北师大版一次函数知识点与习题

合集下载

北师大版初二数学上册一次函数知识点总结和基础例题

北师大版初二数学上册一次函数知识点总结和基础例题
(1)关系式为整式时,函数定义域为全体实数;
(2)关系式含有分式时,分式的分母不等于零;
(3)关系式含有二次根式时,被开放方数大于等于零;
(4)关系式中含有指数为零的式子时,底数不等于零;
(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式
式.
b0k0

b0k0

⑵当
⑶当
仍是一次函数.
⑷正比例函数是一次函数的特例,一次函数包括正比例函数.
当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,•直线
一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,
8、函数的表示方法
列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题
中的函数关系,不能用解析式表示。
kb
k
0
0
一次函数
⑴一次函数的解析式的形式是ykxb,要判断一个函数是否是一次函数,就是判断是否能化成以上形
k<0
一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到
(当b>0时,向上平移;当b<0时,向下平移)
一次函数
必过点
k
k>0时,直线经过一、三象限;
k<0时,直线经过二、四象限
k>0,b>0,直线经过第一、二、三象限
k>0,b<0直线经过第一、三、四象限

新北师大版八年级数学一次函数知识点总结+练习

新北师大版八年级数学一次函数知识点总结+练习

新北师大版八年级数学一次函数知识点总结+练习新北师大版八年级数学一次函数知识点总结+练习第四章:一次函数知识点总结基本概念1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

例题:在匀速运动公式svt中,v 表示速度,t表示时间,s表示在时间t内所走的路程,则变量是________,常量是_______。

在圆的周长公式C=2πr中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应1例题:下列函数(1)y=πx(2)y=2x-1(3)y=(4)y=2-1-3x(5)y=x2-1中,是一次函数的x有()(A)4个(B)3个(C)2个(D)1个3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

(x的取值范围)一次函数1..自变量x和因变量y有如下关系:y=kx+b(k为任意不为零实数,b为任意实数)则此时称y是x的一次函数。

特别的,当b=0时,y是x的正比例函数。

即:y=kx(k为任意不为零实数)定义域:自变量的取值范围,自变量的取值应使函数有意义;要与实际有意义。

2.当x=0时,b为函数在y轴上的截距。

一次函数性质:1在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

2一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.函数不是数,它是指某一变量过程中两个变量之间的关系。

特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

4、特殊位置关系当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1)应用一次函数y=kx+b的性质是:(1)当k>0时,y随x的增大而增大;(2)当kx2B.x10,且y1>y2。

北师大版八年级数学上册-第四章一次函数(同步+复习)精品讲义课件

北师大版八年级数学上册-第四章一次函数(同步+复习)精品讲义课件
① ② 一看式:y不能带平方或绝对值。 二看图:左右走时不回头,上下看时不. 判断下列各量之间的关系是否函数关系
① ② ③ ④ 圆的半径r=2 , 圆的面积S与半径r的关系。 长方形的宽一定时,其长与周长。 王成的年龄与身高。 汽车行驶过程中,路程一定,其速度与时间。
① ② 根据变化过程中变量的实际意义确定。 根据纯代数关系式确定:一看分母不为0;二看 根号内非负(开平方被开方数是非负数); 定义:对于自变量在可取值范围内每一个确定的 值a,函数有唯一确定的对应值,这个对应值称 为“当自变量等于a的函数值“。 函数值与自变量的取值是对应的、相互依赖的。 求法:有表查表;有式代入;有图看图。
2.
函数值:

② ③
【例4】做一做
1. 求当x=-2时,函数 y=x2-√x2的函数值. 3x 2. 函数y= —— 中,求自变量 x的取值范围。 √x-2 3. 当x取( 意义。 )时,函数y= ————有
√x -2 4x
五. (补充)函数的图象
1. 定义:把一个函数的自变量的每一个值与对应的函数值分别 做为点的横坐标与纵坐标,在平面直角坐标系中描出所有对 应的点,所有这些点组成的图形叫做该函数的图象。 作法:列表(选值计算画表);描点(对应值为点的坐标); 连线(平滑的直线或曲线)。画出的是近似图象。 作用(学会看图象):
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ 一看对应:(变量互求:有关系式用关系式。) 二看趋势:(如何变化) 三看范围:(最大最小局部整体区别看) 四看增减;(上坡下坡) 五看快慢:(陡快缓慢平不变) 六解方程:(组)不等式( 交点-扫描-投影法) 七比大小:(两函数,比大小,找交点,横分段,看变化,求得 解) 八出方案:(寻求生活中最优选择最佳方案) 九取特值:(结合字母常量的几何意义确定常量之间的关系)。 十设坐标:(设横表纵——永远不变的真理)。

北师大版八年级上册第四章-一次函数知识点题型总结

北师大版八年级上册第四章-一次函数知识点题型总结

第四章 一次函数知识点1:函数1. 下列图形中的图象不表示y 是x 的函数的是( )A .B .C .D .2. 下列图象中,表示y 是x 的函数的个数有__________3 在函数y=中,自变量x 的取值范围是( )A .x >1B .x <1C .x ≠1D .x=14. 函数y=中,自变量x 的取值范围是( )A .x ≥﹣5B .x ≤﹣5C .x ≥5D .x ≤55. 在函数x 的取值范围是___________.知识点2:正比例函数和一次函数1. 下列说法正确的是( ).A .一次函数是正比例函数B .正比例函数不是一次函数C .不是正比例函数就不是一次函数D .正比例函数是一次函数2. 下列函数中,是一次函数的有( )(1)y=πx (2)y=2x ﹣1 (3)y=x1 (4)y=2﹣3x (5)y=x 2﹣1.3 若y=x+2-b 是正比例函数,则b 的值是()A.0B.-2C.2D.-0.54. 若y=x+2-b 是正比例函数,则b 的值是()A.0B.-2C.2D.-0.55 若函数y =(m +1)x |m |+2是一次函数,则m 的值为( ) A.m =±1 B.m =-1 C.m =1 D.m ≠-16. y=2x |m|+3表示一次函数,则m 等于( ) A .1B .﹣1C .0或﹣1D .1或﹣17. 一个正比例函数的图象经过点(-2,4),它的表达式为 ( ) A .B .C .D .8. 若点(m ,m +3)在函数y=-21x +2的图象上,则m=____9 将一次函数y =2x -3的图象沿y 轴向上平移8个单位长度,所得直线的解析式为( ) A .y =2x -5 B .y =2x +5 C .y =2x +8 D .y =2x -810. 与正比例函数y=x 相同的函数是A.2xy = B.y=()2x C.y=x212D.y=33x知识点3:正比例函数和一次函数的图像性质1. 已知函数y =(m +1)x 是正比例函数,且图象在第二、四象限内,则m 的值是( )A.2B.-2C.±2D.-2. 一次函数y=(2m ﹣6)x+4中,y 随x 的增大而减小,则m 的取值范围是_____.3. 已知正比例函数y=kx (k <0)的图象上两点A (x 1,y 1)、B (x 2,y 2),且x 1<x 2,则下列不等式中恒成立的是( ) A .y 1+y 2>0 B .y 1+y 2<0 C .y 1﹣y 2>0D .y 1﹣y 2<04. 已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣3x+2上,则y1,y2,y3的值的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y3>y1>y2D.y1>y2>y35. 函数y=kx+b的图象如图所示,则当y<0时,x的取值范围是____________.6.如图,直线y=x+b与直线y=kx+6交于点P(1,3),则关于x的不等式x+b>kx+6的解集是()A.x<1 B.x>1 C.x>3 D.x<27.如图,直线y=kx和y=ax+4交于A(1,k),则不等式ax+4<kx的解集为____________.8.已知点(2,-4)在正比例函数y=kx的图象上。

北师大版一次函数知识点

北师大版一次函数知识点

初二函数知识点知识点一、平面直角坐标系一、平面直角坐标系在平面内画两条彼此垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;成立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部份,别离叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

二、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能倒置。

平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。

知识点二、不同位置的点的坐标的特点一、各象限内点的坐标的特点点P(x,y)在第一象限0,0>>⇔y x点P(x,y)在第二象限0,0><⇔y x点P(x,y)在第三象限0,0<<⇔y x点P(x,y)在第四象限0,0<>⇔y x二、坐标轴上的点的特点点P(x,y)在x 轴上0=⇔y ,x 为任意实数点P(x,y)在y 轴上0=⇔x ,y 为任意实数点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特点点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数4、和坐标轴平行的直线上点的坐标的特点位于平行于x 轴的直线上的各点的纵坐标相同。

位于平行于y 轴的直线上的各点的横坐标相同。

五、关于x 轴、y 轴或远点对称的点的坐标的特点点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数六、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y(2)点P(x,y)到y 轴的距离等于x(3)点P(x,y)到原点的距离等于22y x +知识点三、函数及其相关概念一、变量与常量在某一转变进程中,能够取不同数值的量叫做变量,数值维持不变的量叫做常量。

北师大版八年级上册数学第四章 一次函数含答案(综合知识)

北师大版八年级上册数学第四章 一次函数含答案(综合知识)

北师大版八年级上册数学第四章一次函数含答案一、单选题(共15题,共计45分)1、函数y=中,自变量x的取值范围是()A.x≠2B.x≥2C.x≤2D.全体实数2、成都市双流新城公园是亚洲最大的城市湿地公园,周末小李在这个公园里某笔直的道路上骑车游玩,先前进了a千米,休息了一段时间,又原路返回b千米(b<a),再前进c千米,则他离起点的距离s与时间t的关系的示意图是()A. B.C. D.3、下列各式中,自变量x的取值范围是x≥2的是( )A.y=x-2B.y=C.y=·D.y=x 2-44、下列函数的图象不经过第一象限,且y随x的增大而减小的是( )A. B. C. D.5、同一坐标系中有四条直线::,:,:,:,其中与轴交于点的直线是()A.直线B.直线C.直线D.直线6、某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s (米)与行进时间t(分)的关系的示意图,你认为正确的是()A. B. C.D.7、如图,反映了某公司的销售收入(单位:元)与销售量(单位:吨)的关系,反映了该公司的销售成本(单位:元)与销售量(单位:吨)的关系,当该公司盈利(收入大于成本)时,销售量应为()A.大于4吨B.等于5吨C.小于5吨D.大于5吨8、已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象大致是图中的()A. B. C.D.9、若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3B.0<k≤3C.0≤k<3D.0<k<310、下列各图中,是函数图象的是().A. B. C. D.11、对于0≤x≤100,用[x]表示不超过x的最大整数,则[x]+[ x]的不同取值的个数为( )A.267B.266C.234D.23312、一次函数y=-2x+5的图象性质错误的是().A.y随x的增大而减小B.直线经过第一、二、四象限C.直线从左到右是下降的D.直线与x轴交点坐标是(0,5)13、如图,已知点A 的坐标为(-1,0 ),点B在直线y=x上运动,当线段AB 最短时,点B的坐标为()A.(0,0)B.(, - )C.(-,-)D.(-,-)14、若正比例函数的图象经过(﹣3,2),则这个图象一定经过点()A.(2,﹣3)B.C.(﹣1,1)D.(2,﹣2)15、某商店销售一种商品,售出部分商品后进行了降价促销,销售金额y (元)与销售量(x)的函数关系如图所示,则降价后每件商品的销售价格为()A.5元B.10元C.12.5元D.15元二、填空题(共10题,共计30分)16、若函数y=(2m+6)x+(1﹣m)是正比例函数,则m的值是________.17、如图所示的是春季某地一天气温随时间变化的图象,根据图象判断,在这天中,最高温度与最低温度的差是________ ℃.18、一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为s(km).y1, y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示.则下列判断:①图1中a=3;②当x=h时,两车相遇;③当x=时,两车相距60km;④图2中C点坐标为(3,180);⑤当x=h或h时,两车相距200km.其中正确的有________(请写出所有正确判断的序号)19、如图,A(4,3),B(2,1),在x轴上取两点P、Q,使PA+PB值最小,|QA-QB|值最大,则PQ=________.20、表示变量之间关系的常用方法有________ ,________ ,________ .21、某函数满足当自变量x=-1时,函数的值y=2,且函数y的值始终随自变量x的增大而减小,写出一个满足条件的函数表达式________.22、若一次函数y=(m﹣3)x+1中,y值随x值的增大而减小,则m的取值需满足________.23、已知正比例函数的图像经过点M( )、、,如果,那么________ .(填“>”、“=”、“<”)24、写出一个正比例函数,使其图象经过第二、四象限:________.25、已知二次函数y=ax2(a≠0的常数),则y与x2成________ 比例.三、解答题(共5题,共计25分)26、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.27、中国联通在某地的资费标准为包月186元时,超出部分国内拨打0.36元/分,由于业务多,小明的爸爸打电话已超出了包月费.下表是超出部分国内拨打的收费标准时间/分 1 2 3 4 5 …电话费/元 0.36 0.72 1.08 1.44 1.8 …(1)这个表反映了哪两个变量之间的关系?哪个是自变量?(2)如果用x表示超出时间,y表示超出部分的电话费,那么y与x的表达式是什么?(3)如果打电话超出25分钟,需付多少电话费?(4)某次打电话的费用超出部分是54元,那么小明的爸爸打电话超出几分钟?28、如图,已知一次函数的图象与轴,轴分别交于A,B两点,点在该函数的图象上,连接OC.求点A,B的坐标和的面积.29、小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M 点坐标为(2,0).(1)A点所表示的实际意义是;=;(2)求出AB所在直线的函数关系式;(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?30、如图1,在△ABC中,∠A=120°,AB=AC,点P、Q同时从点B出发,以相同的速度分别沿折线B→A→C、射线BC运动,连接PQ.当点P到达点C时,点P、Q同时停止运动.设BQ=x,△BPQ与△ABC重叠部分的面积为S.如图2是S 关于x的函数图象(其中0≤x≤8,8<x≤m,m<x≤16时,函数的解析式不同).(1)求m的值。

北师大版八年级数学上册 一次函数知识点总结和常考题

北师大版八年级数学上册  一次函数知识点总结和常考题

()()()32100.0k ⎪⎩⎪⎨⎧<=>>b b b ()()()321000.0k ⎪⎩⎪⎨⎧<=><b b b 一次函数所有知识点总结和常考题知识点:1.变量与常量:在一个变化过程中,数值发生变化的为变量,数值不变的是常量。

2.函数:在一个变化过程中,如果有两个变量x 与y ,并且对于想x 的每一个确定的值,y 都有唯一确定的值与其对应,则x 自变量,y 是x 的函数。

3.函数解析式:用关于自变量的数学式子表示函数与自变量之间的关系的式子。

4.描述函数的方法:解析式法、列表法、图像法。

5画函数图象的一般步骤:①列表:一次函数只要列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值②描点:在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点③连线:依次用平滑曲线连接各点。

6.正比列函数:形如y=kx (k ≠0)的函数,k 是比例系数。

7.正比列函数的图像性质:⑴ y=kx (k ≠0)的图象是一条经过原点的直线;⑵增减性:①当k>0时,直线y=kx 经过第一、三象限,y 随x 的增大而增大;②当k<0时,直线y=kx 经过第二、四象限,y 随x 的增大而减小,8.一次函数:形如y=kx+b (k ≠0)的函数,则称y 是x 的一次函数。

