酮体的生成和利用
高职护理专业“酮体的生成与利用”课程设计
入本节课题后, 布置两个学习任务 , 让学生带着任务看书, 将全
班分为 1 0 个 小组进行讨论 , 然后各组选出 1 位学生进行 发言 , 叙述 任务完成 情况 。 3 . 2 . 3 演示法 演示法主要 内容有酮体生成过程 、利用 过程及 糖尿病病 人易 发生酮症酸 中毒 的过程分析等 。以上 内容 较抽 象, 仅凭语 言难 以达到满意的教学效果。 利用多媒体演示 , 使学 生在感性认知 的基础上 , 从理论上得到升华。同时 , 丌 /  ̄ 歹 i I - . 演示酮 症酸 中毒 的过 程 , 可激发学生思考 , 便 于学生理解为什 么糖尿
性质 的 比较等 。酮体的概念 是本 次课 的关键点之一 , 也是贯穿 本次 教学 内容 的主线 , 因此 , 必须从反应物 、 生成部 位 、 中间产
1 . 1 . 3 情 薅态度及价值观 目标 培养学生树 立从实际需要 出发 研究 问题 的观念及严谨求实 的科学态度 。 1 . 2 教 学t 难点 1 . 2 . 1 教 学蔓难点 酮体 的生成与利用的生理意义 。 1 . 2 . 2 关键 点 酮体 的概念 ; 脂 肪酸与酮体性质的 比较。
3教学方法31总体构思本次课总体上采用整分整教学模式即抓住酮体概念这一关键点充分挖掘概念内涵逐一展开讨论学习然后回到酮体生成与利用的生理意义这一关键点上使学生在粗略把握整体内容的基础上深入探讨最后从知识结构理论体系等方面形成完整认知并掌握一些基本的学习方法
卫生职业教育
V o 1 . 3 1 2 0 1 3 N o . 2 2
关键词 : 高职护理 ; 酮体 ; 课程设计 ; 生物化 学
中图分类号 : C , 4 2 0 文献标识码 : A 文章编号 : 1 6 7 l 一 1 2 4 6 ( 2 0 l 3 ) 2 2 - - . 0 0 5 9 - - 0 2
酮体的生成与利用
二.酮体的生成
部位:肝细胞线粒体
原料:乙酰CoA,主要来自脂酸的-氧化
酶:具有活性较强的酮体合成酶,尤其是羟 甲基戊二单酰CoA合成酶
酮体生成的过程: (1)乙酰乙酰CoA的生成 (2)3-羟-3-甲基戊二酸单酰CoA ( HMG CoA )的生成 (3)酮体的生成
酮体的生成
2CH3COSCoA
酮体的生成及利用
微生物与生化药学 黄宏宝
酮体的生成及利用
一.酮体 二.酮体的生成 三.酮体的利用 四.酮体生成的调节 五.酮体代谢的生理意义 六.中西医结合治疗糖尿病酮症酸中毒
一.酮体
酮体是脂酸在肝细胞分解氧化时特有的中 间代谢产物。是乙酰乙酸、-羟丁酸和丙 酮三者的总称。 其中β-羟丁酸约占70% ,乙酰乙酸约占 28% ,丙酮约占2%。
拓展:酮症
正常人血液中仅存在极微量的酮体,在某些 生理或病理情况下,酮体的生成和利用失去 平衡,导致酮症。酮症是以血酮体水平升高 为特点的一个短暂阶段。种: 生理性酮症多见于禁食、高脂饮食、长时 间剧烈运动、应激等。新生儿和孕妇血清 中的酮体也会稍增高。孕妇基础酮体水平 增高,禁食后酮体水平急剧升高,约30%妊娠 妇女首次晨尿标本尿酮呈阳性。 病理性酮症可由糖尿病、皮质醇减少症、 生长激素缺少、乙醇或水杨酸盐摄入过量 而中毒及一些罕见的先天性代谢病引起。
硫解酶
CoASH
CH3COCH2COSCoA
乙酰乙酰CoA
HMGCoA合 成酶 HMGCoA裂 解酶 CH3COCH2COOH
