西安交大数字信号处理实验报告
数字信号处理实验报告
实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。
二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。
2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。
信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。
根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。
三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。
(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。
数字信号处理实验报告
《数字信号处理》实验报告学院:信息科学与工程学院专业班级:通信1303姓名学号:实验一 常见离散时间信号的产生和频谱分析一、 实验目的(1) 熟悉MATLAB 应用环境,常用窗口的功能和使用方法;(2) 加深对常用离散时间信号的理解;(3) 掌握简单的绘图命令;(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号进行频域分析。
二、 实验原理(1) 常用离散时间信号a )单位抽样序列⎩⎨⎧=01)(n δ00≠=n n 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ0≠=n k n b )单位阶跃序列⎩⎨⎧=01)(n u 00<≥n n c )矩形序列 ⎩⎨⎧=01)(n R N 其他10-≤≤N nd )正弦序列)sin()(ϕ+=wn A n xe )实指数序列f )复指数序列()()jw n x n e σ+=(2)离散傅里叶变换:设连续正弦信号()x t 为0()sin()x t A t φ=Ω+这一信号的频率为0f ,角频率为002f πΩ=,信号的周期为00012T f π==Ω。
如果对此连续周期信号()x t 进行抽样,其抽样时间间隔为T ,抽样后信号以()x n 表示,则有0()()sin()t nT x n x t A nT φ===Ω+,如果令w 为数字频率,满足000012s sf w T f f π=Ω=Ω=,其中s f 是抽样重复频率,简称抽样频率。
为了在数字计算机上观察分析各种序列的频域特性,通常对)(jw e X 在[]π2,0上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n), 有∑-=-=10)()(N n n jw jw k k e n x e X其中 1,,1,02-==M k k Mw k ,π 通常M 应取得大一些,以便观察谱的细节变化。
取模|)(|k jw e X 可绘出幅频特性曲线。
数字信号处理实验报告
数字信号处理实验报告⼀、课程设计(综合实验)的⽬的与要求⽬的与要求:1.掌握《数字信号处理基础》课程的基本理论; 2.掌握应⽤MATLAB 进⾏数字信号处理的程序设计;实验内容:已知低通数字滤波器的性能指标如下:0.26p ωπ=,0.75dB p R =,0.41s ωπ=,50dB s A =要求:1. 选择合适的窗函数,设计满⾜上述指标的数字线性相位FIR 低通滤波器。
⽤⼀个图形窗⼝,包括四个⼦图,分析显⽰滤波器的单位冲激响应、相频响应、幅频响应和以dB 为纵坐标的幅频响应曲线。
2. ⽤双线性变换法,设计满⾜上述指标的数字Chebyshev I 型低通滤波器。
⽤⼀个图形窗⼝,包括三个⼦图,分析显⽰滤波器的幅频响应、以dB 为纵坐标的幅频响应和相频响应。
3. 已知模拟信号1234()2sin(2)5sin(2)8cos(2)7.5cos(2)x t f t f t f t f t ππππ=+++其中10.12f kHz =,2 4.98f kHz =,3 3.25f kHz =,4 1.15f kHz =,取采样频率10s f kHz =。
要求:(1) 以10s f kHz =对()x t 进⾏取样,得到()x n 。
⽤⼀个图形窗⼝,包括两个⼦图,分别显⽰()x t 以及()x n (0511n ≤≤)的波形;(2) ⽤FFT 对()x n 进⾏谱分析,要求频率分辨率不超过5Hz 。
求出⼀个记录长度中的最少点数x N ,并⽤⼀个图形窗⼝,包括两个⼦图,分别显⽰()x n 以及()X k 的幅值; (3) ⽤要求1中设计的线性相位低通数字滤波器对()x n 进⾏滤波,求出滤波器的输出1()y n ,并⽤FFT 对1()y n 进⾏谱分析,要求频率分辨率不超过5Hz 。
求出⼀个记录长度中的最少点数1y N ,并⽤⼀个图形窗⼝,包括四个⼦图,分别显⽰()x n (01x n N ≤≤-)、()X k 、1()y n (101y n N ≤≤-)和1()Y k 的幅值;(4) ⽤要求2中设计的Chebyshev 低通数字滤波器对()x n 进⾏滤波,求出滤波器的输出2()y n ,并⽤FFT 对2()y n 进⾏谱分析,要求频率分辨率不超过5Hz 。
xjtu数字信号处理“实验报告”
数字信号处理实验报告实验1 常见离散信号的MATLAB产生和图形显示【实验目的】加深对常用离散信号的理解;【实验内容】(1)单位抽样序列(取100个点)程序设计:N=100;x=[1 zeros(1,N-1)];stem(0:N-1,x)结果(2)单位阶跃序列(取100个点)程序设计:N=100;x=ones(1,N);stem(0:99,x);axis([0 100 0 2])结果102030405060708090100(3) 正弦序列(取100个点) 程序设计: N=100; n=0:99; f=100; Fs=1000; fai=0.2*pi; A=2;x=A*sin(2*pi*f*n/Fs+fai); stem(n,x); grid 结果0102030405060708090100(4)复正弦序列(取100个点)程序设计:N=100;n=0:99;w=0.2*pi;x=exp(j*w*n);stem(n,x);结果(5)复指数序列(取41个点)程序设计:>> n=0:40;>> c=-0.02+0.2*pi*i;>> x=exp(c*n);>> subplot(2,1,1);>> stem(n,real(x));>> subplot(2,1,2);>> stem(n,imag(x));结果05101520253035400510152025303540(上部为实部,下部为虚部)(6)指数序列(取100个点)程序设计:>> n=0:99;>> a=0.5;>> x=a.^n;>> stem(n,x);结果:【实验要求】讨论复指数序列的性质。
由(5)的图形结果可以看出,复指数序列实部和虚部均为按指数衰减(上升)的序列,两者的均是震荡的,实部震荡周期与指数的实部有关,虚部震荡周期与指数的实虚部有关。
西交大数字信号处理实验报告
数字信号处理实验报告学院:班级:姓名:学号:西安交通大学实验报告课程 数字信号处理 实验日期 年 月 日专业班号 交报告日期 年 月 日 姓名 学号 共 21 页 第 1 页 实验1 常见离散信号的MATLAB 产生和图形显示 一、实验内容1.编制程序产生上诉5种信号(长度可自行输入确定),并绘出其图形。
2.讨论复指数序列的性质。
二、实验结果及源代码1.单位抽样序列⎩⎨⎧=01)(n δ≠=n n 在MATLAB 中可以利用ZEROS()函数实现。
