X射线晶体衍射实验报告

合集下载

x射线的衍射实验报告

x射线的衍射实验报告

x射线的衍射实验报告X射线的衍射实验报告引言:X射线的衍射是一项重要的实验,它可以帮助我们了解物质的结构和性质。

本实验旨在通过X射线的衍射实验,探究X射线在晶体中的衍射现象,进一步了解晶体的结构和性质。

实验目的:1. 了解X射线的衍射现象;2. 掌握X射线衍射实验的操作方法;3. 理解晶体的结构和性质。

实验器材:1. X射线衍射仪;2. X射线源;3. 晶体样品;4. 探测器。

实验步骤:1. 将晶体样品固定在X射线衍射仪上;2. 调整X射线源的位置和角度,使其射线垂直照射到晶体样品上;3. 打开探测器,记录X射线的衍射图样;4. 根据衍射图样,计算晶格常数和晶体结构。

实验结果与分析:通过实验观察到的衍射图样,我们可以发现在不同角度下,晶体样品会出现不同的衍射斑点。

这些斑点的位置和强度可以帮助我们确定晶体的结构和晶格常数。

进一步分析衍射图样,我们可以发现晶体的衍射斑点呈现出一定的规律性。

根据布拉格方程,我们可以计算出晶格常数。

同时,通过比对已知晶体结构的数据库,我们可以推断出晶体的结构类型。

实验的重点在于观察和记录衍射图样。

通过仔细观察衍射斑点的位置和强度,我们可以推断出晶体的晶格常数和结构类型。

这对于研究物质的结构和性质具有重要意义。

实验的局限性:1. 实验中使用的晶体样品可能存在杂质,这可能会对衍射图样产生影响;2. 实验中的X射线源可能存在能量分布不均匀的问题,这可能会导致衍射图样的畸变;3. 实验中的探测器可能存在灵敏度不均匀的问题,这可能会导致衍射图样的误差。

实验的应用:X射线的衍射实验在材料科学、地质学、生物学等领域具有广泛的应用。

通过衍射实验,我们可以研究晶体的结构和性质,进一步了解物质的特性。

这对于材料的设计和开发具有重要意义。

结论:通过本次实验,我们成功地进行了X射线的衍射实验,并通过观察和分析衍射图样,计算出了晶格常数和推断出了晶体的结构类型。

这些结果对于研究物质的结构和性质具有重要意义。

x射线晶体衍射实验报告

x射线晶体衍射实验报告

x射线晶体衍射实验报告X射线晶体衍射实验报告引言:X射线晶体衍射实验是一种重要的实验方法,通过将X射线照射到晶体上,利用晶体的结构特性,可以观察到衍射图样,从而了解晶体的结构和性质。

本文将介绍X射线晶体衍射实验的原理、实验装置和实验结果,并分析实验中的一些问题和改进方法。

一、实验原理X射线晶体衍射是基于布拉格方程的原理。

当X射线照射到晶体上时,晶体中的原子会对X射线进行散射,形成衍射波。

根据布拉格方程,衍射波的相位差与入射波的入射角、晶格常数和衍射角有关。

通过测量衍射角和入射角的关系,可以计算出晶格常数和晶体结构的一些信息。

二、实验装置实验中使用的装置主要包括X射线发生器、单晶样品、衍射仪和探测器。

X射线发生器产生高能的X射线,单晶样品是实验中的研究对象,衍射仪用于收集和聚焦衍射波,探测器用于测量衍射波的强度。

三、实验步骤1. 准备工作:调整X射线发生器的参数,使其产生适合实验的X射线能量。

选择合适的单晶样品,并将其固定在衍射仪上。

2. 调整衍射仪:通过调整衍射仪的入射角和出射角,使得衍射波能够被探测器收集到。

3. 开始实验:打开X射线发生器,照射X射线到单晶样品上。

同时,探测器开始测量衍射波的强度。

4. 数据处理:根据探测器测得的衍射波强度,计算出衍射角,并绘制衍射图样。

5. 结果分析:根据衍射图样,计算出晶格常数和晶体结构的一些信息,并与已知数据进行对比。

四、实验结果在实验中,我们选择了某晶体样品进行研究。

通过测量和计算,得到了该晶体的衍射图样和晶格常数。

通过与已知数据对比,我们确认了该晶体的结构和性质。

五、问题与改进在实验过程中,我们遇到了一些问题,并提出了一些改进方法。

首先,由于X射线的能量和强度有限,可能会导致衍射图样的强度较弱,影响数据的准确性。

为了解决这个问题,可以尝试增加X射线的能量和强度,或者使用更灵敏的探测器。

其次,实验中的样品制备和固定也需要一定的技巧和经验,可以通过改进样品制备方法和优化固定装置来提高实验效果。

晶体X射线衍射实验报告

晶体X射线衍射实验报告
USER: Administrator
JADE: Quantitative Analysis fromProfile-FittedPeaks
DATE: Monday, Nov 15, 2010 11:29a
FILE: [ZnCO3+SiO2.raw]
SCAN: 10.0/80.0/0.02/.15(sec), Cu(40kV,250mA), I(max)=3443, 11-19-08 14:49
(8)矿物学名称。右上角的符号标记表示:*—数据高度可靠;i—已指标化和估计强度,但可靠性不如前者;O—可靠性较差;C—衍射数据来自理论计算。
(9)晶面间距,相对强度和干涉指数。
(10)卡片的顺序号
六、分析与讨论
6.1定性相分析的基本判据:
通常用d(晶面间距表征衍射线位置)和I(衍射线相对强度)的数据代表衍射花样。用d-I数据作为定性相分析的基本判据。定性相分析方法是将由试样测得的d-I数据组与已知结构物质的标准d-I数据组(PDF卡片)进行对比,以鉴定出试样中存在的物相。
使R值最小的过程就是图谱拟合过程。通过修正晶体结构参数,使拟合函数和由晶体结构计算出来的峰形函数吻合,就是晶体结构参数精密化过程。
三、操作步骤
(1)打开样品文件,并鉴定出物相(Al)。
(2)按下 按钮,软件对图谱进行函数拟合。
(3)拟合过程中,观察R(拟合误差)的变化 ,重复步骤[2],反复拟合几次,直到R值不再变小。
6.2多相合金样品的物相定性分析中存在的困难:
1.实验测定的衍射数据和粉末衍射卡记载的数据都有误差,这给物相鉴定带来困难。因影响线条强度的因素较位置的因素复杂得多,故在分析时应更更视面间距数据的吻合。
2.当混合物中某相的含量很少时或某相各晶面反射能力很弱时,它的衍射线条可能难于显现因此X射线衍射分析,只能肯定某相的存在,而不能确定某相的不存在在。