CH3COSCoA CoASH
乙酰乙酸 脱氢酶
NADH+H+
生化酮体的名词解释
生化酮体的名词解释生化酮体,又称为酮体或酮,是由机体在特定代谢状态下产生的一种有机化合物。
它们在能量代谢和调节方面扮演着重要角色。
本文将对生化酮体的生成过程、功能以及与健康相关的话题进行探讨。
一、酮体的生成过程酮体的生成是通过脂类代谢途径中的酮体生成途径进行的。
当血糖水平较低或体内脂肪分解较为剧烈时,机体会转向脂肪代谢途径来获取能量。
在这个过程中,三酰甘油被分解为甘油和游离脂肪酸,随后,游离脂肪酸进一步被肝脏转化为乙酰辅酶A。
乙酰辅酶A的进一步代谢主要发生在胞质中的肝脏细胞和线粒体中,通过一系列酶的催化,乙酰辅酶A成功转化为酮体,包括醋酸、β-羟丁酸和乙酸等。
其中,醋酸是最为常见的酮体。
二、酮体的功能酮体在能量代谢和身体调节方面发挥着重要作用。
首先,当血糖水平较低时,酮体可以作为优先燃料供给身体各细胞。
尤其是大脑,在缺乏葡萄糖供应的情况下,可以利用酮体来维持其正常功能。
这种转变使得机体在饥饿或低碳水化合物饮食时能够持续产生能量。
其次,酮体还具有一定的抗炎和抗氧化作用。
研究表明,酮体可以抑制炎症因子的产生,减轻炎症反应,从而对多种慢性炎症疾病具有潜在的治疗效果。
此外,酮体还可以通过抑制产生自由基及保护线粒体功能等机制,具有抗氧化作用,对于减缓老化过程和提高身体抵抗力也有一定的益处。
三、与健康相关的话题1. 酮体食谱的流行:近年来,酮体食谱或称为“生酮食谱”在健康领域引起了广泛关注。
这种食谱通过大量摄入脂肪和限制碳水化合物的摄入来诱导机体产生酮体。
支持者认为饮食中增加酮体的生成可以带来体重管理、血脂调节、糖尿病管理等方面的益处。
然而,长期高脂肪摄入对身体健康的潜在风险仍需进一步研究和评估。
2. 酮体与癫痫治疗:酮体在临床上被广泛应用于治疗癫痫。
该疗法被称为“酮体饮食疗法”。
通过限制碳水化合物的摄入,诱导机体产生酮体,从而减少癫痫发作的次数和严重性。
尽管该疗法已经被证明对一部分患者有效,但对于适应症、疗效机制以及潜在副作用等方面仍需要更多的研究和探索。
酮体生成和利用的特点
酮体生成和利用的特点
酮体是一种在饥饿或低碳水化合物饮食条件下产生的代谢产物,其作用是提供能量给体内的组织。
酮体主要有三种形式: 丙酮酸、乙酰酸和β-羟基丁酸。
它们的共同特点是,它们都可以被身体的组织利用来产生能量,特别是在饥饿或低碳水化合物饮食的情况下。
酮体的产生是由肝脏中的脂肪酸转化而来的,当身体缺乏足够的碳水化合物时,肝脏开始将脂肪酸分解成酮体,这些酮体随后被输送到其他组织,如肌肉和脑组织,以提供能量。
在高碳水化合物饮食的情况下,酮体的产生较少,因为身体会使用碳水化合物来产生能量。
虽然酮体可以被身体的许多组织利用,但是它们的利用也有一些特点。
例如,在肝脏中,酮体通过酮体酯化反应被合成,这个过程需要耗费一定的ATP。
此外,酮体在肝脏中还需要转化成丙酮酸和乙酰辅酶A,这些代谢产物可以进一步转化成ATP。
在肌肉和脑组织中,酮体的利用也有一些特点。
例如,肌肉和脑组织可以利用酮体产生能量,但需要更长的时间来代谢酮体,因此酮体不能像碳水化合物一样迅速地提供能量,所以它们主要用于维持体内的能量平衡。
总之,酮体生成和利用的特点是非常重要的,尤其是在低碳水化合物饮食和饥饿的情况下。
了解酮体的生成和利用特点,有助于我们更好地理解身体的代谢过程,从而更好地维护身体的健康。