当b=0时,称y 是x 的正比例函数。

9. 一次函数的图像性质: ⑴图象是一条直线;⑵增减性:①当k>0时, y 随x 的增大而增大;②当k<0时, y 随x 的增大而减小。

10.待定系数法求函数解析式:⑴设函数解析式为一般式;(2)把两点带入函数一般式列出方程组,求出待定系数;(3)把待定系数值再带入函数一般式,得到函数解析式11.一次函数与方程、不等式的关系:会从函数图象上找到一元一次方程的解(既与x轴的交点坐标横坐标值),一元一次不等式的解集,二元一次方程组的解(既两函数直线交点坐标值)常考题:一.选择题(共14小题)1.下列函数中,自变量x的取值范围是x≥3的是()A.y=B.y= C.y=x﹣3 D.y=2.下列各曲线中,不能表示y是x的函数的是()A. B. C. D.3.一次函数y=﹣3x﹣2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.若函数,则当函数值y=8时,自变量x的值是()A.±B.4 C.±或4 D.4或﹣5.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A.B.C.D.6.如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<07.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较8.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0 B.x>0 C.x<2 D.x>29.如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,则△ABC的面积是()10.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A.N处B.P处 C.Q处D.M处11.关于x的一次函数y=kx+k2+1的图象可能正确的是()A.B.C.D.12.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()13.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时14.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③二.填空题(共13小题)15.函数y=中自变量x的取值范围是.16.已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则的值为.17.已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过第象限.18.一次函数y=﹣2x+b中,当x=1时,y<1,当x=﹣1时,y>0.则b的取值范围是.19.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是米/分钟.20.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是.21.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)22.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为.23.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省元.24.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.25.直线y=3x+2沿y轴向下平移5个单位,则平移后直线与y轴的交点坐标为.26.把直线y=﹣x﹣1沿x轴向右平移2个单位,所得直线的函数解析式为.27.如图,直线y=﹣x+4与y轴交于点A,与直线y=x+交于点B,且直线y=x+与x轴交于点C,则△ABC的面积为.三.解答题28.如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.29.如图:在平面直角坐标系中,有A(0,1),B(﹣1,0),C(1,0)三点坐标.(1)若点D与A,B,C三点构成平行四边形,请写出所有符合条件的点D的坐标;(2)选择(1)中符合条件的一点D,求直线BD的解析式.30.如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.参考答案与试题解析一.选择题(共14小题)1.D.2.C.3.A.4.D.5.A.6.D.7.A.8.C.9.A.10.C.11.C.12.B.13.C.14.A.二.填空题(共13小题)15.x≥﹣且x≠1.16.﹣.17.一.18.﹣2<b<3.19.80.20.7≤a≤9.21.①③④.22.y=6+0.3x.23.224.PM=.25.(0,﹣3).26.y=﹣x+1.27.S△ABC=S△ACD﹣S△BCD=CD•AO﹣CD•BE=×4×4﹣×4×2=4.三.解答题28.解:(1)由y=﹣3x+3,令y=0,得﹣3x+3=0,∴x=1,∴D(1,0);(2)设直线l2的解析表达式为y=kx+b,由图象知:x=4,y=0;x=3,,代入表达式y=kx+b,∴,∴,∴直线l2的解析表达式为;(3)由,解得,∴C(2,﹣3),=×3×|﹣3|=;∵AD=3,∴S△ADC(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是点C到直线AD的距离,即C纵坐标的绝对值=|﹣3|=3,则P到AD距离=3,∴P纵坐标的绝对值=3,点P不是点C,∴点P纵坐标是3,∵y=1.5x﹣6,y=3,∴1.5x﹣6=3x=6,所以P(6,3).【点评】本题考查的是一次函数的性质,三角形面积的计算等有关知识,难度中等.29.解:(1)符合条件的点D的坐标分别是D1(2,1),D2(﹣2,1),D3(0,﹣1).(2)①选择点D1(2,1)时,设直线BD1的解析式为y=kx+b,由题意得,解得.∴直线BD1的解析式为.②选择点D2(﹣2,1)时,类似①的求法,可得直线BD2的解析式为y=﹣x﹣1.③选择点D3(0,﹣1)时,类似①的求法,可得直线BD3的解析式为y=﹣x﹣1.30.解:(1)直线y=﹣x+b交y轴于点P(0,b),由题意,得b>0,t≥0,b=1+t.当t=3时,b=4,故y=﹣x+4.(2)当直线y=﹣x+b过点M(3,2)时,2=﹣3+b,解得:b=5,5=1+t,解得t=4.当直线y=﹣x+b过点N(4,4)时,4=﹣4+b,解得:b=8,8=1+t,解得t=7.故若点M,N位于l的异侧,t的取值范围是:4<t<7.(3)如右图,过点M作MF⊥直线l,交y轴于点F,交x轴于点E,则点E、F 为点M在坐标轴上的对称点.过点M作MD⊥x轴于点D,则OD=3,MD=2.已知∠MED=∠OEF=45°,则△MDE与△OEF均为等腰直角三角形,∴DE=MD=2,OE=OF=1,∴E(1,0),F(0,﹣1).∵M(3,2),F(0,﹣1),∴线段MF中点坐标为(,).直线y=﹣x+b过点(,),则=﹣+b,解得:b=2,2=1+t,解得t=1.∵M(3,2),E(1,0),∴线段ME中点坐标为(2,1).直线y=﹣x+b过点(2,1),则1=﹣2+b,解得:b=3,3=1+t,解得t=2.故点M关于l的对称点,当t=1时,落在y轴上,当t=2时,落在x轴上.。

北师大版八年级数学上册第四章 一次函数 一次函数与正比例函数

北师大版八年级数学上册第四章 一次函数 一次函数与正比例函数

课堂检测
基础巩固题
4.已知y与x-3成正比例,当x=4时,y=3. (1)写出y与x之间的函数关系式,并指出它是什么函数; (2)求x=2.5时,y的值.
解 :(1)设y=k(x-3), 把 x=4,y=3 代入上式,得 3= k(4-3), 解得 k=3, 所以y=3(x-3), 所以y=3x-9, y是x的一次函数. (2)当x=2.5时,y=3×2.5 - 9= -1.5.
一次函数的简单应用
课后作业
作业 内容
教材作业 从课后习题中选取
自主安排 配套练习册练习
吗?如果是,请指出相应的k与b的值.
A
解: (1)因为BC边上的高AD也是BC边上的中线,
所以BD= 1.x 在Rt△ABD中,由勾股定理,得
2
B
h AD AB2 BD2 x2 1 x2 3 x,
4
2
即 h 3 x.
2
所以h是x的一次函数,且 k 3 ,b 0.
2
DC
课堂检测
拓广探索题
函数是一次函数
关系式为:y=kx+b (k,b为常数,k≠0)
特别地,当b=0时,称y是x的正比例函数.
函数是正比例函数
关系式为:y=kx (k为常数,k≠0)
探究新知
思考 一次函数的结构特征有哪些?
答:一次函数的结构特征: (1)k≠0 . (2)x 的次数是1. (3)常数项b可以为一切实数.
探究新知
方法点拨
1.判断一个函数是一次函数的条件: 自变量是一次整式,一次项系数不为零; 2.判断一个函数是正比例函数的条件: 自变量是一次整式,一次项系数不为零, 常数项为零.
巩固练习
变式训练
下列函数中哪些是一次函数,哪些又是正比例函数?

八年级数学上册第4章一次函数3一次函数的图象第2课时一次函数的图象与性质新版北师大版

八年级数学上册第4章一次函数3一次函数的图象第2课时一次函数的图象与性质新版北师大版
CD 所在直线的表达式.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
解:设直线 AB 的表达式为y = kx + b .因为直线经过点 A
= ,
= ,

(0,2), B (4,0),所以ቊ
解得൝
= − .
+ = ,


所以直线 AB 的表达式为 y =- x +2.

设 AB 边上的高 CD 所在直线的表达式为 y = mx + n .因为
11
12
13
14
15
知识点3 一次函数图象的平移
9. [教材P88习题T4变式]将一次函数 y =4 x -1的图象向上平
移5个单位,得到的函数表达式为(
C
A. y =4 x -6
B. y =4 x +5
C. y =4 x +4
D. y =4 x
1
2
3
4
5
6
7
8
9
10
11
12
)
13
14
15
10. [2024西安交大附中期中]将一次函数 y =2 x +4的图象平
则 y1与 y2的大小关系是(
A
)
A. y1< y2
B. y1> y2
C. y1≤ y2
D. y1≥ y2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
7. 【新视角 结论开放题】若一次函数 y = kx -2的函数值 y