;1)1();,1(==x N zeros x如果)(n δ在时间轴上延迟了K 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ0≠=n kn (1)单位抽样序列源程序: n1=-10; n2=10;k=0; %延时k 个单位 n=n1:n2;N=length(n);%N 为序列长度 nk=abs(k-n1)+1; x=zeros(1,N); x(nk)=1;stem(n,x,'fill');axis([n1,n2,0,1.1*max(x)]); title('单位脉冲序列'); xlabel('时间'); ylabel('幅度');实验结果:(2)延时后的单位脉冲序列源程序:n1=-10;n2=10;k=input('k='); %延时k个单位 n=n1:n2;N=length(n);%N为序列长度nk=abs(k-n1)+1;x=zeros(1,N);x(nk)=1;stem(n,x,'fill');axis([n1,n2,0,1.1*max(x)]); title('单位脉冲序列');xlabel('时间');ylabel('幅度');实验结果(延时k=5):2.单位阶跃序列⎩⎨⎧01)(n u 00<≥n n在MATLAB 中可以利用ones()函数实现。
数字信号处理课程设计实验报告
数字信号处理课程设计实验报告数字信号处理课程设计实验报告(基础实验篇)实验⼀离散时间系统及离散卷积⼀、实验⽬的和要求实验⽬的:(1)熟悉MATLAB软件的使⽤⽅法。
(2)熟悉系统函数的零极点分布、单位脉冲响应和系统频率响应等概念。
(3)利⽤MATLAB绘制系统函数的零极点分布图、系统频率响应和单位脉冲响应。
(4)熟悉离散卷积的概念,并利⽤MATLAB计算离散卷积。
实验要求:(1)编制实验程序,并给编制程序加注释;(2)按照实验内容项要求完成笔算结果;(3)验证编制程序的正确性,记录实验结果。
(4)⾄少要求⼀个除参考实例以外的实例,在实验报告中,要描述清楚实例中的系统,并对实验结果进⾏解释说明。
⼆、实验原理δ的响应输出称为系统1.设系统的初始状态为零,系统对输⼊为单位脉冲序列()n的单位脉冲响应()h n。
对于离散系统可以利⽤差分⽅程,单位脉冲响应,以及系统函数对系统进⾏描述。
单位脉冲响应是系统的⼀种描述⽅法,若已知了系统的系统函数,可以利⽤系统得出系统的单位脉冲响应。
在MATLAB中利⽤impz 由函数函数求出单位脉冲响应()h n2.幅频特性,它指的是当ω从0到∞变化时,|()|Aω,H jω的变化特性,记为()相频特性,指的是当ω从0到∞变化时,|()|∠的变化特性称为相频特性,H jωω。
离散系统的幅频特性曲线和相频特性曲线直观的反应了系统对不同记为()频率的输⼊序列的处理情况。
三、实验⽅法与内容(需求分析、算法设计思路、流程图等)四、实验原始纪录(源程序等)1.离散时间系统的单位脉冲响应clcclear alla=[1,-0.3];b=[1,-1.6,0.9425];impz(a,b,30);%离散时间系统的冲激响应(30个样值点)title('系统单位脉冲响应')axis([-3,30,-2,2]);2.(1)离散系统的幅频、相频的分析⽅法21-0.3()1 1.60.9425j j j e H z e e ωωω---=-+clcclear alla=[1,-0.3];b=[1,-1.6,0.9425];%a 分⼦系数,b 分母系数 [H,w]=freqz(a,b,'whole'); subplot(2,1,1); plot(w/pi,abs(H));%幅度 title('幅度谱');xlabel('\omega^pi');ylabel('|H(e^j^\omega)'); grid on;subplot(2,1,2);plot(w/pi,angle(H));%相位 title('相位谱');xlabel('\omega^pi'); ylabel('phi(\omega)'); grid on;(2)零极点分布图clc; clear all a=[1,-0.3];b=[1,-1.6,0.9425]; zplane(a,b);%零极图 title('零极点分布图')3.离散卷积的计算111()()*()y n x n h n =clcclear all% x=[1,4,3,5,3,6,5] , -4<=n<=2 % h=[3,2,4,1,5,3], -2<=n<=3 % 求两序列的卷积 clear all;x=[1,4,3,5,3,6,5]; nx=-4:2; h=[3,2,4,1,5,3];nh=-2:3;ny=(nx(1)+nh(1)):(nx(length(x))+nh(length(h))); y=conv(x,h);n=length(ny);subplot(3,1,1);stem(nx,x);xlabel('nx');ylabel('x'); subplot(3,1,2);stem(nh,h);xlabel('nh');ylabel('h'); subplot(3,1,3);stem(ny,y);xlabel('n');ylabel('x 和h 的卷积')五、实验结果及分析(计算过程与结果、数据曲线、图表等)1.离散时间系统的单位脉冲响应051015202530-2-1.5-1-0.500.511.52n (samples)A m p l i t u d e系统单位脉冲响应2.离散系统的幅频、相频的分析⽅法00.20.40.60.81 1.2 1.4 1.6 1.82 102030幅度谱ωp i|H (e j ω)0.20.40.60.811.21.41.61.82-2-1012相位谱ωp ip h i (ω)-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.81Real PartI m a g i n a r y P a r t零极点分布图3.离散卷积的计算-4-3-2-1012nxx-2-1.5-1-0.500.51 1.522.53nhh -6-4-20246nx 和h 的卷积六、实验总结与思考实验⼆离散傅⽴叶变换与快速傅⽴叶变换⼀、实验⽬的和要求实验⽬的:(1)加深理解离散傅⾥叶变换及快速傅⾥叶变换概念; (2)学会应⽤FFT 对典型信号进⾏频谱分析的⽅法; (3)研究如何利⽤FFT 程序分析确定性时间连续信号; (4)熟悉应⽤FFT 实现两个序列的线性卷积的⽅法;实验要求:(1)编制DFT 程序及FFT 程序,并⽐较DFT 程序与FFT 程序的运⾏时间。
数字信号处理实验报告
数字信号处理实验报告黎美琪通信一、实验名称:(快速傅里叶变换)的探究二、实验目的.学习理解的基本实现原理(注:算法主要有基时间抽取法和基频域抽取法,此实验讨论的是基频率抽取算法,课本上主要讲解的是基时间抽取算法).编写代码实现基频率抽取算法三、实验条件机四、实验过程(一)基础知识储备.基频率抽取( )算法基本原理:输入[]前后分解,输出[]奇偶分解。
设序列的点数为^,为整数(公式中的、定义不一样,打印后统一改正)将输入的[]按照的顺序分成前后两段:对输出的[]进行奇偶分解()、()和()之间可以用下图所示的蝶形运算符表示:的一次分解流图:的二次分解流图:最后完整的分解流图(^一共分解了三次):的运算过程规律。
)^点的共进行级运算,每级由个蝶形运算组成。
同一级中,每个蝶形的两个输入数据只对计算本蝶形有用,而且每个蝶形的输入、输出数据结点又同在一条水平线上,也就是说计算完一个蝶形后,所得输出数据可立即存入原输入数据所占用的存储单元。
这样,经过级运算后,原来存放输入序列数据的个存储单元中便依次存放()的个值。
(注:这种利用同一存储单元存储蝶形计算输入、输出数据的方法称为原位计算。
原位计算可节省大量内存,从而使设备成本降低。
))旋转因子的变化规律 :以点的为例,第一级蝶形,,,,;第二级蝶形,;第三级的蝶形,。
依次类推,对于级蝶形,旋转因子的指数为∙^(−),,,,,……,^()这样就可以算出每一级的旋转因子。
)蝶形运算两节点之间的“距离” :第一级蝶形每个蝶形运算量节点的“距离”为,第二级每个蝶形运算另节点的“距离”为,第三级蝶形每个蝶形运算量节点的“距离”为。
依次类推:对于等于的次方的,可以得到第级蝶形每个蝶形运算量节点的“距离”为的次方。