- 1 -。
酮体的生成和利用[总结]
酮体的生成和利用【实验目的】了解酮体的生成部位及掌握测定酮体生成与利用的方法。
【实验原理】在肝脏线粒体中,脂肪酸经β-氧化生成的过量乙酰辅酶A缩合成酮体。
酮体包括乙酰乙酸、β-羟丁酸和丙酮三种化合物。
肝脏不能利用酮体,只有在肝外组织,尤其是心脏和骨骼肌中,酮体可以转变为乙酰辅酶A而被氧化利用。
本实验以丁酸为基质,与肝匀浆一起保温,然后测定肝匀浆液中酮体的生成量。
另外,在肝脏和肌肉组织共存的情况下,再测定酮体的生成量。
在这两种不同条件下,由酮体含量的差别我们可以理解以上的理论。
本实验主要测定的是丙酮的含量。
酮体测定的原理:在碱性溶液中碘可将丙酮氧化成为碘仿。
以硫代硫酸钠滴定剩余的碘,可以计算所消耗的碘,由此也就可以计算出酮体(以丙酮为代表)的含量。
反应式如下:CH3COCH3十3I2十4NaOH CHI3十CH3COONa十3NaI十3H2OI2十2Na2S2O3Na2S4O6十2NaI【实验材料】1. 实验器材试管;移液管;锥形瓶;滴定管及架。
2. 实验试剂(1)0.1%淀粉液。
(2)0.9% NaCl溶液。
(3)15%三氯乙酸。
(4)10%NaOH溶液。
(5)10%HCl溶液。
(6)0.5mol/L丁酸溶液:取5ml丁酸溶于100ml 0.5mol/L NaOH中。
(7)0.1mol/L碘液:I2 12.5g和KI 25g加水溶解,稀释至刻度1L,用0.1mol/L Na2S2O3标定。
(8)0.02mol/L Na2S2O3: 24.82g Na2S2O3·5H2O和400mg无水Na2CO3溶于1L刚煮沸的水中,配成0.1mol/L溶液,用0.1mol/L KIO3标定。
临用时将标定Na2S2O3溶液稀释成0.02mol/L。
【实验操作】1.标本的制备:将兔致死,取出肝脏,用0.9% NaCl洗去污血,放滤纸上,吸去表面的水分,称取肝组织5g置研钵中,加少许0.9% NaCl至总体积为10ml,制成肝组织匀浆。
酮体的生成和利用
二、实验原理
在肝中,脂肪酸经β氧化生成乙酰辅酶A, 再合成酮体,酮体包括乙酰乙酸、β-羟丁酸和 丙酮三种化合物。但肝不能利用酮体,必须经 血液运至肝外组织特别是肌和肾,再转变为乙 酰辅酶A而被氧化利用。 本实验利用丁酸作为底物,与肝组织匀浆 (含有酮体生成酶系)保温后即有酮体生成。 酮体可与含亚硝基铁氰化钠的显色粉反应产生 紫红色化合物。
中保温。 4.40~50 min后,取出各管,各加入15%三氯 醋酸20滴,摇匀混合,离心5 min(3 000 r/min)。 5.分别取出上述各管离心液放于凹白瓷反应板上, 每凹放入显色粉一小匙,观察所产生的颜色反应, 并说明原因。
五、实验思考
1.简述酮体的概念、肝酮体的生成有何生理
三、实验材料
1、家兔或小鼠。
2、组织匀浆机。
3、恒温水浴锅。
4、离心机。
5、试剂。
四、实验方法
1.肝匀浆和肌匀浆的制备
取家兔(或昆明种小
鼠)一只,处死后,迅速剖腹取出肝和肌组织,称 重后剪碎,分别置入匀浆器中,加入生理盐水(按 重量:体积比为1:3),制备成匀浆。
2.取试管4支,编号后按表9-17加入各种试剂。 3.将上列4支试管摇匀后,放置于37℃恒温水浴
意义? 2.本实验加15%三氯醋酸起何作用。 3.已知肌组织不能产生酮体,但试管4有时也 产生较浅的紫红色,为什么?