北师大一次函数知识点

北师大一次函数知识点

北师大一次函数知识点一、函数定义与性质函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素。

一次函数,也称为线性函数,是一种基本的数学函数形式。

它的定义可以写作f(x) = ax + b,其中a和b为常数。

1. 函数定义域与值域函数的定义域是指所有使函数有意义的输入值的集合,常见的一次函数的定义域是实数集。

而值域则是函数在定义域上对应的所有输出值构成的集合。

2. 函数图像一次函数的图像是一条直线,其斜率决定了图像的倾斜程度。

当斜率为正时,图像从左下到右上递增;当斜率为负时,图像从左上到右下递减。

3. 单调性一次函数在定义域上可以是单调递增或单调递减的,这取决于斜率的正负。

当斜率为正时,函数递增;当斜率为负时,函数递减。

4. 零点一次函数的零点是使函数取0值的x值。

它可以通过解一次方程f(x) = 0得到。

二、函数的常用表示形式1. 一般式一般式的一次函数表示为ax + by + c = 0,其中a,b,c为常数,x和y为变量。

通过简单的数学变换,可以将一般式转化为标准式或截距式。

2. 标准式标准式的一次函数表示为y = mx + n,其中m和n为常数,x 和y为变量。

标准式可以直观地反映出函数的斜率和截距,并且常用于求函数的零点和值域。

3. 截距式截距式的一次函数表示为y = kx + b,其中k和b为常数,x和y为变量。

截距式可以很方便地直接读取出函数的截距,即当x等于0时的函数值。

三、一次函数的相关概念1. 斜率一次函数的斜率是描述函数图像倾斜程度的重要指标。

斜率等于直线上任意两点之间纵坐标差与横坐标差的比值。

斜率可以为正、负或零,分别代表不同的倾斜方向和水平情况。

2. 截距一次函数的截距是指函数图像与坐标轴的相交点。

与x轴的相交点称为x截距,与y轴的相交点称为y截距。

通过求解一次方程,可以计算出截距的具体值。

3. 平行和垂直线两个直线平行的条件是它们的斜率相等,而两个直线垂直的条件是它们的斜率的乘积等于-1。

一次函数(全章知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

一次函数(全章知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题4.24一次函数(全章知识梳理与考点分类讲解)【知识点1】函数及相关概念(1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.(2)函数:在一个变化过程中,有两个变量x 和y ,对于x 的每一个值,y 都有唯一确定的值与其对应,那么就称y 是x 的函数,其中x 是自变量,y 是因变量.(3)函数的表示方法:列表法、图像法、解析法.(4)自变量的取值范围:整式函数的自变量取值范围是全体实数;分式函数自变量的取值范围是使分母不为零的实数;二次根式函数的自变量取值范围是使被开方数为非负数的实数.易错警示:函数解析式同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分.例:函数5y x =-中自变量的取值范围是35x x ≥-≠且.(5)函数的图象:对于一个函数,如果把自变量与函数的对应值分别作为点的横坐标、纵坐标,那么坐标平面内由这些点组成的图象就是这个函数的图象.(6)画图象的步骤:取值、描点、连线.【知识点2】一次函数的概念一次函数:如果(0)y kx b k b k =+≠、是常数,,那么y 叫做x 的一次函数.正比例函数:当0b =时,一次函数y kx b =+变成称(0)y kx k k =≠为常数,,y 叫做x 的正比例函数.【知识点3】一次函数的图象一次函数的图象:一次函数(0)y kx b k =+≠的图象是一条恒经过点(0,)b 和(,0)bk-的直线.正比例函数的图象:正比例函数(0)y kx k =≠的图象是一条恒经过原点(0,0)和(1,)k 直线.【知识点4】一次函数的性质(1)正比例函数的图象与性质y =kx图像经过象限升降趋势增减性k >0一、三源:学*科*网X从左向右上升y 随着x 的增大而增大k <0二、四从左向右下降y 随着x 的增大而减小(2)一次函数的图象与性质y =kx +b图像经过象限升降趋势增减性k >0,b >0一、二、三从左向右上升[来源:学科网ZXXK]y 随着x 的增大而增大k >0,b <0一、三、四k <0,b >0一、二、四从左向右下降y 随着x 的增大而减小k <0,b <0二、三、四【知识点5】一次函数的图象与k、b 之间的联系①b 决定直线与y 轴的交点位置0b >时,直线交y 轴于正半轴;0b <时,直线交y 轴于负半轴;0b =时,直线经过原点.②0k >⇔直线上坡,y 随x 的增大而增大;0k <⇔直线下坡,y 随x 的增大而减小.③k 越大,直线越陡.【知识点6】确定一次函数表达式(1)待定系数法步骤:设:设函数表达式为(0)y kx b k =+≠;代:将已知点的坐标代入函数表达式,解方程或方程组;解:求出k 与b 的值,得到函数表达式.(2)常见类型①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y=2x 平移所得到的,且经过点(0,1),则可设要求函数的解析式为y =2x +b ,再把点(0,1)的坐标代入即可.【知识点7】图象的平移一次函数y kx b =+向左平移m 个单位后的解析式为()y k x m b =++;一次函数y kx b =+向右平移m 个单位后的解析式为()y k x m b =-+;一次函数y kx b =+向上平移m 个单位后的解析式为y kx b m =++;一次函数y kx b =+向上平移m 个单位后的解析式为y kx b m =+-.平移规律:左加右减,上加下减.【知识点8】两条直线间的位置关系设直线111:l y k x b =+,222:l y k x b =+.(1)12k k ≠⇔相交;(2)1212k k b b =⎧⇔⎨≠⎩平行;(3)121k k =-⇔ 垂直.补充:若直线y kx b =+经过11(,)A x y ,22(,)B x y 12()x x ≠两点,则1212y y k x x -=-.【知识点9】一次函数与方程(组)(1)一次函数图象上点的坐标与二元一次方程的解一一对应.(2)二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩的解就是两个一次函数11y k x b =+和22y k x b =+图象的交点坐标.(3)一元一次方程0kx b +=的根就是一次函数y kx b =+(k 、b 是常数,0k ≠)的图象与x 轴交点的横坐标.【知识点10】一次函数与不等式(1)一次函数y kx b =+的函数值y >0时,自变量x 的取值范围就是不等式0kx b +>的解集(2)一次函数y kx b =+的函数值y <0时,自变量x 的取值范围就是不等式0kx b +<的解集【考点一】函数的认识➼➻函数概念★自变量的取值范围★函数值【例1】(2023春·江苏南通·八年级校考阶段练习)一汽车一次加满油40升,每小时耗油5升,x 小时后剩余油量y 升.(1)写出一次加满油后剩余油量y 与时间x 的函数关系式.(2)求出自变量的取值范围.【答案】(1)540y x =-+;(2)08x ≤≤;【分析】(1)根据剩余油量=总油量-耗油量列函数关系式即可;(2)根据一次加满油40升可得540x ≤,然后可求出自变量的取值范围.(1)解:由题意得:405540y x x =-=-+;(2)解:∵一次加满油40升,∴540x ≤,解得:8x ≤,∴自变量的取值范围为08x ≤≤.【点拨】本题考查函数的应用,解答本题的关键是明确题意,列出函数关系式.【举一反三】【变式1】(2023春·河南驻马店·八年级统考期末)下列不能表示y 是x 的函数的是()A .B .C .D .21y x =+【答案】B【分析】根据函数的定义,一个x 只能对应一个y ,函数的表示方法有图象法,列表法和关系式法,根据定义判断即可.解:A 选项是列表法表示的函数,一个x 只对应了一个y ,所以y 是x 的函数,故本选项不符合题意;B 选项从图象上看,一个x 对应了两个y ,不符合函数定义,故本选项符合题意;C 选项从图象上看,一个x 对应了一个y ,符合函数定义,故本选项不符合题意;D 选项是关系式法表示的函数,一个x 对应了一个y ,符合函数定义,故本选项不符合题意.故选:B .【点拨】本题考查了函数的定义,掌握函数的概念是解题关键.【变式2】(2023春·辽宁大连·八年级统考期中)正方形边长为9,若边长增加x ,则面积增加y .y 关于x 的函数解析式为.【答案】218y x x=+【分析】根据正方形的面积公式即可得.解:由题意得:()2229918y x x x =+-=+,故答案为:218y x x =+.【点拨】本题考查了函数解析式,利用正方形的面积公式正确列出式子是解题关键.【考点二】函数的认识➼➻从函数图象中读取信息【例2】(2023春·河南郑州·七年级校考期中)周末,小明坐公交车到碧沙岗公园,他出发后0.8小时到郑州购书中心,逗留一段时间后继续坐公交车到碧沙岗公园,小明离家一段时间后,爸爸驾车沿相同的路线前往碧沙岗公园,如图是他们离家路程(km)s 与小明离家时间(h)t 的关系图,请根据图回答下列问题.(1)小明家到碧沙岗公园的路程为______km ,小明出发______小时后爸爸驾车出发;(2)图中A 点表示的实际意义是______;(3)小明从中心书城到碧沙岗公园的平均速度为______km/h ,小明爸爸驾车的平均速度为______km/h ;(4)爸爸驾车经过______h 追上小明.【答案】(1)30,2.5;(2)2.5小时后小明继续坐公交车到碧沙岗公园;(3)12;30;(4)23【分析】(1)根据图象中数据即可得出结论;(2)根据点A 的坐标即可得到点A 的实际意义;(3)根据相应的路程除以时间,即可得出速度;(4)设爸爸驾车经t 小时追上小明,根据爸爸的路程=小明的路程列出方程,解方程即可.(1)由图可得,小明家到碧沙岗公园的路程是30km ;小明出发2.5小时后爸爸驾车出发,故答案为:30,2.5;(2)由图可得,A 点表示2.5小时后小明继续坐公交车到碧沙岗公园,故答案为:2.5小时后小明继续坐公交车到碧沙岗公园;(3)小明从中心书城到碧沙岗公园的平均速度为()301212km/h 4 2.5-=-,小明爸爸驾车的平均速度为()3030km/h 3.5 2.5=-,故答案为:12;30;(4)设爸爸驾车经x 小时追上小明,则121230x x +=,解得23x =,∴爸爸驾车经23小时追上小明,故答案为:23.【点拨】本题考查了从函数图象获取信息,以及行程问题的数量关系的运用,解答时理清函数图象的意义是解答此题的关键.【举一反三】【变式1】(2023春·辽宁沈阳·七年级统考期末)如图1,在ABC 中,90B Ð=°,动点P 从点A 出发,沿折线A B C --方向匀速运动,速度为1cm /s ,连接PC ,图2表示APC △的面积(y 单位:cm²)与运动时间(x 单位:)s 之间的关系图象,则图2中a 表示的数为.【答案】24【分析】先由函数的图象得6cm AB =,8cm BC =,当点P 到达点B 时面积为最大,最大面积为a 的值,从而可得出答案.解:由函数的图象可知:点P 从A B -的路程6cm ,从B C -的路程为8cm ,当点P 到达点B 时,面积为最大值,最大值为ABC 的面积.∴6cm AB =,8cm BC =,90B ∠=︒ ,()211682422ABC S AB BC cm ∴=⋅=⨯⨯= ,24a ∴=.故答案为:24.【点拨】此题主要考查了函数的图象,解答此题的关键是理解题意,读懂函数的图象,准确的从函数的图象中提取解决问题的性质【变式2】(2023春·河南郑州·七年级校考期中)已知动点H 以每秒x 厘米的速度沿图1的边框(边框拐角处都互相垂直)按从A B C D E F -----的路径匀速运动,相应的HAF △的面积()2cm S 关于时间(s)t 的关系图象如图2,已知8cm AF =,则下列说法正确的有几个()①动点H 的速度是2cm/s ;②BC 的长度为3cm ;③b 的值为14;④在运动过程中,当HAF △的面积是230cm 时,点H 的运动时间是3.75s 和1025s ..A .1个B .2个C .3个D .4个【答案】A【分析】先根据点H 的运动,得出当点H 在不同边上时HAF △的面积变化,并对应图2得出相关边的边长,最后经过计算判断各个说法.解:当点H 在AB 上时,如图所示,(cm)AH xt =,()214cm 2HAF S AF AH xt =⨯⨯= ,此时三角形面积随着时间增大而逐渐增大,当点H 在BC 上时,如图所示,HP 是HAF △的高,且HP AB =,∴12HAF S AF AB =⨯⨯ ,此时三角形面积不变,当点H 在CD 上时,如图所示,HP 是HAF △的高,C ,D ,P 三点共线,12HAF S AF HP =⨯⨯ ,点H 从点C 点D 运动,HP 逐渐减小,故三角形面积不断减小,当点H 在DE 上时,如图所示,HP 是HAF △的高,且HP EF =,12HAF S AF EF =⨯⨯ ,此时三角形面积不变,当点H 在EF 时,如图所示,12HAF S AF HF =⨯⨯ ,点H 从点E 向点F 运动,HF 逐渐减小,故三角形面积不断减小直至零,对照图2可得05t ≤≤时,点H 在AB 上,∴2x =,2510(cm)AB ⨯==,∴动点H 的速度是2cm /s ,故①正确,58t ≤≤时,点H 在BC 上,此时三角形面积不变,∴动点H 由点B 运动到点C 共用时()853s -=,∴236(cm)BC ⨯==,故②错误,12t b ≤≤,点H 在DE 上,862(cm)DE AF BC =-=-=,∴动点H 由点D 运动到点E 共用时()221s ÷=,∴12113b =+=,故③错误.当HAF △的面积是230cm 时,点H 在AB 上或CD 上,点H 在AB 上时,()24830cm AAF S xt t === ,解得 3.75(s)t =,点H 在CD 上时,()211830cm 22HAF S AF HP HP =⨯⨯=⨯⨯= ,解得7.5(cm)HP =,∴107.5 2.5(cm)CH AB HP =-=-=,∴从点C 运动到点H 共用时2.52 1.25(s)=÷,由点A 到点C 共用时8s ,∴此时共用时8 1.259.25(s)+=,故④错误.故选:A .【点拨】本题考查动点函数的图象,掌握三角形的面积公式,函数图象的性质,理解函数图象上的点表示的意义是解决本题的关键.【考点三】一次函数定义➼➻正比例函数、一次函数的定义【例3】(2023春·湖南岳阳·八年级校考期末)已知函数()211y m x m =-+-.(1)当m 为何值时,y 是x 的一次函数?(2)当m 为何值时,y 是x 的正比例函数?【答案】(1)1m ≠;(2)1m =-【分析】(1)利用一次函数定义进行解答即可;(2)利用正比例函数定义进行解答.(1)解:由题意得:10m -≠,解得:1m ≠;(2)解:由题意得:210m -=且10m -≠,解得:1m =-.【点拨】本题主要考查了正比例函数定义和一次函数定义,关键是掌握形如(y kx k =是常数,且0)k ≠的函数叫做正比例函数;形如(y kx b k b =+、是常数,且0)k ≠的函数叫做一次例函数.【举一反三】【变式1】(2023春·福建泉州·八年级统考期中)若点(),P a b 在直线21y x =+上,则代数式142a b -+的值为()A .3B .1-C .2D .0【答案】A【分析】把点(),P a b 代入21y x =+,得出21a b -=-,将其代入142a b -+进行计算即可.解:把点(),P a b 代入21y x =+得21b a =+,整理得:21a b -=-,∴()()1421221213a b a b -+=--=-⨯-=,故选:A .【点拨】本题主要考查了一次函数图象上点的坐标特征,求代数式的值,解题的关键是掌握一次函数图象上点的坐标都符合一次函数表达式,以及整式添加括号,若括号前为负号,要变号.【变式2】(2023春·河北承德·八年级统考期末)全世界大部分国家都采用摄氏温标预报天气,但美国、英国等国家仍然采用华氏温标.某学生查阅资料,得到如下图表中的数据:摄氏温度值/x ℃010********华氏温度值/y F32506886104122(1)分析两种温标计量值的对应关系是否是一次函数?(填“是”或“否”)(2)请你根据数据推算0F 时的摄氏温度为C【答案】是1609-【分析】(1)根据表格中的数据,判断y 与x 的函数关系是一次函数即可;(2)设函数解析式,再根据表格中的数据,求出函数解析式,最后代入求解即可.(1)由表格可知,x 每增加10,y 就增加18,则两种温标计量值的对应关系是一次函数,故答案为:是(2)设华氏温度y 与摄氏温度x 之间的函数关系式为y kx b =+,由表中的数据,得321050b k b =⎧⎨+=⎩,解得 1.832k b =⎧⎨=⎩,1.832y x ∴=+,∴华氏温度y 与摄氏温度x 之间的函数关系式为 1.832y x =+,当0y =时,0 1.832x =+,解得1609x =-,∴当华氏温度为0F 时,摄氏温度是1609-C ,故答案为:1609-【点拨】本题考查了一次函数关系的判断、待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,求出函数的解析式是解题的关键.【考点四】一次函数➼➻一次函数的图像与位置【例4】(2023秋·湖北咸宁·九年级统考开学考试)如图,一次函数y mx n =+与正比例函数y mnx =(m ,n 为常数,且0mn ≠)的图象是()A .B .C .D .【答案】A【分析】分别分析四个选项中一次函数和正比例函数m 和n 的符号,即可进行解答.解:A 、由一次函数图象得:0,0m n <>,由正比例函数图象得:0mn <,符合题意;B 、由一次函数图象得:0,0m n <>,由正比例函数图象得:0mn >,不符合题意;C 、由一次函数图象得:0,0m n >>,由正比例函数图象得:0mn <,不符合题意;D 、由一次函数图象得:0,0m n ><,由正比例函数图象得:0mn >,不符合题意;故选:A .【点拨】本题主要考查了一次函数和正比例函数的图象,解题的关键是掌握一次函数和正比例函数图象与系数的关系.【举一反三】【变式1】(2022秋·江苏连云港·八年级校考阶段练习)在同一直角坐标系中,函数y kx =-与y x k =+的图象大致应为()A.B .C .D .【答案】B【分析】根据图象分别确定k 的取值范围,若有公共部分,则有可能;否则不可能.解:根据图象知:A 、0k <,则0k ->,正比例函数的图象不对,不符合题意;B 、0k >,则0k -<.图象正确,符合题意;C 、当0k >,y x k =+过一、二、三象限,不符合题意;D 、正比例函数的图象不对,不符合题意;故选:B .【点拨】一次函数y kx b =+的图象有四种情况:①当0k >,0b >时,函数y kx b =+的图象经过第一、二、三象限;②当0k >,0b <时,函数y kx b =+的图象经过第一、三、四象限;③当0k <,0b >时,函数y kx b=+的图象经过第一、二、四象限;④当0k <,0b <时,函数y kx b =+的图象经过第二、三、四象限.【变式2】(2023春·山东德州·八年级统考期中)已知:一次函数()35y m x m =-+-.(1)若一次函数的图象过原点,求实数m 的值;(2)当一次函数的图象与y 轴交于正半轴,并且y 随x 的增大而减小,求m 的取值范围;(3)当一次函数的图象不经过第一象限时,求实数m 的取值范围.【答案】(1)5m =;(2)5m >;(3)35m <≤【分析】(1)把()0,0代入()35y m x m =-+-可得50m -=,再解方程并检验即可;(2)由一次函数()35y m x m =-+-的图象与y 轴交于正半轴,并且y 随x 的增大而减小,再建立不等式组3050m m -<⎧⎨->⎩求解即可;(3)由一次函数()35y m x m =-+-的图象不经过第一象限,再建立不等式组3050m m -<⎧⎨-≤⎩求解即可.(1)解:∵一次函数()35y m x m =-+-的图象过原点,∴50m -=,解得:5m =,经检验符合题意;(2)∵一次函数()35y m x m =-+-的图象与y 轴交于正半轴,并且y 随x 的增大而减小,∴3050m m -<⎧⎨->⎩,解得:5m >;(3)∵一次函数()35y m x m =-+-的图象不经过第一象限,∴3050m m -<⎧⎨-≤⎩,解得:35m <≤.【点拨】本题考查的是一次函数的图象与性质,熟记一次函数的图象所经过的象限是解本题的关键.【考点五】一次函数图象➼➻一次函数的增减性【例5】(2021春·广东江门·八年级校考期中)已知正比例函数y kx =的图象经过点()4,8-.(1)求这个函数解析式;(2)判断点()2,5A -是否在这个函数图象上;(3)图象上的两点()11,C x y ,()22,D x y ,且12x x <,比较1y ,2y 的大小.【答案】(1)2y x =-;(2)点()2,5A -不在这个函数图象上;(3)12y y >【分析】(1)利用待定系数法求解析式即可;(2)将点A 横坐标代入函数解析式,求出纵坐标,即可判断点A 是否在这个函数图象上;(3)根据正比例函数的增减性,即可比较1y ,2y 的大小.(1)解:将点()4,8-代入y kx =,得48k =-,解得2k =-,∴这个函数解析式为2y x =-;(2)解:当2x =-时,()()2245y =-⨯-=≠,∴点()2,5A -不在这个函数图象上;(3)解:∵20k =-<,∴y 随着x 增大而减小,∵图象上的两点()11,C x y ,()22,D x y ,且12x x <,∴12y y >.【点拨】本题考查了一次函数图象上点的坐标特征,涉及待定系法求解析式,一次函数的性质与系数的关系,熟练掌握一次函数图象上点的坐标特征是解题的关键.【举一反三】【变式1】(2023春·河南南阳·八年级统考期末)已知点()14,y -,()22,y ,()32,y -都在直线2y x b =-上,则1y 、2y 、3y 的大小关系是()A .123y y y >>B .231y y y >>C .132y y y >>D .321y y y >>【答案】B 【分析】根据比例系数,20k =>,根据一次函数的性质y 随x 的增大而增大即可判断.解:根据2y x b =-,20k ∴=>,y 随x 的增大而增大,由于1(4,)y -,2(2,)y ,3(2,)y -都在直线2y x b =-上,422-<-< ,231y y y ∴>>,故选:B .【点拨】本题考查一次函数的增减性与k 的正负有关,进而判断即可.【考点六】一次函数➼➻待定系数法求一次函数的解析式【例6】(2023春·甘肃定西·八年级校考阶段练习)已知一次函数的图像经过点(1,2),(3,0).(1)求出y 与x 的函数解析式;(2)设点(2,)a 在这个函数的图象上,求a 的值.【答案】(1)3y x =-+;(2)1a =【分析】(1)设一次函数解析式为(0)y kxb k =+≠,根据一次函数的图像经过点(1,2),(3,0)得230k b k b +=⎧⎨+=⎩,进行计算即可得;(2)将点(2,)a 代入函数解析式中即可得.(1)解:设一次函数解析式为(0)y kx b k =+≠,∵一次函数的图像经过点(1,2),(3,0)∴230k b k b +=⎧⎨+=⎩,解得13k b =-⎧⎨=⎩,∴y 与x 的函数解析式为:3y x =-+;(2)解:∵点(2,)a 在函数3y x =-+的图象上,∴231a =-+=.【点拨】本题考查了一次函数的性质,解题的关键是掌握待定系数法.【举一反三】【变式1】(2023春·新疆阿克苏·八年级校考阶段练习)设一次函数y kx b =+(k ,b 为常数,且0k ≠),图象过()()2,7,0,3A B .(1)求该一次函数的解析式;(2)判断点()1,2P -是否在该一次函数图象上.【答案】(1)23y x =+;(2)不在【分析】(1)把()()2,7,0,3A B 分别代入y kx b =+,利用待定系数法求解即可;(2)把=1x -代入解析式,求得1y =,即可判断.(1)把()()2,7,0,3A B 分别代入y kx b =+得:273k b b +=⎧⎨=⎩,解得:23k b =⎧⎨=⎩,∴一次函数解析式为23y x =+;(2)当=1x -时,231y =-+=,∴点()1,2P -不在该一次函数图象上.【点拨】本题考查了求一次函数解析式及一次函数图象上的点,熟练掌握知识点是解题的关键.【变式2】(2023春·陕西商洛·八年级校考期末)已知y 是x 的一次函数,且当0x =时,3y =;当2x =时,1y =-.(1)求一次函数的解析式,(2)若3y <-,求自变量x 的取值范围.【答案】(1)23y x =-+;(2)3x >【分析】(1)利用待定系数法即可求得函数的解析式;(2)根据3y <-即可列出不等式即可求解.(1)解:设()0y kx b k =+≠,根据题意得:312b k b =⎧⎨-=+⎩,解得:23k b =-⎧⎨=⎩,∴一次函数的解析式是:23y x =-+;(2)解:3y <- ,233x ∴-+<-,解得:3x >,∴自变量x 的取值范围:3x >.【点拨】本题考查了待定系数法求函数的解析式和解一元一次不等式,正确解方程组求得k 和b 的值是解题的关键.【考点七】一次函数➼➻一次函数的平移【例7】(2023春·江西赣州·八年级校联考期末)已知一次函数的图象过点()3,5与()4,9--.(1)求这个一次函数的解析式;(2)若将这个一次函数的图象向上平移3个单位,求平移后的图象与x 轴的交点坐标.【答案】(1)一次函数解析式为21y x =-;(2)平移后的图象与x 轴的交点坐标为()1,0-【分析】(1)设出一次函数的解析式是y kx b =+,然后把经过的点的坐标代入,求解得到k 、b 的值即可得解;(2)根据平移的方向和距离得到平移后的解析式,然后令0y =,即可求得x 的值,从而得到图象与x 轴的交点坐标.(1)解:设一次函数的解析式是y kx b =+,将点()3,5与()4,9--的坐标代入得:3549k b k b +=⎧⎨-+=-⎩,解21k b =⎧⎨=-⎩,∴一次函数解析式为21y x =-;(2)将21y x =-沿y 轴向上平移3个单位,所得直线的解析式为22y x =+,令0y =得;220x +=,所以=1x -.∴平移后的图象与x 轴的交点坐标为()1,0-.【点拨】本题主要考查的是利用待定系数法求一次函数的解析式,一次函数的平移,求出一次函数解析式是解题的关键.【举一反三】【变式1】(2023·陕西咸阳·校考二模)在平面直角坐标系中,将直线()40y kx k =+≠向右平移2个单位长度后所得的直线经过坐标原点,则k 的值为()A .2-B .1-C .2D .1【答案】C【分析】由题意得,平移后的直线的解析式为()24y k x =-+,将()00,代入得,()0024k =-+,计算求解即可.解:由题意得,平移后的直线的解析式为()24y k x =-+,将()00,代入得,()0024k =-+,解得2k =,故选:C .【点拨】本题考查了一次函数图象的平移.解题的关键在于对知识的熟练掌握与灵活运用.【变式2】(2023春·湖北黄冈·八年级统考期末)已知一次函数y kx b =+的图象与直线21y x =+平行并且过点()0,2P ,则这个一次函数的解析式为.【答案】22y x =+【分析】根据互相平行的两直线解析式的k 值相等,得到一次函数的解析式为2y x b =+,再把点()0,2P 代入解析式求解即可.解:∵一次函数y kx b =+的图象与直线21y x =+平行,∴2k =,∴一次函数为2y x b =+,∵一次函数过点()0,2P ,∴20b =+,∴2b =,∴一次函数的解析式为:22y x =+,故答案为:22y x =+.【点拨】本题主要考查了两直线平行问题,求一次函数解析式,解题的关键是熟知:若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.【考点八】一次函数➼➻一次函数图象与直线交点坐标【例8】(2023春·四川成都·八年级成都外国语学校校考期中)如图,直线26y x =+与x 轴交于点A ,与y 轴交于点B ,直线112y x =-+与x 轴交于点C ,与y 轴交于点D ,两直线交于点E.(1)求出A ,E 两点的坐标;(2)求四边形AODE 的面积.【答案】(1)点A 坐标为()3,0-,点E 坐标为()2,2-;(2)4【分析】(1)对于26y x =+,当0y =时求出x ,即可得到点A 的坐标,联立两个函数的解析式,求出方程组的解即可得出点E 的坐标;(2)先求出点D 、C 的坐标,再利用面积的和差解答即可.(1)对于26y x =+,当0y =时,260x +=,解得3x =-,∴点A 坐标为()3,0-,联立26112y x y x =+⎧⎪⎨=-+⎪⎩,解得22x y =-⎧⎨=⎩,∴点E 坐标为()2,2-;(2)对于112y x =-+,当0y =时,1102x -+=,解得2x =,∴点C 坐标为()2,0,∴235AC =+=,当0x =时,1y =,∴点D 坐标为()0,1,∴1OD =,∴115221422AEC ODC AODE S S S =-=⨯⨯-⨯⨯= 四边形.【点拨】本题考查了一次函数与坐标轴的交点、两个函数的交点等知识,熟练掌握一次函数的相关知识是解题的关键.【举一反三】【变式】(2023春·江西新余·八年级统考期末)一次函数1y kx b =+与2y x a =+的图象如图,则下列结论:①0k <;②0a >;③关于x 的方程kx x a b -=-的解是3x =;④当3x <时,12y y <中.则正确的序号有()A .①②B .①③C .②④D .③④【答案】B 【分析】根据一次函数的性质对①②进行判断;利用一次函数与一元一次方程的关系对③进行判断;利用函数图象,当3x <时,一次函数1y kx b =+在直线2y x a =+的上方,则可对④进行判断.解:∵一次函数1y kx b =+经过第一、二、四象限,∴00k b <>,,所以①正确;∵直线2y x a =+的图象与y 轴的交点在x 轴下方,∴a<0,所以②错误;∵一次函数1y kx b =+与2y x a =+的图象的交点的横坐标为3,∴3x =时,kx b x a +=+,整理得kx x a b -=-,则关于x 的方程kx x a b -=-的解是3x =,所以③正确;当3x <时,1y kx b =+图像在2y x a =+图像的上方,∴12y y >,所以④错误.故选:B .【点拨】本题考查一次函数与一元一次方程、一次函数与一元一次不等式、一次函数图象与系数的关系,掌握一次函数与一元一次方程、一次函数与一元一次不等式、一次函数图象与系数的关系是解题关键.【考点九】一次函数➼➻一次函数图象与二元一次不等式组【例9】(2023春·山东枣庄·八年级统考期中)数形结合是解决数学问题的一种重要的思想方法,借助图的直观性,可以帮助我们理解数学问题.如图1,已知一次函数y kx b =+(k 、b 为常数,且0k ≠)的图象.(1)方程0kx b +=的解为______,不等式4kx b +<的解集为______;(2)若正比例函数y mx =(m 为常数,且0m ≠)与一次函数y kx b =+相交于点P (如图2),则不等式组00mx kx b >⎧⎨+>⎩的解集为______;(3)比较mx 与+kx b 的大小(根据图象直接写出结果).【答案】(1)2x =,0x >;(2)02x <<;(3)当1x <时,mx kx b <+;当1x =时,mx kx b =+;当1x >时,mx kx b >+【分析】(1)根据点A 的坐标即可方程0kx b +=的解,再根据点B 的坐标即可得不等式4kx b +<的解集;(2)根据函数图象分别求出不等式0mx >和不等式0kx b +>的解集,再找出它们的公共部分即可得不等式组的解集;(3)根据点P 的横坐标,分1x <、1x =、1x >三种情况,结合函数图象即可.(1)解:由函数图象可知,方程0kx b +=的解为2x =,不等式4kx b +<的解集为0x >,故答案为:2x =,0x >;(2)解:由函数图象可知,不等式0mx >的解集为0x >,不等式0kx b +>的解集为2x <,则这个不等式组的解集为02x <<,故答案为:02x <<;(3)解:由函数图像可知,当1x <时,mx kx b <+,当1x =时,mx kx b =+,当1x >时,mx kx b >+.【点拨】本题考查一次函数与方程、不等式,熟练掌握函数图象是解题的关键.【举一反三】【变式1】(2023秋·山东泰安·七年级统考期末)如图,已知一次函数y kx b =+的图象与x 轴,y 轴分别交于点()1,0,点()0,2,有下列结论:①图象经过点()2,3;②关于x 的方程0kx b +=的解为1x =;③当1x >时,0y <.其是正确的是.【答案】②③【分析】待定系数法求出函数解析式,根据图象法解方程,增减性判断函数值的变化情况,逐一进行判断即可.解:∵一次函数y kx b =+的图象与x 轴,y 轴分别交于点()1,0,点()0,2,∴02k b b=+⎧⎨=⎩,解得:22k b =-⎧⎨=⎩,∴22y x =-+,当2x =时,222y =-⨯+,=2y -;∴图象不经过点()2,3;故①错误;一次函数y kx b =+的图象与x 轴交于点()1,0,∴关于x 的方程0kx b +=的解为1x =;故②正确;由图象可知,y 随x 的增大而减小,∴当1x >时,0y <;故③正确;故答案为:②③【点拨】本题考查一次函数的图象和性质,待定系数法求出函数解析式,利用函数的性质和图象法求解,是解题的关键.【变式2】(2023秋·湖南长沙·九年级长沙市长郡双语实验中学校考开学考试)如图,直线11l y kx =+:与x 轴交于点D ,直线2l y x b =-+:与x 轴交于点A ,且经过定点()1,5B -,直线1l 与2l 交于点()2,C m .(1)求的值;(2)求ADC 的面积;【答案】(1)12k =;(2)6【分析】(1)将点()1,5B -,代入直线2l :y x b =-+得出4b =,进而得出直线2l :4y x =-+,然后得出()2,2C ,代入1y kx =+,即可求解;(2)先求得A ,D 的坐标,进而根据三角形面积公式,即可求解.(1)解: 直线2l :y x b =-+与x 轴交于点A ,且经过定点()1,5B -,51b ∴=+,4b ∴=,∴直线2l :4y x =-+,直线2l :4y x =-+经过点()2,C m ,242m ∴=-+=,()2,2C ∴,把()2,2C 代入1y kx =+,得12k =.∴12k =,4b =,2m =;(2)对于直线1l :y =121x +,令0y =,得到2x =-,()2,0D ∴-,2OD ∴=,。