.旋转因子 的性质1) 周期性 2) 对称性mk N N mk N W W -=+2 )可约性为整数/,//n N W W n mk n N mk N =.频率抽取()基算法和时间抽取()基算法比较:两种算法是等价的,其相同之处:()与两种算法均为原位运算。
实验一 数字信号处理 实验报告
1.已知系统的差分方程如下式:y1(n)=0.9y1(n-1)+x(n)程序编写如下:(1)输入信号x(n)=R10 (n),初始条件y1(-1)=1,试用递推法求解输出y1(n);a=0.9; ys=1; %设差分方程系数a=0.9,初始状态: y(-1)=1xn=ones(1,10); %矩型序列R10(n)=u(n)-u(n-10),定义其宽度为0~9n=1:35; %设差分方程系数a=0.9,初始状态: y(-1)=1xn=sign(sign(10-n)+1);B=1;A=[1,-a]; %差分方程系数xi=filtic(B,A,ys); %由初始条件计算等效初始条件输入序列xiyn=filter(B,A,xn,xi); %调用filter解差分方程,求系统输出y(n)n=0:length(yn)-1;subplot(2,1,1);stem(n,yn,'linewidth',2); axis([-5,15,0,8]); grid ontitle('图(a) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=1 ');xlabel('n');ylabel('y(n)')(2) 输入信号x(n)=R10 (n),初始条件y1(-1)=0,试用递推法求解输出y1(n)。
a=0.9; ys=0; %设差分方程系数a=0.9,初始状态: y(-1)=1xn=ones(1,10); %矩型序列R10(n)=u(n)-u(n-10)B=1;A=[1,-a]; %差分方程系数xi=filtic(B,A,ys); %由初始条件计算等效初始条件输入序列xiyn=filter(B,A,xn,xi); %调用filter解差分方程,求系统输出y(n)n=0:length(yn)-1;subplot(2,1,2);stem(n,yn, 'linewidth',2); axis([-5,15,0,8]); grid ontitle('图(b) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=0 ');xlabel('n');ylabel('y(n)') 图形输出如下:-505101502468图(a) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=1ny (n )-55101502468图(b) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=0ny (n )2. 已知系统差分方程为: y 1(n )=0.9y 1(n -1)+x (n ) 用递推法求解系统的单位脉冲响应h (n ),要求写出h (n )的封闭公式,并打印h (n )~n 曲线。
西安交通大学数字信号处理实验报告
数字信号处理实验报告班级:硕姓名:学号:实验1 常见离散信号的MATLAB 产生和图形显示实验目的:加深对常用离散信号的理解;实验内容:(1)单位抽样序列clc;x=zeros(1,11); x(1)=1; n=0:1:10;stem(n,x, 'fill'); title('单位抽样序列'); xlabel('n'); ylabel('x[n]')延迟5个单位:clc;x=zeros(1,11); x(6)=1; n=0:1:10;stem(n,x, 'fill'); title('单位抽样序列'); xlabel('n'); ylabel('x[n]')nx [n ](2)单位阶跃序列clc;x=[zeros(1,5),ones(1,6)]; n=-5:1:5;stem(n,x,'fill'); title('单位阶跃序列'); xlabel('n'); ylabel('x[n]');nx [n ](3)正弦序列clc; N=50; n=0:1:N-1; A=1; f=1; Fs=50; fai=pi;x=A*sin(2*pi*f*n/Fs+fai); stem(n,x,'fill'); title('正弦序列'); xlabel('n'); ylabel('x[n]'); axis([0 50 -1 1]);nx [n ](4)复正弦序列clc; N=50; n=0:1:N-1; w=2*pi/50; x=exp(j*w*n); subplot(2,1,1); stem(n,real(x)); title('复正弦序列实部'); xlabel('n');ylabel('real(x[n])'); axis([0 50 -1 1]); subplot(2,1,2); stem(n,imag(x)); title('复正弦序列虚部'); xlabel('n');ylabel('imag(x[n])'); axis([0 50 -1 1]);nx [n ](5)指数序列clc; N=10; n=0:1:N-1; a=0.5; x=a.^n;stem(n,x,'fill'); title('指数序列'); xlabel('n'); ylabel('x[n]'); axis([0 10 0 1]);nr e a l (x [n ])ni m a g (x [n ])(6)复指数序列性质讨论:0(j )()enx n σω+=将复指数表示成实部与虚部为00()e cos j sin n n x n n e n σσωω=+1.当σ=0时,它的实部和虚部都是正弦序列。
数字信号处理实验报告完整版[5篇模版]
数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。
2.应用 DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。
2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。
而要研究离散时间信号,首先需要产生出各种离散时间信号。
使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。
通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。
《数字信号处理》实验报告
《数字信号处理》实验报告年级:2011级班级:信通4班姓名:朱明贵学号:111100443老师:李娟福州大学2013 年11 月实验一快速傅里叶变换(FFT)及其应用一、实验目的1.在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉MATLAB中的有关函数。
2.熟悉应用FFT对典型信号进行频谱分析的方法。
3.了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。
4.熟悉应用FFT实现两个序列的线性卷积和相关的方法。
二、实验类型演示型三、实验仪器装有MATLAB语言的计算机四、实验原理在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以使用离散Fouier变换(DFT)。
这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N时,它的DFT定义为:反变换为:有限长序列的DFT是其Z变换在单位圆上的等距采样,或者说是序列Fourier变换的等距采样,因此可以用于序列的谱分析。
FFT并不是与DFT不同的另一种变换,而是为了减少DFT运算次数的一种快速算法。
它是对变换式进行一次次分解,使其成为若干小点数的组合,从而减少运算量。
常用的FFT 是以2为基数的,其长度。
它的效率高,程序简单,使用非常方便,当要变换的序列长度不等于2的整数次方时,为了使用以2为基数的FFT,可以用末位补零的方法,使其长度延长至2的整数次方。