酮体利用的部位
摘要:酮体是一种重要的能量来源,在生理和病理状态下都具有重要作用。
本文主要介绍了酮体利用的部位,包括大脑、肌肉、心脏、肾脏、肝脏等,并分析了酮体在不同组织中的代谢途径和生理功能。
一、引言酮体(ketone bodies)是肝脏在脂肪酸氧化过程中产生的一种含酮的化合物,主要包括乙酰乙酸、β-羟基丁酸和丙酮。
酮体是一种重要的能量来源,尤其在饥饿、低血糖、糖尿病酮症酸中毒等生理和病理状态下,酮体成为机体维持能量代谢的重要物质。
本文主要介绍酮体利用的部位,并探讨其生理功能。
二、酮体利用的部位1. 大脑大脑是酮体利用的主要部位。
在正常情况下,大脑主要通过葡萄糖提供能量,但在饥饿、低血糖等情况下,大脑对酮体的依赖性增加。
酮体进入大脑后,主要通过以下途径进行代谢:(1)β-氧化:乙酰乙酸和β-羟基丁酸在脑细胞内通过β-氧化生成乙酰辅酶A,进一步参与三羧酸循环(TCA循环)产生能量。
(2)酮体还原:乙酰乙酸在脑细胞内被还原为β-羟基丁酸,进一步参与能量代谢。
(3)酮体转运:丙酮在脑细胞内被转化为乙酰乙酸,参与能量代谢。
2. 肌肉肌肉是酮体利用的另一个重要部位。
在饥饿、低血糖等情况下,肌肉对酮体的依赖性增加。
酮体在肌肉细胞内的代谢途径与大脑相似,主要包括:(1)β-氧化:乙酰乙酸和β-羟基丁酸在肌肉细胞内通过β-氧化生成乙酰辅酶A,进一步参与TCA循环产生能量。
(2)酮体还原:乙酰乙酸在肌肉细胞内被还原为β-羟基丁酸,进一步参与能量代谢。
3. 心脏心脏在饥饿、低血糖等情况下,对酮体的依赖性也增加。
酮体在心脏细胞内的代谢途径与大脑和肌肉相似,主要包括:(1)β-氧化:乙酰乙酸和β-羟基丁酸在心脏细胞内通过β-氧化生成乙酰辅酶A,进一步参与TCA循环产生能量。
(2)酮体还原:乙酰乙酸在心脏细胞内被还原为β-羟基丁酸,进一步参与能量代谢。
4. 肾脏肾脏在饥饿、低血糖等情况下,对酮体的依赖性也增加。
酮体在肾脏细胞内的代谢途径与大脑、肌肉和心脏相似,主要包括:(1)β-氧化:乙酰乙酸和β-羟基丁酸在肾脏细胞内通过β-氧化生成乙酰辅酶A,进一步参与TCA循环产生能量。
1酮体生成和利用的生理意义
1酮体生成和利用的生理意义。
(1)酮体是脂酸在肝内正常的中间代谢产物,是甘输出能源的一种形式;(2)酮体是肌肉尤其是脑的重要能源。
酮体分子小,易溶于水,容易透过血脑屏障。
体内糖供应不足(血糖降低)时,大脑不能氧化脂肪酸,这时酮体是脑的主要能源物质。
2试述乙酰CoA在脂质代谢中的作用.在机体脂质代谢中,乙酰CoA主要来自脂肪酸的β氧化,也可来自甘油的氧化分解;乙酰CoA在肝中可被转化为酮体向肝外运送,也可作为脂肪酸生物合成及细胞胆固醇合成的基本原料。
3试述人体胆固醇的来源与去路?来源:⑴从食物中摄取⑵机体细胞自身合成去路:⑴在肝脏可转换成胆汁酸⑵在性腺,肾上腺皮质可以转化为类固醇激素⑶在欺负可以转化为维生素D3⑷用于构成细胞膜⑸酯化成胆固醇酯,储存在细胞液中⑹经胆汁直接排除肠腔,随粪便排除体外。
4什么是血浆脂蛋白?试述血浆脂蛋白的分类,来源及生理功能?血浆脂蛋白是脂质与载脂蛋白结合形成球形复合体,是血浆脂蛋白的运输和代谢形式。
.血浆脂蛋白的分类方法有两种:1电泳法:可敬脂蛋白分为乳糜微粒(CM) β-脂蛋白, 前-β脂蛋白和α脂蛋白四类2超速离心法:可将脂蛋白分为乳糜微粒(CM),极低密度脂蛋白(VLDL),低密度脂蛋白(LDL)和高密度脂蛋白(HDL)四类,分别相当于电泳分离的CM、前β-脂蛋白、β-脂蛋白和α-脂蛋白四类。
各种血浆脂蛋白的来源主要生理功能如下:①CM 由小肠黏膜细胞合成,功能是转运外源性甘油三酯和胆固醇;②VLDL由肝细胞合成、分泌,功能是转运内源性甘油三酯和胆固醇;③LDL由VLDL在血浆中转化而来,功能是转运内源性胆固醇,即将胆固醇由肝转运至肝外组织;④HDL主要由肝细胞合成、分泌,功能是逆向转运胆固醇,即将胆固醇由肝外组织转运到肝。