北师大版八年级上册数学第四章 一次函数含答案【参考答案】

北师大版八年级上册数学第四章 一次函数含答案【参考答案】

北师大版八年级上册数学第四章一次函数含答案一、单选题(共15题,共计45分)1、如图,过点A的一次函数图象与正比例函数y=2x的图象相交于点B,则这个一次函数的关系式是()A.y=2x+3B.y=2x-3C.y=x-3D.y= -x+32、下列平面直角坐标系中的曲线,不能表示y是x的函数的是()A. B. C.D.3、若函数y=(k﹣2)﹣5是关于x的一次函数,则K的值为()A.K=﹣2B.K=2C.K=2或﹣2D.不确定4、已知正比例函数的图像上有两点且,,且x>x2,则y1与y2的大小关系是()1A. B. C. D.不能确定.5、已知汽车油箱内有油40L,每行驶100km耗油10L,则汽车行驶过程中油箱内剩余的油量Q (L)与行驶路程s(km)之间的函数表达式是()A.Q=40+B.Q=40﹣C.Q=40﹣D.Q=40+6、已知一次函数y=(m+3)x-2中,y的值随x的增大而增大,则m的取值范围是()A.m>0B.m<0C.m>-3D.m<-37、如图1,在同一直在线,甲自A点开始追赶等速度前进的乙,图2表示两人距离与所经时间的线型关系。

若乙的速率为每秒1.5公尺,则经过40秒,甲自A点移动多少公尺?()A.60B.61.8C.67.2D.698、已知两个变量x和y,它们之间的3组对应值如表所示,则y与x之间的函数关系式可能是()x ﹣1 1 3y ﹣3 3 1A.y=x﹣2B.y=2x+1C.y=x 2+x﹣6D.y=9、已知正比例函数y=(3k﹣1)x,若y随x的增大而增大,则k的取值范围是()A.k<0B.k>0C.k<D.k>10、反比例函数与正比例函数y=2x在同一坐标系内的大致图象为()A. B. C.D.11、如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家,其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A.1.1千米B.2千米C.15千米D.37千米12、在糖水中继续放入糖x(g)、水y(g),并使糖完全溶解,如果甜度保持不变,那么y与x的函数关系一定是()A.正比例函数B.反比例函数C.图象不经过原点的一次函数D.二次函数13、关于函数y=x ,下列结论正确的是()A.函数图像必经过点(1,2)B.函数图像经过二、四象限C.y随x 的增大而减小D.y随x的增大而增大14、下列图象中,表示y是x的函数的是( )A. B. C. D.15、结合函数y=﹣2x的图象回答,当x<﹣1时,y的取值范围()A.y<2B.y>2C.y≥D.y≤二、填空题(共10题,共计30分)16、在平面直角坐标系中,画一次函数y=-3x+3的图像时,通常过点________和________画一条直线.17、如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l 2,过点(1,0)作x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A 4,…依次进行下去,则点A2017的坐标为________.18、已知一次函数,随的增大而增大,则________0.(填“>”,“<”或“=”)19、如图,点A的坐标为(﹣5,0),直线y= x+t与坐标轴交于点B,C,连结AC,如果∠ACD=90°,则t=________.20、无论a取什么实数,点P(a﹣1,2a﹣3)都在直线l上.Q(m,n)是直线l上的点,则(2m﹣n+3)2的值等于________.21、一次函数y=3x-1中,y随x的增大而________.22、若正比例函数y=(m﹣2)x的图象经过一、三象限,则m的取值范围是________.23、若点、都在函数的图象上,则和的大小关系是________.24、如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:cm2)与点P移动的时间t(单位:s)的函数关系式如图②所示,则点P从开始移动到停止移动一共用了________秒(结果保留根号).25、正比例函数y=kx的图象与直线对y=-x+1线交于的点P(a,2),则k的值是________.三、解答题(共5题,共计25分)26、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?27、如图①,在等腰梯形ABCD中,AD∥BC,AB=CD,上底AD=2,梯形的高也等于2。

北师大一次函数复习讲义(知识点、经典典例题、中考真题)

北师大一次函数复习讲义(知识点、经典典例题、中考真题)

北师大一次函数复习讲义知识点1、一次函数的意义知识点:一次函数:若两个变量x 、y 间的关系式可以表示成b kx y +=(k 、b 为常数,0≠k )的形式,称y 是x 的一次函数。

正比例函数:形如kx y =(0≠k )的函数,称y 是x 的正比例函数,此时也可说y 与x 成正比例,正比例函数是一次函数,但一次函数并不一定是正比例函数 习题练习1、下列函数(1)y=3πx ;(2)y=8x-6;(3)1y x =;(4)1y 8x 2=-;(5)2y 541x x =-+中,是一次函数的有( )A 、4个B 、3个C 、2个D 、1个2、当k_____________时,()2323y k x x =-++-是一次函数;3、当m_____________时,()21345m y m xx +=-+-是一次函数; 4、当m_____________时,()21445m y m x x +=-+-是一次函数;知识点2、求一次函数的解析式知识点:确定正比例函数kx y =的解析式:只须一个条件,求出待定系数k 即可. 确定一次函数b kx y +=的解析式:只须二个条件,求出待定系数k 、b 即可. A 、设——设出一次函数解析式,即b kx y +=;B 、代——把已知条件代入b kx y +=中,得到关于k 、b 的方程(组);C 、求——解方程(组),求k 、b ;D 、写——写出一次函数解析式.常见题型归类第一种情况:不已知函数类型(不可用待定系数法),通过寻找题目中隐含的自变量和函数变量之间的数量关系,建立函数解析式。

(见前面函数解析式的确定) 第二种情况:已知函数是一次函数(直接或间接),采用待定系数法。

(已知是一次函数或已知解析式形式y kx b =+或已知函数图象是直线都是直接或间接已知了一次函数) 一、定义型 一次函数的定义:形如y kx b =+,k 、b 为常数,且k≠0。