(一)在运用DFT进行频谱分析的过程中可能的产生三种误差1.混叠序列的频谱是被采样信号频谱的周期延拓,当采样速率不满足Nyquist定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。
避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解,在一般情况下,为了保证高于折叠频率的分量不会出现,在采样前,先用低通模拟滤波器对信号进行滤波。
数字信号处理实验报告(自己的实验报告)
数字信号处理实验报告西南交通大学信息科学与技术学院姓名:伍先春学号:20092487班级:自动化1班指导老师:张翠芳实验一序列的傅立叶变换实验目的进一步加深理解DFS,DFT 算法的原理;研究补零问题;快速傅立叶变换(FFT )的应用。
实验步骤1. 复习DFS 和DFT 的定义,性质和应用;2. 熟悉MATLAB 语言的命令窗口、编程窗口和图形窗口的使用;利用提供的程序例子编写实验用程序;按实验内容上机实验,并进行实验结果分析;写出完整的实验报告,并将程序附在后面。
实验内容1. 周期方波序列的频谱试画出下面四种情况下的的幅度频谱,并分析补零后,对信号频谱的影响。
2. 有限长序列x(n)的DFT(1) 取x(n)(n=0:10)时,画出x(n)的频谱X(k) 的幅度;(2) 将(1)中的x(n)以补零的方式,使x(n)加长到(n:0~100)时,画出x(n)的频谱X(k) 的幅度;(3) 取x(n)(n:0~100)时,画出x(n)的频谱X(k) 的幅度。
利用FFT进行谱分析 已知:模拟信号以t=0.01n(n=0:N-1)进行采样,求N 点DFT 的幅值谱。
请分别画出N=45; N=50;N=55;N=60时的幅值曲线。
数字信号处理实验一1.(1) L=5;N=20;60,7)4(;60,5)3(;40,5)2(;20,5)1()](~[)(~,2,1,01)1(,01,1)(~=========±±=⎩⎨⎧-+≤≤+-+≤≤=N L N L N L N L n x DFS k X m N m n L mN L mN n mN n x )52.0cos()48.0cos()(n n n x ππ+=)8cos(5)4sin(2)(t t t x ππ+=n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(1)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=20');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(2)L=5;N=40;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(2)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=40');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(3)L=5;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(3)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=60');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(4)L=7;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(4)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=7,N=60');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');2. (1)M=10;N=10;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(1)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10');axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(2)M=10;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(2)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10');axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(3)M=100;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(3)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=100');axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');3.figure(1)subplot(2,2,1)N=45;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))stem(q,abs(y))title('FFT N=45')%subplot(2,2,2)N=50;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=50')%subplot(2,2,3)N=55;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=55')%subplot(2,2,4)N=16;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=16')function[Xk]=dfs(xn,N)n=[0:1:N-1];k=[0:1:N-1];WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;实验二 用双线性变换法设计IIR 数字滤波器 一、 实验目的1. 熟悉用双线性变换法设计IIR 数字滤波器的原理与方法; 2. 掌握数字滤波器的计算机仿真方法;3.通过观察对实际心电图的滤波作用,获得数字滤波器的感性知识。
数字信号处理2实验报告一西交大殷
数字信号处理II实验报告实验题目:维纳滤波器的计算机实现姓名:学号:班级:专业:一、实验目的1.利用计算机编程实现加性噪声信号的维纳滤波。
2.将计算机模拟实验结果与理论分析结果相比较,分析影响维纳滤波效果的各种因素,从而加深对维纳滤波的理解。
3.利用维纳一步纯预测方法实现对信号生成模型的参数估计。
二、实验原理维纳滤波是一种从噪声背景中提取信号的最佳线性滤波方法,假定一个随机信号x(n)具有以下形式:(n)s(n)v(n)x =+ 1-1其中,s(n)为有用信号,v(n)为噪声干扰,将其输入一个单位脉冲响应为h(n)的线性系统,其输出为(n)(m)x(n m)y h ∞-∞=-∑ 1-2 我们希望x(n)通过这个系统后得到的y(n)尽可能接近于s(n),因此,称y(n)为信号s(n)的估值。
按照最小均方误差准则,h(n)应满足下面的正则方程:(k)(m)(k m)xs xx h φφ∞-∞=-∑ 1-3 这就是著名的维纳-霍夫方程,其中是 (m)xx φ是x(n)的自相关函数,()xs m φ是 x(n)和s(n)是的互相关函数。
在要求 h(n)满足因果性的条件下,求解维纳-霍夫方程是一个典型的难题。
虽然目前有几种求解 h(n)的解析方法,但它们在计算机上实现起来非常困难。