x射线衍射分析实验报告

x射线衍射分析实验报告

x射线衍射分析实验报告X射线衍射分析实验报告。

实验目的:本实验旨在通过X射线衍射技术对晶体结构进行分析,以了解晶体的结构和性质,并掌握X射线衍射技术的基本原理和操作方法。

实验仪器与设备:1. X射线衍射仪,用于产生X射线,并测量样品对X射线的衍射情况。

2. 样品,需要进行分析的晶体样品。

3. 数据处理软件,用于处理和分析实验得到的数据。

实验步骤:1. 样品制备,取得晶体样品,进行必要的处理和制备。

2. 实验仪器准备,打开X射线衍射仪,调试仪器参数,确保仪器正常工作。

3. 进行X射线衍射,将样品放置在X射线衍射仪中,进行X射线衍射实验。

4. 数据处理与分析,使用数据处理软件对实验得到的数据进行处理和分析,得出样品的晶体结构信息。

实验结果与分析:通过本次实验,我们成功得到了样品的X射线衍射图谱,并进行了数据处理和分析。

根据X射线衍射图谱的特征峰值和衍射角度,我们确定了样品的晶体结构信息,包括晶格常数、晶胞结构等。

通过对实验数据的分析,我们得出了样品的晶体结构参数,并对样品的性质进行了初步了解。

实验结论:本次实验通过X射线衍射技术对样品的晶体结构进行了分析,得出了样品的晶体结构信息,并初步了解了样品的性质。

实验结果表明,X射线衍射技术是一种有效的手段,可用于分析晶体结构和性质。

通过本次实验,我们对X射线衍射技术有了更深入的了解,并掌握了X射线衍射技术的基本原理和操作方法。

实验总结:本次实验对我们了解晶体结构分析技术具有重要意义,通过实际操作,我们深入掌握了X射线衍射技术的原理和方法。

同时,本次实验也为我们今后的科研工作奠定了基础,为我们进一步深入研究晶体结构和性质打下了良好的基础。

希望通过今后的努力,能够更深入地探索X射线衍射技术在晶体结构分析中的应用,为科学研究做出更大的贡献。

通过本次实验,我们不仅学习到了X射线衍射技术的基本原理和操作方法,还对晶体结构分析有了更深入的了解。

我们相信,通过不断的学习和实践,我们一定能够运用所学知识,取得更加丰硕的科研成果。

x射线晶体衍射实验报告

x射线晶体衍射实验报告

竭诚为您提供优质文档/双击可除x射线晶体衍射实验报告篇一:晶体x射线衍射实验报告篇二:晶体x射线衍射实验报告篇三:x射线衍射实验报告x射线衍射实验报告姓名:xxx专业:有机化学学号:312070303004时间:20XX.12.05一、实验目的1.了解x射线衍射仪的结构;2.熟悉x射线衍射仪的工作原理;3.掌握x射线衍射仪的基本操作。

二、实验原理x射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续x射线和特征x射线两种。

晶体可被用作x光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的x 射线的强度增强或减弱。

由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为x射线的衍射线。

满足衍射条件,可应用布拉格公式:2dsinθ=λ应用已知波长的x射线来测量θ角,从而计算出晶面间距d,这是用于x射线结构分析;另一个是应用已知d的晶体来测量θ角,从而计算出特征x射线的波长,进而可在已有资料查出试样中所含的元素。

三、仪器组成x射线衍射仪的基本构造原理图,主要部件包括4部分。

x射线衍射仪电路图(1)高稳定度x射线源提供测量所需的x射线,改变x 射线管阳极靶材质可改变x射线的波长,调节阳极电压可控制x射线源的强度。

(2)样品及样品位置取向的调整机构系统样品须是单晶、粉末、多晶或微晶的固体块。

(3)射线检测器检测衍射强度或同时检测衍射方向,通过仪器测量记录系统或计算机处理系统可以得到多晶衍射图谱数据。

(4)衍射图的处理分析系统现代x射线衍射仪都附带安装有专用衍射图处理分析软件的计算机系统,它们的特点是自动化和智能化。

xrd实验报告

xrd实验报告

xrd实验报告X射线衍射(XRD)实验报告一、实验目的:1. 理解X射线衍射的原理和方法;2. 掌握X射线衍射实验技术。

二、实验仪器和试样:1. 实验仪器:X射线衍射仪;2. 试样:晶体样品。

三、实验原理:当X射线照射到晶体上时,会发生衍射现象。

根据布拉格定律,晶体的面间距d与入射角θ、衍射角2θ之间的关系为:nλ = 2d sinθ,其中n为整数,λ为入射X射线的波长。

在实验中,通过调节入射角和测量衍射角的大小,可以确定晶体的面间距d。

四、实验步骤:1. 打开X射线衍射仪电源,接通电源;2. 放置试样:将试样固定在衍射仪的样品台上,并平稳调整样品位置,使得样品完全暴露在X射线束下;3. 调整角度:通过旋转样品台和检测器,使得X射线通过样品时的入射角和衍射角适中;4. 测量数据:用探测器测量各个入射角对应的衍射强度,并记录下来;5. 处理数据:根据测得的衍射角和入射角,计算晶体的面间距;6. 分析结果:根据计算的结果,分析晶体的结构和组成。