1、酶的催化作用有何特点?①具有极高的催化效率,如酶的催化效率可比一般的催化剂高10 8~1020倍;②具有高度特异性:即酶对其所催化的底物具有严格的选择性,包括:绝对特异性、相对特异性、立体异构特异性;③酶促反应的可调节性:酶促反应受多种因素的调控,以适应机体不断变化的内外环境和生命活动的需要。
酮体生成和利用的特点
酮体生成和利用的特点
酮体生成和利用是机体在能量代谢过程中的重要组成部分。
酮体主要是由肝脏在低血糖状态下合成的,其生成过程主要涉及到脂肪酸分解、乙酰辅酶A合成、羧化和酮体合成四个步骤。
在严重饥饿、糖尿病、甲状腺功能减退和进行性神经肌肉疾病等情况下,酮体的生成量会增加。
酮体主要被心脏、肌肉和肝脏等组织利用,其中心脏对酮体的利用量最大,而肝脏则负责酮体的合成和分解。
酮体在能量代谢中的作用主要是替代葡萄糖作为能量来源,从而保护脑细胞免受低血糖的影响。
此外,酮体还可以调节酸碱平衡、抗氧化和抗炎等功能,具有多重生理效应。
酮体生成和利用的特点包括:1. 酮体的生成主要依赖于脂肪酸的供应和代谢;2. 酮体的利用主要发生在心脏、肌肉和肝脏等组织中;3. 酮体可以替代葡萄糖作为能量来源,从而保护脑细胞免受低血糖的影响;4. 酮体具有多重生理效应,如调节酸碱平衡、抗氧化和抗炎等功能。
总之,酮体生成和利用是机体在能量代谢中的重要组成部分,其作用不仅仅局限于能量供应,还涉及到多个生理过程。
深入了解酮体的生成和利用特点,对于预防和治疗相关疾病具有重要的临床意义。
- 1 -。
酮体的生产和利用
酮体的生产和利用
酮体是脂肪酸在肝脏中有限氧化分解的中间产物,包括乙酰乙酸、β-羟基丁酸和丙酮。
酮体的生成主要通过一系列酶促反应完成,其中HMG-CoA合成酶是关键酶。
在肝脏中,脂肪酸被氧化成乙酰辅酶A,再缩合成HMG-CoA,接着被裂解酶裂解成乙酰乙酸,后者再被还原成β-羟基丁酸或脱羧生成丙酮。
酮体的利用主要依赖于琥珀酰CoA转硫酶和乙酰乙酸硫激酶的催化作用,这些酶将乙酰乙酸转化为乙酰乙酰CoA,后者再被硫解酶转化为乙酰CoA。
乙酰CoA最终进入三羧酸循环进行氧化。
酮体是肝脏输出能源的一种形式,可以通过血脑屏障,是脑组织的重要能源。
肝细胞不能利用酮体,酮体在肝内生成后,通过血液运往肝外组织,作为能源物质被氧化利用。
其中丙酮量少且具有挥发性,主要通过肺呼出和肾排出。
乙酰乙酸和β-羟基丁酸被转化成乙酰辅酶A后,最终通过三羧酸循环彻底氧化。
酮体在体内有多种作用:
1.能量供应:酮体可以被身体的大部分组织和器官利用,特别是在脑部、心脏
肌肉和肾上腺皮质等器官中,可以提供能量来源。
2.保护脑功能:酮体对脑功能有保护作用。
在低血糖状态下,酮体可以供应给
脑细胞使用,以保持脑功能正常运转。
3.脂肪代谢:酮体的产生和利用可以促进脂肪的分解和氧化,有助于减少脂肪
积累,并在体重管理中发挥重要作用。
4.抗炎和抗氧化:酮体可能具有一定的抗炎和抗氧化作用,能够减轻炎症反应
和氧化应激,并对某些疾病具有保护作用。
酮体的生成和检验的临床意义
酮体的生成和检验的临床意义
酮体是人体在特定情况下产生的一种代谢产物,通常出现在低碳水化合物饮食、长时间饥饿、糖尿病酮症酸中毒等情况下。
酮体的生成主要是通过肝脏代谢脂肪而产生的,其中包括乙酰辅酶A、丙酮酸和羟基丁酸等化合物,这些物质在血液中可以被检测到。
酮体的检验可能包括尿液试验和血液试验,其中最常用的是血液β-羟基丁酸检测。
在临床上,酮体的生成和检验对于诊断和治疗一些疾病具有重要的意义。
首先,酮体可以用来诊断糖尿病酮症酸中毒,在这种情况下,病人体内的酮体含量通常会显著升高。
其次,酮体还可以用来监测控制糖尿病的治疗效果。