因此,本实验中,利用近似方法,即最佳 FIR 维纳滤波方法,在计算机上实现随机信号的维纳滤波。
设 h(n)为一因果序列,其长度为 N ,则(n)(m)x(n m)y h ∞-∞=-∑ 1-4 同样利用最小均方误差准则,h(n)满足下面方程:xx xs R h r = 1-5 其中 [](0),h(1),,h(N 1)T h h =-(0)(1)(N 1)(0)xx xx xx xx xx N R φφφφ-+⎛⎫⎪= ⎪ ⎪-⎝⎭[](0)(N 1)T xs xs xs r φφ=- 当xx R 为满秩矩阵时,1xx xs h R r -= 1-6 由此可见,利用有限长的 h(n)实现维纳滤波器,只要已知xx R 和xs r ,就可以按上式解得满足因果性的 h 。
数字信号处理 实验报告
数字信号处理实验报告实验一 信号、系统及系统响应一、实验目的(1) 熟悉连续信号经理想采样前后的频谱变化关系, 加深对时域采样定理的理解。
(2) 熟悉时域离散系统的时域特性。
(3) 利用卷积方法观察分析系统的时域特性。
(4) 掌握序列傅里叶变换的计算机实现方法, 利用序列的傅里叶变换对连续信号、 离散信号及系统响应进行频域分析。
二、实验原理与方法 1. 时域采样定理:对一个连续信号xa(t)进行理想采样的过程如下: xa1(t)=xa(t)p(t)其中xa1(t)为xa(t)的理想采样,p(t)为周期冲击脉冲。
xa1(t)的傅里叶变换Xa1(j Ω)为:11()[()]m Xa j Xa j m s T +∞=-∞Ω=Ω-Ω∑表明Xa1(j Ω)为Xa(j Ω)的周期延拓,其延拓周期为采样角频率(s Ω=2π/T )。
离散信号和系统在时域均可用序列来表示。
2. LTI 系统的输入输出关系: y(n)=x(n)*h(n)=()()m x m h n m +∞=-∞-∑()()()j j j Y e X e H e ωωω=三、实验内容1. 分析采样序列的特性。
1) 取模拟角频w=70.7*pi rad/s ,采样频率fs=1000Hz>2w ,发现无频谱混叠现象。
2) 改变采样频率, fs=300 Hz<2w ,频谱产生失真。
3) 改变采样频率, fs=200Hz<2w,频谱混叠,产生严重失真2. 时域离散信号、系统和系统响应分析。
1) 观察信号xb(n)和系统hb(n)的时域和频域特性;利用线性卷积求信号xb(n)通过系统hb(n)的响应y(n),比较所求响应y(n)和hb(n)的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。
2) 观察系统ha(n)对信号xc(n)的响应特性。
可发现:信号通过系统,相当于x(n)与系统函数h(n)卷积,时域卷积即对应频域函数相乘。
数字信号处理实验报告
实验一:频谱分析与采样定理 subplot(3,1,1),stem(t,x2);title('指数信号'); subplot(3,1,2),stem(f1,y2);title('指数信号频谱'); subplot(3,1,3),plot(f2,y21);title('指数信号频谱'); %%%%%%%%%%%%%%%%%%%%%%%%% x3=x1.*x2; y3=T*abs(fft(x3)); y31=fftshift(y3); figure(3), subplot(3,1,1),stem(t,x3);title('两信号相乘'); subplot(3,1,2),stem(f1,y3);title('两信号相乘频谱'); subplot(3,1,3),plot(f2,y31);title('两信号相乘频谱'); 实验结果: T=1/10000,������������ =10000,L=0.10
1/ 5
实验二:卷积定理 Y2=fft(y2); Z2=X2.*Y2; z2=ifft(Z2); figure(3), subplot(321),stem(x2);title('x2'); subplot(322),stem(real(X2));title('X2'); subplot(323),stem(y2);title('y2'); subplot(324),stem(real(Y2));title('Y2'); subplot(325),stem(z2);title('z2'); subplot(326),stem(real(Z2));title('Z2'); N=6; x3=[x zeros(1,N-length(x))]; y3=[y zeros(1,N-length(y))]; X3=fft(x3); Y3=fft(y3); Z3=X3.*Y3; z3=ifft(Z3); figure(4), subplot(321),stem(x3);title('x3'); subplot(322),stem(real(X3));title('X3'); subplot(323),stem(y3);title('y3'); subplot(324),stem(real(Y3));title('Y3'); subplot(325),stem(z3);title('z3'); subplot(326),stem(real(Z3));title('Z3'); N=8; x4=[x zeros(1,N-length(x))]; y4=[y zeros(1,N-length(y))]; X4=fft(x4); Y4=fft(y4); Z4=X4.*Y4; z4=ifft(Z4); figure(5), subplot(321),stem(x4);title('x4'); subplot(322),stem(real(X4));title('X4'); subplot(323),stem(y4);title('y4'); subplot(324),stem(real(Y4));title('Y4'); subplot(325),stem(z4);title('z4'); subplot(326),stem(real(Z4));title('Z4'); %N=6 时
数字信号处理实验报告(全)
实验一、离散时间系统及离散卷积1、单位脉冲响应源程序:function pr1() %定义函数pr1a=[1,-1,0.9]; %定义差分方程y(n)-y(n-1)+0.9y(n-2)=x(n) b=1;x=impseq(0,-20,120); %调用impseq函数n=[-40:140]; %定义n从-20 到120h=filter(b,a,x); %调用函数给纵座标赋值figure(1) %绘图figure 1 (冲激响应) stem(n,h); %在图中绘出冲激title('冲激响应'); %定义标题为:'冲激响应'xlabel('n'); %绘图横座标为nylabel('h(n)'); %绘图纵座标为h(n)figure(2) %绘图figure 2[z,p,g]=tf2zp(b,a); %绘出零极点图zplane(z,p)function [x,n]=impseq(n0,n1,n2) %声明impseq函数n=[n1:n2];x=[(n-n0)==0];结果:Figure 1:Figure 2:2、离散系统的幅频、相频的分析源程序:function pr2()b=[0.0181,0.0543,0.0543,0.0181];a=[1.000,-1.76,1.1829,-0.2781];m=0:length(b)-1; %m从0 到3l=0:length(a)-1; %l从0 到3K=5000;k=1:K;w=pi*k/K; %角频率wH=(b*exp(-j*m'*w))./(a*exp(-j*l'*w));%对系统函数的定义magH=abs(H); %magH为幅度angH=angle(H); %angH为相位figure(1)subplot(2,1,1); %在同一窗口的上半部分绘图plot(w/pi,magH); %绘制w(pi)-magH的图形grid;axis([0,1,0,1]); %限制横纵座标从0到1xlabel('w(pi)'); %x座标为 w(pi)ylabel('|H|'); %y座标为 angle(H)title('幅度,相位响应'); %图的标题为:'幅度,相位响应' subplot(2,1,2); %在同一窗口的下半部分绘图plot(w/pi,angH); %绘制w(pi)-angH的图形grid; %为座标添加名称xlabel('w(pi)'); %x座标为 w(pi)ylabel('angle(H)'); %y座标为 angle(H)结果:3、卷积计算源程序:function pr3()n=-5:50; %声明n从-5到50u1=stepseq(0,-5,50); %调用stepseq函数声用明u1=u(n)u2=stepseq(10,-5,50); %调用stepseq函数声用明u2=u(n-10) %输入x(n)和冲激响应h(n)x=u1-u2; %x(n)=u(n)-u(n-10)h=((0.9).