五、实验结果:1. 测得的入射角和衍射角数据如下:入射角(θ/°)衍射角(2θ/°)10 2020 4030 6040 8050 1002. 计算得到的晶体的面间距如下:面间距d = λ / (2sin(θ/2))= λ / (2sin(10/2))= λ / (2sin(5))= λ / (2×0.087)≈ 5.7Å六、实验结论:通过实验测得的X射线衍射数据和计算得到的晶体面间距,可以得出晶体的结构和组成。

根据测得的数据,在入射角为10°的情况下,衍射角为20°,计算得到面间距为5.7Å,可以初步推断晶体为立方晶系。

进一步根据其他测量数据分析晶体的具体组成和结构。

七、实验总结:X射线衍射实验是一种重要的结晶学方法,非常有助于研究晶体的结构和组成。

在实验过程中,需要仔细调节样品位置和角度,以获得准确的衍射数据。

x射线晶体衍射实验报告

x射线晶体衍射实验报告

x射线晶体衍射实验报告
摘要:
本次实验旨在通过利用X射线晶体衍射实验的方法,研究晶格结构以及其对X射线的衍射现象。

通过实验结果的分析,确定晶体中的晶格常数以及晶体的空间群。

实验结果表明,晶体的晶格常数为XÅ,空间群为xxx。

实验部分:
a.实验原理
根据布拉格定律,晶体中的原子形成的晶格结构会对入射的X 射线发生衍射现象,从而形成一系列角度为θ的衍射峰。

其中,角度θ和晶格的晶格常数a以及入射X射线的波长λ有关系为:
nλ=2a sinθ
因此,通过测量不同角度下的衍射峰位置,可以确定晶格常数以及晶体的空间群。

b.实验步骤
1.准备晶体样品,并制备样品片
2.设置X射线衍射仪的参数,包括X射线波长λ以及探测器的位置θ
3.扫描样品片,记录每个角度下的衍射峰位置
4.利用布拉格定律计算晶格常数以及晶体的空间群类型
实验结果与分析:
通过实验观测,记录了不同角度下的衍射图谱,其中最明显的衍射峰为X度。

通过代入布拉格定律公式中,可计算出晶格常数为XÅ。

并通过借助数据库,可以确定其属于xxx空间群类型。

结论:
本次实验成功地利用X射线晶体衍射方法确定了晶格常数以及
晶体的空间群类型。

同时,实验结果验证了布拉格定律的正确性,对于研究物质的晶体结构以及特性具有重要的意义。

晶体X射线衍射实验报告(参考格式)

晶体X射线衍射实验报告(参考格式)

二、实验原理
要求字数不少于1000字,不得抄袭;
讨论问题不拘一格,各尽发挥。

本次实验大家学习了粉末试样的制备要求,包括试样的粒度大小厚度如何进行研磨过
筛压片制作。

实验所采用的主要仪器为X射线衍射仪,重点学习了晶体X射线衍射的几何原理测定方法以及如何运用Jade软件进行物相鉴定和物相定量分析。

布拉格方程是X射线衍射仪最基本的理论基础,也是进行X射线检测最根本和重要的理论
依据之一。

当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X 射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。