对于那些需要进行低碳水化合物饮食的人群,酮体的检测可以帮助他们确定自己是否达到了目标水平。
最后,酮体的生成和检验也可以帮助医生确定一些症状的来源,例如疲劳、恶心和呕吐等,这些症状可能与酮症酸中毒有关。
总之,酮体的生成和检验在临床上具有重要的意义,可以帮助医生诊断和治疗一些疾病,也可以帮助病人监测自己的健康状况。
需要注意的是,酮体的生成和检验并不适用于所有人群,不同人群的酮体含量可能存在差异,应根据具体情况进行判断和分析。
酮体的生成及氧化
酮体的生成及氧化
酮体的生成主要是由于葡萄糖供应不足时的脂肪代谢产生的。
当人体的葡萄糖供应不足时(如长时间不进食、低碳水化合物饮食等),机体会启动脂肪酸的代谢过程,将脂肪酸分解为乙酰辅酶A(Acetyl-CoA)分子。
乙酰辅酶A进一步被酶催化,通过某些代谢途径转化为酮体。
在线粒体内,乙酰辅酶A可以通过某些酶如乙酰辅酶A酯酶(thiolase)和羟基甲酰-CoA裂合酶(HMG-CoA裂合酶)分
解为乙酰乙酸(Acetoacetic acid)。
乙酰乙酸可以通过酮酸转
移酶(ketothiolase)脱羟基形成醋酸(Acetone)和乙酰酸(Acetic acid)。
醋酸和乙酰酸都是酮体的一部分。
这些生成的酮体(包括乙酰乙酸、醋酸和乙酰酸等)会进入血液,被运输到其他组织和器官来供能。
其中,醋酸和乙酰酸可以进入肝脏代谢,通过HMG-CoA合酶的作用转化成乙酰辅
酶A,进一步供能或参与其他代谢途径。
酮体氧化主要发生在肝脏内线粒体中。
乙酰乙酸在线粒体内转化为乙酰辅酶A,然后通过三羧酸循环(TCA循环)进一步
代谢产生ATP。
同时,酮体氧化还能提供重要的能量来源给
中枢神经系统,特别是在长时间的低碳水化合物饮食下。
总的来说,酮体的生成是因为葡萄糖供应不足时的脂肪代谢产生的,它们可以通过代谢途径转化为乙酰辅酶A,供能给机体各个组织,特别是中枢神经系统。
酮体的生成和利用
酮体定量: (丙酮) 1、丙酮 + 2,4-二硝基苯肼 丙酮 2,4-二硝基苯腙 2、在酸性条件下用CCl4将丙酮 2,4-二硝基苯腙分离 提取而与其它苯腙衍生物分开。
2、取50mL锥形瓶4只,编号,按下表添加剂: 混匀,置于37℃恒温振荡器中振荡2小时。
瓶号
0.9%NaCl (mL)
0.10mol/L磷酸盐缓冲液(mL)
盐溶液(mL)
肝组织糜(g)
肌组织糜(g)
0.75mol/L丁酸钠(mL)
15%三氯醋酸(mL)
1
4.0
2.0
0.5
1
/
3.0
恒温振荡器
Байду номын сангаас
五、操作步骤(6人一组) 1、肝组织糜与肌组织糜的制备(糜倒入塑料筐) 取肝脏5g,置于表面皿上,用剪刀剪细剪匀,为肝组织糜,平均分成4份(每份约1g)。不要捻碎!!! 取肌肉约5g,按上述方法制成肌肉组织糜,平均分 成2份(每份约2g) 。
/
2
4.0
2.0
0.5
1
/
3.0
2.5
3
4.0
2.0
0.5
1
2
3.0
/
4
4.0
2.0
0.5
1
2
3.0
2.5
摇匀后在测定瓶2和4中加入15%三氯乙酸2.5mL
3、振荡后,取出锥形瓶,摇匀后在测定瓶1和3中分别加入15%三氯乙酸2.5mL,混匀,静置10分钟,然后各瓶分别倒入4支离心管中,2000rpm 离心10分钟(弃去残渣,注意离心管平衡)。
酮体的生成与利用
酮体的生成与利用酮体(acetone bodies)是脂肪酸在肝脏进行正常分解代谢所生成的特别中间产物,包括有乙酰乙酸(acetoacetic acid约占30%),-羟丁酸(hydroxybutyric acid约占70%)和极少量的丙酮(acetone)。
正常人血液中酮体含量极少(约为0.8?.0mg/dl,0.22mM),这是人体利用脂肪氧化供能的正常现象。