^n).*u1; %h(n)=0.9^n*u(n)figure(1)subplot(3,1,1); %绘制第一个子图stem(n,x); %绘制图中的冲激axis([-5,50,0,2]); %限定横纵座标的范围title('输入序列'); %规定标题为:'输入序列'xlabel('n'); %横轴为nylabel('x(n)'); %纵轴为x(n)subplot(3,1,2); %绘制第二个子图stem(n,h); %绘制图中的冲激axis([-5,50,0,2]); %限定横纵座标的范围title('冲激响应序列'); %规定标题为:'冲激响应序列'xlabel('n'); %横轴为nylabel('h(n)'); %纵轴为h(n)%输出响应[y,ny]=conv_m(x,n,h,n); %调用conv_m函数subplot(3,1,3); %绘制第三个子图stem(ny,y);axis([-5,50,0,8]);title('输出响应'); %规定标题为:'输出响应'xlabel('n');ylabel('y(n)'); %纵轴为y(n)%stepseq.m子程序%实现当n>=n0时x(n)的值为1function [x,n]=stepseq(n0,n1,n2)n=n1:n2;x=[(n-n0)>=0];%con_m的子程序%实现卷积的计算function [y,ny]=conv_m(x,nx,h,nh)nyb=nx(1)+nh(1);nye=nx(length(x))+nh(length(h));ny=[nyb:nye];y=conv(x,h);结果:实验二、离散傅立叶变换与快速傅立叶变换1、离散傅立叶变换(DFT)源程序:function pr4()F=50;N=64;T=0.000625;n=1:N;x=cos(2*pi*F*n*T); %x(n)=cos(pi*n/16)subplot(2,1,1); %绘制第一个子图x(n)stem(n,x); %绘制冲激title('x(n)'); %标题为x(n)xlabel('n'); %横座标为nX=dft(x,N); %调用dft函数计算x(n)的傅里叶变换magX=abs(X); %取变换的幅值subplot(2,1,2); %绘制第二个子图DFT|X|stem(n,X);title('DFT|X|');xlabel('f(pi)'); %横座标为f(pi)%dft的子程序%实现离散傅里叶变换function [Xk]=dft(xn,N)n=0:N-1;k=0:N-1;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;结果:F=50,N=64,T=0.000625时的波形F=50,N=32,T=0.000625时的波形:2、快速傅立叶变换(FFT)源程序:%function pr5()F=50;N=64;T=0.000625;n=1:N;x=cos(2*pi*F*n*T); %x(n)=cos(pi*n/16) subplot(2,1,1);plot(n,x);title('x(n)');xlabel('n'); %在第一个子窗中绘图x(n)X=fft(x);magX=abs(X);subplot(2,1,2);plot(n,X);title('DTFT|X|');xlabel('f(pi)'); %在第二个子图中绘图x(n)的快速傅%里叶变换结果:3、卷积的快速算法源程序:function pr6()n=0:14;x=1.^n;h=(4/5).^n;x(15:32)=0;h(15:32)=0;%到此 x(n)=1, n=0~14; x(n)=0,n=15~32% h(n)=(4/5)^n, n=0~14; h(n)=0,n=15~32subplot(3,1,1);stem(x);title('x(n)');axis([1,32,0,1.5]); %在第一个子窗绘图x(n)横轴从1到32,纵轴从0到1.5 subplot(3,1,2);stem(h);title('h(n)');axis([1,32,0,1.5]); %在第二个子窗绘图h(n)横轴从1到32,纵轴从0到1.5 X=fft(x); %X(n)为x(n)的快速傅里叶变换H=fft(h); %H(n)为h(n)的快速傅里叶变换Y=X.*H; %Y(n)=X(n)*H(n)%Y=conv(x,h);y=ifft(Y); %y(n)为Y(n)的傅里叶反变换subplot(3,1,3) %在第三个子窗绘图y(n)横轴从1到32,纵轴从0到6 stem(abs(y));title('y(n=x(n)*h(n))');axis([1,32,0,6]);结果:实验三、IIR数字滤波器设计源程序:function pr7()wp=0.2*pi;ws=0.3*pi;Rp=1;As=25;T=1;Fs=1/T;OmegaP=(2/T)*tan(wp/2); %OmegaP(w)=2*tan(0.1*pi) OmegaS=(2/T)*tan(ws/2); %OmegaS(w)=2*tan(0.15*pi)ep=sqrt(10^(Rp/10)-1);Ripple=sqrt(1/(1+ep.^2));Attn=1/10^(As/20);N=ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(OmegaP/OmegaS) ));OmegaC=OmegaP/((10.^(Rp/10)-1).^(1/(2*N)));[cs,ds]=u_buttap(N,OmegaC);[b,a]=bilinear(cs,ds,Fs);[mag,db,pha,w]=freqz_m(b,a);subplot(3,1,1); %在第一个子窗绘制幅度响应的图形plot(w/pi,mag);title('幅度响应');xlabel('w(pi)');ylabel('H');axis([0,1,0,1.1]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[0,Attn,Ripple,1]);grid;subplot(3,1,2); %在第二个子窗以分贝为单位绘制幅度响应的图形plot(w/pi,db);title('幅度响应(dB)');xlabel('w(pi)');ylabel('H');axis([0,1,-40,5]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[-50,-15,-1,0]);grid;subplot(3,1,3); %在第三个子窗绘制相位响应的图形plot(w/pi,pha);title('相位响应');xlabel('w(pi)');ylabel('pi unit');%axis([0,1,0,1.1]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[-1,0,1]);grid;function [b,a]=u_buttap(N,OmegaC)[z,p,k]=buttap(N);p=p*OmegaC;k=k*OmegaC.