这就是X射线衍射的基本原理。

衍射线空间方位与晶体结构的关系可用布拉格方程表示:2dsinθ=nλ式中:λ是X射线的波长;θ是衍射角;d是结晶面间隔;n是整数。

波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。

将求出的衍射X射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。

从衍射X射线强度的比较,可进行定量分析。

因为存在系统消光,并非所有满足布拉格方程的干涉面都有对应的衍射条纹。

x射线衍射分析实验报告

x射线衍射分析实验报告

x射线衍射分析实验报告X射线衍射分析实验报告。

实验目的,通过X射线衍射分析,了解晶体结构的性质和特点,掌握X射线衍射仪器的使用方法,提高实验操作能力。

实验仪器,X射线衍射仪、标本夹、标本台、X射线管、样品旋转台等。

实验原理,X射线衍射是一种通过晶体对入射X射线的衍射现象来研究晶体结构的方法。

当入射X射线照射到晶体上时,晶体中的原子会对X射线进行衍射,形成衍射图样。

通过分析衍射图样的特点,可以推断晶体的晶格结构和晶面间距。

实验步骤:1. 将待测样品放置在X射线衍射仪的标本夹上,固定好。

2. 调整X射线管的位置和角度,使得X射线能够正常照射到样品上。

3. 启动X射线衍射仪,进行衍射图样的采集。

4. 对采集到的衍射图样进行分析,推断样品的晶格结构和晶面间距。

实验结果分析:通过X射线衍射实验,我们成功获取了样品的衍射图样,并进行了分析。

根据衍射图样的特点,我们推断出样品的晶格结构为立方晶系,晶面间距为2.5 Å。

这与样品的实际晶体结构相符,说明X射线衍射分析是一种有效的手段,可以准确地研究晶体结构。

实验总结:通过本次实验,我们深入了解了X射线衍射分析的原理和方法,掌握了X射线衍射仪器的使用技巧。

实验结果表明,X射线衍射分析是一种可靠的手段,可以用于研究晶体结构。

在以后的科研工作中,我们将进一步运用X射线衍射分析技术,深入研究材料的晶体结构和性质,为材料科学领域的发展做出贡献。

结语:通过本次实验,我们对X射线衍射分析有了更深入的了解,也提高了实验操作能力。

希望通过不断的实践和学习,能够更好地运用X射线衍射分析技术,为科学研究做出更多的贡献。

以上就是本次X射线衍射分析实验的实验报告,谢谢阅读。

晶体x射线衍射实验报告

晶体x射线衍射实验报告

晶体x射线衍射实验报告晶体X射线衍射实验报告引言晶体X射线衍射是一种重要的实验方法,通过该方法可以研究晶体的结构和性质。

本实验旨在通过X射线衍射技术,对晶体的结构进行分析和研究,从而深入了解晶体的内部结构和性质。

实验目的1. 了解晶体X射线衍射的基本原理和方法;2. 掌握晶体X射线衍射实验的操作技巧;3. 通过实验数据分析,研究晶体的结构和性质。

实验原理晶体X射线衍射是一种利用X射线照射晶体,观察其衍射图样来研究晶体结构的方法。

当X射线照射到晶体上时,由于晶体内部原子的周期性排列,X射线会发生衍射现象。

根据布拉格定律,可以通过测量衍射角和波长,推导出晶体的晶格常数和结构信息。

实验步骤1. 准备样品:选取适当的晶体样品,进行精细研磨和抛光处理;2. 调试仪器:调试X射线衍射仪器,确保X射线的稳定和准确性;3. 进行实验:将样品放置在X射线仪器中,进行X射线照射,并记录衍射图样;4. 数据分析:根据衍射图样,测量衍射角和波长,计算晶格常数和结构信息;5. 结果分析:根据实验数据,对晶体的结构和性质进行分析和讨论。

实验结果通过实验数据分析,我们成功测量了晶体的衍射角和波长,计算出了晶格常数和结构信息。

根据实验结果,我们得出了对晶体结构和性质的深入认识,并且验证了晶体X射线衍射的有效性和可靠性。

结论通过本次实验,我们深入了解了晶体X射线衍射的原理和方法,掌握了实验操作技巧,并通过实验数据分析,研究了晶体的结构和性质。

实验结果表明,晶体X射线衍射是一种有效的研究晶体结构的方法,对于深入了解晶体的内部结构和性质具有重要意义。

总结晶体X射线衍射实验是一项重要的实验方法,通过该方法可以研究晶体的结构和性质。

本次实验使我们对晶体X射线衍射的原理和方法有了更深入的了解,也提高了我们对晶体结构和性质研究的能力。

希望通过今后的实验和研究,能够进一步拓展晶体X射线衍射在材料科学和化学领域的应用。

晶体X射线衍射实验报告

晶体X射线衍射实验报告

中南大学X射线衍射实验报告材料科学与工程学院材料科学专业0906 班级姓名彭园园学号0604090619 同组者战士琛实验日期2011 年10 月31 日指导教师黄继武评阅人评阅日期评分分一、实验目的1)掌握X射线衍射仪的工作原理、操作方法;2)掌握X射线衍射实验的样品制备方法;3)学会X射线衍射实验方法、实验参数设置,独立完成一个衍射实验测试;4)学会MDI Jade 6的基本操作方法;5)学会物相定性分析的原理和利用Jade进行物相鉴定的方法;6)学会物相定量分析的原理和利用Jade进行物相定量的方法。

二、实验原理实验设备设备原理图X射线衍射仪基本组成:X射线发生器,衍射测角仪,辐射探测器,测量电路,控制操作与数据处理计算机系统。

(1)衍射仪的工作原理测角仪的组成:试样台与试样台转动与控制部件,辐射探测器与探测器转动部件,控制电机部件,控制件。

试样台位于测角仪的中心,试样台的中心轴ON与测角仪的中心轴(垂直向上)O垂直。

试样台既可以绕测角仪中心轴转动,又可以绕自身的中心轴转动。

试样台上的试测角仪的光学布置(3)晶体单色器作用:消除衍射花样的背底和Kβ散射原理:在衍射线光路上安装弯曲晶体单色器。

由试样衍射产生的衍射线(一次衍射线)经光阑系统投射到单色器中的单晶体上,调整单晶体的方位使它的某个高反射本领晶面(高原子密度晶面)与一次衍射线的夹角刚好等于单色器晶体的该晶面对Kα辐射的布拉格角。

由单晶体衍射后发出的二次衍射线就是纯净的与试样衍射线对应的Kα衍射线。

石墨晶体单色器选用石墨单晶体的0002作为反射面。

使用石墨弯曲晶体单色器,对Cu Kα辐射而言,其衍射强度与不用单色器时相比大约降低36%。

实验(2)说明:已知样品中含有Zr与B两种元素,在元素周期表中选择Zr与B两种元素检索;检出第一相为ZrB2,第二相为ZrB。

至此,谱线上所有峰都被一一对应。

2 定量分析结果<图片结果及说明> 实验(2)b a b O Al a O Al abRIR RIR K K K ==3232 )(a b b a a a K I I I W += a b W W -=1说明:检测出ZrB2的含量为67%,ZrB的含量为33%。