二. 平移型 两条直线1l:11y k x b =+;2l :22y k x b =+。

一次函数关系式的常见类型(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

一次函数关系式的常见类型(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题4.22一次函数关系式的常见类型(知识梳理与考点分类讲解)一次函数关系式常见类型目录:【类型1】定义型【类型2】一点型【类型3】两点型【类型4】图象型【类型5】斜截型【类型6】应用型【类型7】面积型【类型8】平移型【类型9】对称型【考点一】定义型【例1】(2023秋·八年级课时练习)已知函数()2324my m x n -=-++.(1)当,m n 为何值时,y 是x 的一次函数,并写出关系式;(2)当,m n 为何值时,y 是x 的正比例函数,并写出关系式.【答案】(1)当m=-2,n 为任意实数时,y 是x 的一次函数,关系式为44y x n =-++;(2)当m=-2,n=-4时,y 是x 的正比例函数,关系式为4y x=-【分析】(1)根据一次函数的定义即可求出结论;(2)根据正比例函数的定义即可求出结论.解:(1)由题意可得23120m m ⎧-=⎨-≠⎩,n 可以取任意实数解得:m=-2∴44y x n=-++∴当m=-2,n 为任意实数时,y 是x 的一次函数,关系式为44y x n =-++;(2)由题意可得2312040m m n ⎧-=⎪-≠⎨⎪+=⎩,解得:24m n =-⎧⎨=-⎩∴4y x=-∴当m=-2,n=-4时,y 是x 的正比例函数,关系式为4y x =-.【点拨】此题考查的是根据一次函数和正比例函数的定义,求参数问题,掌握一次函数和正比例函数的定义是解题关键.【举一反三】【变式1】(2022秋·八年级单元测试)在平面直角坐标系中,若一个正比例函数的图象经过A (5,b ),B (a ,4)两点,则a ,b 一定满足的关系式为()A .a ﹣b =1B .a +b =9C .a •b =20D .a b =34【答案】C【分析】设该正比例函数是y =kx (k ≠0),将A 、B 两点的坐标分别代入,通过整理求得a ,b 一定满足的关系式.解:设该正比例函数是y =kx (k ≠0),则b =5k ,4=ak .∴4b =5a ,∴ab =20.故选:C .【点拨】本题考查了正比例函数的概念,关键是清楚图象经过点,则点的坐标满足函数解析式.【变式2】(2022秋·安徽蚌埠·八年级校考阶段练习)已知2y -与3x +成正比,且当1x =时,y =-6,则y 与x 的关系式是.【答案】y=-2x-4【分析】由2y -与3x +成正比例可设2y -=k (3x +)(k≠0),代入1x =时,y =-6即可得出关于k 的一元一次方程,解之即可得出结论.解:∵2y -与3x +成正比,∴设2y -=k 3x +()(k≠0).∵当1x =时,y =-6,∴-6-2=k (1+3),解得:2k =-,∴22(3)y x -=-+∴y 与x 的关系式为y=-2x-4故答案为y=-2x-4.【点拨】本题考查了正比例的意义,根据正比例的定义正确设未知数是解题关键.【考点二】一点型【例2】(2023春·福建莆田·八年级校考期中)已知直线上l :1y kx =-经过点()2,3A .(1)求直线l 的解析式;(2)判断点(1,23)P m m --是否在直线l 上,请说明理由.【答案】(1)21y x =-;(2)在直线l 上,理由见详解【分析】(1)根据待定系数法可求解函数解析式;(2)把1x m =-代入(1)中解析式进行求解即可.(1)解:把点()2,3A 代入解析式1y kx =-得:213k -=,解得:2k =,∴直线l 的解析式为21y x =-;(2)解:由题意可把1x m =-代入21y x =-得:()21123m m --=-,∴点(1,23)P m m --在直线l 上.【点拨】本题主要考一次函数的图象与性质,熟练掌握利用待定系数法求解函数解析式是解题的关键.【举一反三】【变式1】(2021秋·广西梧州·八年级统考期中)已知一次函数5y kx =+的图象经过()12M -,,则k 的值是()A .3B .3-C .6D .6-【答案】A【分析】把()12M -,代入一次函数5y kx =+求出k 的值即可.解:把()12M -,代入一次函数5y kx =+得:25k =-+,解得:3k =,故A 正确.故选:A .【点拨】本题主要考查了求一次函数解析式,解题的关键是熟练掌握待定系数法.【变式2】(2023秋·重庆沙坪坝·八年级重庆八中校考阶段练习)已知一次函数2y x a =+与y x b =-+的图象都经过()2,0A ,且与y 轴分别交于B ,C ,则ABC 的面积为.【答案】6【分析】利用待定系数法求得a 、b 的值,求得点B ,C 的坐标,再利用三角形的面积公式计算即可.解:∵一次函数2y x a =+与y x b =-+的图象都经过()2,0A ,把()2,0A 代入2y x a =+得,40a +=,∴4a =-,∴一次函数解析式为24y x =-,∴()0,4B -,把()2,0A y x b =-+得,20b -+=,∴2b =,∴一次函数解析式为2y x =-+,∴()0,2C ,∴=42=6BC --,∴12662ABC S =⨯⨯= ,故答案为:6.【点拨】本题考查两直线的交点问题、一次函数的图象上点的特征,通过已知点的坐标求函数解析式是解题的关键.【考点三】两点型【例3】(2023春·吉林长春·八年级校考期中)已知某一次函数y kx b =+的图像经过点(1,3),(1,7)-,求这个一次函数的解析式.【答案】25y x =-+【分析】将(1,3),(1,7)-代入y kx b =+求出k 、b 的值,再将k 、b 的值反回代入y kx b =+中,即可得到一次函数的解析式.解:将(1,3),(1,7)-代入y kx b =+,得37k b k b=+⎧⎨=-+⎩,解得25k b =-⎧⎨=⎩,∴一次函数的解析式为25y x =-+.【点拨】本题主要考查了利用待定系数法求一次函数的解析式,熟练掌握待定系数法是解题的关键.【举一反三】【变式1】(2023春·安徽池州·八年级统考开学考试)若弹簧的总长度()cm y 是所挂重物x (千克)的一次函数图象如图,则不挂重物时,弹簧的长度是()A .5cmB .8cmC .9cmD .10cm【答案】B 【分析】先利用待定系数法求一次函数解析式,再令0x =,进行求解即可.解:设一次函数解析式为()0y kx b k =+≠,∵点()4,10、点()20,18在一次函数图象上,∴4102018k b k b +=⎧⎨+=⎩,解得128k b ⎧=⎪⎨⎪=⎩,∴一次函数解析式为182y x =+,当0x =时,1=08=82y ⨯+,∴不挂重物时,弹簧的长度是8cm ,故选:B .【点拨】本题考查利用待定系数法求一次函数解析式、求函数值,熟练利用待定系数法求一次函数解析式是解题的关键.【变式2】(2023春·安徽宿州·八年级校考开学考试)如图,直线24y x =+与x 轴、y 轴交于点A 、B ,M 、N 分别是AB 、OA 的中点,点P 是y 轴上一个动点,则PM PN +的最小值为,此时点P 的坐标为.【答案】()0,1【分析】如图,作点M 关于y 轴对称的点M ',连接M N ',由PM PN PM PN '+=+,可知当点P 在M N '上时,PM PN +的值最小,当0x =时,2044y =⨯+=,即B ()0,4;当0y =时,240x +=,解得2x =-,即A ()2,0-,由M 、N 分别是AB 、OA 的中点,可得M ()1,2-,N ()1,0-,M '()1,2,即M N =',进而可得PM PN +的最小值,待定系数法求得直线M N '的表达式为1y x =+,当0x =时,011y =+=,即点P 的坐标为()0,1.解:如图,作点M 关于y 轴对称的点M ',连接M N ',∵PM PN PM PN '+=+,∴当点P 在M N '上时,PM PN +的值最小,当0x =时,2044y =⨯+=,即B ()0,4;当0y =时,240x +=,解得2x =-,即A ()2,0-,∵M 、N 分别是AB 、OA 的中点,∴M ()1,2-,N ()1,0-,∴M '()1,2,∴MN ='∴PM PN +的最小值为设直线M N '的表达式为()0y kx b k =+≠,将()1,2M ',()1,0N -代入得20k b k b +=⎧⎨-+=⎩,解得11k b =⎧⎨=⎩,∴直线M N '的表达式为1y x =+,当0x =时,011y =+=,∴点P 的坐标为()0,1,故答案为:()0,1.【点拨】本题考查了一次函数解析式,对称的性质,勾股定理求两点之间的距离.解题的关键在于明确线段和最小的情况.【考点四】图像型【例4】(2023秋·贵州遵义·九年级校考阶段练习)如图,直线1l 的解析式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A 、B ,直线1l 、2l 交于点C .(1)求ADC △的面积;(2)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请求出点P 的坐标.【答案】(1)92;(2)()6,3【分析】(1)已知1l 的解析式,令0y =求出x 的值即可求出()1,0D ,设2l 的解析式为y kx b =+,由图联立方程组求出k ,b 的值,即可得直线2l 的解析表达式为362y x =-;联立方程组,求出交点C 的坐标,继而可求出ADC S △;(2)ADP △与ADC △底边都是AD ,面积相等所以高相等,ADC △高就是点C 到AD 的距离.解:(1)由33y x =-+,令0y =,得330x -+=,∴1x =,∴()1,0D ;设直线2l 的解析表达式为y kx b =+,由图象知:403x y x ===,;,32y =-,代入表达式y kx b =+,∴40332k b k b +=⎧⎪⎨+=-⎪⎩,∴326k b ⎧=⎪⎨⎪=-⎩,∴直线2l 的解析表达式为362y x =-;由33362y x y x =-+⎧⎪⎨=-⎪⎩,解得23x y =⎧⎨=-⎩,∴()2,3C -,∵3AD =,∴193322ADC S =⨯⨯-=△;(2)ADP △与ADC △底边都是AD ,面积相等所以高相等,ADC △高就是点C 到直线AD 的距离,即C 纵坐标的绝对值33=-=,则P 到AD 距离3=,∴P 纵坐标的绝对值3=,点P 不是点C ,∴点P 纵坐标是3,∵ 1.563y x y =-=,,,1.563x ∴-=,6x =,即()6,3P .【点拨】本题考查的是一次函数的图象与性质,二元一次方程组,以及三角形面积的计算等有关知识,难度中等.掌握一次函数的图象与性质,是解答本题的关键.【举一反三】【变式1】(2023·河南郑州·河南省实验中学校考模拟预测)如图是y 关于x 的一个函数图象,根据图象,下列说法正确的是()A .该函数的最小值为3-B .当0x ≥时,y 随x 的增大而增大C .当0x =时,对应的函数值12y =D .当12x =和32x =时,对应的函数值相等【答案】C 【分析】分别求出1x ≥和1x ≤时的函数解析式,结合图象,逐一进行判断即可.解:A 、由图象可知,函数的最小值为2-;故该选项错误;B 、当1x ≥时,y 随x 的增大而增大,故该选项错误;C 、设1x ≤时,函数的解析式为y kx b =+,由图可知,点()()1,3,1,2--,在直线上,∴32k b k b =-+⎧⎨-=+⎩,解得:5212k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴5122y x =-+,∴当0x =时,12y =,故该选项正确;D 、当12x =时,51132224y =-⨯+=-,设1x ≥时,函数的解析式为y mx n =+,由图可知,点()()3,1,1,2-在直线上,∴132m n m n =+⎧⎨-=+⎩,解得:3272m n ⎧=⎪⎪⎨⎪=-⎪⎩,∴3722y x =-,∴当32x =时,975424y =-=-;∴当12x =和32x =时,对应的函数值不相等;故该选项错误;故选C .【点拨】本题考查一次函数的图象和性质,解题的关键是正确的求出函数的解析式,利用数形结合的思想进行求解.【变式2】(2023秋·山东泰安·七年级统考期末)如图,已知一次函数y kx b =+的图象与x 轴,y 轴分别交于点()1,0,点()0,2,有下列结论:①图象经过点()2,3;②关于x 的方程0kx b +=的解为1x =;③当1x >时,0y <.其是正确的是.【答案】②③【分析】待定系数法求出函数解析式,根据图象法解方程,增减性判断函数值的变化情况,逐一进行判断即可.解:∵一次函数y kx b =+的图象与x 轴,y 轴分别交于点()1,0,点()0,2,∴02k b b =+⎧⎨=⎩,解得:22k b =-⎧⎨=⎩,∴22y x =-+,当2x =时,222y =-⨯+,=2y -;∴图象不经过点()2,3;故①错误;一次函数y kx b =+的图象与x 轴交于点()1,0,∴关于x 的方程0kx b +=的解为1x =;故②正确;由图象可知,y 随x 的增大而减小,∴当1x >时,0y <;故③正确;故答案为:②③【点拨】本题考查一次函数的图象和性质,待定系数法求出函数解析式,利用函数的性质和图象法求解,是解题的关键.【考点五】斜截型【例5】(2019秋·安徽合肥·八年级校联考阶段练习)已知一次函数的图象平行于y =﹣13x ,且截距为1.(1)求这个函数的解析式;(2)判断点P (﹣2,13)是否在这个函数的图象上.【答案】(1)y =﹣13x +1;(2)不在.【分析】(1)根据两平行直线的解析式的k 值相等可求出k ,再由截距为1求出b 值,即可得解;(2)把点1(2,3P -代入函数解析式检验即可.解:(1)设这个函数的解析式为y kx b =+,∵一次函数的图象平行于13y x =-,且截距为1,1,13k b ∴=-=∴这个函数的解析式为113y x =-+;(2)当2x =-时,151((2)1333y =-⨯-+=≠,故点1(2,)3P -不在这个函数的图象上.【点拨】本题考查了一次函数的定义和性质,如果两条直线平行,则他们的函数解析式的k 值相等,这条性质常常用来解题,需熟记.【举一反三】【变式1】(2021秋·安徽六安·八年级校考阶段练习)若y 关于x 的一次函数y =(2m +1)x -m +3,y 随x 的增大而增大,且截距不大于1,则m 的取值范围是()A .m >-12B .m ≥4C .-12<m ≤2D .m ≥2【答案】D 【分析】根据题意,可得一次函数的0k >,1b ≤,据此列出不等式组,即可求得m 的取值范围.解:依题意,21031m m +>⎧⎨-+≤⎩解得2m ≥故选D .【点拨】本题考查了一次函数的性质,解一元一次不等式组,掌握一次函数的性质是解题的关键.【变式2】(2023春·上海闵行·八年级统考期末)直线y kx b =+在y 轴上的截距为3-,且平行于l :y x =-,那么直线的表达式为.【答案】3y x =--/3y x=--【分析】根据互相平行的直线的解析式k 的值相等确定出k ,根据“在y 轴上的截距是3-”求出b 值,即可得解.解:∵直线y kx b =+平行于直线y x =-,∴1k =-.又∵直线y kx b =+在y 轴上的截距是3-,∴3b =-,∴这条直线的解析式是3y x =--.故答案为:3y x =--.【点拨】本题考查了两直线平行的问题,熟记并利用平行直线的解析式的k 值相等是解题的关键.【考点六】应用型【例6】(2022春·湖南怀化·八年级统考期末)一辆轿车在高速公路上匀速行驶,油箱存油量Q (升)与行驶的路程S (km )成一次函数关系.若行驶100km 时,油箱存油43.5升,当行驶300km 时,油箱存油30.5升,请求出这个一次函数关系式,并写出自变量S 的取值范围.【答案】1350200Q S =-+,自变量S 的取值范围为3076913S ≤≤【分析】根据题目意思设出函数关系式,根据已知条件用待定系数法解出函数关系式中的参数,可得函数关系式,当0Q =时,此时的S 为最大值,最小值为0,即可写出S 的取值范围.解:设:Q mS n =+,根据题意的方程组43.510030.5300m n m n=⨯+⎧⎨=⨯+⎩,解得1320050m n ⎧=-⎪⎨⎪=⎩,则该一次函数解析式为:1350200Q S =-+,当0Q =时,13500200S -+=,∴3769km 13S =,∴自变量S 的取值范围为3076913S ≤≤.【点拨】本题考查一次函数的应用,利用待定系数法确定函数解析式,注意函数自变量的取值范围应符合实际问题有意义是解答本题的关键.【举一反三】【变式1】(2023春·全国·八年级专题练习)某商场为了增加销售额,推出“七月销售大酬宾”活动,其活动内容为:“凡七月份在该商场一次性购物超过100元以上者,超过100元的部分按9折优惠.”在大酬宾活动中,小王到该商场为单位购买单价为60元的办公用品x 件(x >2),则应付货款y (元)与商品件数x 的函数关系式是()A .y =54x (x >2)B .y =54x +10(x >2)C .y =54x +90(x >2)D .y =54x +100(x >2)【答案】B【分析】由题意得2x >,则销售价超过100元,超过的部分为60x −100,即可得.解:∵2x >,∴销售价超过100元,超过部分为60x ﹣100,∴y =100+(60x ﹣100)×0.9=54x +10(2x >,且x 为整数),故选:B .【点拨】本题考查了一次函数的应用,解题的关键是理解题意,找出等量关系.【变式2】(2023春·湖南永州·八年级统考期末)小胜参加2023年的高考,到达考点时发现没有带身份证,求助交警后,交警驱车载小胜迅速回到离考点2千米的家取身份证,并立即返回考场,小胜离考点行驶路程y (米)与时间x (分钟)之间的变化关系如右图所示,根据图像中的数据,写出y 与()06x x ≤≤之间的函数表达式.【答案】()1000306y x x =≤≤【分析】根据待定系数法求解析式即可求解.解:设y 与()06x x ≤≤之间的函数表达式为y kx =,将点()6,2000代入得,20006k =,解得:10003k =,∴y 与()06x x ≤≤之间的函数表达式为()1000306y x x =≤≤,故答案为:()1000306y x x =≤≤.【点拨】本题考查了待定系数法求解析式,数形结合是解题的关键.【考点七】面积型【例7】(2023春·八年级单元测试)如图1,在四边形ABCD 中,90B Ð=°,AD BC ∥,4AB =,6AD =.若动点P 从点B 出发,以每秒2个单位的速度沿着BC CD DA →→的路线向终点A 运动.设点P 的运动时间为t 秒,图2是点P 出发t 秒后,ABP 的面积S 与t 的函数图像.(1)a =______,b =______;(2)求MN 所在直线对应的函数表达式;(3)运动几秒后,ABP 的面积为14?【答案】(1)92,7;(2)1214455S t =-+;(3)72秒或376秒【分析】(1)结合四边形ABCD 的形状、S 与t 的函数图像,判断出t a =,t b =,10t =时,点P 的位置,利用时间、速度、路程的关系即可求解;(2)求出点M ,N 的坐标,利用待定系数法求解;(3)ABP 的面积为14时,对应的点在线段OM 或MN 上,将14S =代入对应直线的函数解析式即可求解.(1)解:由图可知,当t a =时,点P 运动到点C ,当t b =时,点P 运动到点D ,当10t =时,点P 运动到点A ,∴2BC a =,()210CD DA a +=-由图可知,点P 运动到点C 时,18ABP S = ,∴1141822BC AB BC ⋅=⋅=,解得9BC =,∴922BC a ==,∴9210112CD DA ⎛⎫+=⨯-= ⎪⎝⎭,∴111165CD DA =-=-=,∴957222CD b a =+=+=,故答案为:92,7;(2)解:由(1)知点M 的坐标为9,182⎛⎫ ⎪⎝⎭, 当t b =时,点P 运动到点D ,∴当t b =时,11461222ABP S AB AD =⋅=⨯⨯= ,∴点M 的坐标为()7,12,设MN 所在直线对应的函数表达式为S mt n =+,将9,182M ⎛⎫ ⎪⎝⎭,()7,12N 代入,得:9182127m n m n ⎧=+⎪⎨⎪=+⎩,解得1251445m n ⎧=-⎪⎪⎨⎪=⎪⎩,∴1214455S t =-+;(3)解:由题意知,ABP 的面积为14时,对应的点在线段OM 或MN 上,当对应的点在线段OM 上时,设OM 的函数解析式为=S kt ,将9,182M ⎛⎫ ⎪⎝⎭代入,得:9182k =,解得4k =,∴OM 的函数解析式为4S t =,当14S =时,14742t ==;当对应的点在线段MN 上时,当14S =时,121441455t =-+,解得376t =,综上可知,运动72秒或376秒后,ABP 的面积为14.【点拨】本题考查一次函数的实际应用,涉及三角形面积公式、求一次函数解析式及自变量的值等,解题的关键是根据图形判断出不同时间段内点P 的位置.【举一反三】【变式1】(2023春·河南商丘·八年级统考期末)如图,已知直线1:24l y x =-+与坐标轴分别交于A 、B 两点,那么过原点O 且将AOB 的面积平分的直线2l 的解析式为()A .y x=B .2y x =C .3y x =D . 1.5y x=【答案】B 【分析】根据直线与坐标轴的交点坐标求法得到A 、B 两点坐标,再由AOB 的面积被中线平分得到AB 中点坐标,利用待定系数法即可求出过原点O 且将AOB 的面积平分的直线2l 的解析式.解: 直线1:24l y x =-+与坐标轴分别交于A 、B 两点,∴当0x =时,4y =,即()0,4B ;当0y =时,024x =-+,解得2x =,即()2,0A ;由三角形中线平分三角形面积可知,过原点O 且将AOB 的面积平分的直线2l 过AB 中点,∴AB 中点为0240,22++⎛⎫ ⎪⎝⎭,即()1,2,设直线2l 的解析式为2:l y kx =,将()1,2代入2:l y kx =得到2k =,则2y x =,故选:B .【点拨】本题考查待定系数法求直线解析式,涉及求直线与坐标轴交点坐标、中线平分三角形面积、中点坐标求法等知识,熟练掌握一次函数图像与性质是解决问题的关键.【变式2】(2023春·上海·八年级专题练习)已知直线()0y kx b k =+≠与坐标轴围成的三角形面积是6,且经过()2,0,则这条直线的表达式是.【答案】36y x =-+或36y x =-【分析】先根据面积求出三角形在y 轴上边的长度,再分正半轴和负半轴两种情况讨论求解.解:根据题意,设与y 轴交点坐标为()0b ,则1262b ⨯⨯=,解得6b =,6b ∴=±,①当6b =时,与y 轴交点为()06,∴206k b b +=⎧⎨=⎩,解得36k b =-⎧⎨=⎩,∴函数解析式为36y x =-+;②当6b =-时,与y 轴的交点为()06-,∴206k b b +=⎧⎨=-⎩解得36k b =⎧⎨=-⎩,∴函数解析式为36y x =-.∴这个一次函数的解析式是36y x =-+或36y x =-.故答案为:36y x =-+或36y x =-.【点拨】本题考查的是待定系数法求一次函数的解析式,先根据三角形面积求出与y 轴的交点,再利用待定系数法求函数解析式,本题需要注意有两种情况.【考点八】平移型【例8】(2022春·湖北武汉·八年级校考阶段练习)已知直线1l 经过()0,3A -、()2,0B .(1)求直线1l 的解析式及1l 与坐标轴围成的图形的面积;(2)将1l 向下平移3个单位长度,再向左平移1个单位长度,得到直线2l ,直接写出2l 的解析式______.【答案】(1)332y x =-;3;(2)3922y x =-【分析】(1)用待定系数法求出直线1l 的解析式,根据三角形面积公式求出与坐标轴围成的图形的面积即可;(2)根据平移的规律求出直线2l 的解析式即可.(1)解:设直线1l 的解析式为()0y kx b k =+≠,把()0,3A -、()2,0B 代入得:320b k b =-⎧⎨+=⎩,解得:323k b ⎧=⎪⎨⎪=-⎩,∴直线1l 的解析式为332y x =-;直线1l 与坐标轴围成的图形的面积为13232S =创=.(2)解:将1l 向下平移3个单位长度,再向左平移1个单位长度后得出的直线2l 的解析式为:()31332y x =+--,即3922y x =-,故答案为:3922y x =-.【点拨】本题主要考查了求一次函数解析式,直线与坐标轴围成的图形面积,一次函数的平移,解题的关键是熟练掌握待定系数法和平移规律.【举一反三】【变式1】(2023春·云南昆明·八年级统考期末)把直线6y x =向上平移后得到直线AB ,若直线AB 经过点(),m n ,且64n m -=,则直线AB 的表达式为()A .64y x =-+B .64y x =--C .64y x =-D .64y x =+【答案】D【分析】设向上平移d 个单位,则平移后的直线AB 的解析式为6y x d =+,根据题意直线AB 经过点(),m n ,得出6d n m =-,结合已知条件,即可求解.解:设向上平移d 个单位,则平移后的直线AB 的解析式为6y x d =+,∵直线AB 经过点(),m n ,∴6n m d =+,即6d n m =-,又64n m -=,∴4d =,∴直线AB 的解析式为64y x =+,故选:D .【点拨】本题考查了一次函数的平移,熟练掌握一次函数的平移规律是解题的关键.【变式2】(2022·江苏苏州·统考一模)如图,已知()1,6A 为直线:2l y x b =-+上一点,先将点A 向下平移a 个单位长度,再向右平移4个单位长度至点B ,再将点B 向下平移a 个单位长度至点C .若点C 恰好落在直线l 上,则a 的值为.【答案】4【分析】先将点A 代入y =-2x +b 求得b 的值,得到直线的解析式,然后用含有a 的式子表示点C ,再将点C 的坐标代入直线的解析式求得a 的值.解:点A (1,6)代入y =-2x +b 得,-2×1+b =6,解得:b =8,∴直线l 的解析式为y =-2x +8,∵点A 向下平移a 个单位长度,再向右平移4个单位长度至点B ,再将点B 向下平移a 个单位长度至点C ,∴点C 的坐标为(5,6-2a ),将点C 的坐标代入直线的解析式y =-2x +8得,-2×5+8=6-2a ,解得:a =4,故答案为:4.【点拨】本题考查了一次函数图象上点的坐标特征,解题的关键用待定系数法求得一次函数的解析式.【考点九】对称型【例9】(2023春·河南洛阳·八年级统考期末)如图,在矩形ABCO 中,点C 在x 轴上,点A 在y 轴上,点B 的坐标是(68),,ABD △与EBD △关于直线BF 对称,且点E 在对角线OB 上.(1)求线段OB 的长;(2)求点D 的坐标及直线BF 的函数表达式.【答案】(1)10;;(2)13(0,3,1113183y x =+.【分析】(1)根据点B 的坐标,利用勾股定理直接计算出OB 长;(2)设DE x =,则AD x =,8=-OD x ,4OE =,利用勾股定理可求出OD 长,点的坐标可求,根据B 、D 坐标,待定系数法可求直线BF 解析式.解:(1)∵点B 的坐标是(68),,∴6OC =,8BC =,在Rt BOC 中,由勾股定理得:10OB ===;(2)∵ABD △与EBD △关于直线BF 对称,∴90DEO DEB BAO ∠=∠=∠=︒,AD DE =,6AB BE ==,在Rt DEO △中,设DE x =,则AD x =,8=-OD x ,4OE OB BE =-=,由勾股定理得222DE OE OD +=得,()22246x x +=-,解得53x =,∴513633OD =-=,∴1303D ⎛⎫ ⎪⎝⎭,,设BF 的解析式为133y kx =+,∵(68)B ,在直线BF 上,∴13863k =+,∴1118k =,∴BF 的解析式为1113183y x =+.【点拨】本题考查了坐标与图形的性质,勾股定理,轴对称的性质,待定系数法求函数解析式,根据条件灵活设解析式便于简化计算.【举一反三】【变式1】(2023秋·全国·八年级专题练习)在平面直角坐标系中,直线3y x b =-+与直线1y kx =-关于直线2x =对称,则k ,b 的值分别为()A .3k =-,11b =B .3k =,11b =C .13k =,1b =D .13k =-,1b =【答案】B【分析】根据直线y =-3x +b 与直线y =kx -1关于直线x =2对称,可知这两条直线上的点也关于直线x =2对称,然后根据直线y =kx -1上的定点(0,-1)关于直线x =2的对称点(4,-1)可以求出b 的值,然后根据直线y =-3x +11与直线x =2的交点为:(2,5)也在直线y =kx -1,即可求出k 的值.解:∵直线y =-3x +b 与直线y =kx -1关于直线x =2对称,∴这两条直线上的点也关于直线x =2对称,∵直线y =kx -1必过点(0,-1),∴点(0,-1)关于直线x =2的对称点(4,-1)在直线y =-3x +b 上,∴-1=-3×4+b ,解得:b =11,∴直线y =-3x +b 即为:y =-3x +11,∵直线y =-3x +11与直线x =2的交点为:(2,5),∴点(2,5)一定在直线y =kx -1上,∴5=2k -1,解得:k =3.故选:B .【点拨】本题主要考查用待定系数法一次函数的解析式和轴对称的性质,熟练掌握一次函数的图像、轴对称的性质以及利用数形结合思想是解题关键.【变式2】(2021·山东临沂·统考一模)定义:若两个函数的图象关于直线y =x 对称,则称这两个函数互为反函数.请写出函数y =-2x +1的反函数的解析式.【答案】y =-12x +12【分析】首先可求得函数y =-2x +1与x 轴和y 轴的交点坐标,再求得它们关于直线y =x 对称点的坐标,据此即可求得函数y =-2x +1的反函数的解析式.解:在y =-2x +1中,当x =0时,y =1,当y =0时,x =12,即函数和x 轴的交点为(12,0),和y 轴的交点坐标为(0,1),所以两点关于直线y =x 对称的点的坐标分别为(0,12)和(1,0),设函数y =-2x +1的反函数的解析式为y =kx +b (k ≠0),把(0,12)和(1,0)代入,可得:120b k b ⎧=⎪⎨⎪+=⎩,解得:1212k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴函数y =-2x +1的反函数的解析式为y =-12x +12,故答案为:y =-12x +12.【点拨】本题考查了利用待定系数法求一次函数的解析式,理解新定义,求出已知点关于直线y =x 对称点的坐标是解决本题的关键.。

