它为终边的角是否唯一?如果不唯一,终边相同的角有什么关系?为解决这些问题,请先完成下题:在直角坐标系中作出下列各角:(1)-32o(2)328o (3)-392o (4)688o (4)-752o问题7、以上各角的终边有什么关系?这些有相同的始边和终边的角,叫做。
把与-32o角终边相同的所有角都表示为,所有与角终边相同的角,连同角在内可构成集合为.。
即任一与角终边相同的角,都可以表示成角与整数个周角的和。
例1.在~之间,找出与下列各角终边相同的角,并分别指出它们是第几象限角:(1);(2);(3).变式练习1、在~之间,找出与下列各角终边相同的角,并分别指出它们是第几象限角:(1)420 o(2)—54 o18′(3)395o 8 ′(4)—1190o 30′2、写出与下列各角终边相同的角的集合,并把集合中适合不等式-720o<360o的元素写出来:(1)1303o18,(2)--225o0360480760039320360问题8、(1)写出终边在x 轴上角的集合(2)写出终边在y 轴上角的集合变式练习写出终边在直线y =x 上角的集合s,并把s 中适合不等式-360<720o元素写出来。
问题9、思考:第一象限角的集合可表示为___________________. 第二象限角的集合可表示为___________________. 第三象限角的集合可表示为___________________. 第四象限角的集合可表示为___________________.探究:设θ为第一象限角,求2θ,,–θ所在的象限.当堂检测:1、以原点为角的顶点,x 轴正方向为角的始边,终边在坐标轴上的角等于()(A )00、900或2700(B )k 3600(k Z )(C )k 1800(k Z )(D )k 900(k Z )2、如果x 是第一象内的角,那么()(A )x 一定是正角(B )x 一定是锐角(C )-3600x -2700或00x 900(D )x x k 3600x k 3600+900k Z3、设A=为正锐角,B=为小于900的角},C={为第一象限的角}D={为小于900的正角}。
则下列等式中成立的是()(A )A=B(B )B=C(C )A=C(D )A=D2θ4、在直角坐标系中,若与的终边互相垂直,那么与的关系为()(A )=+900(B )=900(C )=+900+k ·3600(D )=±900+ k ·3600k Z 5、设是第二象限角,则是象限角。
6、与角-1560°终边相同角的集合中最小的正角是.7、如果是第三象限角,则x 在第象限和半轴。
8、若α为锐角,则180°+α在第__________象限,-α在第______________象限.9、写出与370°23′终边相同角的集合S,并把S 中在-720°~360°间的角写出来.10、钟表经过4小时,时针与分针各转了度课堂小结:1、任意角的概念与分类。
2、象限角的概念及第一,二,三,四象限角的表示。
3、终边相同角的集合表示。
课后练习:习题 1.1A 组第5题。
作业布置:习题1.1A 组第1,3题。
1.1.2弧度制一、学习目标1.理解弧度制的意义;2.能正确的应用弧度与角度之间的换算;3.记住公式(为以.作为圆心角时所对圆弧的长,为圆半径);4.熟练掌握弧度制下的弧长公式、扇形面积公式及其应用。
二、重点、难点弧度与角度之间的换算;弧长公式、扇形面积公式的应用。
22x||l rl r三教学过程(一)复习:初中时所学的角度制,是怎么规定角的?角度制的单位有哪些,是多少进制的?(二)为了使用方便,我们经常会用到一种十进制的度量角的单位制——弧度制。
<我们规定>叫做1弧度的角,用符号表示,读作。
练习:圆的半径为,圆弧长为、、的弧所对的圆心角分别为多少?<思考>:圆心角的弧度数与半径的大小有关吗?由上可知:如果半径为r 的园的圆心角所对的弧长为,那么,角的弧度数的绝对值是:,的正负由决定。
正角的弧度数是一个,负角的弧度数是一个,零角的弧度数是。
<说明>:我们用弧度制表示角的时候,“弧度”或经常省略,即只写一实数表示角的度量。
例如:当弧长且所对的圆心角表示负角时,这个圆心角的弧度数是.(三)角度与弧度的换算rad1=例1、把下列各角从度化为弧度:(1)(2)变式练习把下列各角从度化为弧度:(1)22 o30′(2)—210o(3)1200o(4) (5)例2、把下列各角从弧度化为度:(1)(2) 3.51r 2r 3r 2r l rad 4lr 4||4l rrr3602rad 180rad18010.01745radrad )180(57182520/111530'306735变式练习、把下列各角从弧度化为度:(1)(2)—(3)(4)(5) 2归纳:把角从弧度化为度的方法是:把角从度化为弧度的方法是:<试一试>:一些特殊角的度数与弧度数的互相转化,请补充完整30°90°120°150°270°(四)在弧度制下分别表示轴线角、象限角的集合(1)终边落在轴的非负半轴的角的集合为;轴的非正半轴的角的集合为;终边落在轴的非负半轴的角的集合为;轴的非正半轴的角的集合为;所以,终边落在轴上的角的集合为;落在轴上的角的集合为。