x射线 衍射实验报告

x射线 衍射实验报告

x射线衍射实验报告X射线衍射实验报告引言:X射线衍射是一种重要的实验方法,通过观察X射线在晶体中的衍射现象,可以得到晶体的结构信息。

本实验旨在通过测量X射线的衍射图样,分析晶体的晶格常数和晶体结构。

实验步骤:1. 实验仪器准备:实验中我们使用了一台X射线衍射仪,该仪器由X射线源、样品台和衍射屏组成。

在实验开始前,我们首先调整好仪器的位置和角度,确保X射线源正对着样品台,并使得衍射屏处于最佳观察位置。

2. 样品制备:为了进行衍射实验,我们需要制备一些晶体样品。

在本实验中,我们选择了晶体A和晶体B作为样品。

首先,我们将晶体A和晶体B分别放置在样品台上,并调整好其位置,使得晶体表面垂直于入射X射线。

3. 测量衍射图样:当样品台上的晶体A和晶体B受到X射线照射时,会产生衍射现象。

我们将观察衍射屏上的图样,并使用标尺测量不同衍射斑的位置和强度。

通过记录不同衍射斑的位置和强度,我们可以得到晶体的衍射图样。

结果与分析:通过实验测量得到的衍射图样,我们可以观察到明显的衍射斑。

根据这些衍射斑的位置和强度,我们可以计算出晶体的晶格常数和晶体结构。

首先,我们通过测量不同衍射斑的位置,可以利用布拉格方程计算晶体的晶格常数。

布拉格方程表示为:nλ = 2dsinθ,其中n为衍射阶数,λ为入射X射线的波长,d为晶格常数,θ为衍射角。

通过测量不同衍射斑的位置并代入布拉格方程,我们可以得到晶体的晶格常数。

其次,通过观察衍射斑的强度分布,我们可以推断出晶体的结构信息。

不同的晶体结构会导致不同的衍射斑强度分布。

通过与已知晶体结构的对比,我们可以确定晶体的结构类型。

讨论与结论:在本实验中,我们成功地进行了X射线衍射实验,并通过测量衍射图样得到了晶体的晶格常数和结构信息。

通过这些结果,我们可以进一步了解晶体的性质和结构。

然而,需要注意的是,X射线衍射实验只能提供晶体结构的一些基本信息,对于复杂的晶体结构,可能需要结合其他实验方法进行进一步研究。

X射线衍射晶体结构分析实验报告

X射线衍射晶体结构分析实验报告

X 射线衍射晶体结构2、X 射线在晶体中的衍射光波经过狭缝将产生衍射现象。

狭缝的大小必须与光波的波长同数量级或更小。

对X 射线,由于它的波长在0.2nm 的数量级,要造出相应大小的狭缝观察X 射线的衍射,就相当困难。

冯·劳厄首先建议用晶体这个天然的光栅来研究X 射线的衍射,因为晶体的晶格正好与X 射线的波长属于同数量级。

当入射X 射线与晶面相交θ角时,假定晶面就是镜面(即布拉格面,入射角与出射角相等),两条射线的光程差是θsin d 2。

当它为波长的整数倍时(假定入射光为单色的,只有一种波长),2,1n ,n sin d 2=λ=θ 布拉格(Bragg )公式在θ方向射出的X 射线即得到衍射加强。

根据布拉格公式,即可以利用已知的晶体(d 已知)通过测θ角来研究未知X 射线的波长;也可以利用已知X 射线(λ已知)来测量未知晶体的晶面间距。

三、实验数据与处理4.50 1.000 06 5.370 1.193 -3.5294213 3.330 0.741 5.99509326 0.963 0.214 30.8355929 0.360 0.080 50.5145740 1.010 2.224 -15.986147 0.690 0.153 37.546353、已知晶体的晶格常数(a0=564.02pm),测定X射线的波X射线衍射图有图得n θ(Kα)θ(Kβ)λ(Kα)λ(Kβ)1 7.1 6.3 69.71 61.892 14.5 12.9 70.61 62.963 22.1 19.5 70.73 62.76平均70.35 62.53667由上表得λ(Kα)/pm λ(Kβ)/pm 经验值71.07 63.08测量值70.35 62.54则它们的相对误差分别为:▽1=(71.07-70.35)/71.07=1.013%▽2=(63.08-62.54)/63.08=0.86%4、已知X射线的波长,测定晶体的晶格晶格常数由X射线衍射图得θsinθ线系n nλa06.3 0.1097 Kβ 1 63.08 575.02287.1 0.1236 Kα 1 71.07 57512.9 0.2232 Kβ 2 126.16 565.23314.5 0.2504 Kα 2 142.14 567.651819.5 0.3338 Kβ 3 189.24 566.926322.1 0.3762 Kα 3 213.21 566.7464平均569.43四、实验总结X射线衍射在各个领域的应用都是相当广泛的,本次实验让我了解了X射线在晶体中衍射的原理,以及X射线的衰减与吸收体物质和吸收体厚度的关系。

晶体x射线衍射实验报告

晶体x射线衍射实验报告

晶体x射线衍射实验报告晶体X射线衍射实验报告引言:晶体X射线衍射是一种重要的实验技术,通过衍射现象可以得到晶体的结构信息。

本实验旨在通过测量晶体的衍射图样,分析晶体的晶格常数和晶体结构。

实验原理:晶体X射线衍射实验基于布拉格定律,即nλ = 2dsinθ,其中n为衍射阶次,λ为入射X射线波长,d为晶面间距,θ为入射角。

当入射角θ满足布拉格条件时,X射线会被晶体的晶面衍射出来,形成衍射图样。

实验步骤:1. 准备晶体样品:选择一块适合的晶体样品,并通过X射线衍射仪器的调节装置使其与入射X射线垂直。

2. 调节入射角:通过调节仪器的角度刻度盘,使得入射角θ满足布拉格条件。

3. 观察衍射图样:通过X射线衍射仪器的探测器,观察和记录晶体的衍射图样。

4. 测量衍射角度:使用仪器的角度刻度盘,测量各个衍射峰的角度。

5. 分析衍射图样:根据测得的衍射角度,计算晶格常数和晶体结构。

实验结果:根据实验测得的衍射图样和角度数据,我们计算得到了晶格常数和晶体结构。

以钠氯化物晶体为例,我们得到了晶格常数为a = 5.64 Å,晶体结构为面心立方结构。

讨论与分析:在实验过程中,我们发现衍射图样中的衍射峰呈现出一定的规律性,这与晶体的周期性结构有关。

通过分析衍射图样中的衍射峰的位置和强度,我们可以得到晶格常数和晶体结构的信息。

然而,实验中可能存在一些误差。

首先,仪器的精度和稳定性会对实验结果产生影响;其次,晶体的质量和纯度也会对实验结果造成一定的影响。

因此,在实验中需要尽量控制这些因素,提高实验的准确性和可靠性。

结论:通过晶体X射线衍射实验,我们成功测得了钠氯化物晶体的晶格常数和晶体结构。

实验结果表明,晶体X射线衍射是一种有效的方法,可以用于研究晶体的结构信息。

这对于材料科学和固态物理学的研究具有重要的意义。

总结:晶体X射线衍射实验是一种重要的实验技术,通过衍射现象可以得到晶体的结构信息。

本实验通过测量晶体的衍射图样,分析晶体的晶格常数和晶体结构。

晶体x射线实验报告

晶体x射线实验报告

晶体x射线实验报告
晶体X射线实验报告
引言
晶体X射线实验是一种常用的分析方法,通过对晶体样品进行X射线衍射实验,可以得到晶体的结构信息。

本报告旨在通过对某一晶体样品进行X射线实验,
并对实验结果进行分析,以展示该实验方法的应用和意义。

实验目的
本实验旨在通过X射线衍射实验,确定某一晶体样品的结构信息,并对实验结
果进行分析。

实验方法
1. 准备晶体样品,并将其放置在X射线衍射仪器中。

2. 通过X射线衍射仪器对晶体样品进行X射线照射,记录衍射图样。

3. 根据衍射图样,利用布拉格方程和其他相关理论计算出晶体的晶格常数、晶
胞结构等信息。

实验结果与分析
通过X射线衍射实验,我们得到了某一晶体样品的衍射图样,通过对衍射图样
的分析,我们计算出了该晶体的晶格常数为a=5.67 Å,b=5.67 Å,c=5.67 Å,
α=90°,β=90°,γ=90°,晶胞结构为体心立方结构。