北师大版八年级数学上册《第四章 一次函数》同步练习题(附答案)

北师大版八年级数学上册《第四章 一次函数》同步练习题(附答案)

北师大版八年级数学上册《第四章一次函数》同步练习题(附答案)基础过关全练知识点1确定一次函数的表达式1.如图,在直角坐标系中,直线l的解析式是()A.y=3x+3B.y=3x-3C.y=-3x+3D.y=-3x-32.【新独家原创】在平面直角坐标系的第四象限内有一点M,点M到x轴的距离为2,到y轴的距离为4,则直线OM的表达式为.3.【一题多变】如图,直线过点A、B(0,-1)、C(4,1),则三角形AOB的面积为. [变式]已知某直线经过点(0,-1),且与两坐标轴围成的三角形的面积为1,则该直线的表达式是.4.【教材变式·P90T2】如图所示,在平面直角坐标系中,过点B(3,0)的直线y1与OAx交于点A,∠CBO=45°.所在直线:y2=12(1)求直线y1的表达式;(2)在y轴上找一点P,使S△AOP=2S△AOB,求P点的坐标.知识点2一次函数与一元一次方程的关系,则一次函5.(2022辽宁沈阳沈北新区期末)已知关于x的方程ax+b=0的解为x=-32数y=ax+b的图象与x轴交点的坐标为() A.(3,0) B.(−2,0)3C.(-2,0)D.(−3,0)26.(2022江西遂川期末)一次函数y=ax+b的图象如图所示,则关于x的方程ax+b+2=0的解为.知识点3一次函数的实际应用7.(2023山东青岛即墨期末)电信公司手机的收费标准有A,B两类,已知每月应缴费用S(元)与通话时间t(分)之间的关系如图所示.当通话时间为200分钟时,按这两类收费标准缴费的差为()()A.10元B.15元C.20元D.30元8.【一题多解】如图所示的是一个沙漏在计时过程中所剩沙子质量y(克)与时间x(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为小时.9.(2022江西吉安文博学校期中)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做试验,并根据试验数据绘制出如图所示的容器内盛水量W(L)与滴水时间t(h)之间的函数关系图象,请结合图象解答下列问题:(1)容器内原有多少水?(2)求W与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升.能力提升全练10.(2022山东威海中考,6,★★☆)如图,在方格纸中,点P,Q,M的坐标分别记为(0,2),(3,0),(1,4).若MN∥PQ,则点N的坐标可能是()A.(2,3)B.(3,3)C.(4,2)D.(5,1)11.(2023广东深圳公明中学期中,21,★★☆)如图,在平面直角坐标系中,过点C(0,6)的直线AB与直线OA相交于点A(4,2).(1)求直线OA及直线AB的解析式;(2)求△AOB的面积;(3)填空:AB∶AC=.12.下图是一个“函数求值机”的示意图,其中y是x的函数.通过该“函数求值机”得到的几组x与y的对应值如下表.输入x…-6 -4 -2 0 2 …输出y…-6 -2 2 6 16 …根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值.13.【学科素养·应用意识】李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快.在一段儿时间内,水温y(℃)与加热时间x(s)之间近似满足一次函数关系,根据记录的数据,画函数图象如图所示.()(1)加热前水温是℃;(2)求乙壶中水温y关于加热时间x的函数解析式;(3)当甲壶中水温刚达到80 ℃时,乙壶中水温是℃.素养探究全练14.【国防形势与任务】【推理能力】2021年年末,我省某市相关部门接到情报,近海处有一可疑船只A正向公海方向行驶,相关部门迅速派出快艇B追赶(如图1).在图2中,l1、l2分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.根据图象回答问题:(1)直线l1与直线l2中,表示B到海岸的距离与追赶时间之间的关系;(2)设l1与l2对应的一次函数表达式分别为s1=k1t+b1与s2=k2t+b2,求出这两个表达式;(3)15分钟内B能否追上A?为什么?(4)当A逃到离海岸9海里的公海时,B将无法对其进行检查,照此速度,B能否在A 逃入公海前将其拦截?为什么?答案全解全析基础过关全练1.A设直线l的解析式为y=kx+b把点(-1,0),(0,3)代入y=kx+b得-k+b=0,b=3解得k=3∴直线l的解析式为y=3x+3.故选A.2.y=-12x解析设直线OM的表达式为y=kx∵点M到x轴的距离为2,到y轴的距离为4,且M在第四象限,∴M(4,-2).将M(4,-2)代入kx,得-2=4k,∴k=-12∴y=-12x.3.1解析设BC所在直线的函数解析式为y=kx+b将(4,1),(0,-1)代入得4k+b=1,b=-1解得k=12则BC所在直线的函数解析式为y=12x-1.令y=0,则12x-1=0,解得x=2,即A(2,0)所以三角形AOB的面积为12×1×2=1.[变式]y=12x-1或y=-12x-1解析设该直线的表达式为y=kx+b 把(0,-1)代入得b=-1所以y=kx-1把y=0代入得x=1k所以12×1×|1k|=1解得k=12或-12故该直线的表达式为y=12x-1或y=-12x-1.4.解析(1)∵B(3,0),∠CBO=45°,∠COB=90°∴C(0,3).设直线y1的表达式为y1=kx+b把点B(3,0),C(0,3)代入,得3k+b=0,b=3,解得k=-1∴直线y1的表达式为y1=-x+3.(2)设P(0,d)由y=12x得x=2y,将x=2y代入y=-x+3,得3y=3,解得y=1,则x=2.∴点A的坐标为(2,1)∴S△AOB=12×3×1=32.∵S△AOP=2S△AOB∴12×2×|d|=2×32,解得d=±3∴P(0,3)或(0,-3).5.D关于x的方程ax+b=0的解为x=-32,即x=-32时,一次函数y=ax+b的函数值为0,所以一次函数y=ax+b的图象与x轴交点的坐标为(−32,0),故选D.6.x=2解析∵一次函数的图象经过点(0,-1),(-2,0)∴b =-1,-2a +b =0解得a =-12∴y =-12x -1 令y =-2,则-12x -1=-2 解得x =2∴方程ax +b +2=0的解为x =2.7.C 设A 类的S 与t 的关系式为S A =kt +b 将(0,20),(100,30)代入,得b =20,100k +b =30解得k =0.1∴S A =0.1t +20.设B 类的S 与t 的关系式为S B =at 将(100,30)代入,得30=100a解得a =0.3∴S B =0.3t.当t =200时,S A =0.1×200+20=40,S B =0.3×200=60 ∵60-40=20∴按这两类收费标准缴费的差为20元. 故选C.8.353解析 解法一:沙漏漏沙的速度为15−67=97(克/小时)∴从开始计时到沙子漏光所需的时间为15÷97=353(小时).解法二:设函数解析式为y=kx+b将(0,15),(7,6)代入,得15=b,6=7k+b,解得k=-97∴y=-97x+15令-97x+15=0,解得x=353.故所需的时间为353小时.9.解析(1)由题图可知,容器内原有0.3 L水.(2)由题图可知函数图象经过点(0,0.3),故设W与t之间的函数关系式为W=kt+0.3(k≠0).又因为函数图象经过点(1.5,0.9)所以1.5k+0.3=0.9,解得k=0.4.故W与t之间的函数关系式为W=0.4t+0.3.当t=24时,W=0.4×24+0.3=9.9,9.9-0.3=9.6(L)故在这种滴水状态下一天的滴水量为9.6 L.能力提升全练10.C设直线PQ的解析式为y=kx+b则b=2,3k+b=0解得k=-23∴直线PQ的解析式为y=-23x+2∵MN∥PQ∴设直线MN的解析式为y=-23x+t(t≠2)将M(1,4)代入得4=-23+t解得t=143∴直线MN的解析式为y=-23x+143代入各点验证,只有C选项满足,故选C.11.解析(1)设直线OA的解析式为y=kx 将点A(4,2)代入得2=4k解得k=12∴直线OA的解析式为y=12x.设直线AB的解析式为y=ax+b∵A(4,2),C(0,6)在直线AB上∴4a+b=2,b=6解得a=-1,b=6∴直线AB的解析式为y=-x+6.(2)令-x+6=0,则x=6∴B(6,0)∴OB=6∴S△AOB=12OB·y A=12×6×2=6即△AOB的面积为6.(3)∵AB=√(6−4)2+22=2√2,AC=√42+(6−2)2=4√2,∴AB∶AC=1∶2.12.解析(1)当输入的x值为1时,输出的y值为8×1=8.(2)将(-2,2),(0,6)代入y=kx+b,得-2k+b=2,b=6,解得k=2.(3)将y=0代入y=8x,得0=8x,∴x=0<1(舍去).将y=0代入y=2x+6,得0=2x+6,∴x=-3<1,符合题意.∴输出的y值为0时,输入的x值为-3.13.解析(1)由函数图象可知,当x=0时,y=20则加热前水温是20 ℃.(2)因为甲壶比乙壶加热速度快所以乙壶对应的函数图象经过点(0,20),(160,80)设乙壶中水温y关于加热时间x的函数解析式为y=kx+b(k≠0)将(0,20),(160,80)代入,得160k+b=80,b=20解得k=38则乙壶中水温y关于加热时间x的函数解析式为y=38x+20自变量x的取值范围是0≤x≤160.(3)设甲壶中水温y关于加热时间x的函数解析式为y=mx+n(m≠0) 将(0,20),(80,60)代入,得80m+n=60,n=20解得m=12则甲壶中水温y关于加热时间x的函数解析式为y=12x+20当y=80时,12x+20=80,解得x=120将x=120代入y=38x+20,得y=38×120+20=65即当甲壶中水温刚达到80 ℃时,乙壶中水温是65 ℃.素养探究全练14.解析(1)由已知可得直线l1表示B到海岸的距离与追赶时间之间的关系. (2)由题意可得k1、k2的实际意义分别表示快艇B的速度和可疑船只的速度,s1=0.5t,s2=0.2t+5.(3)15分钟内B不能追上A.理由:当t=15时,s2=0.2×15+5=8,s1=0.5×15=7.5∵8>7.5∴15分钟内B不能追上A. (4)B能在A逃入公海前将其拦截.理由:当s2=9时,9=0.2t+5,解得t=20 当t=20时,s1=0.5×20=10∵10>9∴B能在A逃入公海前将其拦截.。

2024八年级数学上册期末复习5一次函数3常考题型专练习题课件新版北师大版

2024八年级数学上册期末复习5一次函数3常考题型专练习题课件新版北师大版
1
2
3
4
5
6
题型4一次函数的最值问题
5. 如图,直线 y1= x +3分别与 x 轴、 y 轴交于点 A 和点 C ,
直线 y2=- x +3分别与 x 轴、 y 轴交于点 B 和点 C ,点 P
( m ,2)是△ ABC 内部(包括边上)的一点,则 m 的最大值
与最小值之差为(
B
)
A. 1
B. 2
件,则选择方案二;若每月生产产品
件数就是30件,两种方案报酬相同,
可以任选一种;若每月生产产品件数
超过30件,则选择方案一.
1
2
3
4
5
6
论,错误的是(
C
)
A. k >0
B. kb <0
C. k + b >0

D. k =- b

1
2
3
4
5
6
题型2一次函数的性质
3. [2023郴州] 在一次函数 y =( k -2) x +3中, y 随 x 的增大
而增大,则 k 的值可以是
3(答案不唯一)

.个
.符
.合
.条
.件
.的
.数
.即可).
1
C. 4
D. 6
1
2
3
4
5
6
点拨:因为点 P ( m ,2),所以点 P 在直线 y =2上,
如图所示.
当 P 为直线 y =2与直线 y2的交点时, m 取最大值,
当 P 为直线 y =2与直线 y1的交点时, m 取最小值.
对于 y2=- x +3,令- x +3=2,则 x =1;
对于 y1= x +3,令 x +3=2,则 x =-1.