但在某些生理状况(饥饿、禁食)或病理状况下(如糖尿病 ),糖的来源或氧化供能障碍,脂动员增加,脂肪酸就成了人体的主要供能物质。
若肝中合成酮体的量超过肝外组织利用酮体的力量,二者之间失去平衡,血中浓度就会过高,导致酮血症(acetonemia)和酮尿症(acetonuria)。
乙酰乙酸和-羟丁酸都是酸性物质,因此酮体在体内大量积累还会引起酸中毒。
1.酮体的生成过程:酮体是在肝细胞线粒体中生成的,其生成原料是脂肪酸-氧化生成的乙酰CoA。
首先是二分子乙酰CoA在硫解酶作用下脱去一分子辅酶A,生成乙酰乙酰CoA。
在3-羟-3-甲基戊二酰CoA(hydroxy methyl glutarylCoA,HMGCoA)合成酶催化下,乙酰乙酰CoA再与一分子乙酰CoA反应,生成HMGCoA,并释放出一分子辅酶。
这一步反应是酮体生成的限速步骤。
HMG-CoA裂解酶催化HMG-CoA生成乙酰乙酸和乙酰CoA,后者可再用于酮体的合成。
线粒体中的-羟丁酸脱氢酶催化乙酰乙酸加氢还原(NADH+H+作供氢体),生成-羟丁酸,此还原速度打算于线粒体中[NADH+H+]/[NAD+]的比值,少量乙栈酸可自行脱羧生成丙酮。
上述酮体生成过程实际上是一个循环过程,又称为雷宁循环(lynen cycle),两个分子乙酰CoA通过此循环生成一分子乙酰乙酸(见图5-12)。
酮体生成后快速透过肝线粒体膜和细胞膜进入血液,转运至肝外组织利用。
2.酮体的利用过程骨骼肌、心肌和肾脏中有琥珀酰CoA转硫酶(succinylCoa thiophorase),在琥珀酰CoA存在时,此酶催化乙酰乙酸活化生成乙酰乙酰CoA。
酮体的生成实验报告
酮体的生成实验报告篇一:11 实验十一酮体的生成和利用实验十一酮体的生成和利用【实验目的】了解酮体的生成部位及掌握测定酮体生成与利用的方法。
【实验原理】在肝脏线粒体中,脂肪酸经β-氧化生成的过量乙酰辅酶A缩合成酮体。
酮体包括乙酰乙酸、β-羟丁酸和丙酮三种化合物。
肝脏不能利用酮体,只有在肝外组织,尤其是心脏和骨骼肌中,酮体可以转变为乙酰辅酶A而被氧化利用。
本实验以丁酸为基质,与肝匀浆一起保温,然后测定肝匀浆液中酮体的生成量。
另外,在肝脏和肌肉组织共存的情况下,再测定酮体的生成量。
在这两种不同条件下,由酮体含量的差别我们可以理解以上的理论。
本实验主要测定的是丙酮的含量。
酮体测定的原理:在碱性溶液中碘可将丙酮氧化成为碘仿。
以硫代硫酸钠滴定剩余的碘,可以计算所消耗的碘,由此也就可以计算出酮体(以丙酮为代表)的含量。
反应式如下:CH3COCH3十3I2十4NaOH CHI3十CH3COONa十3NaI 十3H2OI2十2Na2S2O3Na2S4O6十2NaI【实验材料】1. 实验器材试管;移液管;锥形瓶;滴定管及架。
2. 实验试剂(1) 0.1% 淀粉液。
(2) 0.9% NaCl溶液。
(3) 15% 三氯乙酸。
(4) 10% NaOH溶液。
(5) 10% HCl溶液。
(6) 0.5mol/L丁酸溶液:取5ml丁酸溶于100ml 0.5mol/L NaOH中。
(7) 0.1mol/L碘液:I2 12.5g和KI 25g加水溶解,稀释至刻度1L,用0.1mol/L Na2S2O3标定。
(8) 0.02mol/L Na2S2O3: 24.82g Na2S2O3·5H2O和400mg 无水Na2CO3溶于1L刚煮沸的水中,配成0.1mol/L溶液,用0.1mol/L KIO3标定。
临用时将标定Na2S2O3溶液稀释成0.02mol/L。
【实验操作】1.标本的制备:将兔致死,取出肝脏,用0.9% NaCl洗去污血,放滤纸上,吸去表面的水分,称取肝组织5g置研钵中,加少许0.9% NaCl至总体积为10ml,制成肝组织匀浆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