结论
通过本次实验,我们成功地确定了某一晶体样品的结构信息,证明了X射线衍
射实验在晶体结构分析中的重要性和应用价值。

总结
通过本次实验,我们深刻认识到了X射线衍射实验在晶体结构分析中的重要作用,同时也认识到了该实验方法的局限性和改进空间。

希望通过今后的学习和实践,能够进一步完善该实验方法,提高晶体结构分析的准确性和可靠性。

晶体X射线衍射实验报告

晶体X射线衍射实验报告

晶体X射线衍射实验报告
引言
晶体结构是材料科学的重要内容之一,对于分子,晶格点间的相互作用型式、距离和角度等参数能够反映出晶体结构的基本特征,因此对准确地获取晶体结构具有重要意义。

X射线衍射是分析晶体结构的一种有效技术,本实验利用X射线衍射的方法,对样品的晶体结构进行了探究。

实验步骤
1.样品制备:将实验室提供的NaCl晶体蒸发水溶液并得到透明晶体。

2.X射线衍射仪的调节:调节X射线电压和电流,对样品进行扫描。

3.测量和记录:记录X射线响应,生成衍射图谱。

4.数据处理:计算出晶格常数和原子的间距。

实验结果与分析
实验结果显示,样品的晶体结构为具有面心立方(fcc)晶体结
构的NaCl晶体。

NaCl晶体的晶格常数a、原子半径R、晶胞体积
V等相关参数计算结果如下:
晶格常数a=5.61Å;
原子半径R=1.96Å;
晶胞体积V=4.94ų。

结论
本实验通过采用X射线衍射技术来探究NaCl晶体的晶体结构,较准确地确定了晶格常数、原子半径和晶胞体积等参数,验证了
样品的晶体结构为具有fcc晶体结构的NaCl晶体。

实验小结
通过这次实验,我了解了X射线衍射技术的基本原理和实验操
作步骤。

该实验涉及多个学科领域,如物理学、化学和材料科学等,有助于提高我的综合探究能力和实验技能。

同时,该实验也
可以用于对晶体结构分析的实际应用研究中,有一定的现实意义。

晶体X射线衍射实验报告

晶体X射线衍射实验报告

X 射线衍射实验报告材料科学与工程 学院 材料科学与工程 专业 班级 姓 名 学号 同组者实验日期 年月日指导教师 评分分 评阅人评阅日期一 实验设计背景与实验目的1 实验设计背景Al-Zn-Mg 合金是中强可焊铝合金,σb 达到500MPa ,延伸率为15%,电导率为30IACS%,具有较好的强度和延伸率,抗腐蚀性能较好。

用作航空航天和地面设备的结构材料。

是目前材料研究的一个重要课题。

该合金是可热处理强化合金,合金通过固溶-淬火-时效,时效温度不同,析出GP 区、η'相或η相。

后两者具有六方结构,基本化学组成为MgZn2。

而GP 区为5-10nm 的球状粒子。

析出相不同,其合金性能也不相同。

图1 Al-Zn-Mg 合金的不同处理态TEM 观察 a)Al 固溶态(基体) b) 120℃/24h 时效态c)180℃/24h 时效态同一合金,固溶态的物相应为单相,而时态效为双相(基体和析出相),因0.5μ100nm b) a) 100nm c)100nm此,首先应通过实验鉴定物相组成(物相定性分析);对于双相态,应当了解析出相的百分含量;另外,由于合金元素在基体中不同程度的固溶,导致基体的点阵常数变化,通过这种变化可检测固溶程度。

2 实验目的了解X射线衍射仪的结构,操作规程,掌握MDI JADE的使用方法;掌握X射线在新材料开发中的实际应用方法(物相定性分析、物相定量分析和点阵常数精确测定)。

掌握新材料开发的最新进展和新实验方法和技巧。

二实验原理1、X射线衍射仪(1)X射线管X射线管工作时阴极接负高压,阳极接地。

灯丝附近装有控制栅,使灯丝发出的热电子在电场的作用下聚焦轰击到靶面上。

阳极靶面上受电子束轰击的焦点便成为X射线源,向四周发射X射线。

在阳极一端的金属管壁上一般开有四个射线出射窗口。

转靶X射线管采用机械泵+分子泵二级真空泵系统保持管内真空度,阳极以极快的速度转动,使电子轰击面不断改变,即不断改变发热点,从而达到提高功率的目的(2)测角仪系统测角仪圆中心是样品台,样品台可以绕中心轴转动,平板状粉末多晶样品安放在样品台上,样品台可围绕垂直于图面的中心轴旋转;测角仪圆周上安装有X 射线辐射探测器,探测器亦可以绕中心轴线转动;工作时,一般情况下试样台与探测器保持固定的转动关系(即θ-2θ连动),在特殊情况下也可分别转动;有的仪器中样品台不动,而X射线发生器与探测器连动。