一次函数(中考常考点分类)(基础练)-八年级数学上册基础知识专项突破讲与练(北师大版)

一次函数(中考常考点分类)(基础练)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题4.31一次函数(中考常考点分类专题)(基础练)一、单选题【考点1】函数的概念★★自变量的取值范围★★函数解析式★★函数值1.(2023秋·全国·八年级专题练习)下列图像中,不能表示y 是x 的函数的是()A .B .C .D .2.(2022秋·广东深圳·八年级校联考开学考试)一支签字笔的单价为2.5元,小涵同学拿了100元钱去购买了()40x x ≤支该型号的签字笔,写出所剩余的钱y 与x 间的关系式是()A . 2.5y x=B .100 2.5y x=-C . 2.5100y x =-D .100 2.5y x=+【考点2】一次函数➼➻定义★★参数★★自变量与函数值★★列一次函数解析式3.(2023秋·全国·八年级专题练习)若函数()124a y a x -=-+是一次函数,则a 的值为()A .2-B .2±C .2D .04.(2020·江苏泰州·统考中考真题)点(),P a b 在函数32y x =+的图像上,则代数式621a b -+的值等于()A .5B .3C .3-D .1-【考点3】正比例函数➼➻正比例函数的图象与性质5.(2023秋·安徽蚌埠·八年级统考阶段练习)关于正比例函数14y x =-,下列结论不正确的是()A .图象经过原点B .y 随x 的增大而减小C .点12,2⎛⎫⎪⎝⎭在函数14y x =-的图象上D .图象经过二、四象限6.(2023春·重庆九龙坡·八年级重庆实验外国语学校统考阶段练习)已知正比例函数(21)y m x =+的图象上两点()11,A x y ,()22,B x y ,当12x x <时,有12y y >,那么m 的取值范围是()A .12m >-B .12m <-C .1m >-D .1m <-【考点4】一次函数图象和性质➼➻判断位置★★求参数★★画一次函数图象7.(2022春·贵州安顺·八年级统考期末)已知一次函数22022y x m =-++的图象一定不经过的象限是()A .第四象限B .第三象限C .第二象限D .第一象限8.(2022秋·陕西榆林·八年级校考期中)已知一次函数()34y a x a =+++的图象如图所示,那么a 的取值范围是()A .3a >-B .3a <-C .43a -<<-D .a<0【考点5】一次函数图象和性质➼➻一次函数图象与坐标轴交点9.(2022秋·陕西西安·八年级校考期中)如图,在同一平面直角坐标系中,一次函数()11110y k x b k =+≠与()22220y k x b k =+≠的图象分别为直线1l 和直线2l ,下列结论正确的是()A .120k k > B .120k k ->C .120b b +<D .12·0b b >10.(2023秋·安徽合肥·八年级校考阶段练习)已知一次函数4y ax =-与2y bx =+图象在x 轴上相交于同一点,则ba的值是()A .4B .2-C .12D .12-【考点6】一次函数图象和性质➼➻一次函数图象平移问题11.(2023秋·重庆沙坪坝·八年级重庆八中校考阶段练习)将直线22y x =-+平移后,所得到的直线为23y x =--,则原直线()A .向上平移5个单位B .向下平移5个单位C .向左平移5个单位D .向右平移5个单位12.(2022春·陕西渭南·八年级统考期末)如图,A 为x 轴负半轴上一点,过点A 作AB x ⊥轴,与直线y x =交于点B ,将ABO 沿直线y x =向上平移'A'B'O △,若点A 的坐标为(3,0)-,则点B'的坐标是()A .()1,1B .()2,2C .()3,3D .()5,5【考点7】一次函数图象和性质➼➻一次函数的增减性➼➻求参数★★比较大小13.(2023秋·黑龙江齐齐哈尔·九年级克东县第三中学校考开学考试)对于函数 1y x =-+,下列结论正确的是()A .它的图象必经过点(1,0)-B .它的图象经过第一、二、三象限C .当1x >时,0y <D .y 的值随x 值的增大而增大14.(2023春·山东聊城·八年级统考期末)已知11 A x y (,),22 Bx y (,)为直线23y x =-上不相同的两个点,以下判断正确的是()A .()()12120x x y y -->B .()()12120x x y y --<C .()()12120x x y y --≥D .()()12120x x y y --≤【考点8】一次函数图象和性质➼➻直线与坐标轴交点➼➻求方程的解15.(2023春·天津·八年级统考期末)已知方程0ax b +=的解为x =-32,则一次函数y ax b =+的图象与x 轴交点的坐标为()A .()3,0B .(-23,0)C .()2,0-D .(-32,0)16.(2023春·河南洛阳·八年级偃师市实验中学校考期末)一次函数y kx b =+的图象与x 轴交于点()30A -,,则关于x 的方程0kx b -+=的解为()A .3x =B .3x =-C .0x =D .2x =【考点9】一次函数图象和性质➼➻规律问题★★最值问题17.(2019·福建厦门·校考二模)关于x 的一次函数1(2)(1)(01)=-+-<<y x k x k k,当2≤x≤3时,y 的最大值是()A .2-+kkB .12-k kC .kD .-k18.(2023春·八年级课时练习)正方形111A B C O ,2221A B C C ,3332A B C C ,…,按如图的方式放置,点1A ,2A ,3A ,…和点1C ,2C ,3C ,…分别在直线1y x =+和x 轴上,则点7B 的坐标是()A .(31,16)B .(63,32)C .(64,32)D .(127,64)二、填空题【考点1】函数的概念★★自变量的取值范围★★函数解析式★★函数值19.(2023·辽宁辽阳·辽阳市第一中学校联考一模)函数1y x=+x 的取值范围是.20.(2023秋·上海杨浦·八年级统考期末)已知()6=f x x,那么f=.【考点2】一次函数➼➻定义★★参数★★自变量与函数值★★列一次函数解析式21.(2022秋·浙江·八年级期末)一次函数y =10-2x 的比例系数是.22.(2023秋·全国·八年级专题练习)如图,点(0,4)A ,(2,4)B ,点P 在直线112y x =+上,当PA PB =时,点P 的坐标是.【考点3】正比例函数➼➻正比例函数的图象与性质23.(2023春·贵州黔西·八年级校考阶段练习)如图,正比例函数11223344y k x y k xy k x y k x ====,,,在同一平面直角坐标系中的图象如图所示.则比例系数1k ,2k ,3k ,4k 从小到大排列并用“<”连接为.24.(2022秋·上海·八年级校考期中)已知正比例函数()0y kx k =≠的图象经过一、三象限,且经过点()2,21P k k ++,则k =.【考点4】一次函数图象和性质➼➻判断位置★★求参数★★画一次函数图象25.(2023春·黑龙江鹤岗·八年级统考期末)直线y kx b =+经过一、二、四象限,则直线y bx k =-+不经过第象限.26.(2020春·湖北武汉·八年级校考阶段练习)在同一平面直角坐标系中,函数y =|3x -1|+2的图象记为l 1,y =x -7的图象记为l 2,把l 1、l 2组成的图形记为图形M .若直线y =kx -5与图形M 有且只有一个公共点,则k 应满足的条件是【考点5】一次函数图象和性质➼➻一次函数图象与坐标轴交点27.(2022秋·四川达州·八年级校考阶段练习)函数42y x =-与x ,y 轴交点坐标分别为.28.(2023秋·山西运城·八年级统考期中)如图,已知直线24y x =-+与x 轴交于点A ,与y 轴交于点B ,以点A 为圆心,AB 为半径画弧,交x 轴负半轴于点C ,则点C 坐标为.【考点6】一次函数图象和性质➼➻一次函数图象平移问题29.(2022春·贵州安顺·八年级统考期末)直接写出一个与直线21y x =+平行的一次函数的解析式:.30.(2020春·福建福州·九年级校考开学考试)将直线4y x =-向右平移3个单位后,所得直线的表达式是.【考点7】一次函数图象和性质➼➻一次函数的增减性➼➻求参数★★比较大小31.(2023春·河南新乡·八年级校考期末)请写出一个过点()11,A y -和点()25,B y 且函数值满足12y y >的一次函数解析式:.32.(2023秋·重庆沙坪坝·八年级重庆八中校考阶段练习)已知一次函数1y ax b =+,2y cx d =+(a ,b ,c ,d 均为常数,且0a c ⋅≠)在平面直角坐标系中的图象如图所示,比较a ,b ,c ,d 的大小关系用“<”连接【考点8】一次函数图象和性质➼➻直线与坐标轴交点➼➻求方程的解33.(2023春·广东汕尾·八年级统考期末)已知一次函数y kx b =+的图象与x 轴相交于点()2,0A ,与y 轴相交于点()0,3B ,则关于x 的方程0kx b +=的解是.34.(2023春·八年级课时练习)已知直线24y x =+与两坐标轴分别交于A ,B 两点,线段AB 的长为.【考点9】一次函数图象和性质➼➻规律问题★★最值问题35.(2023春·四川德阳·八年级四川省德阳市第二中学校校考阶段练习)对于函数123y x =+和21y x =-+,3122y x =-,对于实数范围内x 的任意取值,y 总取y 1、y 2、y 3中的最小值,则y 的最大值等于.36.(2023春·四川广安·八年级广安中学校考阶段练习)如图,在平面直角坐标系中,直线:1l y x =-与x 轴交于点1A ,如图所示依次作正方形111A B C O 、正方形2221A B C C …、正方形1n n n n A B C C -,使得点123,,A A A …在直线l 上,点123,,C C C …在y 轴正半轴上,则点2020B 的坐标是.参考答案1.D【分析】根据函数的概念,对于自变量x 的每一个值,y 都有唯一的值和它对应,判断即可.解:A 、对于自变量x 的每一个值,y 都有唯一的值和它对应,所以能表示y 是x 的函数,故A 不符合题意;B 、对于自变量x 的每一个值,y 都有唯一的值和它对应,所以能表示y 是x 的函数,故B 不符合题意;C 、对于自变量x 的每一个值,y 都有唯一的值和它对应,所以能表示y 是x 的函数,故C 不符合题意;D 、对于自变量x 的每一个值,y 不是有唯一的值和它对应,所以不能表示y 是x 的函数,故D 符合题意;故选:D .【点拨】本题考查了函数的概念,熟练掌握函数的概念是解题的关键.2.B【分析】用100减去买签字笔花的钱,即可表示出剩余的钱.解:由题知,因为签字笔每支2.5元,且小涵买了x 支,所以用取2.5x 元.故余下()100 2.5x -元.所以剩余的钱y 与x 之间的关系式是100 2.5y x =-.故选:B .【点拨】本题考查函数关系式,准确表示出剩余的钱数是解题的关键.3.A【分析】根据一次函数y kx b =+的定义可知,k 、b 为常数,0k ≠,自变量的次数为1,即可求解.解:()124a y a x-=-+ 是关于x 的一次函数,11a ∴-=,且20a -≠,2a ∴=,且2a ≠,2a ∴=±且2a ≠,2a ∴=-.故选:A .【点拨】本题考查了一次函数的定义,熟练掌握一次函数的定义和性质是解题的关键.4.C【分析】把(),P a b 代入函数解析式得32=+b a ,化简得32-=-a b ,化简所求代数式即可得到结果;解:把(),P a b 代入函数解析式32y x =+得:32=+b a ,化简得到:32-=-a b ,∴()()621=231=221=-3-+-+⨯-+a b a b .故选:C .【点拨】本题主要考查了通过函数解析式与已知点的坐标得到式子的值,求未知式子的值,准确化简式子是解题的关键.5.C【分析】根据正比例函数的图象和性质,逐项判断即可求解.解:A 、图象经过原点,故本选项正确,不符合题意;B 、因为104-<,所以y 随x 的增大而减小,故本选项正确,不符合题意;C 、当2x =时,1112422y =-⨯=-≠,则点12,2⎛⎫⎪⎝⎭不在函数14y x =-的图象上,故本选项错误,符合题意;D 、因为104-<,所以图象经过二、四象限,故本选项正确,不符合题意;故选:C【点拨】本题主要考查了正比例函数的图象和性质,熟练掌握正比例函数的图象和性质是解题的关键.6.B【分析】根据一次函数的性质即可求出当12x x <时,12y y >时,列出不等式,进而求出m 的取值范围.解:∵正比例函数图象上两点11(,)A x y ,22(,)B x y ,当12x x <时,有12y y >,∴210m +<,∴12m <-.故选:B .【点拨】本题考查的是一次函数的性质.解答此题要熟知一次函数y kx b =+:当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小.7.B【分析】根据一次函数的性质,由0k <,0b >时,函数y kx b =+的图象经过第一、二、四象限,即可得出;解:根据一次函数的性质,10-<,220220m +>,故0k <,0b >,函数y kx b =+的图象经过第一、二、四象限,不经过第三象限.故选:B ;【点拨】本题考查了一次函数的性质.一次函数y kx b =+的图象经过的象限由k 、b 的值共同决定,有六种情况:①当0k >,0b >时,函数y kx b =+的图象经过第一、二、三象限,y 的值随x 的值增大而增大;②当0k >,0b <时,函数y kx b =+的图象经过第一、三、四象限,y 的值随x 的值增大而增大;③当0k <,0b >时,函数y kx b =+的图象经过第一、二、四象限,y 的值随x 的值增大而减小;④当0k <,0b <时,函数y kx b =+的图象经过第二、三、四象限,y 的值随x 的值增大而减小;⑤当0k >,0b =时,函数y kx b =+的图象经过第一、三象限;⑥当0k <,0b =时,函数y kx b =+的图象经过第二、四象限.8.A【分析】根据一次函数图象经过一、二、三象限得出3040a a +>⎧⎨+>⎩,求出结果即可.解:∵一次函数图象经过一、二、三象限,∴3040a a +>⎧⎨+>⎩,解得:3a >-,故A 正确.故选:A .【点拨】本题主要考查了一次函数的图象和性质,解题的关键是熟练掌握一次函数的性质,一次函数()0y kx b k =+≠,当0k >直线经过一、三象限,当0k <直线经过二、四象限,当0b >直线与y 轴正半轴有交点,0b <直线与y 轴负半轴有交点.9.B【分析】根据图示,可得110,0k b >>,220,0k b <<,根据不等式的性质即可求解.解:根据图示,可知一次函数()11110y k x b k =+≠中,110,0k b >>;一次函数()22220y k x b k =+≠中,220,0k b <<,∴A 、12·0k k <,故原选项错误,不符合题意;B 、∵120,0k k ><,∴120k k ->,故原选项正确,符合题意;C 、∵120,0b b ><,且12b b >,∴120b b +>,故原选项错误,不符合题意;D 、∵120,0b b ><,∴120b b < ,故原选项错误,不符合题意;故选:B .【点拨】本题主要考查一次函数图象的性质,掌握一次函数图象的性质,不等式的性质是解题的关键.10.B【分析】由一次函数4y ax =-与2y bx =+的图象在x 轴上相交于同一点,即两个图象与x 轴的交点是同一个点.可用a 、b 分别表示出这个交点的横坐标,然后联立两式,可求出ba的值.解:在4y ax =-中,令0y =,得:4x a=;在2y bx =+中,令0y =,得:2=-x b;由于两个一次函数交于x 轴的同一点,因此42a b=-,则ab =422=--.故选:B .【点拨】本题考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上点,就一定满足函数解析式.11.B【分析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.解:∵将直线22y x =-+平移后,得到直线23y x =--,设向上平移了a 个单位,∴2223x a x -++=--,解得:5a =-,所以沿y 轴向上平移了5-个单位,即向下平移5个单位,故选:B .【点拨】此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.12.B【分析】求得B 的坐标,根据题意,将△ABO 向右平移5个单位,向上平移5个单位得到△A ′B ′O ′,从而得到B ′的坐标为(-3+5,-3+5),即B ′(2,2).解:∵点A 的坐标为(-3,0),AB ⊥x 轴,与直线y =x 交于点B ,∴B (-3,-3),将△ABO 沿直线y =x 向上平移A ′B ′O ′,实质上是将△ABO 向右平移5个单位,向上平移5个单位,∴B ′的坐标为(-3+5,-3+5),即B ′(2,2),故选:B .【点拨】本题主要考查了一次函数的图象与几何变换,点的平移问题,能根据题意得出平移的实质是本题的关键.13.C【分析】根据一次函数的性质及一次函数图象上点的坐标特点对各选项进行逐一分析即可.解:A 、把=1x -代入函数 1y x =-+得,() 1120y =--+=≠,故点(1,0)-不在此函数图象上,故本选项错误,不符合题意;B 、函数 1y x =-+中,10k =-<,10b =>,则该函数图象经过第一、二、四象限,故本选项错误,不符合题意;C 、当1x >时,110-+=,则0y <,故本选项正确,符合题意;D 、函数 1y x =-+中,10k =-<,则该函数图象y 值随着x 值增大而减小,故本选项错误,不符合题意.故选:C .【点拨】本题考查了一次函数图象上点的坐标特征,一次函数的性质,掌握一次函数的性质是解题的关键.14.A【分析】将两个点代入直线方程整理判断即可.解:将A 、B 两点坐标分别代入直线方程,得1123y x =-,2223y x =-,则()12122y y x x -=-.()()()212121220x x y y x x --=-≥.∵A 、B 两点不相同,∴120x x -≠,∴()()12120x x y y -->.故选:A .【点拨】本题主要考查一次函数图象上点的坐标,比较简单,分别代入计算整理即可.15.D【分析】关于x 的一元一次方程0ax b +=的根是x =32-,即x =32-时,函数值为0,所以直线过点(32-,0),于是得到一次函数y ax b =+的图象与x 轴交点的坐标.解:方程0ax b +=的解为x =32-,则一次函数y ax b =+的图象与x 轴交点的坐标为(-32,0),故选:D .【点拨】本题主要考查了一次函数与一元一次方程:任何一元一次方程都可以转化为0ax b +=(a ,b 为常数,0)a ≠的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y ax b =+确定它与x 轴的交点的横坐标的值.16.A【分析】先根据一次函数y kx b =+的图象与x 轴交于点()30A -,,求出3b k =,然后解方程即可.解: 一次函数y kx b =+的图象与x 轴交于点()30A -,,30k b ∴-+=,3b k ∴=,0kx b -+= ,33b k x k k∴===.故选:A .【点拨】本题主要考查了一次函数与一元一次方程之间的关系,正确求出3b k =是解题的关键.17.B【分析】根据题目中的函数解析式和k 的取值范围,可以判断该函数一次项系数的正负,然后利用一次函数的性质即可解答本题.解:y=()()121x k x k-+-=12x k kx k k -+-=(1k -k )x 2k -+k ,∵0<k <1,∴1k k->0,∴该函数y 随x 的增大而增大,∴当2≤x≤3时,x=3时y 取得最大值,此时y=()()13213k k -+-=12-k k,故选:B .【点拨】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.18.D【分析】先求出1B ,2B ,3B ,4B 的坐标,探究规律后即可解决问题.解:∵1111111OC OA B C A B ====,∴()11,1B ,∵2A 在直线1y x =+上,∴()21,2A ,∴12222C C B C ==,∴()23,2B ,同理可得()37,4B ,()415,8B …所以()121,2n n n B --,所以7B 的坐标为()127,64;故选:D .【点拨】此题考查一次函数图象上点的坐标特征,规律型:点的坐标,解题关键在于根据题意找到规律.19.1x ≥【分析】根据二次根式的被开方数是非负数、分式分母不为0列出不等式组,解不等式组得到答案.解:由题意得:0x ≠且10x -≥,解得:1x ≥,故答案为: 1.x ≥【点拨】本题考查的是函数自变量的取值范围的确定,熟记二次根式的被开方数是非负数、分式分母不为0是解题的关键.20.【分析】将x ()6=f x x ,进行求解即可.解:f ==故答案为:【点拨】本题考查求函数值,分母有理化.正确的计算是解题的关键.21.2-【分析】先化为标准形式,再根据一次函数的定义解答.解:一次函数变形为:102210y x x =-=-+,故其比例系数k 是2-.故答案为:2-.【点拨】本题考查了一次函数的定义,解题的关键是掌握一次函数的定义:一般地,形如(0y kx b k =+≠,k 、b 是常数)的函数,叫做一次函数.22.3(1,)2【分析】设点P 的坐标为1(,1)2m m +,利用两点间的距离结合PA PB =,即可得出关于m 的一元一次方程,解之即可得出结论.解: 点P 在直线112y x =+上,∴设点P 的坐标为1(,1)2m m +.PA PB = ,222211(0)(14)(2)(14)22m m m m ∴-++-=-++-,即440m -=,解得:1m =,∴点P 的坐标为3(1,)2.故答案为:3(1,)2.【点拨】本题考查了一次函数图象上点的坐标特征、两点间的距离以及解一元一次方程,利用一次函数图象上点的坐标特征及两点间的距离,找出关于m 的方程是解题的关键.23.2143k k k k <<<【分析】首先根据直线经过的象限判断k 的符号,再根据直线的平缓趋势判断k 的绝对值的大小,最后判断四个系数的大小.解:由直线经过的象限,知:12340000k k k k <>,,,,∵根据直线越陡,k 越大,∴21k k >,34k k >,∴2143k k k k <<<,故答案为:2143k k k k <<<.【点拨】本题考查正比例函数图象与性质,掌握正比例函数的性质是解题的关键.24.1【分析】先根据正比例函数的性质求出k 的取值范围,再把P 点坐标代入求解即可.解:∵正比例函数()0y kx k =≠的图象经过一、三象限,∴0k >.把()2,21P k k ++代入()0y kx k =≠,得()221k k k +=+,解得1k =或1k =-(舍去).故答案为:1.【点拨】本题考查了正比例函数图象与系数的关系:对于y kx =(k 为常数,0k ≠),当0k >时,y kx =的图象经过一、三象限,y 随x 的增大而增大;当0k <时,y kx =的图象经过二、四象限,y 随x 的增大而减小.25.一【分析】根据图象在坐标平面内的位置关系确定k ,b 的取值范围,从而求解.解:由直线y kx b =+的图象经过第一、二、四象限,∴0k <,0b >,∴0k <,0b -<,∴直线y bx k =-+经过第二、三、四象限,∴直线y bx k =-+不经过第一象限,故答案为:一.【点拨】本题考查一次函数图象与系数的关系.解答本题注意理解:直线y kx b =+所在的位置与k 、b 的符号有直接的关系.0k >时,直线必经过一、三象限.0k <时,直线必经过二、四象限.0b >时,直线与y 轴正半轴相交.0b =时,直线过原点;0b <时,直线与y 轴负半轴相交.26.-3≤k≤3且k≠1.【分析】根据图像即可求得k 的取值范围.解:根据题意当x≥13时,y =3x -1+2=3x+1;当x <13时,y =1-3x +2=3-3x ,由此画出图形M ,直线y =kx -5过定点(0,-5),交点在l 2上,如图可得:-3≤k≤3且k≠1,故答案为:-3≤k≤3且k≠1.【点拨】本题考查了一次函数图像上点的坐标特征,画出图像是本题关键.27.()2,0,()0,4【分析】根据坐标轴上点的坐标特点:横轴上的点,纵坐标为零;纵轴上的点,横坐标为零进行计算即可.解:∵当0x =时,4y =,∴与y 轴交点坐标为()0,4,∵当0y =时,2x =,∴与x 轴交点坐标为()2,0,故答案为:()2,0,()0,4.【点拨】此题主要考查了一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足解析式.28.()2-/()2,0-【分析】先根据坐标轴上点的坐标特征得到()2,0A ,()0,4B ,再利用勾股定理计算出AB =根据圆的半径相等得到AC AB ==解:当0y =时,240x -+=,解得2x =,则()2,0A ;当0x =时,244y x =-+=,则()0,4B ,所以AB ===因为以点A 为圆心,AB 为半径画弧,交x 轴于点C ,所以AC AB ==所以2OC AC AO =-=.即可得点C 坐标为()2C -.故答案为:()2-.【点拨】本题主要考查了一次函数与坐标轴的交点坐标,勾股定理,正确求出一次函数与坐标轴的交点坐标是解题的关键.29.21y x =-(答案不唯一)【分析】根据平行得出一次函数的解析式2k =,1b ≠即可;解:设一次函数的解析式是y kx b =+,与直线21y x =+平行,2k ∴=,1b ≠,∴符合条件的一次函数的解析式可以是21y x =-,故答案为:21(y x =-答案不唯一;【点拨】本题考查了两直线相交或平行问题的应用,关键是根据题意求出2k =,1b ≠.30.7y x =-【分析】直接根据“左加右减,上加下减”的原则进行解答即可.解:将直线4y x =-向右平移3个单位后,所得直线的表达式是()34y x =--,即7y x =-.故答案为:7y x =-.【点拨】本题考查的是一次函数的图象的平移,熟知函数图象平移的法则“左加右减,上加下减”是解答此题的关键.31.21y x =-+【分析】根据题意可知所求的一次函数中,函数值随自变量的增大而减小,即所得函数中,自变量的系数为负,据此作答即可.解:一次函数过点()11,A y -和点()25,B y ,∵15-<,且12y y >,∴一次函数的函数值随自变量的增大而减小,∴一次函数中,自变量的系数为负,故答案为:21y x =-+(答案不唯一).【点拨】本题主要考查了一次函数的图象与性质,判断出一次函数的函数值随自变量的增大而减小,是解答本题的关键.32.d b a c<<<【分析】首先根据函数图像可知0a >,0b <,0c >,0d <,由图象可以得到函数1y ax b =+与y 轴的交点在函数2y cx d =+与y 轴的交点的上方,故b d >,由图象可以发现函数1y ax b =+的图象的倾斜度比函数2y cx d =+的图象的倾斜度缓,故a c <,即可求解.解:由图象可得,0a >,0b <,0c >,0d <,由图象可以得到函数1y ax b =+与y 轴的交点在函数2y cx d =+与y 轴的交点的上方,故b d >,由图象可以发现函数1y ax b =+的图象的倾斜度比函数2y cx d =+的图象的倾斜度缓,故a c <,由上可得,d b a c <<<,故答案为:d b a c <<<.【点拨】本题主要考查了一次函数图像的性质,解题的关键在于能够熟练掌握相关知识进行求解.33.2x =【分析】根据一次函数与一元一次方程的关系,一次函数y kx b =+图象与x 轴交点的横坐标是方程0kx b +=的解,即可得出答案.解:∵一次函数y kx b =+的图象与x 轴相交于点()2,0A ,∴方程0kx b +=的解是2x =.故答案是2x =.【点拨】本题主要考查了图象法解一元一次方程,熟练掌握一次函数y kx b =+图象与x 轴交点的横坐标是方程0kx b +=的解,利用数形结合的思想解决问题是解题的关键.34.【分析】根据表达式求出A 、B 两点坐标,再利用勾股定理求出AB 的长即可.解:把x =0代入y =2x +4得:y =4,∴直线与y 轴交点坐标为(0,4),把y =0代入y =2x +4得:0=2x +4,x =-2,∴直线与x 轴交点坐标为(-2,0),∴AB =故答案为:【点拨】本题考查一次函数及勾股定理,利用表达式求出点的坐标,再把坐标转化成线段长是解题的关键.35.1-【分析】利用两直线相交,分别求出三条直线两两相交的交点,观察函数图像,利用一次函数的性质解答.解:直线123y x =+和直线21y x =-+的交点21,33⎛⎫- ⎪⎝⎭,直线123y x =+和直线3122y x =-的交点1011,33骣琪--琪桫,直线21y x =-+和直线3122y x =-的交点()2,1-,结合图像,对于实数范围内x 的任意取值,y 总取y 1、y 2、y 3中的最小值,所以,当2x =时,y 有最大值,最大值为1-,故答案为:1-.【点拨】本题考查一次函数的性质,掌握一次函数的图像性质是解题的关键,学会运用数形结合的思想解答更容易方便,这里注意求两条一次函数图像的交点即为联立两个一次函数解析式,求解出来的x 与y 即为交点坐标的横纵坐标.36.20192020(2,21)-【分析】根据题意,直线:1l y x =-与x 轴交于点1A ,当0y =时,1x =,可算出点,A B 的规律,由此即可求解.解:直线:1l y x =-与x 轴交于点1A ,当0y =时,1x =,∴1(1,0)A ,∴1(1,1)B ,同理可得,2(2,1)A ,3(4,3)A ,4(8,7)A ,5(16,15)A ,┈2(2,3)B ,3(4,7)B ,4(8,15)B ,5(16,31)B ,┈∴1(2,21)n n n B --(n 为正正数),∴2020120202020(2,21)B --,即201920202020(2,21)B -,故答案为:20192020(2,21)-.【点拨】本题主要考查一次函数图像的几何变换规律,掌握一次函数图像的性质,点的规律是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数知识点总结基本概念1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