(2)第一象限角的集合为;第二象限角的集合为;第三象限角的集合为;第四象限角的集合为.(五)弧度是一个量,弧度数表示弧长与半径的比,是一个实数,这样在角集合与实数集之间就建立了一个一一对应关系.1234103443432x x y y x y(六)弧度制下的弧长公式和扇形面积公式弧长公式:因为(其中表示所对的弧长),所以,弧长公式为.扇形面积公式:.说明:以上公式中的必须为弧度单位.例3、知扇形的周长为8,圆心角为2rad ,,求该扇形的面积。
变式练习若2弧度的圆心角所对的弧长是,则这个圆心角所在的扇形面积是.(七)课堂小结:1.弧度制的定义;2.弧度制与角度制的转换与区别;3.牢记弧度制下的弧长公式和扇形面积公式,并灵活运用;(八)作业布置习题1.1A 组第7,8,9题。
(九)课外探究题已知扇形的周长为8,求半径为多大时,该扇形的面积最大,并求圆心角的弧度数.||lr||l rl ||l r cm 4cm cm 正角零角负角正实数零负实数(2);R 21(1)S 22(1) 1(2) 21(3) 2l R S R S lROAB(十)课后检测1、半径为120mm 的圆上,有一条弧的长是144mm ,求该弧所对的圆心角的弧度数。
2、半径变为原来的,而弧长不变,则该弧所对的圆心角是原来的倍。
3、在中,若,求A ,B ,C 弧度数。
4、以原点为圆心,半径为1的圆中,一条弦的长度为,所对的圆心角的弧度数为.5、直径为20cm 的滑轮,每秒钟旋转,则滑轮上一点经过5秒钟转过的弧长是多少?6、选做题如图,扇形的面积是,它的周长是,求扇形的中心角及弦的长。
1.2.1 任意角的三角函数< 第一课时>班级姓名学习目标1.通过借助单位圆理解并掌握任意角的三角函数定义,理解三角函数是以实数为自变量的函数,并从任意角的三角函数定义认识正弦、余弦、正切函数的定义域,理解并掌握正弦、余12ABC ::3:5:7A B CAB 3AB 45OAB 24cm 8cm AB弦、正切函数在各象限内的符号.2.能初步应用定义分析和解决与三角函数值有关的一些简单问题.重点难点教学重点:任意角的正弦、余弦、正切的定义。
.教学难点:用角的终边上的点的坐标来刻画三角函数及三角函数符号。
教学过程(一)提出问题问题1:在初中时我们学了锐角三角函数,你能回忆一下锐角三角函数的定义吗?问题2:你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗?问题3:如果改变终边上的点的位置,这三个比值会改变吗?为什么?问题4:你利用已学知识能否通过取适当点而将上述三角函数的表达式简化?(二)新课导学1、单位圆的概念:.在直角坐标系中,我们称以为圆心,以为半径的圆为单位圆.2、三角函数的概念我们可以利用单位圆定义任意角的三角函数.图2如图2所示,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:如图,设锐角α的顶点与原点O 重合,始边与x 轴的正半轴重合,那么它的终边在第一象限.在α的终边上任取一点P(a,b),它与原点的距离r=>0.过P 作x 轴的垂线,垂足为M,则线段OM 的长度为a,线段MP 的长度为 b. 根据初中学过的三角函数定义,我们有sin α==,cos α==,tan α==.22b aOPMP rb OPOM ra OPMP ab(1)y 叫做α的正弦,记作sin α,即sin α=y;(2)x 叫做α的余弦,记作cos α,即cos α=x;(3)叫做α的正切,记作tan α,即tan α=(x ≠0).所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.注意:(1)正弦、余弦、正切、都是以角为自变量,以比值为函数值的函数.(2)sinα不是sin 与α的乘积,而是一个比值;三角函数的记号是一个整体,离开自变量的“sin ”“tan ”等是没有意义的. (3)由相似三角形的知识,对于确定的角α,这三个比值不会随点P 在α的终边上的位置的改变而改变.3、例1:已知角α的终边与单位圆的交点是求角α的正弦、余弦和正切值。