XRD实验报告

XRD实验报告

XRD实验报告一、实验目的本次 XRD(X 射线衍射)实验的主要目的是对所研究的样品进行物相分析,确定其晶体结构、晶格参数以及可能存在的杂质相。

通过对衍射图谱的分析,获取有关样品的微观结构信息,为进一步的材料研究和应用提供基础数据。

二、实验原理XRD 实验基于 X 射线与晶体物质的相互作用。

当一束单色 X 射线照射到晶体样品上时,会发生衍射现象。

根据布拉格方程:$2d\sin\theta =n\lambda$(其中$d$为晶面间距,$\theta$为衍射角,$n$为衍射级数,$\lambda$为 X 射线波长),特定的晶面间距会对应特定的衍射角和衍射强度。

通过测量衍射角和强度,可以确定晶体的结构和组成。

三、实验仪器与材料1、仪器:X 射线衍射仪(型号:_____),包括 X 射线源、测角仪、探测器等部件。

2、材料:待测试的样品(样品名称:_____),制备成粉末状,以确保 X 射线能够充分穿透并产生有效的衍射信号。

四、实验步骤1、样品制备将待测试的样品研磨成细小的粉末,以增加样品的均匀性和表面积,提高衍射效果。

把粉末样品均匀地填充到样品槽中,并用平整的玻片压实,确保样品表面平整。

2、仪器参数设置设置 X 射线源的工作电压和电流,一般根据仪器的性能和样品的特性进行选择。

选择合适的衍射角度范围(通常为$5^{\circ}$至$90^{\circ}$)和扫描步长(例如$002^{\circ}$),以保证能够获取到足够的衍射峰信息。

设置探测器的工作参数,如计数时间等,以保证测量数据的准确性和可靠性。

3、实验测量将装有样品的样品槽放入衍射仪的样品台上,并确保样品处于正确的位置。

启动衍射仪,开始进行扫描测量。

在测量过程中,仪器会自动记录衍射角和相应的衍射强度。

4、数据处理测量完成后,将得到的原始数据导出到计算机中。

使用专业的 XRD 数据分析软件(如 Jade、Origin 等)对数据进行处理,包括背景扣除、平滑处理、峰位标定等操作,以获得清晰准确的衍射图谱。

xrd分析实验报告

xrd分析实验报告

xrd分析实验报告X射线衍射(XRD)分析实验报告引言:X射线衍射(XRD)是一种重要的实验技术,广泛应用于材料科学、地质学、生物学等领域。

本实验旨在通过XRD技术,研究样品的晶体结构和晶体学性质,为材料研究和应用提供有力的支持。

一、实验目的本实验的目的是通过XRD分析,确定样品的晶体结构、晶格常数、晶体质量和晶体取向等性质。

通过实验结果,了解材料的结晶状态、晶体缺陷和晶格畸变等信息。

二、实验原理XRD技术基于X射线与晶体的相互作用。

当X射线入射到晶体上时,由于晶体的周期性结构,X射线会发生衍射现象。

通过测量衍射角和衍射强度,可以确定晶体的晶格常数和晶体结构。

三、实验步骤1. 样品制备:将待测样品制备成粉末状,并均匀地涂布在玻璃衬片上。

2. 仪器设置:打开X射线衍射仪,调整仪器参数,如入射角、出射角、扫描速度等,以适应样品的特性。

3. 开始测量:将样品放置在衍射仪的样品台上,启动测量程序,开始自动扫描。

4. 数据分析:通过软件对测得的数据进行分析,绘制衍射图谱,并解析出衍射峰的位置、强度和形状等信息。

5. 结果解读:根据衍射图谱和解析结果,确定样品的晶体结构和晶格常数,并分析晶体的缺陷和畸变情况。

四、实验结果与讨论通过XRD实验,我们得到了样品的衍射图谱,并根据图谱解析出了衍射峰的位置和强度。

根据衍射峰的位置和强度,我们可以推断出样品的晶体结构和晶格常数。

进一步分析衍射峰的形状和宽度,我们可以了解样品的晶体质量和晶格畸变情况。

如果衍射峰非常尖锐且对称,说明样品的晶体质量较好;如果衍射峰宽度较大,且呈现不规则形状,说明样品存在晶格畸变或晶体缺陷。

此外,通过比较不同样品的衍射图谱,我们可以研究晶体取向的差异。

不同晶面的衍射峰位置和强度的变化,可以揭示晶体的取向情况和晶体生长方向。

五、结论通过XRD分析实验,我们成功确定了样品的晶体结构和晶格常数,并分析了晶体的质量、畸变和取向等性质。

实验结果为材料研究和应用提供了重要的参考依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江师大学实验报告
X射线衍射晶体结构分析
摘要:本实验中学生将了解到X射线的产生、特点及其应用,该实验着重应用于探究晶体结构,分析X射线在NaCl晶体或BaF晶体的衍射,并通过分析X射线特征谱线的衍射角、利用X射线波长以及晶体的晶格常数确定密勒指数。

关键词:布拉格公式晶体结构X射线波长
引言:1895年,德国物理学家伦琴发现X射线,从此揭开了物理学的新篇章。

X射线是一种波长很短的电磁辐射,其波长约为(20~0.06)×10-8厘米之间,具有很高的穿透本领,能透过许多对可见光不透明的物质。

X射线在电场磁场中不偏转,这说明X射线是不带电的粒子流,因此能产生干涉、衍射现象。

X射线可激发荧光、使气体电离、使感光乳胶感光,故X射线可用电离计、闪烁计数器和感光乳胶片等检测。

晶体的点阵结构对X射线可产生显著的衍射作用,因此X射线衍射法已成为研究晶体结构、形貌和各种缺陷的重要手段。

正文:
一、实验原理
1、Bragg公式
光波经过狭缝会产生衍射现象,此时,狭缝的大小必须与光波的波长同数量级或更小,当入射X射线与晶体相交θ 角度时,图(a)
d
d'
d"
(a) (b)
图中两条射线1与2的程差是,即2dsin θ。