例题:在匀速运动公式vts=中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是________,常量是_______。

在圆的周长公式C=2πr中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

例题:下列函数(1)y=πx (2)y=2x-1 (3)y=1x(4)y=2-1-3x (5)y=x2-1中,是一次函数的有()(A)4个(B)3个(C)2个(D)1个3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

(x的取值范围)一次函数1..自变量x和因变量y有如下关系:y=kx+b (k为任意不为零实数,b为任意实数)则此时称y是x的一次函数。

特别的,当b=0时,y是x的正比例函数。

即:y=kx (k为任意不为零实数)定义域:自变量的取值范围,自变量的取值应使函数有意义;要与实际有意义。

2. 当x=0时,b为函数在y轴上的截距。

一次函数性质:1 在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

2 一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.函数不是数,它是指某一变量过程中两个变量之间的关系。

特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

4、特殊位置关系当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1)应用一次函数y=kx+b的性质是:(1)当k>0时,y随x的增大而增大;(2)当k<0时,y随x的增大而减小。

利用一次函数的性质可解决下列问题。

一、确定字母系数的取值范围例1. 已知正比例函数(35)y m x=+,则当m______________时,y随x的增大而减小。

二、比较x值或y值的大小例2. 已知点P1(x1,y1)、P2(x2,y2)是一次函数y=3x+4的图象上的两个点,且y1>y2,则x1与x2的大小关系是()A. x1>x2B. x1<x2C. x1=x2D.无法确定判断函数图象的位置例3. 一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限典型例题:例1. 一个弹簧,不挂物体时长12cm,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3kg 物体后,弹簧总长是13.5cm ,求弹簧总长是y(cm)与所挂物体质量x(kg)之间的函数关系式.如果弹簧最大总长为23cm ,求自变量x 的取值范围.分析:此题由物理的定性问题转化为数学的定量问题,同时也是实际问题,其核心是弹簧的总长是空载长度与负载后伸长的长度之和,而自变量的取值范围则可由最大总长→最大伸长→最大质量及实际的思路来处理.解:由题意设所求函数为y=kx+12则13.5=3k+12,得k=0.5∴所求函数解析式为y=0.5x+12由23=0.5x+12得:x=22∴自变量x 的取值范围是0≤x≤224、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

例题:下列函数中,自变量x 的取值范围是x ≥2的是( )A ... D .函数y =x 的取值范围是___________. 已知函数221+-=x y ,当11≤<-x 时,y 的取值范围是 ( ) A.2325≤<-y B.2523<<y C.2523<≤y D.2523≤<y 5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

9、正比例函数及性质一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零解析式:y=kx (k 是常数,k ≠0)必过点:(0,0)、(1,k )走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴例题:.正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大. 若23y x b =+-是正比例函数,则b 的值是 ( )A.0B.23 C.23- D.32- 10、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数一次函数y=kx+b 的图象是经过(0,b )和(-kb ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k 、b 是常数,k ≠0)(2)必过点:(0,b )和(-kb ,0) (3)走向: ⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限 (4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.(6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.例题:若关于x 的函数1(1)m y n x -=+是一次函数,则m = ,n ..函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致位置正确的是( )将直线y =3x 向下平移5个单位,得到直线 ;将直线y =-x -5向上平移5个单位,得到直线 .若直线a x y +-=和直线b x y +=的交点坐标为(8,m ),则=+b a ____________.已知函数y =3x +1,当自变量增加m 时,相应的函数值增加( )A.3m +1 B.3m C.m D.3m -111、一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b ),.即横坐标或纵坐标为0的点.b>0 b<0 b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y随x的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y随x的增大而减小若m<0,A.第一象限B. 第二象限C.第三象限D.第四象限12、正比例函数与一次函数图象之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).13、直线y=k1x+b1与y=k2x+b2的位置关系(1)k1=k2且b1=b2两直线重合:(2)k1=k2且b1≠b2两直线平行(3)k1≠k2且b1≠b2 两直线相交:(4)k1≠k2 b1=b2两直线相交于y轴上即点(0,b):14、用待定系数法确定函数解析式的一般步骤:确定一次函数的表达式已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b …… ①和 y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

相关文档
最新文档