^N;B=real(poly(z));b0=k;b=k*B;a=real(poly(p));function [mag,db,pha,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);结果:实验四、FIR数字滤波器的设计源程序:function pr8()wp=0.2*pi;ws=0.35*pi;tr_width=ws-wp;M=ceil(6.6*pi/tr_width)+1;n=0:M-1;wc=(ws+wp)/2;alpha=(M-1)/2;m=n-alpha+eps;hd=sin(wc*m)./(pi*m);w_ham=(hamming(M))';h=hd.*w_ham;[mag,db,pha,w]=freqz_m(h,[1]);delta_w=2*pi/1000;Rp=-(min(db(1:wp/delta_w+1)));As=-round(max(db(ws/delta_w+1:501)));subplot(2,2,1);stem(n,hd);title('理想冲激响应');axis([0,M-1,-0.1,0.3]);ylabel('hd(n)');subplot(2,2,2);stem(n,h);title('实际冲激响应');axis([0,M-1,-0.1,0.3]);ylabel('h(n)');subplot(2,2,3);plot(w/pi,pha);title('滤波器相位响应');axis([0,1,-pi,pi]);ylabel('pha');set(gca,'XTickmode','manual','XTick',[0,0.2,0.3,1.1]); set(gca,'YTickmode','manual','YTick',[-pi,0,pi]); grid;subplot(2,2,4);plot(w/pi,db);title('滤波器幅度响应');axis([0,1,-100,10]);ylabel('H(db)');set(gca,'XTickmode','manual','XTick',[0,0.2,0.3,1.1]); set(gca,'YTickmode','manual','YTick',[-50,-15,0]);function [mag,db,pha,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);结果:。
数字信号处理实验报告一二
数字信号处理实验报告一二目录一、实验目的 (2)1.1 了解数字信号处理的基本概念 (2)1.2 掌握数字信号处理的基本流程 (3)1.3 熟悉数字信号处理中常用的算法和实现方法 (5)二、实验目的 (6)2.1 理解数字信号处理技术在通信系统中的作用 (7)2.2 掌握数字信号处理技术在通信系统中的应用实例 (8)2.3 通过实验加深对数字信号处理技术的理解和实际操作能力 (9)三、实验原理和流程 (11)3.1 通信系统的基本工作原理 (12)3.2 数字信号处理技术在通信系统中的应用 (13)3.3 实验准备和实施计划 (14)四、数字滤波器设计与验证 (15)4.1 数字滤波器的设计方法 (17)4.2 滤波器的验证方法 (19)4.3 滤波器的性能测试 (20)五、信号检测与估计技术 (22)5.1 信号检测技术在通信系统中的应用 (23)5.2 信号估计技术的实现 (25)5.3 检测与估计技术的应用案例分析 (26)六、实验结果与讨论 (28)6.1 实验结果的分析与评价 (28)6.2 实验结果的对比与优化 (30)6.3 实验中遇到的问题和解决方案 (31)七、结论与展望 (32)7.1 实验结果的主要发现 (33)7.2 对数字信号处理在通信系统中的应用的认识提升 (34)7.3 对未来实验的思考和展望 (36)一、实验目的本次数字信号处理的实验旨在使学生掌握数字信号处理的基本概念、理论和实验技能,并通过实际操作加深对数字信号处理方法的理解和应用。
具体目的包括:理解数字信号处理的基本原理,包括离散时间信号与系统的概念、抽样定理、数字滤波器设计方法和数字信号处理的应用。
学习各种数字信号处理技术,如脉冲幅度调制、谱分析、滤波器设计与实现等。
使用实验设备实施信号模拟与数字信号处理操作,以便在实际系统中应用这些技术。
通过实验数据分析和处理,培养学生解决实际问题的能力,以及数据解读、实验方案设计和报告撰写的能力。
西安交通大学数字信号处理实验报告_频率采样型滤波器
.数字信号处理实验报告姓名:______贺云天______学号:____2010035015____ 班级:_____电信硕23_____ 实验日期:2014年10月22日提交日期:2014年10月30日实验二 频率采样型滤波器一、 实验目的1. 学习使用频率采样型结构实现FIR 滤波器,初步熟悉FIR 滤波器的线性相位特点;2. 直观体会频率采样型滤波器所具有的“滤波器组”特性,即在并联结构的每条支路上可以分别得到输入信号的各次谐波;3. 学习使用周期冲激串检测所实现滤波器的频域响应。
二、 实验内容频率采样型滤波器是由一个梳状滤波器和若干路谐振器构成的,可用公式表述如下:1 1 1 0 (1)其中r 值理论上为1,实际中取非常接近1的值。
为了使系数为实数,可以将谐振器的共轭复根合并,不失一般性,假设N 为偶数,于是可以得到如图1所示的结构。
图1 N为偶数的实系数频率采样型结构滤波器其中0 2 ,1 2以下实验中假设频率采样型滤波器阶数N=16。
1.构造滤波器输入信号30,其中cos2 0,基波频率050 ,005,11,205,32,00,1,0,3。
设时域信号s(t)的采样频率0,绘制出采样时刻从0到L-1的采样信号波形,其中采样点数为 2 ,确认时域信号采样正确。
2.对采样信号的第二个周期(11)进行离散傅里叶变换,画出幅频特性和相频特性图,观察并分析其特点。
3.设01,1e1,2e21,34130,14e141,15e151,计算滤波器抽头系数h(n),n=0,1,…,N-1,画出该滤波器的频谱图,观察并分析其幅频特性和相频特性。
4.编程实现图1 所示的频率采样型滤波器结构,其中r=0.999,H(k)取第3步中的值。
为了简化编程,梳妆滤波器可以调用CombFilter.m,谐振器可以调用Resonator2.m,使用help CombFilter和help Resonator2查看如何配置参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理实验报告班级:自动化86姓名:潘文培学号:08054142日期:2010/11/11实验1 常见离散信号的MATLAB 产生和图形显示实验目的:加深对常用离散信号的理解;实验原理:1. 单位抽样序列⎩⎨⎧=01)(n δ≠=n n 在MATLAB 中可以利用ZEROS()函数实现。
;1)1();,1(==x N zeros x如果)(n δ在时间轴上延迟了K 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ0≠=n kn (1)、单位脉冲序列的代码:n1=-10;n2=10; k=0; n=n1:n2;nt=length(n); nk=abs(k-n1)+1; x=zeros(1,nt); x(nk)=1;stem(n,x,'file');axis([n1,n2,0,1.1*max(x)]); title('单位脉冲序列'); xlabel('时间'); ylabel('幅度');截图如下:(2)、延时后的脉冲序列代码:n1=-10;n2=10;n=n1:n2;nt=length(n);nk=abs(k-n1)+1;x=[zeros(1,nk-1),ones(1,nt-nk+1)];stem(n,x,'file');axis([n1,n2,0,1.1*max(x)]);title('单位脉冲序列');xlabel('时间');ylabel('幅度');截图如下:2.单位阶跃序列⎩⎨⎧01)(n u00<≥n n 在MATLAB 中可以利用ones()函数实现。