当它为波长的整数倍时(假定入射光为单射光,只有一种波长),
2dsin θ=n λ,n=1,2,…. (Bragg 方程)
在θ方向射出的X 射线得到衍射加强。

根据Bragg 公式,利用已知的晶体(d 已知)通过测θ角度来研究未知X 射线的波长:也可以利用X 射线(λ已知)来测量未知晶体的晶面间距。

图(a)表示的是一组晶面,但事实上,晶格中的原子可以构成很多组方向不同的平行面来说,d 是不相同的,而且从图(b)中可以清楚的看出,在不同的平行面上,原子数的密度也不一样,故测得的反射线的强度就有差异。

2、 晶体几何学基础
晶体是有原子周期排列构成的,它可以看作是由一系列相同的点在空间有规则地作周期性的无限分布,这些点子的整体构成了空间点阵。

点阵中的每一个阵点可以是一个原子或一群原子,这个(群)原子称为基元,基元在空间的重复排列就形成
晶体的结构。

通过点阵的结点,可以作许多平行的直
线族(晶列族)和平行的平面族(晶面族),这样,点
阵就成为一些网络,称为晶格。

用三个晶面族就可以把晶格分成许多完全相同的平行六面体,这样的平行六米那体称为晶胞,晶胞是由其三边边长a 、b 、c 和三边夹角αβγ、、来表示,如图c 所示。

为了表示晶面族的差异,可用密勒指数来表示晶面族,密勒指数就可以这样确定,即限晶面族中离原点最近的晶面,如果此晶面在三个基本矢量a 、b 、c 上的截距为a/h 、b/k 、c/l (h 、k 、l 为不可约整数),则密勒指数为(h 、k 、l )。

晶面族的(h 、k 、l)不同,面间距也不同,立方晶系的晶面距d 为
d =
(1)
其中0a 为晶格常数 布拉格方程为
2sin d n θλ=………………………………………….
(2)
布拉格方程还可写成
sin 2n d
λ
θ=
……………………………………………. (3) (1)式代入(2)式 ,得
()()()()2
2
2
2
2
0sin 2n n h n k n l a λθ⎛⎫=⋅+⋅+⋅ ⎪
⎝⎭
(4)
把(3)式进行简化得
2
sin F Z θ=⋅ (5)
其中
2
02n F a λ⎛⎫
= ⎪⎝⎭ (6)
()()()
(
)222
Z n h n k n l =⋅+⋅+⋅ (7)
二、实验仪器及使用说明
本实验使用德国宝来教具公司生产的X 射线实验仪。

如图(e)
(d)
(e)
该装置分成三个工作区: 中间是X 光管,右边是实验区,左边是监控区。

X 光管图(d)是由抽真空的石英管组成,(1)是接地的电子发射极,通电加热后可发射电子;(2)为钼靶,钼靶受电子轰击的面呈斜面,以利于X 光水平方向射出。

(3)是铜块(4)是螺旋状热沉,用以散热。

(5)是管脚。

X 射线实验仪:A1是X 光出口。

A2是按放晶体的靶台。

A3是装有G —M 计数管的传感器,用来测X 光的强度。

A4是荧光屏。

图1—1 X 射线实验仪
B1 B2 B5 B3 B4
A0 A3 A1 A2
A4
实验区
X 光管
监控区
5
3
1 4
2
B1液晶显示器,上行显示G—M计数管计数率,下行显示工作参数。

B2是大转盘,用来调节各参数。

B3五个设置键盘。

设置B2调节的对象。

B4有三个扫描模式选择按键和一个归零按键。

B5有五个按键。

包括RESET、RRPLAY、SCAN(on\off); 是脉冲开关;HV(ON/OFF)键是X光管上的高压开关。

软件“X-ray Apparatus”的界面如下图(f)所示。

图(f)一个典型的测量结果画面
数据采集是自动的,当在X射线装置中按下“SCAN”键进行自动扫描时,软件将自动采集数据和显示结果:工作区域左边显靶台的角位置 和传感器中接收到的X光光强R的数据;而右边则将此数据作图,其纵坐标为X光光强R(单位是1/s),横坐标为靶台的转角(单位是o)。

三、实验数据及处理
1、已知NaCl晶体的晶格常数(a0=564.02pm)及X射线相应波长,求密勒指数(h、l、k)。

图(g) X射线在NaCl晶体中的3级衍射的角度谱
nθsinθ线系
λ/pm D=(d/n)/pm (h,l,k)
1 6.4 o 0.111Kβ63.06 284.054 (2,0,0)
1 7.
2 o0.125Kα71.08 284.32 (2,0,0)
2 12.9 o0.223Kβ63.06 141.39 (4,0,0)
2 14.5 o0.250Kα71.08 142.16 (4,0,0)
3 19.6 o0.335Kβ63.06 94.12 (6,0,0)
3 22.1 o0.376Kα71.08 94.52 (6,0,0)
2、已知BaF晶体的晶格常数(a0=619.6pm)及X射线相应波长,求密勒指数(h、l、k)。

图(h) X 射线在BaF 晶体中的角度谱及高斯拟合
注:(高斯拟合所用方程y=}
当n=1时,θ= 11.2 O ,sin θ=0.1942 1、若λ=()K βλ=63.08/pm ,根据(4)式,得
密勒指数测量值(h 、k 、l )=(3.8157,0,0),理论值(h 、k 、l )=(4,0,0) 则它的相对误差分别为
▽1=9.0﹪
2、若λ=λ(K α)=71.08/pm,同理
密勒指数测量值(h 、k 、l )=(3.386,0,0),理论值(h 、k 、l )=(3,0,0) 则它的相对误差分别为
▽1=27.3﹪
相对而言,线系为K β更具真实性。

四、实验总结
本实验充分说明了X射线在晶体结构分析方面的巨大作用,使我了解了X射线的衍射原理及晶体结构分析的常用方法。

了解X射线实验仪的构造及正确操作步骤,体会在实验仪及相关软件的配合下,会对实验研究提供方便。

该实验亦使我对科学技术有了进一步认识。

在斯老师的指导下,我对实验的科学与安全操作有了更为深刻的理解,相信在以后的实验过程中会有一定的帮助及启发意义。

相关文档
最新文档