酮体的生成和利用
酮体是脂肪酸在肝内分解氧化时的正常中间代谢产物,它包括乙酰乙酸、β-羟丁酸及丙酮三种有机物质。
其中β-羟丁酸含量较多,丙酮含量极微。
(1)酮体的生成
以乙酰CoA为原料,在肝线粒体经酶催化先缩合,后再裂解而生成酮体,除肝之外,肾也含有生成酮体的酮体系。
酮体的合成过程可分三步进行。
①首先由两分子乙酰CoA在硫解酶的作用下缩合生成乙酰乙酰CoA,同时释放
出一分子CoA-SH。
【反应式1】
②然后,乙酰乙酰CoA再与一分子乙酰CoA结合生成6个碳的3-羟甲基戊二酸单酰CoA(HMGCoA),并释放出CoA-SH,此反应是由HMGCoA合成酶催化的,该酶在肝线粒体含量极高。
【反应式2】
③乙酰乙酸被还原生成β-羟丁酸,该还原反应是由紧密结合在线粒体内膜上的β-羟丁酸脱氢酶(此酶在肝中活性极高)催化,还原反应所需的氢由NADH提供。
该反应速度取决于NADH/NAD+之比值。
部分乙酰乙酸还可缓慢地自发脱羧,亦可经乙酰乙酸脱羧酶催化脱羧生成丙酮。
【肝内酮体的生成】
肝含有合成酮体的酶体系,故能生成酮体,但肝缺乏利用酮体的酶,因此不能氧化酮体,肝产生的酮体需经血液运输到肝外组织进一步氧化分解。
(2)酮体的利用
酮体被氧化的关键是乙酰乙酸被激活为乙酰乙酸辅酶A,激活的途径有两种:一是在肝外组织细胞的线粒体内,β-羟丁酸经β-羟丁酸脱氢酶作用,被氧化生成乙酰乙酸,乙酰乙酸与琥珀酰CoA在β-酮脂酰CoA转移酶(β-ketoacyl CoA transferase)(3-氧酰CoA转移酶),即琥珀酰CoA;乙酰乙酸辅酶A转移酶催化下,生成乙酰乙酰CoA,同时放出琥珀酸。
另一途径是在有HSCoA和ATP存在时,由乙酰乙酸硫激酶催化,使乙酰乙酸形成乙酰乙酰辅酶A,后者再经硫解生成两分子乙酰CoA。
乙酰CoA进入三羧酸循环被彻底氧化。
【肝外组织对酮体的利用】
丙酮不能按上述方式氧化,它可随尿排出。
丙酮易挥发,如血中浓度过高时,丙酮还可经肺直接呼出。
肝是生成酮体的器官,但缺乏氧化酮体的酶,故肝中酮体不能氧化;肝外组织缺乏HMG CoA裂解酶,不产生酮体,却可氧化利用酮体。
【酮体的性质】
(3)酮症
正常情况下,血中酮体含量很少,每1OOml血中酮体含量低于3mg(0.3mmol/L)。
但在饥饿、高脂低糖膳食及糖尿病时,脂肪动员加强,脂肪酸氧化增多,酮体生成过多,超过肝外组织利用酮体的能力,引起血中酮体升高,当高过肾回收能力时,则尿中出现酮体,即为酮症(ketosis)。
因酮体中乙酰乙酸及β-羟丁酸都是相对强的有机酸,如在体内堆积过多可引起代谢性酸中毒。
饥饿、高脂低糖膳食及糖尿病均造成体内糖氧化利用的减低,呈现胰高血糖素与胰岛素的比值升高,,则大量脂酰CoA转移入线粒体进行氧化,产生大量乙酰CoA。
另外还使脂解作用增强,则长链脂酰CoA增多而堆积起来。
在线粒体内,此时由于脂酰CoA特别是长链脂酰CoA增多,通过别构抑制柠檬酸合成酶,致使乙酰CoA难于进入三羧酸循环氧化,在肝内堆积的乙酰CoA缩合生成酮体。
过多的酮体将随血液循环运至肝外组织氧化利用,肝外组织氧化酮体是有一定限度的。
当血酮体过高,如超过肝外组织氧化能力时,则血中酮体将堆积,尿中出现大量酮体,呈现酮症。
【糖代谢紊乱与酮症的关系】
(4)酮体生成的生理意义
①肝脏输出酮体为肝外组织提供了能源。
②肝脏输出酮体对低血糖时保证脑的供能,以维持其正常生理功能方面起着重要作用。
甘油的代谢
甘油在组织细胞内的氧化,必须先在甘油磷酸的催化下,形成α-甘油磷酸,后者脱氢后生成二羟丙酮磷酸,然后再沿糖代谢的途径分解或沿酵解逆行的途径生成糖。
肝、肾和肠粘膜等组织含有丰富的甘油磷酸激酶,但在肌肉和脂肪组织细胞内,这种酶的活性很低。