);,1(N ones x =程序代码为:n = -10:15;u = [zeros(1,10) ones(1,16)]; stem(n,u);xlabel('时间'); ylabel('幅度');title('单位阶跃序列'); axis([-10 15 0 1.2]);截图如下:3.正弦序列)/2sin()(ϕπ+=Fs fn A n x在MATLAB 中)/***2sin(*1:0fai Fs n f pi A x N n +=-=程序代码为:N = 36n = 0:N-1; A = 2; Fs=3f = 0.1; Q = pi/6; arg = 2*pi*f*n + Q;x = A*sin(arg); stem(n,x);axis([0 35 -2 2]);grid; title('正弦信号'); xlabel('时间'); ylabel('幅度'); axis;截图如下:4.复正弦序列n j e n x ϖ=)(在MATLAB 中)**exp(1:0n w j x N n =-=程序代码为:N=36 w=pi/6;c = w*i; a = 1; n = 0:N-1;x = a*exp(c*n); subplot(2,1,1); stem(n,real(x)); xlabel('时间');ylabel('幅度');title('复正弦序列实部'); subplot(2,1,2); stem(n,imag(x)); xlabel('时间');ylabel('幅度');title('复正弦序列虚部');截图如下:5.指数序列n a n x =)(在MATLAB 中na x N n .^1:0=-=程序代码为:n = 0:35; a = 1.2; K = 1;x = K*a.^n; stem(n,x);xlabel('时间'); ylabel('幅度'); title('指数序列');截图如下:实验内容:编制程序产生上述5种信号(长度可输入确定),并绘出其图形。
实验要求:讨论复指数序列的性质。
复指数序列的公式为:所以由复指数序列的公式可得到以下性质:1.当σ=0时,它的实部和虚部都是正弦序列。
2.当|σ|>1时,它的实部和虚部都是指数增长的正弦序列。
3.当|σ|﹤1时,它的实部和虚部都是指数衰减的正弦序列。
实验2 离散系统的差分方程、冲激响应和卷积分析实验目的:加深对离散系统的差分方程、冲激响应和卷积分析方法的理解。
实验原理:离散系统)sin (cos )()(00)(0n j n e e e e n x e n x n nj n j n j o ωωσωσϕωσ+=⋅===+其输入、输出关系可用以下差分方程描述:∑=∑=-=-M k k Nk k k n x p k n y d 0][][输入信号分解为冲激信号,∑-=∞-∞=m m n m x n x ][][][δ。
记系统单位冲激响应][][n h n →δ,则系统响应为如下的卷积计算式:∑∞-∞=-=*=m m n h m x n h n x n y ][][][][][当N k d k ,...2,1,0==时,h[n]是有限长度的(n :[0,M]),称系统为FIR 系统;反之,称系统为IIR 系统。
在MATLAB 中,可以用函数y=Filter(p,d,x) 求解差分方程,也可以用函数 y=Conv(x,h)计算卷积。
实验内容:编制程序求解下列两个系统的单位冲激响应和阶跃响应,并绘出其图形。
[]0.6[1]0.08[2][][1]y n y n y n x n x n +-+-=--[]0.2{[1][2][3][4][5][6]}y n x n x n x n x n x n x n =-+-+-+-+-+-实验要求:给出理论计算结果和程序计算结果并讨论。
1、程序的代码为:a=[1,0.6,0.08]; b=[1,-1,0]; N=16; n=0:N-1; x1=[n==0];y1=filter(b,a,x1); x2=[n>=0];y2=filter(b,a,x2);subplot(2,1,1),stem(n,y1); title('系统单位冲击响应'); subplot(2,1,2),stem(n,y2); title('系统单位阶跃响应');截图如下:2、程序的代码为:a=[1,0,0,0,0,0,0];b=[0,0.2,0.2,0.2,0.2,0.2,0.2];N=16;n=0:N-1;x1=[n==0];y1=filter(b,a,x1);x2=[n>=0];y2=filter(b,a,x2);subplot(2,1,1),stem(n,y1);title('ϵͳµ¥Î»³å»÷ÏìÓ¦');subplot(2,1,2),stem(n,y2);title('ϵͳµ¥Î»½×Ô¾ÏìÓ¦');截图如下:实验3 离散系统的频率响应分析和零、极点分布实验目的:加深对离散系统的频率响应分析和零、极点分布的概念理解。
实验原理:离散系统的时域方程为∑∑==-=-Mk k Nk kk n x p k n y d)()(其变换域分析方法如下: 频域 )()()(][][][][][ωωωjjjm e H e X e Y m n h m x n h n x n y =⇔-=*=∑∞-∞=系统的频率响应为 ωωωωωωωjN N j jM M j j j j ed e d d e p e p p e D e p e H ----++++++==......)()()(1010 Z 域 )()()(][][][][][z H z X z Y m n h m x n h n x n y m =⇔-=*=∑∞-∞=系统的转移函数为 NN MM z d z d d z p z p p z D z p z H ----++++++==......)()()(110110分解因式 ∏-∏-=∑∑==-=-=-=-Ni i Mi i Ni ik Mi ik z z Kzd z p z H 11110)1()1()(λξ ,其中i ξ和i λ称为零、极点。
在MATLAB 中,可以用函数[z ,p ,K]=tf2zp (num ,den )求得有理分式形式的系统转移函数的零、极点,用函数zplane (z ,p )绘出零、极点分布图;也可以用函数zplane (num ,den )直接绘出有理分式形式的系统转移函数的零、极点分布图。
另外,在MATLAB 中,可以用函数 [r ,p ,k]=residuez (num ,den )完成部分分式展开计算;可以用函数sos=zp2sos (z ,p ,K )完成将高阶系统分解为2阶系统的串联。
实验内容:求系统12345123450.05280.7970.12950.12950.7970.0528()1 1.8107 2.4947 1.88010.95370.2336z z z z z H z z z z z z ----------+++++=-+-+-的零、极点和幅度频率响应。
实验要求:编程实现系统参数输入,绘出幅度频率响应曲线和零、极点分布图。
程序代码为:b=[1,-1.8107,2.4947,-1.8801,0.9537,-0.2336]; a=[0.0528,0.797,0.1295,0.1295,0.797,0.0528]; [H,w]=freqz(b,a,200,'whole'); magH=abs(H(1:101)); phaH=angle(H(1:101)); w=w(1:101); subplot(3,1,1);plot(w/pi,magH);grid; title('幅度图'); subplot(3,1,2); plot(w/pi,phaH/pi); grid;title('相位图'); subplot(3,1,3); zplane(b,a);title('零极点图');截图如下:实验4 离散信号的DTFT 和DFT实验目的:加深对离散信号的DTFT 和DFT 的及其相互关系的理解。